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ABSTRACT
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as a setting for composite Higgs models. We formalize the computation
of the Coleman-Weinberg potential and present a simple, general formula.
Using this tool, we study the competition of fermion multiplets with differ-
ent boundary conditions, to find conditions for creating a little hierarchy
with the Higgs field expectation value much smaller than the intrinsic
Randall-Sundrum mass scale.
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1 Introduction

One of the most important open questions in particle physics is to find an expla-
nation for the spontaneous breaking of the weak interaction symmetry SU(2)×U(1).
Ideally, we would like to calculate the potential associated with the Higgs boson in
terms of a more fundamental set of parameters. It is well appreciated that this is
not possible within the Standard Model of particle physics. This idea then motivates
models of physics that extend the Standard Model.

In this paper, we will study the generation of the Higgs potential in 5-dimensional
field theory models. In these models, the Higgs boson appears as the fifth component
of a gauge field. It has been understood for a long time that fermions in such models
can spontaneously acquire mass, driving a breaking of the gauge symmetry [1,2]. The
fifth dimension can be flat, but here we will study models in 5-dimensional anti-de
Sitter space with boundaries, as in the model of Randall and Sundrum [3]. Such a
model can be viewed as a dual description of a strongly-coupled field theory in four
dimensions [4]. Indeed, the study of these five-dimensional models potentially gives a
simplified but calculable approach to composite Higgs models with strong coupling.

In the original Randall-Sundrum model, a fundamental Higgs field was intro-
duced as a scalar field living on the 4-dimensional subspace or brane at the infrared
boundary. However, by introducing the Higgs field as a fundamental scalar field, this
approach gives up any chance to compute the Higgs potential from deeper principles.
In this paper, we will consider the Higgs field to arise as the fifth component of a gauge
field in the 5-dimensional bulk, an approach called gauge-Higgs unification [5,6]. The
Higgs potential will be generated dynamically, by integrating out massive fermion
and gauge boson states. We will nevertheless use the abbreviation RS to denote this
class of models.

RS models of the Higgs sector were studied intensely about ten years ago, by
Agashe, Contino, and Pomarol [7] and many others. However, many issues were not
resolved. Chief among these is the understanding of the various hierachies of scales
required in these models. RS models with dynamical symmetry breaking generated by
fermions have three distinct hierarchies that need to be established. First, the intrin-
sically five-dimensional or Kaluza-Klein states must be much heavier than Standard
Model particles, including the top quark. Second, Higgs field vacuum expectation
value must be small compared to its natural scale in the five-dimensional theory.
Third, the mass generation for light quarks and leptons due to the composite Higgs
must not generate too large anomalous values for flavor observables. We will refer to
these requirements as the KK, v/f , and flavor hierarchies, respectively.

In this paper, we will discuss the formalism for symmetry breaking in RS models
of gauge-Higgs unification. Our goal is to present strategies for creating KK and v/f
hierarchies. The KK hierarchy is easier to address. To create such a hierarchy, we
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need to build the Higgs potential from several different components that naturally
have different mass scales. We will exhibit some features of fermion condensation in
RS models that lead to models with this property.

The v/f hierarchy is more difficult to generate. The Higgs field of an RS model
appears as a field of a nonlinear sigma model, whose characteristic scale we call f .
To obtain a Higgs vacuum expectation value v much smaller than f , we must be near
a second-order phase transition in the phase diagram of the model. We will present
strategies for obtaining such phase transitions. Still, it will always turn out that a
v/f hierarchy requires a fine-tuning in the model.

This study will give us ingredients that we can use to construct realistic theories
of strong interactions leading to a composite Higgs boson. We will present a model
that uses these strategies in a following paper [8].

Our concept for an RS model as a dual to a 4-dimensional strongly coupled theory
of composite Higgs bosons leads to some choices that are different from those that are
conventional in the literature. We consider the RS dynamics as modelling an approx-
imately conformal strong interaction theory that exists at energies above 1 TeV, with
an ultraviolet cutoff at about 100 TeV. These scales will provide the boundaries of the
warped RS geometry, called zR and z0, respectively, in this paper. The top quark will
play a key role in this theory in breaking electroweak symmetry, but the other quarks
and leptons will have only weak coupling to the new dynamics. We will connect the
light quarks and leptons to the Higgs sector through boundary conditions at 100 TeV.
In this, we view our construction as a dual of a sort of an extended technicolor (ETC)
theory [9,10]. ETC is a scheme that is attractive in principle but has many problems
in practice. It has proven difficult not only to solve the problems of ETC but even
to find a phenomenological treatment in which its problems can be swept under the
rug. We hope that RS models will at least provide a sufficiently shaggy rug that we
can make progress with this idea.

The outline of this paper will then be as follows: In Section 2-4, we present some
basic formalism for computation of the Higgs potential in RS models, including a
simple, general formula for the computation of the Coleman-Weinberg effective po-
tential [11]. In Section 5, we review the results of Contino, Nomura, and Pomarol [12]
on symmetry-breaking with one fermion multiplet, which provide a starting point for
our constructions. In Section 6, we explore the idea of competition between fermion
multiplets with different boundary conditions to create models where v/f � 1. In
Section 7, we present a model containing elements with intrinsically different scales
that can lead to relaxed fine-tuning. Section 8 gives a summary and some perspective.

2



2 Coleman-Weinberg potential in RS models

In this section, we review the formalism for computing the Higgs potential in RS
models. For the purpose of this paper, we take a rather narrow definition: An RS
model here will be a model of gauge and fermion fields living in the interior of a slice
5-dimensional anti-de Sitter space

ds2 =
1

(kz)2
[dxmdxm − dz2] (1)

with nontrivial boundary conditions at z = z0 and z = zR, with z0 < zR. Then z0

gives the position of the “UV brane” and zR gives the position of the “IR brane”.
In accord with the philosophy explained in the Introduction, we choose very simple
boundary conditions on the IR brane and build the complexity of the theory using
the boundary conditions on the UV brane. Using the perhaps more physical metric

ds2 = e−2kx5dxmdxm − (dx5)2 (2)

we take the size of the interval in x5 to be πR. Then

z0 = 1/k zR = eπkR/k . (3)

Because this paper focuses on the properties of the one-loop potential, we will
quote formulae for the Green’s functions of fields in RS in Euclidean space. Similar
formulae apply in Minkowski space.

In the interior or bulk 5-dimensional region, we will have spin-1
2

and spin-1 fields.
The 4-dimensional Higgs field will appear as the 5th component of a gauge field in
5 dimensions. In this paper, we will notate gauge fields as AAM , where M = 0, 1, 2, 3, 5,
with lower case m = 0, 1, 2, 3, and A is the gauge group index. Fermion fields are
4-component Dirac fields, which we will decompose as

Ψ =
(
ψL
ψR

)
, (4)

where ψL transforms as a left-handed Weyl fermion and ψR transforms as a right-
handed Weyl fermion under 4-dimensional Lorentz transformations. More details of
our formalism for 5-d fermions are presented in Appendix A.

Quantum fields in the RS geometry were analyzed soon after the original RS
work [13–15]. Gherghetta and Pomarol showed that fields of all spin values have
simple and parallel behavior in the RS geometry [16]. For a spin 0 field of mass m
satisfying the Klein-Gordon equation, the solutions in Euclidean space are given by
Bessel functions as

φ(x) = z2[AIν(pz) +BKν(pz)]e−ip·x (5)
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where

ν = [4 +
m2

k2
]1/2 . (6)

For a spin-1
2

field satisfying the Dirac equation with massm, the solutions in Euclidean
space have the form

ψL = uL(p)z5/2[AIν+(pz) +BKν+(pz)]e−ip·x

ψR = uR(p)z5/2[AIν−(pz) +BKν−(pz)]e−ip·x , (7)

where

ν± = c± 1

2
, with c =

m

k
. (8)

The parameter c will play an important role in the physics discussed in this paper.

For a spin-1 gauge field, using the background Feynman gauge of Randall and
Schwartz [17], the solutions in Euclidean space have the form

Am = εm(p) z1[AI1(pz) +BK1(pz)]e−ip·x

A5 = z1[AI0(pz) +BK0(pz)]e−ip·x

c = z1[AI1(pz) +BK1(pz)]e−ip·x , (9)

where c(x, z) is the ghost field. The gauge boson system then mimics the system of
a Dirac fermion with c = 1

2
. This correspondence allows us to compute the effects

of gauge bosons by borrowing results from the fermionic case. This fact and other
relevant details of this construction are explained in Appendix B.

