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We construct closed-form gravitational waveforms (GWs) with tidal effects for the coalescence of
binary neutron stars. The method relies on a new set of eccentricity-reduced and high-resolution
numerical relativity (NR) simulations and is composed of three steps. First, tidal contributions
to the GW phase are extracted from the time-domain NR data. Second, those contributions are
employed to fix high-order coefficients in an effective and resummed post-Newtonian expression.
Third, frequency-domain tidal approximants are built using the stationary phase approximation.
Our tidal approximants are valid from the low frequencies to the strong-field regime. They can be
analytically added to any binary black hole GW model to obtain a binary neutron star waveform,
either in the time or in the frequency domain. This work provides simple, flexible, and accurate
models ready to be used in both searches and parameter estimation of binary neutron star events.

PACS numbers: 04.25.D-, 04.30.Db, 95.30.Sf, 95.30.Lz, 97.60.Jd

The 2015 detections of gravitational waves (GWs) of
merging binary black holes (BBHs) [1, 2] have initi-
ated a new observational era in astronomy and funda-
mental physics. In the coming years, ground-based ad-
vanced interferometers will reach design sensitivity and
observe the coalescence and merger of binary neutron
stars (BNSs) [3]. These observations will have a unique
potential to probe the fundamental physics of NSs and to
connect high-energy astrophysical phenomena with their
strong-gravity engines. Main examples are the possibil-
ity to constrain the equation of state (EOS) of the cold
ultradense matter in NS interiors, e.g. [4], and the possi-
bility to show the unequivocal connection between elec-
tromagnetic signals, e.g. short gamma ray bursts [5] or
kilonovae [6], with the collision of two compact objects.

A key open problem for GW astronomy with BNS
sources is the availability of faithful waveform models
that capture the strong-gravity and tidally-dominated
regime of the late-inspiral and merger. State-of-art tidal
waveform models have been developed in [7, 8] and are
based on the effective-one-body (EOB) description of the
general-relativistic two body problem [9, 10]. That ap-
proach proved to be very powerful but has also limita-
tions. EOB waveforms cannot be efficiently evaluated,
hence they cannot be directly used for GW searches or
parameter estimation. Fast representations of EOB can
be build using reduced-order-modeling techniques [11],
but they require extra efforts and introduce further un-
certainties. Additionally, the currently published tidal
EOB models neither include spin effects nor are tested
against spinning NR simulations [12]. Recent work also
showed that the current EOB models are not uniformly
accurate on the binary parameter space that has been
simulated in Ref. [13, 14]. Thus, modeling techniques

complementary to EOB, see e.g. [15, 16], are needed es-
pecially because post-Newtonian (PN) approximants fail
towards merger and introduce systematic uncertainties
in GW parameter estimation [17–19].

In this work we construct for the first time closed-form
(analytical) approximants to the tidal GW phase directly
employing numerical relativity (NR) simulations. Simple
time and frequency domain approximants are build from
a set of error-controlled BNS merger simulations. Our
method is inspired by some ideas used in the modeling
of BBH’s GWs. In particular, it makes direct use
of NR data as in the Phenom approach [20] and em-
ploys resummed PN expressions as in the EOB approach.

Eccentricity-reduced and high-resolution NR simula-
tions. For this work we simulated nine BNS configu-
rations in general relativity. We simulated equal-masses
BNSs both irrotational and with spins (anti-) aligned to
the orbital angular momentum. Three different parame-
terized EOSs (MS1b, H4, SLy) [21] are employed to span
a large range of tidal parameters (see below). The bi-
nary gravitational mass is M = MA + MB ∼ 2.7, where
A,B label the NSs and MA is the mass of star A in iso-
lation. Spin magnitudes are in the range χA = χB ∼
[−0.1,+0.15], where χA = SA/M

2
A is the mass-rescaled

dimensionless spin. We use the numerical methods im-
plemented in the pseudospectral initial data SGRID code
[22] and in the 3+1 adaptive-mesh-refinement evolution
BAM code [23]. Key technical points are the use of
the Z4c formulation of general relativity and of an high-
order scheme for the hydrodynamics [24, 25]. See [26]
for further details. Note that we employ geometric units
G = c = M� = 1.