By integrating out fields in the 5-dimensional bulk in the presence of a fixed
background gauge field, we generate an effective potential for that gauge field, the
Coleman-Weinberg potential. The Coleman-Weinberg potential is computed as an
integral over Euclidean 4-momenta

V =
∫ d4p

(2π)4

[
−2 log det(Ψ) +

3

2
log det(A)

]
, (10)

for the terms due to fermions and gauge fields. Precise expressions for the operators
labelled Ψ and A are given in Appendices A and B. The similarity of the solutions for
these fields allows us to write a general formula for the values of these determinants.
We emphasize that, throughout this paper, we are not interested in the overall con-
stant in (10) but only in the dependence on the Higgs field, which appears here as a
background AA5 field.

Consider, then, a field whose classical solutions take the form

Φ = za[AIν(pz) +BKν(pz)]e−ip·x (11)
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It is useful to define combinations of the Bessel functions with definite boundary
conditions at a point z = z2,

Gαβ(z1, z2) = Kα(pz1)Iβ(pz2)− (−1)δIα(pz1)Kβ(pz2) , (12)

where α, β = ±1, (−1)δ = 1 for α = β and −1 for α 6= β, and the orders of the Bessel
functions are

for α, β = +1 : ν+ = c+
1

2
; for α, β = −1 : ν− = c− 1

2
(13)

for an appropriate value of the parameter c. Then G++(z, zR), G−−(z, zR) will give
solutions with Dirichlet boundary conditions on the IR brane: Φ(z, zR) = 0 at z = zR.
Due to the identities

d

dz
zνIν(z) = zνIν−1(z) and

d

dz
z−νIν(z) = z−νIν+1(z), (14)

and similarly for other Bessel functions, G+−(z, zR), G−+(z, zR) will give solutions
with appropriate Neumann boundary conditions on the IR brane. The definition of
Neumann boundary conditions for gauge fields and of both sets of boundary conditions
for fermions requires some further explanation, which we give in Appendices A and
B. In this paper, we will refer to these Neumann and Dirichlet boundary conditions
as + and − boundary conditions, respectively.

The G functions obey the important identity

G++(z1, z2)G−−(z1, z2)−G+−(z1, z2)G−+(z1, z2) = − 1

p2z1z2

, (15)

which follows from the Wronskian identity for Bessel functions.

We will use the G functions to construct Green’s functions for the RS fields. As
an example, consider

ηmnGAB(z, z′, p) =
〈
AAm(z, p)ABn (z′,−p)

〉
. (16)

This object is locally a solution of the classical field equations in z, satisfying three
sets of boundary conditions. These are: (1) + or − boundary conditions on the IR
brane at z = zR, (2) a discontinuity in the derivative of a fixed size at z = z′, (3)
+, −, or other appropriate boundary conditions at z = z0. For the field AAm, the
solutions to the field equations will be a linear combination of

z1G++(z, zR) and z1G+−(z, zR) , (17)

with c = 1
2
. Take, for definiteness, Neumann boundary conditions at z = zR. Then

the Greens function will have the form

GAB(z, z′, p) = Kzz′

·
{

AABG+−(z, zR)G+−(z′, zR)− δABG++(z, zR)G+−(z′, zR) z < z′

AABG+−(z, zR)G+−(z′, zR)− δABG+−(z, zR)G++(z′, zR) z > z′
.(18)
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In this formula, the second index − insures the Neumann boundary conditions at
z = zR. The constant K, which is independent of species, is determined by the
discontinuity at z = z′. The matrix AAB, which depends on p but is independent of
z and z′, is still undetermined at this stage.

To find AAB, we must fix the boundary condition at z = z0. For example, if we
directly apply Neumann boudary conditions at z = z0, we find the constraint[

AABG−−(z0, zR)− δABG−+(z0, zR)
]
G+−(z′, zR) = 0 . (19)

The dependence on z′ factors away, as it must, and we find a simple linear equation
for AAB, leading to

AAB = δAB
G−+(z0, zR)

G−−(z0, zR)
. (20)

Imposition of the boundary condition at z = z0 will always give us a solution for AAB

in terms of functions (12) evaluated at (z0, zR), so, in the rest of this paper, we will
abbreviate

Gαβ ≡ Gαβ(z0, zR) . (21)

In the examples of interest later in this paper, we will not apply simple Dirichlet
or Neumann boundary conditions directly to the elementary fields. Instead, we will
apply these boundary conditions only after the fields are mixed by a unitary trans-
formation. We will explain in Section 3 how this allows us to encode the effect of the
Higgs field vacuum expectation value and other physical effects on the UV brane. In
the presence of such a unitary transformation U , and allowing more general boundary
conditions, (19) is generalized to the condition

UAC

[
ACBG

(C)
−A0,−CR

(z0, zR)− δCBG(C)
−A0,+CR

(z0, zR)
]
G

(B)
−B0,−BR

(z′, zR) = 0 . (22)

The notation of this equation is as follows: A0 represents the boundary condition of
the field A at z = z0. That is, −A0 is − if the field A has + (Neumann) UV boundary
conditions, and + if the field has − (Dirichlet) UV boundary conditions. The index
−CR similarly reflects the IR boundary condition of the field C. In the gauge field
case, the functions Gαβ are fixed, but in the fermion case, these functions will depend
on the mass parameter c. Since the twist U is only on the UV brane, the functions
Gα,β in the bracket must be evaluated using the IR identification of the field, that is,
with the c parameter of the field C. We denote this explicitly in (22); the superscript
(C) on a G function indicates that this function should be evalulated with c = c(C).

The equation (22) is a linear equation for the matrix AAB. We will now abbreviate
this equation as

CAC ACB = (RHS) , (23)

6



where
CAC = UACG

(C)
−A0,−CR

. (24)

The matrix C depends on the 4-momentum p through the G functions (12), (21).
Here we note explicitly that the indices ν of the Bessel functions in (12) are to be
evaluated using the IR field identification. It will be convenient to notate (24) in a
more abstract way as

C =
−→
B UVUG

←−
B IR , (25)

imagining that the operators
−→
B UV ,

←−
B IR supply the appropriate UV and IR boundary

conditions.

We are now ready to evaluate the Coleman-Weinberg potential (10). The deter-
minants in this expression are formally constructed as products over the KK mass
spectrum

det(A) =
∏
i

(p2 +m2
i ) (26)

The masses m2
i that appear in this formula can be identified as poles in the corre-

sponding Green’s functions. So we must go back through the solution for the Green’s
function given above and ask how these poles could appear. The Bessel functions in
the explicit factors of Gαβ(z, zR), Gαβ(z′, zR) have no poles in p, and the constant K
can be seen to be simply proportional to p. Thus, the poles must reside in AAB(p),
and must be generated when we invert the equation (23). This observation implies
Falkowski’s Theorem [18] ,

det(A) = det C , (27)

where C(p) is the matrix in (25), up to an overall multiplicative constant. This
constant could in principle depend on U , but it will be independent of U if detU = 1.
With this identification, we reduce the calculation of the functional determinant to
the calculation of a simple matrix determinant involving the functions Gαβ.

In case this argument of Falkowski for the identification (27) is not persuasive, we
give a more constructive argument for this result in Appendix C.

3 Identification and influence of Higgs bosons

Our next task is to define the UV boundary conditions on the fermion and vector
fields, and to review how these boundary conditions incorporate the effects of the
Higgs boson vacuum expectation values.

In gauge-Higgs unification, the Higgs fields arise as the 5th components of gauge
fields AAM . These components transform as scalars under 4-dimensional Lorentz trans-
formations, so they can obtain a vacuum expectation value. Since it has nontrivial
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Figure 1: The pattern of symmetry breaking. (±±) denotes boundary conditions of 5D
gauge fields.

quantum numbers under the gauge group, this expectation value can break down the
gauge symmetry.