These new simulations significantly improve the
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waveform’s quality over previous ones. Low-eccentricity
initial data were generated following Ref. [27]; our BNSs
have e ∼ 10−3. Each BNS is evolved using four to
five grid resolutions making a total of 37 runs. The
NSs are resolved with smallest grid spacings in the
range dx = 0.291 − 0.059 in each direction. These are
the largest BNS simulations performed with the BAM
code so far and utilized ∼ 25 million CPU hours on
various high-performance-computing clusters. Numeri-
cal uncertainties are estimated from convergence tests
and a detailed error budget has been computed. Our
waveforms have maximal errors at merger, accumulated
over ∼ 12 orbits, of ∼ 0.5 − 1.5 radians, depending on
the particular configuration [26].

Extraction of tidal contributions. Spin and tidal ef-
fects in the phase of the complex GW h(t) = A(t)e−iφ(t)

are parametrized to leading PN order respectively by the
effective spin

χeff = XAχA +XBχB −
38

113
XAXB(χA + χB) (1)

describing the spin-orbit (SO) interaction [28], and by an
effective tidal coupling constant [10, 30]

κTeff =
2

13

[(
1 + 12

XB

XA

)(
XA

CA

)5

kA2 + (A↔ B)

]
,

(2)
where kA2 is the quadrupolar Love number describing the
static quadrupolar deformation of one body in the grav-
itoelectric field of the companion, XA = MA/M , and
CA is the compactness of star A. κTeff is defined here for
the first time but it based on the expressions for generic
mass ratio phasing in [30]. For equal mass systems κTeff
is identical to the dimensionless tidal coupling constant
κT2 defined in [10, 34].

In order to separate the tidal phase we work with the
phase as a function of the dimensionless GW frequency
ω̂ = M∂tφ(t) and use the PN ansatz

φ(ω̂) ≈ φ0(ω̂) + φSO(ω̂) + φT (ω̂) , (3)

where φ0 denotes the nonspinning black hole (or point
particle) phase evolution. The SO contribution is φSO ∝
χeff at leading 1.5PN order and it is currently known up
to 3.5PN order. For simplicity, we neglect spin-spin inter-
actions; they are subdominant contributions and poorly
resolved in our simulations [29]. Tidal contributions enter
the phasing at 5PN. The currently known next-to-leading
order PN expression of the tidal contribution (TaylorT2
approximant) [19] reads

φT2
T = −κTeff

cNewtx
5/2

XAXB
(1 + c1x) , (4)

with x(ω̂) = (ω̂/2)2/3, where ω̂/2 is the orbital frequency,
and cNewt = −13/8, c1 = 1817/364 (value for equal
mass case). Using Eq. (3) the nonperturbative SO and
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FIG. 1. Phase as a function of the GW frequency from NR
simulations. The simulations are labeled as EOSχA

MA
. Top:

Total phase / number of cycles accumulated within frequency
interval ω̂ ∈ [0.04, 0.17] for different BNSs. Markers indicate
the merger (peak of the GW’s amplitude) of the particular
simulation for the highest revolved simulation. Bottom: Pair-
wise phase differences equivalent to the tidal phase φT /κ

T
eff ;

note the spin independence.

tidal contributions can be extracted by linearly combin-
ing pairs of simulation data with different parameters, as
detailed in [12, 26, 29]. The top of Fig. 1 shows the total
phase accumulated over simulations. The bottom shows
the phase differences divided by the differences in κTeff for
several simulation pairs [26], denoted by ∆φT /∆κ

T
eff. Ac-

cording to Eqs. (3) and (4) ∆φT /∆κ
T
eff ≈ φT /κ

T
eff. For

comparison we also show φT /κ
T
eff of our fit and of Tay-

lorT2. We find that the leading order EOS effect is cap-
tured well by κTeff and the residual dependency on the
EOS, related to multipolar tidal coefficients with ` > 2,
is negligible. Most importantly, tidal interactions decou-
ple from spin interactions for the spin values explored
by NR data and at level of the NR uncertainties. This
fact allows us to construct spinning BNSs using binary
black hole baseline waveforms and adding the tidal con-
tribution. Further, Fig. 1 indicates that the TaylorT2
approximant does not capture the phase evolution in the
strong field region, failing for ω̂ & 0.06, which is approx-
imately the contact frequency [17].
Time-domain tidal approximant. A closed-form ex-

pression for φT is obtained using the fitting formula

φT = −κTeff
cNewt

XAXB
x5/2 × (5)