We view the 5-dimensional theory as a dual description of a strongly interacting
4-dimensional theory. Our physical picture is that the strong interaction theory has
a global symmetry G and a local gauge symmetry G` at the scale 1/z0. The strongly
interacting theory spontaneously breaks the global symmetry G to a subgroup H at
the scale 1/zR. This gives rise to the familiar Venn diagram shown in Fig. 1.

The gauge fields of the 5-dimensional theory fit into this structure in different
ways depending on their UV and IR boundary conditions. We will quote boundary
conditions as + or − boundary conditions on AAm. Because boundary conditions are
imposed on the gauge-covariant FA

m5,

FA
m5 = ∂mA

A
5 − ∂5A

A
m + gfABCABmA

C
5 , (28)

a + boundary condition for AAm is only consistent with a − boundary condition for
AA5 and vice versa. In general, a field can have zero modes, zero-energy solutions
to the field equations, only with ++ boundary conditions. Then AAm will have zero
modes for ++ boundary conditions and AA5 will have zero modes for −− boundary
conditions on AAm. Zero modes in 5 dimensions are dual to massless particles of the
same 4-dimensional spin in 4 dimensions.

These considerations fit together into an appealing picture. Gauge field compo-
nents with ++ boundary conditions give massless gauge fields in 4 dimensons. Gauge
fields with −− boundary conditions give massless scalars in 4 dimensions from AA5 .
These will be Goldstone bosons of the 4-dimensional theory. Coming from the other
side of the duality, the underlying gauge symmetries of the 4-dimensional theory can
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be identified with gauge fields with + UV boundary conditions, while ungauged gen-
erators of the global symmetry group are identified with gauge fields with − UV
boundary conditions. Global symmetries that are broken at 1/zR are identified with
gauge fields with − IR boundary conditions, while unbroken global symmetries are
identified with gauge fields with + IR boundary conditions. This correspondence,
shown also in Fig. 1, precisely identifies ++ gauge fields with unbroken gauge sym-
metries and −− gauge fields with spontaneously broken global symmetries.

We now have a picture in which Higgs bosons appear as Goldstone bosons of
the symmetry breaking in the new strong interaction theory modelled by the 5-
dimensional RS fields. This realizes the idea of Higgs fields as Goldstone bosons
as proposed in [19] and more recently revived in the “Little Higgs” program [20,21].
The little hierarchy is produced if the scale of the strong interaction theory, associated
with 1/zR, is much larger than the Higgs field mass and vacuum expectation value. To
model this, we take the RS setup as given and generate the Higgs potential from ra-
diative corrections to this picture, described quantitatively by the Coleman-Weinberg
potential.

We have presented a formalism for computing the Coleman-Weinberg potential in
the previous section. How can a Higgs boson vacuum expectation value be included?

The Higgs bosons appear as zero modes of fields AA5 . A pure AA5 background field
can always be removed locally by a gauge transformation. However, in a 5-dimensional
system with boundaries, the influence of AA5 (z, x) cannot be gauged away completely.
There is gauge-invariant information parametrized by the Wilson line

W [A] = P
{

exp[ig
∫ zR

z0
dz AA5 T

A]
}
. (29)

The Coleman-Weinberg potential can depend on the Wilson line and, in this way, on
the expectation value of AA5 .

In the formalism of the previous section, the Wilson line appears in the following
way: The equations in the previous section apply to free fermion and gauge fields
with zero background Higgs fields. We can apply these same formulae to a system
with a background AA5 field if we gauge away AA5 in the central region of z, leaving
a singular field near z0 or zR. The effect of a nonzero AA5 field is implemented by
applying the Wilson line as a matrix to the various fields in the problem, setting
TA = tA, the representation matrix in the appropriate representation of the gauge
group G. In this paper, we will generally consider the AA5 field as gauged away to the
UV boundary. (It is a check on our formalism that the same results can be obtained
by gauging away AA5 to the IR boundary.)

The zero mode of AA5 , present when the AAm field has boundary conditions −−,
has the form

AA5 (z, xm) = Nh z h
A(xm) , (30)
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where the z dependence is that of the AA5 zero mode and Nh is a normalization
constant. Then let

UW = exp[−ig
∫ zR

z0
dz Nhz

〈
hA
〉
tA] (31)

The matrix UW should be applied to each field before imposing the boundary con-
dition at z = z0. In this context, the matrix UW plays the role of the matrix U in
(25).

There may be additional complications that influence the UV boundary condi-
tions. For example, it is allowed to introduce a fermion mass term on the boundary,

δL =
∑
ij

MijΨiΨj δ(z − z0) , (32)

as long as the mass matrix Mij preserves the assumed local gauge symmetry by mixing
only fermion fields with the same G` quantum numbers. In this paper, we will include
such a mass mixing only on the UV boundary. The effect of this term in models will
be to mix fermions actively participating in electroweak symmetry breaking with the
light quarks and leptons, similarly to the Extended Technicolor interaction. The
influence of (32) is to mix the fermion fields by a unitary transformation. We will
implement this directly by including a unitary matrix UM before applying the UV
boundary condition.

Our final expression for the matrix C is

C =
−→
B UVUMUWG

←−
B IR . (33)

This formula has an important property that we will use often in our discus-
sion. If fermions mixed by UM have the same boundary condition in the UV, then
[UM ,

−→
B UV ] = 0. Then we can move UM to the left and find

det C = detUM · det
[−→
B UVUWG

←−
B IR

]
. (34)

Since UM is unitary, detUM = 1, and the mixing angles in UM disappear from the
expression for the Coleman-Weinberg potential. Similarly, if UW mixes only fields
with the same IR boundary conditions, we can move UW to the right of

←−
B IR and

factor it out of determinant calculation. Since detUW = 1, the mixing angles in UW
do not contribute to the Coleman-Weinberg potential. The Higgs field appears as
mixing angles in UW and so, in this latter case, the Coleman-Weinberg potential is
flat in 〈h〉.

This argument extends to decompositions of UW and UM : if

UMUW = U1U and [U1,
−→
B UV ] = 0 (35)
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then the Coleman-Weinberg potential does not depend on the angles in U1. In moving
pieces of the unitary matrix to the right, we must be more careful. The matrix UW
mixes fermions within a gauge multiplet, and these must have the same values of c,
but UM generally mixes fermions in different multiplets with different values of c. The
fermion Green’s function G(z0, zR) depends on c. So, if

UW = UU2 and [U2,
←−
B IR] = 0 (36)

then U2 does not contribute to the Coleman-Weinberg potential. More generally,
pieces of UM may be moved to the right and eliminated if they mix fermion fields
with the same value of c.

4 Fermion zero modes

Just as the boundary conditions on gauge fields have physical significance, the
boundary conditions on fermion fields have a significance for model-building. Five-
dimensional fermions are 4-component Dirac fermions, but, with appropriate bound-
ary conditions, they can have zero modes that can be interpreted as chiral quarks
and leptons [15,16].

The zero-mode solutions of the Dirac equation are present for any nonzero value
of the 5-dimensional fermion mass. With, again,

c = m/k , (37)

a zero mode corresponding to a left-handed 4-dimensional fermion has the form

ψL = f−uL(p)z2−ce−ip·x ψR = 0 , (38)

where uL(p) is the usual 2-component massless spinor of a left-handed fermion and f−
is a normalization constant. Similarly, a zero mode corresponding to a right-handed
4-dimensional fermion has the form

ψR = f+uR(p)z2+ce−ip·x ψL = 0 . (39)

We will refer to these as L and R zero modes, respectively. These zero modes are
nonzero at the boundary, and so they require appropriate fermion boundary condi-
tions, ++ for the L zero mode and −− for the R zero mode.

An important feature of the zero modes is their structure in the 5th dimension.
The probability distribution of the position in the 5th dimension is given, for the L
zero mode, by ∫

dz
√
gΨ(kzγ0)Ψ =

∫
dz

kz

(kz)5
|f−|2z4−2c ∼

∫ dz

z
z1−2c . (40)
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For c > 1
2
, the zero mode is localized near the UV brane; for c < 1

2
, the zero mode

is localized near the IR brane. For the R zero mode, the same calculation gives the
boundary at c = −1

2
. Again,

c < −1
2

−1
2
< c < 1

2
1
2
< c

L IR IR UV
R UV IR IR

. (41)

In a realistic model, the light quarks and leptons would be described by UV zero
modes. We will see in a moment that the formation of a symmetry-breaking potential
probably requires a pair of IR zero modes which are mixed by a symmetry-breaking
Higgs expectation value. The right-handed top quark can potentially be assigned to
an IR zero mode. The assignment of the left-handed (t, b)L doublet to IR zero modes
is potentially in tension with precision electroweak constraints on the bL. This is an
important issue for model-building [22].