1 + n1x+ n3/2x
3/2 + n2x

2 + n5/2x
5/2 + n3x

3

1 + d1x+ d3/2x3/2

Demanding that Eq. (5) reproduces Eq. (4) in a low
frequency expansion, we set d1 = (n1 − c1). The other
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FIG. 2. Comparison of NR simulations with model wave-
forms obtained following Eq. (3). The panels show the real
part of the GW signals (NR data – gray, tidal approximant
– orange). We also include the phase between the NR data
with respect to our tidal approximant Eq. (5), to Taylor T2
tidal approximant Eq. (4) (cyan), and for some cases to EOB
(green dashed [8], green dot dashed [7]. We also indicate the
estimated uncertainty of the NR data (blue shaded) and the
alignment region (gray shaded). Simulations use the same
notation as in Fig. 1 except for the unequal mass case of [14]
with EOSMA+MB .

coefficients are fit to NR data. Note that for simplicity
Eq. (5) does not contain tidal terms corresponding to
higher multipoles [30], and the dependency from XA,B of
the higher effective PN terms is ignored. This is justified
since we seek an effective expression of the phase; the
coefficients of the latter could be further improved using
more simulations with various mass ratios.

The fit is performed on a dataset spanning the in-
terval ω̂ ∈ [0, 0.17]. Eq. (4) is used for ω̂ ≤ 0.0074,
while the tidal EOB waveforms of [7] are used for ω̂ ≥∈
[0.0074, 0.04]. The datasets are connected such that
phase differences near the interval boundaries are min-
imal. We interpolate the data on a grid consisting of
10000, 5000, 500 points in the three intervals, respec-
tively. Although the final fit depends only weakly on the
exact number of points of the interpolating grid, using
more points at lower frequencies helps constraining the
fit in that regime. Our approximant is defined by Eq. (5)
with the fitting coefficients (n1, n3/2, n2, n5/2, n3) =
(-17.941,57.983,-298.876,964.192,-936.844), and d3/2 =
43.446.

A time-domain approximant of a BNS configuration
is computed by prescribing κTeff and adding Eq. (5) to a

BBH baseline, i.e. to φ0. To construct a generic spin-
aligned BNS configurations with spin χeff we use a BBH
waveform that includes already the spin contribution,
i.e. use as baseline the GW phase of a BBH setup which
has the same dimensionless spin as the BNS configuration
which we are going to model. The time-domain phasing is
then calculated by numerically integrating t =

∫
dφ/ω̂(φ)

in order to obtain a parametric representation of the tidal
phase. We stop the integration once φ(ω̂) reaches its
maximum.

Examples of such constructed waveforms are reported
in Fig. 2. There, we use the nonspinning BBH waveforms
from the SXS-database [31, 32], in particular setup 66 for
the equal mass cases and setup 7 for the q = XA/XB =
1.5 configuration. In order to compare with the BNS
configuration with χeff = +0.123 we add to the nonspin-
ning NR BBH curve the spin-orbit contributions given
in Eq. (417) of [28]. In general a spinning binary black
hole baseline should be used.

In most cases our new waveforms are compatible with
the NR data within the estimated uncertainties. The
proposed tidal approximant remains accurate also for
longer waveforms. Phase differences with respect to
hybrid tidal EOB-NR waveforms and accumulated over
the last 300 orbits before merger are of the order of ∼ 1
rad, see [26]. In the nonspinning cases, our results can
be directly compared to the tidal EOB waveforms of
[7, 8] [see green lines in Fig. 2]; comparable performances
are observed in spite of the simplicity of our model.
The fit gives a good prediction also for the unequal
mass case, although only the leading order effect of the
mass-ratio is taken into account, see Eq. (2). Also, while
we use NR data up to ω̂ = 0.17, the model remains
accurate for BNSs with smaller κTeff that merge at higher
frequencies. Let us stress that the model performances
are independent of the BBH baseline, provided the latter
is a faithful representation of BBH waveforms.

Frequency-domain tidal approximant. In the fre-
quency domain h̃(f) = f−7/6Ã(f)e−iΨ(f). The expres-
sion of the tidal phase is computed using the stationary
phase approximation (SPA) [30]

d2ΨSPA
T

dω2
f

=
Qω(ωf )

ω2
f

, (6)

where ωf is the Fourier domain circular frequency ωf =
2πMf , and Qω(ω) = dφ/d logω. The integration of
Eq. (6) with (5) is performed numerically; the constants
of integration are fixed by demanding continuity with the
TaylorF21PN in the limit f → 0. The resulting expression
ΨNR
T can be approximated by a Padé function:

ΨNRP
T = −κTeff

c̃Newt

XAXB
x5/2 × (7)