5 Simplest examples of symmetry breaking

As a first application of this formalism, we review the calculation of the Higgs
potential from one fermion multiplet by Contino, Nomura, and Pomarol [12]. We
will do this in the simplest context of an SU(2) gauge field acting on two-fermion
multiplets. We assign the boundary conditions for the two fermion fields as

Ψ ∼
(

+ +
− −

)
. (42)

The notation here is to write the UV and IR boundary conditions, respectively, for
each fermion component on a horizontal line. The matrix represents a single G rep-
resentation. Fermions in the same G representation must have the same value of
c = m/k, the parameter that determines the localization of the zero modes. Consis-
tently with these assignments, the gauge fields must be assigned boundary conditions
that break SU(2) down to its U(1) subgroup,

AAm ∼

− −
− −
+ +

 (43)

for A1
m, A2

m, A3
m, respectively. Note that, with these assignments, A1

5 and A2
5 are

Goldstone bosons.

Now turn on 〈A2
5〉 6= 0. This is a direction that breaks the U(1) gauge symmetry

and mixes the two fermion components. The corresponding UW is

UW =
(
cW −sW
sW cW

)
, (44)
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where cW = cos θ, sW = sin θ, with

θ =
g

2

∫ zR

z0
dz A2

5(z) . (45)

Combining (42) and (44), we find the C(p) matrix from (24) or (25) as

C =
(
cWG−− −sWG−+

sWG+− cWG++

)
. (46)

We find immediately

det C = c2
WG−−G++ + s2

WG−+G+−

= (G−−G++)
(

1− s2
W (G−−G++ −G−+G+−)/G−−G++

)
. (47)

The first factor is independent of θW , so we can ignore it. The second factor simplifies
with the use of the identity (15), which can be abbreviated here as

G−−G++ −G−+G+− = − 1

p2z0zR
. (48)

We then find

log det C = log
[
1 +

s2
W

p2z0zRG−− G++

]
. (49)

In the Euclidean region, for z0 � zR, all four Green’s functionsG−−, G−+, G++, G+−
are positive definite functions of p. All four functions increase exponentially for large
p, as

Gab(z0, zR) ∼ ep(zR−z0) . (50)

The fermionic contribution to the Coleman-Weinberg potential for this model is
then [12]

V (h) = −2
∫ d4p

(2π)4
log
[
1 +

s2
W

p2z0zRG−−G++

]
. (51)

This result is well-defined and UV convergent and is negative definite. It is minimized
at θ = π/2. The depth of the potential depends strongly on the parameter c, as shown
in Fig. 2. The finiteness of the Coleman-Weinberg potential is an important general
feature of gauge-Higgs unification models. It follows from the fact that the Wilson
line order parameter of the symmetry breaking is a nonlocal quantity. Since

〈
AA5
〉

can be gauged away locally, the potential does not get contributions from the deep
ultraviolet. However, the energy scale of the potential is set by zR, and so there is
still a little hierarchy if 1/zR � 100 GeV.
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Figure 2: Dependence of the depth of the minimum of the Coleman-Weinberg potential
(51) on the parameter c.

We must add to the fermion contribution the result for the Coleman-Weinberg
potential of the vector bosons. The same formalism applies. The SU(2) gauge group
acts on the three gauge boson fields A1

M , A
2
M , A

3
M according to

tabc = iεbac . (52)

Then the UW matrix for the three gauge boson states is

UW =

 c2W 0 s2W

0 1 0
−s2W 0 c2W

 (53)

where c2W = cos 2θ, s2W = sin 2θ, where θ is as in (45). The boundary conditions on
the fields A1

M and A3
M are the same as those on the two fermion fields in this example.

Then we find that the Coleman-Weinberg potential generated by the gauge fields is

V (h) = +
3

2

∫ d4p

(2π)4
log
[
1 +

s2
2W

p2z0zRG−−G++

]
. (54)

where, in this expression, G−− and G++ are evaulated at c = 1
2
.

Some graphs of the complete potential for this model, with c = 1
2

for the gauge
fields and different values of c for the fermions, are shown in Fig 3. In the typical
situation, there is a potential barrier between the symmetric point at h = 0 and the
symmetry-breaking minimum; that is, the phase transition is first-order and it is not
possible to tune the value of v/f to be small. This is still true if the number of
fermion flavors is taken to be a variable nf and varied continuously. The minimum
of the potential is always either at θ = 0 or θ = π.
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Figure 3: The complete Coleman-Weinberg potential for the model of Section 5, including
both fermion and gauge boson contribution.

6 Competing forces with 2 fermion multiplets

To incorporate a little hierarchy with v/f � 1, a model must be in the vicinity of
a second-order phase transition in the space of parameters of the Coleman-Weinberg
potential. We would like to understand systematically how to achieve this in models
with multiple fermion and gauge fields. In this section, we take a first step into
this program by working out the possible phase diagrams of systems of two fermion
multiplets. For simplicity, we will restrict ourselves to SU(2) in this section, and we
will ignore the gauge field contributions to the potential. We call the two fermion
multiplets ψ1 and ψ2 and assign them mass parameters c1 and c2. We will call the
Green’s functions associated with these multiplets G1

ab and G2
ab, respectively. An

example of the full expansion of this notation is

G1
+− = G

(ψ1)
+− (z0, zR) . (55)

6.1 No UV mixing

Consider first the simplest case in which there is no UV mass mixing (UM = 1). In
this case, we have a pair of fermion representations in the 2 of SU(2), with boundary
conditions such as (

+ +
− −

) (
+ −
− −

)
(56)

In Appendix A, we show that the reversal of the c parameter and the UV and IR
boundary conditions

c→ −c , +↔ − (57)

is a symmetry of a free fermion in RS. According to the argument given below (34), a
fermion multiplet gives zero contribution to the Coleman-Weinberg potential if either
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its two UV boundary conditions or its two IR boundary conditions are identical.
Then, for one fermion multiplet, there are only two possible situation in which we
obtain a nonzero Coleman-Weinberg potential

ψA ∼
(

+ +
− −

)
and ψR ∼

(
+ −
− +

)
. (58)

We call these the A (“attractive”) and R (“repulsive”) cases, respectively.

The potential in the attractive case was worked out in (51) above. For future
reference, we notate this potential as a function of sW = sin θ and the fermion mass
parameter c,

VA(sW , c) = −2
∫ d4p

(2π)4
log
[
1 +

s2
W

p2z0zRG−−G++

]
. (59)

The potential is negative definite, and its minimum is always at sW = 1.

The potential in the repulsive case can be worked out in the same way. From

C =
(
cWG−+ −sWG−−
sWG++ cWG+−

)
, (60)

we find using the same method

VR(sW , c) = −2
∫ d4p

(2π)4
log
[
1− s2

W

p2z0zRG−+G+−

]
. (61)

This potential is positive definite, and its minimum is always at sW = 0. One way
to understand its repulsive nature is that here the Higgs expectation value mixes two
massive states and therefore lowers the mass of the lightest state. This is energetically
less favored, so the potential resists forming a condensate.

If we have two fermion multiplets, one with the A type and one with the R
type boundary conditions, these two multiplets will compete. To understand the
competition, we need to work out the expansions of VA and VR about sW = 0. This
is done in Appendix D. These expressions have expansions in sin θ with the forms

VA(sW , c) =
1

4π2z4
R

[
−AA(c)s2

W +
1

2
BA(c)s4

W +
1

2
CA(c)s4

W log(1/s2
W ) +O(s6

W )
]

VR(sW , c) =
1

4π2z4
R

[
+AR(c)s2

W +
1

2
BR(c)s4

W +O(s6
W )
]
, (62)

where we have chosen the signs so that all of the coefficients are positive functions
of c. Fig. 4 shows that AA(c) > AR(c), but both functions are rapidly decreasing
functions of c. Then there is a line in the (c1, c2) plane, shown as a dotted line in
Fig. 5, where

AA(c1) = AR(c2) . (63)
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Figure 4: The c-dependence of AA(c) and AR(c).