1 + ñ1x+ ñ3/2x
3/2 + ñ2x

2 + ñ5/2x
5/2

1 + d̃1x+ d̃3/2x3/2
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FIG. 3. Frequency-domain tidal approximants. Top
panel shows ΨT /κ

T
eff as given by the TaylorF21PN,

TaylorF22.5PN [30], Eq. (6), and Eq. (7). Bottom panel: Dif-
ference between the frequency-domain representations.

with c̃Newt = 39/16 and d̃1 = ñ1 − 3115/1248, the other
parameters read: (ñ1, ñ3/2, ñ2, ñ5/2) = (-17.428,31.867,-

26.414,62.362) and d̃3/2 = 36.089.
Figure 3 compares the obtained tidal approximants

ΨNR
T ,ΨNRP

T with the TaylorF21PN and the 2.5PN approx-
imants given in [30] (TaylorF22.5PN). Because of the con-
struction of Eq. (7) the low frequency behavior of Tay-
lorF2 is recovered. At higher frequencies PN expressions
predict smaller tidal effects than ΨNR

T . Considering the
accuracy of ΨNRP

T , the Padé fit recovers ΨNR
T with frac-

tional errors . 1%.
To further test the performance of the proposed

frequency-domain model we compute the unfaithfulness
(F̄ = 1 − F , one minus faithfulness) which is the mis-
match for the fixed intrinsic binary parameters with re-
spect to tidal EOB waveforms starting at ∼ 25Hz and
hybridized with NR simulations [26]. The unfaithfulness
quantifies the loss in the signal-to-noise ratio (squared)
due to the inaccuracies in the signal modeling. The typi-
cal maximum value used in the GW searches is F̄ ≤ 0.03,
which roughly corresponds to . 10% loss in the number
of events (assuming that they are uniformly distributed).

Figure 4 shows F̄ for different approximants and
varying the minimum frequency in the overlap interval
from Mfmin ∼ [0.0022, 0.04]/2π, i.e. from ∼ 27 Hz to
the NR regime (∼ 480 Hz). Tidal approximants have
significant mismatches with respect to BBH ones already
for Mfmin ∼ 0.01/2π. The unfaithfulness computed
from Mfmin ∼ 0.0022/2π up to the merger is only
weakly dependent on the particular tidal approximant.
However, tidal effects become significant at higher
frequencies, and if the F̄ computations are restricted
to higher frequencies significant differences amongst the
approximants emerge. ΨNRP

T has the smallest unfaith-
fulness. For MS1b0.00

1.35 (top panel), in particular, the
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FIG. 4. Unfaithfulness of different approximants with re-
spect to hybridized EOB-NR waveforms for MS1b0.00

1.35 (top)
and SLy0.00

1.35 (bottom). The unfaithfulness is computed within
the interval M [fmin, fmax] ∼ [0.0022, 0.04]/2π, i.e. fmin varies
between 27 and 480 Hz. fmax is set to the merger frequency
of the highest resolved simulation (1398 Hz for MS1b0.00

1.35 and
2005 Hz for SLy0.00

1.35). As BBH baseline for ΨNRP
T we use a

nonspinning equal-mass EOB waveform [33].

proposed tidal approximant has an unfaithfulness about
one order of magnitude smaller than TaylorF2. For
SLy0.00

1.35 (bottom panel) the unfaithfulness is F̄ < 0.03
for all tidal approximants, indicating that the largest
contribution due to tidal effects comes from the strong-
field–NR regime.

Conclusion. The tidal approximants proposed here
can be efficiently used for both GW searches and
parameter estimation of BNS events. For data-analysis
applications it is trivial to re-parametrize the tidal
coupling constant κTeff in terms of the mass ratio and
(combinations of) the dimensionless tidal parameters
that are shown to be optimal for those purposes [18, 19].
The approximant is valid up to the moment of merger
frequency defined by NR simulations in [34]. The latter
references quantifies the frequency corresponding to
the peak of the waveform’s amplitude in term of the
tidal polarizability coefficient κT2 ; the amplitude’s peak
formally marks the end of the chirp signal from BNS.
Although our work focused uniquely on the GW phase
evolution, tidal corrections to the amplitude could also
be added following [30]. Future research will aim at
improving the approximants using more NR data and
at including precession effects [35, 36]. Our work also
proves that high-precision BNS simulations for GW
astronomy (similar to those used for the first BBH
detections) are now within reach of current technology.
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