For c1 slightly outside this boundary, the potential VA(c1) + VR(c2) has a negative
quadratic term in sW that goes to zero on the curve (63), and a positive quartic
term. Then the curve (63) is a line of second-order transitions. Near this line, the
minimum v of the potential can be made as small as we like. For the representative
case z0/zR = 0.01, the tip of the curve occurs with c2 = 0 at c1 = 0.2997.

Actually, there are two minima, at v and −v. These minima merge to a single
minimum at 〈θ〉 = π/2 along the line of bifurcations indicated by the dashed line in
Fig 5.

6.2 Cases with UV mixing

In the remainder of this section, we will extend this analysis to the more general
case of two SU(2) fermion multiplets with mass mixing on the UV brane. We will an-
alyze the cases systematically for all possible choices of fermion boundary conditions.
It is interesting, at least to us, that all of the cases that we will encounter can be un-
derstood from the competition between attractive and repulsive boundary conditions
that we have seen already in Section 6.1. That is, this concept is robust with respect
to turning on fermion mixing on the UV boundary. In most cases, the generalization
is relatively straightforward, although the last case considered in Section 6.6 has some
nontrivial features.

A given fermion multiplet has 24 possible boundary conditions, so a pair of mul-
tiplets has 256 different boundary conditions to analyze. However, many of these are
related by the symmetry + ↔ −, c ↔ −c or by interchange of the top and bottom
components of the fermion multiplets. Also, as we showed at the end of Section 3,
mass mixing on the UV brane has physical effect only if the fermions mixed by the
mass term have different UV boundary conditions. The strategy of our analysis will
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Figure 5: Phase diagram of the model of Section 6.1 in the c1− c2 plane. In most values of
c1 and c2, the minimum is at either 〈θ〉 = 0 or 〈θ〉 = π/2. However, a non-trivial minimum
is realized in the middle white area. Note that along the line c1 = c2, 〈θ〉 = π/4.
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be to enumerate the different possible IR boundary conditions and then to go through
the 16 cases of UV boundary conditions from the simplest to the most difficult, using
symmetries whereever possible to reduce cases to equivalent ones.

The 16 possible IR boundary conditions can be reduced to four cases. Case I
includes the two cases (

+
+

) (
+
+

)
(

+
+

) ( −
−

)
(64)

and two more cases with +↔ −. Case II includes the eight cases equivalent to(
+
−

) (
+
+

)
(65)

Case III includes (
+
−

) ( −
+

)
(66)

and the equivalent case with +↔ −. Case IV includes(
+
−

) (
+
−

)
(67)

and the equivalent case with +↔ −.

For each case, we have 16 choices of UV boundary conditions. We will also intro-
duce mixing by angles α between the two fermions in the top row and β between the
two fermions in the bottom row. In cases in which the two multiplets have the same
boundary conditions, such as (

+
−

) (
+
−

)
(68)

the mixing can be removed. In cases such as(
+
−

) (−
−

)
and

(−
−

) (
+
−

)
(69)

the mixing by β has no effect but the potential depends on the mixing angle α. Actu-
ally, the two cases shown in (69) are equivalent, since increasing α by π/2 interchanges
the two boundary conditions in the top line. So, for each case listed above, we have a
trivial situation in which the potential is independent of α and β, situations in which
the potential only depends on one angle, and one case of the greatest complexity in
which the potential depends on both angles.
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6.3 Case I

In case I, the IR boundary conditions are the same for both fermions in each
multiplet. Then, by the argument at the end of Section 3, the Coleman-Weinberg
potential is independent of sW . For all of these cases,

V (sW , c1, c2) = 0 . (70)

6.4 Case II

For case II, we begin from the IR boundary conditions in (65) and add UV bound-
ary conditions, for which there are 16 possibilities. These can be grouped into three
sets.

In the first set (4 cases), the UV boundary conditions are the same between the
two multiplets, and the calculation of the Coleman-Weinberg potential reduces to
that of two separate multiplets. For example, in(

+ +
− −

) (
+ +
− +

)
(71)

the second multiplet gives zero and the combined potential is obviously

V (sW , c1, c1) = VA(sW , c1) . (72)

All of these cases give a potential equal to either VA(sW , c) or VR(sW , c).

In the second set, with one pair of UV boundary conditions identical, there are 8
cases, connected in pairs by α→ α + π/2 or β → β + π/2. An example is(

+ +
+ −

) (− +
+ +

)
, (73)

for which the potential depends on α but not on β. In addition, the contribution
to the potential from ψ2 has no dependence on sW . We can thus reduce the unitary
transformation at the UV brane to

U =


cα 0 −sα 0
0 1 0 0
sα 0 cα 0
0 0 0 1



cW −sW 0 0
sW cW 0 0
0 0 1 0
0 0 0 1

 =


cαcW −cαsW −sα 0
sW cW 0 0
sαcW −sαsW cα 0

0 0 0 1

 ,

(74)
where cα = cosα, sα = sinα. The matrix C then has the form

C =


cαcWG

1
−− −cαsWG1

−+ −sαG2
−− 0

sWG
1
−− cWG

1
−+ 0 0

sαcWG
1
+− −sαsWG1

++ cαG
2
+− 0

0 0 0 G2
−−

 . (75)
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It is easy to check that detU = 1. The cancellations in that calculation guide the
simplification of det C. We find

det C = (c2
αG

1
−−G

2
+− + s2

αG
1
+−G

2
−−)G1

−+G
2
−−

+s2
αs

2
W (G2

−−)2(G1
−−G

1
++ −G1

−+G
1
+−) . (76)

We can reduce the last term using the Wronskian identity (15) and extract a factor
independent of s2

W . Then the Coleman-Weinberg potential becomes

V (sW , c1, c2) = −2
∫ d4p

(2π)4
log
[
1− s2

αs
2
W

p2z0zRG1
−+G

1
+−

1

(s2
α + c2

αG
1
−−G

2
+−/G

2
−−G

1
+−)

]
.

(77)
This is a purely repulsive potential with strength diminished by s2

α. In fact, for
c1 = c2,

V (sW , c1, c2) = VR(sαsW , c1) . (78)

A way to guess the answer (78) is to note that, for sα = 0, there is no mixing and
the potential can be seen by inspection to be zero, while for sα = 1, the UV boundary
conditions + and − in the top lines of (73) are reversed and the potential is exactly
that of the repulsive case in Section 6.1.

The other three similar cases can be analyzed in the same way. They are either
purely attractive or purely repulsive. We quote the results for the potential in the
case c1 = c2: (

+ +
− −

) (− +
− +

)
→ V = VA(cαsW , c1)(

+ +
+ −

) (
+ +
− +

)
→ V = VA(sβsW , c1)(− +

+ −

) (− +
− +

)
→ V = VR(cβsW , c1) . (79)

Finally, we come to the case in which the potential depends on both mixing angles(
+ +
+ −

) (− +
− +

)
. (80)

For this case, UM depends on both α and β, but we can still simplify UW as in (74),
so that

U =


cαcW −cαsW −sα 0
cβsW cβcW 0 −sβ
sαcW −sαsW cα 0
sβsW sβcW 0 cβ

 . (81)
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The corresponding C matrix is

C =


cαcWG

1
−− −cαsWG1

−+ −sαG2
−− 0

cβsWG
1
−− cβcWG

1
−+ 0 −sβG2

−−
sαcWG

1
+− −sαsWG1

++ cαG
2
+− 0

sβsWG
1
+− sβcWG

1
++ 0 cβG

2
+−

 . (82)

Then

det C = c2
αc

2
βG

1
−−G

1
−+(G2

+−)2 + c2
αs

2
βG

1
−−G

1
++G

2
−−G

2
+−

+s2
αc

2
βG

1
+−G

1
−+G

2
−−G

2
+− + s2

αs
2
βG

1
+−G

1
++(G2

−−)2

−(s2
αc

2
β − s2

βc
2
α)s2

WG
2
−−G

2
+−/p

2z0zR . (83)

We then find

V = −2
∫ d4p

(2π)2
log
[
1− s−s+s

2
W

p2z0zRD

]
, (84)

where
s− = sin(α− β) s+ = sin(α + β) (85)

and

D = c2
αc

2
βG

1
−−G

1
−+

G2
+−

G2
−−

+ c2
αs

2
βG

1
−−G

1
++ + s2

αc
2
βG

1
+−G

1
−+ + s2

αs
2
βG

1
+−G

1
++

G2
−−

G2
+−

(86)

is a positive definite factor. This potential switches from repulsive to attractive
according to the sign of s−s+. In the repulsive case, the minimum is at sW = 0, in
the attractive case, the minimum is at sW = 1, so there is no interesting competition
here that allows Higgs vacuum expectation value to be arbitrarily small.

6.5 Case III

For case III, we begin with the IR boundary conditions in (66) and add UV
boundary conditions, covering the same 16 possibilities as in the previous section.

As in the previous section, the first four cases, with equal boundary conditions
in the UV for both fermion multiplets, have potentials independent of α and β. The
cases with all + and all − boundary conditions in the UV give potentials equal to
zero. The case (

+ +
− −

) (
+ −
− +

)
(87)

gives
V (sW , c1, c2) = VA(sW , c1) + VR(sW , c2) , (88)

precisely the case with competition analyzed in Section 6.1. The last case(− +
+ −

) (− −
+ +

)
(89)
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gives a similar result.

The next set of cases have a potential that depends on one but not both mixing
angles. The first example is (

+ +
+ −

) (− −
+ +

)
. (90)

It is straightforward to work out the potential using the methods already described.
We have

C =


cαcWG

1
−− −cαsWG1

−+ −sαcWG2
−+ sαsWG

2
−−

sWG
1
−− cWG

1
−+ 0 0

sαcWG
1
+− −sαsWG1

++ cαcWG
2
++ −cαsWG2

+−
0 0 sWG

2
−+ cWG

2
−−

 . (91)

Computing the determinant and assembling the Coleman-Weinberg potential, we find

V = −2
∫ d4p

(2π)2
log
[
1 +

s2
W

p2z0zR

c2
αG

1
−−G

1
−+ − s2

αG
2
−−G

2
−+

D

]
, (92)

where now
D = c2

αG
1
−−G

1
−+G

2
−−G

2
++ + s2

αG
2
−−G

2
−+G

1
−+G

1
+− . (93)

This potential interpolates between the attractive case, for sα = 0, and the repulsive
case, for sα = 1. However, for almost all values of sα, the potential is monotonic and
so is minimized at sW = 0, for smaller values of sα or at sW = 1, for larger values of
sα. To understand this better, examine the first two derivatives of (92). These are

∂V

∂(s2
W )

∣∣∣∣
0

= −2
∫ d4p

(2π)2

[
1

p2z0zR

c2
αG

1
−−G

1
−+ − s2

αG
2
−−G

2
−+

D

]
∂2V

∂(s2
W )2

∣∣∣∣
0

= +2
∫ d4p

(2π)2

[
1

p2z0zR

c2
αG

1
−−G

1
−+ − s2

αG
2
−−G

2
−+

D

]2

. (94)

The s4
W is always positive, but, when the s2

W term vanishes, the s4
W term has almost

the same zero and is doubly suppressed. Thus, this case has a second order phase
transition where the vacuum expectation value of the Higgs field goes to zero, but it
occurs only in an extremely fine-tuned interval of sα.

The other three cases in which V depends on one mixing angle are related to this
case by exchanging + ↔ − boundary conditions and exchanging the two fermion
multiplets, by interchanging top and bottom within each representation and sending
α → β + π/2, or by both of these operations. All four cases then have the behavior
just described.

The remaining cases with this choice of IR boundary condition can all be described
as cases of (

+ +
+ −

) (− −
− +

)
(95)
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with arbitrary values of the mixing angles α and β. We can get a feeling for the
result by considering the special cases: (a) For α = β = 0, the value of the Coleman-
Weinberg potential is zero; (b) if α = π/2, β = 0, then both fermions are in the
repulsive case, (c) if α = 0, β = π/2, both fermions are in the attractive case. Then
there will be no competition between the two representations, but the minimum of
the potential will swing back and forth between sW = 0 and sW = 1 according to the
values of α and β.

The precise form of the potential can be worked out as in the previous cases. The
result is

V = −2
∫ d4p

(2π)2
log
[
1− s2

W

p2z0zR

s−s+(G1
−−G

1
++ +G2

−+G
2
+−)

D
− s2

W c
2
W

(p2z0zR)2

s2
−

D

}]
, (96)

with s−, s+ as in (85) and where now

D = c2
αc

2
βG

1
−−G

1
−+G

2
+−G

2
++ + c2

αs
2
βG

1
−−G

1
++G

2
−−G

2
++

+s2
αc

2
βG

1
−+G

1
+−G

2
−+G

2
+− + s2

αs
2
βG

1
+−G

1
++G

2
−−G

2
−+ . (97)

Note that, using (48),

G1
−−G

1
++ +G2

−+G
2
+− = G1

−+G
1
+− +G2

−−G
2
++ , (98)

so (96) has the required symmetry between ψ1 and ψ2. This potential has just the form
described in the previous paragraph, with zeros along lines where s− = sin(α−β) = 0.

6.6 Case IV

For case IV, we begin with the IR boundary conditions in (67) and add UV
boundary conditions, covering the same 16 possibilities as in the previous section.

The cases with both UV boundary conditions equal is again trivial, giving poten-
tials equal to 0, 0, VA(sW , c1) + VA(sW , c2), and VR(sW , c1) + VR(sW , c2) in the four
cases.

The first case with one mixing angle is(
+ +
+ −

) (− +
+ −

)
. (99)

For α = 0, we have zero for the potential from ψ1 and the repulsive case VR(sW , c2)
from ψ2. For α = π/2, the potential from ψ1 is in the repulsive case VR(sW , c1) and
the potential from ψ2 is zero. This suggests that the potential is always repulsive,
with its minimum at sW = 0. The precise form of the potential is

V = −2
∫ d4p

(2π)2
log
[
1− s2

W

p2z0zR

c2
αG

1
−−G

1
−+ + s2

αG
2
−−G

2
−+

D

]
, (100)
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with
D = c2

αG
1
−−G

1
−+G

2
−+G

2
+− + s2

αG
1
−+G

1
+−G

2
−−G

2
−+ . (101)

This expression is clearly positive definite, with a zero at sW = 0. The second case
with one mixing angle (

+ +
− −

) (− +
− −

)
(102)

is similarly always in the attractive case, with its minimum at sW = 1. The full
expression for the potential is

V = −2
∫ d4p

(2π)2
log
[
1 +

s2
W

p2z0zR

c2
αG

2
+−G

2
++ + s2

αG
1
+−G

1
++

D

]
, (103)

with
D = c2

αG
1
−−G

1
++G

2
+−G

2
++ + s2

αG
1
+−G

1
++G

2
−−G

2
++ . (104)

The remaining two cases are related to these by reversing the top and bottom rows.

The final case, with dependence on two mixing angles, is(
+ +
+ −

) (− +
− −

)
. (105)

The Coleman-Weinberg potential can be worked out as above; the result is

V = −2
∫ d4p

(2π)2
log
[
1+

s2
W

p2z0zR

s−s+(G1
++G

1
−− −G2

++G
2
−−)

D
+

s2
W c

2
W

(p2z0zR)2

s2
−

D

}]
, (106)

with s−, s+ as in (85) and where now

D = c2
αc

2
βG

1
−−G

1
−+G

2
+−G

2
++ + c2

αs
2
βG

1
−−G

1
++G

2
+−G

2
−+

+s2
αc

2
βG

1
+−G

1
−+G

2
−−G

2
++ + s2

αs
2
βG

1
+−G

1
++G

2
−−G

2
−+ . (107)

The form of this expression shows explicit competition between ψ1 and ψ2. Most of
this can be understood by considering limit points where the two fermions decouple
from one another: at α = 0, β = 0, both fermions have potential equal to zero; at
α = π/2, β = 0, ψ1 is in the repulsive case while ψ2 is in the attractive case; at α = 0,
β = π/2, ψ1 is in the attractive case while ψ2 is in the repulsive case.

To understand the full dynamics of this model, it is useful to reduce it to the
minimal region of the (α, β) plane. The potential (106) depends only on s−s+ and
s2
−. Then the potential takes the same value under the translations

α→ α + π, β → β and α→ α, β → β + π . (108)

and under the reflection
α→ −α, β → −β (109)
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Figure 6: Fundamental region of the (α, β) plane useful for describing the phase diagram
of the model (105).
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This implies that the fundamental region for (α, β) is the triangle

0 < α < π, 0 < β < π, α + β < π . (110)

Further, reflection across the line α− β = 0, that is,

α↔ β , (111)

changes the sign of the competition term in (106) and so is equivalent to interchanging
ψ1 and ψ2. The full dynamics of the model is then exhibited in the triangle shown in
Fig. 6, with ψ1 always in the repulsive case and ψ2 always in the attractive case.

The phase diagram shown in Fig. 5 changes smoothly with α and β across this
diagram. Note that, while the coefficient of s2

W in V (sW ) can have either sign, the
coefficient of s4

W is always positive. Then we will find a line of second-order phase
transitions where ∂V/∂(s2

W ) is zero. At the bottom center of the triangle, α = π/2,
β = 0, we have a case equivalent to that of Section 6.1. There is a curve of second-
order phase transitions with its tip at c1 = 0, c2 = 0.2997 (for z0/zR = 0.01). Across
the bottom of the triangle, the critical value of c2 for c1 = 0 increases slowly from
0.2697 at α = 0 to 0.2997 at α = π/2 and back to 0.2697 at α = π.

The other two edges of the triangle have simple forms for V (sW ). Along the line
α = β, V (sW ) = 0. Along the line α + β = π, s+ = 0 and so the potential takes the
simple attractive form

V = −2
∫ d4p

(2π)2
log
[
1 +

s2
W c

2
W

(p2z0zR)2

s2
−

D

]
, (112)

with minima at s2
W = c2

W = 1
2
. In accordance with this, the critical value of c2 at

c1 = 0 varies along each horizontal line with fixed β > 0, tending to 0 as the left-hand
boundary is approached and to ∞ as the right-hand boundary is approached. The
critical value at α = π/2 remains close to 0.3 for all values of β.

7 An example with relaxed fine-tuning

We have now seen that the examples of the previous section can all be under-
stood in terms of the competition of fermion multiplets with attractive and repulsive
boundary conditions. However, the only cases with a large v/f hierarchy were those
in which the values of the parameters c1 and c2 were adjusted to be close to a line
of second-order phase transitions. In other words, the Coleman-Weinberg potential
that we have encountered so far is always strongly attractive or repulsive. In most
of the parameter space, the value of of v/f was not affected by the competition, and
the potential was minimized at sW = 0 or at sW = 1.
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More quantitatively, among the terms in the potential expansion (62), the quadratic
term s2

W almost always dominates over the quartic term s4
W and therefore the overall

sign of s2
W simply determines the vacuum. For a non-trivial minimum, the parame-

ters c1 and c2 should be fine-tuned so that the overall strength of s2
W becomes smaller

than that of s4
W . This implies that for a natural explanation of a large v/f hierarchy,

a weakly repulsive fermion is required, which contributes to the Higgs potential only
at the quartic level without the quadratic term.

Here is an example: Consider a fermion multiplet in the triplet representation of
SU(2) with boundary conditions

ψ3 ∼

 q+

q0

q−

 ∼
+ −
− −
− +

 , (113)

where (q+, q0, q−) are eigenstates of the generator t3. If the Goldstone boson 〈A2
5〉

connected the two fermions q+ and q−, the triplet would generate a repulsive potential.
However, the form of the generator is

t2 =
1√
2

 0 −i 0
i 0 −i
0 i 0

 , (114)

and it only connects q+ ↔ q0 and q0 ↔ q−. Then the Coleman-Weinberg potential
must be flat in the t2 direction, at least in the leading order. The same applies to
〈A1

5〉. Indeed, the matrix UW acting on ψ3 has the form

UW =

 c2
W −s2W/

√
2 s2

W

s2W/
√

2 c2W −s2W/
√

2
s2
W s2W/

√
2 c2

W

 , (115)

where s2W = sin 2θW . The Coleman-Weinberg potential from this multiplet is

V3(sW , c) = −2
∫ d4p

(2π)4
log
[
1− s4

W

p2z0zRG−+G+−

]
. (116)

This potential has no s2
W term and is repulsive in quartic order. Fig. 7 shows the

shape of the three potentials VA, VR, V3 near sW = 0, all for c = 0. We can see V3 is
indeed only weakly repulsive.

To study the effect of the new triplet ψ3 on the phase diagram, first consider
a system with two fermion multiplets, an attractive doublet ψA and the triplet ψ3.
Fig. 8 shows the minimum 〈θ〉 of the Coleman-Weinberg potential as a function of c1

with c3 = 0 fixed. This theory is always in the broken phase sW > 0, as it must be,
but for c1 > 0.3 the large contribution to the quartic term from ψ3 multiplet pushes
the minimum of the potential to small values.
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Figure 7: The shape of VA, VR, V3 near sW = 0. All three potentials are for c = 0.

Figure 8: The minimum of the potential VA(sW , c1) + V3(sW , c3 = 0), shown as a function
of c1.
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Figure 9: Separation of c∗2 from its critical value c2,critical on the line of phase transition
corresponding to 〈θ〉 = 0.1. These values are shown as a function of c1, where the lowest
curve has the ψ3 omitted (or c3 →∞) and the highest curve has c3 = 0.

More generally, we can use the multiplet ψ3 to lower the degree of fine-tuning
needed to achieve a small value of v/f in a system with competition between attractive
and repulsive fermion multiplets. Consider a model with ψA and ψR fermions as in
Section 6.1, and add the multiplet ψ3. The position of the line of phase transitions
does not change, since ψ3 contributes only quartic terms, but the presence of the
quartic term from ψ3 can expand the region where v/f is small. In Fig. 9, we vary
the parameter c3 from high values to c3 = 0 and show the values of c1 and c2 for which
〈s2
W 〉 = 0.01, a value sought in realistic RS models. The vertical axis is a measure of

the fine-tuning needed to achieve v/f � 1.

It is interesting that the multiplet ψ3 includes a right-handed zero mode. By
coupling it weakly to other fermions through boundary conditions at z0, we can give
this fermion a small mass without disrupting the Coleman-Weinberg potential. An
interesting possibility for a realistic model is then to introduce right-handed quarks
and leptons in the weakly repulsive multiplets and connect them at the UV boundary
to the left-handed doublets. This will generate fermion masses much smaller than the
top quark mass while simultaneously making a v/f hierarchy more natural.

8 Conclusions

In this paper, we reviewed the formalism for fermions and gauge fields in the RS
geometry and the potential for fermion condensation. We presented a simple formula,
implementing ideas of Falkowski, for computing the Coleman-Weinberg potential for
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the Higgs field. Using this formula, we explored the idea of competition between
fermion multiplets with different boundary conditions and presented strategies for
achieving the hierarchy v/f � 1 needed in realistic models.

We hope that these tools will be useful for the construction of realistic RS models
with bulk fermions and gauge fields which could provide predictive models of strongly
coupled Higgs bosons. In a forthcoming paper, we will apply the methods discussed
here to an illustrative models of electroweak symmetry breaking driven by top quark
condensation [8].

A Basic formalism for fermions in RS

In this appendix, we present details of our formalism for fermion fields in RS.
We begin in Minkowski space. Capital letters denote 5-dimensional indices, taking
the values 0,1,2,3,5, with M,N, . . . for world indices and A,B, . . ., for tangent-space
indices. Lower-case letters denote 4-dimensional indices. We use the metric (2). After
deriving the equations of motion, and after gauge fixing in the case of vector bosons,
we go to Euclidean space by the continuation p0 → ip0, p2 → −p2.

The Dirac action in RS is

S =
∫
d4xdz

√
−g
(

Ψ[ieMA γ
ADM −m]Ψ−KΨ−ΨK

)
, (117)

whereDM is the gravity- and gauge-covariant derivative and eMA = kzδMA for the metric
(2). We denote the gauge-covariant derivative as DM ; then DM = DM + 1

2
ωM

ABΣAB.
The nonzero terms in the spin connection are

ωm
a5 = −ωm5a =

1

z
δam . (118)

We divide the 4-component Diract field Ψ into two 2-component fields as in (4),

Ψ =
(
ψL
ψR

)
, (119)

using the basis of Dirac matrices

γa =
(

σa

σa

)
and γ5 = −iΓ ≡ −i

(−1
1

)
. (120)

The matrix Γ denotes the 4-dimensional chirality. With these conventions, the Dirac
action takes the form

S =
∫
d4xdz

1

(kz)4

[
ψ†Liσ

mDmψL + ψ†Riσ
mDmψR

+ψ†L(D5 −
2

z
− c

z
)ψR + ψ†R(−D5 +

2

z
− c

z
)ψL

]
−KΨ−ΨK

)
. (121)
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Let

D = D5 −
2 + c

z
, D = D5 −

2− c
z

. (122)

Then the homogeneous equations of motion for Ψ are

1

(kz)4

( −D iσmDm

iσmDm D

)(
ψL
ψR

)
= 0 . (123)

In gauge-Higgs unification, we assume that the background gauge field has the
form

AaM = (0, 0, 0, 0, Aa5(z)) (124)

In this case, we can Fourier analyze in the 4 extended dimensions, so that iσmDm →
σ · p, iσmDm → σ · p. Then we see that these fields obey

∆Ψ(p2)Ψ ≡ 1

(kz)4

( −D σ · p
σ · p D

)(
ψL
ψR

)
= 0 (125)

The contribution of a fermion to the Coleman-Weinberg potential is then

VΨ = −
∫ d4p

(2π)4
log det ∆Ψ(−p2) . (126)

This is the precise expression for the det(Ψ) term in (10).

We can eliminate either ψL or ψR from (125). Once this is done, the remaining
field obeys

∆L(p2)ψL ≡ (p2 + DD)ψL = 0

∆R(p2)ψR ≡ (p2 + DD)ψR = 0 (127)

Up to possible contributions from zero modes, ∆L(p2) and ∆R(p2) have the same
spectrum. The operators ∆L(p2) and ∆R(p2) include no spin matrices and can be
thought of as applied to single-component fields. Then we can rewrite the Coleman-
Weinberg potential as

VΨ = −2
∫ d4p

(2π)4
log det ∆L(−p2) = −2

∫ d4p

(2π)4
log det ∆R(−p2) . (128)

The factor 2 counts the 2 spin degrees of freedom. This is the more precise expression
for the det(Ψ) term in (10).

For A5(z) = 0, the homogeneous equations (127) are solved by

ψL ∼ z5/2(Jc+1/2(pz), Yc+1/2(pz)) ψR ∼ z5/2(Jc−1/2(pz), Yc−1/2(pz)) . (129)
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Standard identities for Bessel functions imply that these solutions are interchanged
by D and D, when A5(z) = 0. For example,

D(z5/2Jc+1/2(pz)) = p (z5/2Jc−1/2(pz))

D(z5/2Jc−1/2(pz)) = −p (z5/2Jc+1/2(pz)) . (130)

To calculate the Coleman-Weinberg potential, we must continue these equations
to Euclidean space. The continuation of (125) is

∆ΨΨ ≡ 1

(kz)4

( −D iσ · p
iσ · p D

)(
ψL
ψR

)
= 0 (131)

where now σ · p = p0 + i~σ · ~p, σ · p = p0 − i~σ · ~p. The operators D, D have the action
on the G functions (12)

Dz z
5/2G+β(z, z′) = pz5/2G−β(z, z′) Dz z

5/2G−β(z, z′) = −pz5/2G+β(z, z′) .
(132)

The field Ψ has four Green’s functions,

GLL(z, z′, p) =
〈
ψL(p, z)ψ†R(−p, z′)

〉
GLR(z, z′, p) =

〈
ψL(p, z)ψ†L(−p, z′)

〉
GRL(z, z′, p) =

〈
ψR(p, z)ψ†R(−p, z′)

〉
GRR(z, z′, p) =

〈
ψR(p, z)ψ†L(−p, z′)

〉
(133)

which are interconnected through the equations

∆ΨG(z, z′, p) = δ(z − z′)1 (134)

and similar equations with operators applied to the right and acting on z′. If the
fermion field has multiple gauge components ΨA, these equations become matrix
equations. For example, GABLL will have the form

GABLL (z, z′, p) = p2zRk
4(zz′)

5
2 [AABG

(A)
+,−AR

(z, zR)G
(B)
−,−BR

(z′, zR)

−

 δABARG
(A)
+,AR

(z, zR)G
(A)
−,−AR

(z′, zR)] z < z′

δABARG
(A)
+,−AR

(z, zR)G
(A)
−,AR

(z′, zR)] z > z′
. (135)

In this equation, AR represents the boundary condition of the field A at z = zR.
That is, AR = + if the field A has + boundary condition on IR brane, and AR = −
if otherwise. AR = ± implies −AR = ∓. In the second line, AR denotes a factor ±1
depending on the sign of AR. We can obtain GABLR , GABRL , and GABRR , using (134), the
similar equation acting on z′, and (132). In particular, GABRR (z, z′) has the same form
with the first indices of the G functions reversed +↔ − from (135).
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Because ψL and ψR are interconnected, it is not consistent to place separate bound-
ary conditions on these fields. Instead, it is sufficient to place the boundary conditions

+ : ψR = 0 or − : ψL = 0 (136)

A zero mode in ψL requires (++) boundary conditions; a zero mode in ψR requires
(−−) boundary conditions.

Note that the equations for L and R are interchanged by the interchange of bound-
ary conditions + ↔ − and the interchange D ↔ D, or equivalently, c ↔ −c. After
these two interchanges, the fermion field will have the same functional determinant.

B Basic formalism for gauge fields in RS

In this appendix, we present details of our formalism for gauge fields in RS. Con-
ventions for the 5-dimensional space are as in Appendix A.

The gauge field action in RS is

S =
∫
d4xdz

(√
−g
[
−1

4
gMPgNQF a

MNF
a
PQ

]
− JMAM

)
. (137)

In our formalism, the Higgs field is a background gauge field, so we will quantize
in the Feynman-Randall-Schwartz background field gauge [17]. Expand

AaM → AaM(z) +AaM , (138)

where, on the right, AaM is a fixed background field,

AaM = (0, 0, 0, 0, Aa5(z)) (139)

as in (124), and AaM is a fluctuating field. Let AM = AaM t
a and FMN = F a

MN t
a, where

ta are the generators of the gauge group, and let DM be the covariant derivative
containing the background field only. Then the linearized form for the field strength
is

FMN = DMAN −DNAM . (140)

After inserting the metric (2) and performing some integrations by parts, the
linearized gauge action becomes

S =
∫
d4xdz

(
1

2

1

kz

[
AnDmDmAn −AmDnDmAn −AnkzD5

1

kz
D5An

−A5D
mDmA5 + 2A5D

mD5Am
]
− JmAm + J5A5

)
. (141)
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Here and in the following, raised and lowered indices are contracted with the Lorentz
metric ηmn. Following [17], introduce the gauge-fixing term

SGF =
∫
d4xdz

1

(kz)5

[
− 1

2ξ

(
(kz)2DmAm − ξ(kz)3D5

1

kz
A5

)2]
. (142)

Then

S + SGF =
∫
d4xdz

(
1

2

1

kz

[
Am(ηmnD2 − ηmnkzD5

1

kz
D5 −DmDn(1− 1

ξ
))An

+A5(−D2 + ξD5kzD5
1

kz
)A5

]
− JmAm + J5A5

)
. (143)

The linearized ghost action is

Sghost =
∫
d4xdz

(
1

kz

[
c(−D2 + ξkzD5

1

kz
D5)c

]
− Cc− cC

)
. (144)

These formulae simplify for ξ = 1. The homogeneous equations for the gauge field
components are

∆G(p2)Am(z, p) ≡ 1

kz
(p2 + zD5

1

z
D5)Am(z, p) = 0

∆5(p2)A5(z, p) ≡ 1

kz
(p2 +D5zD5

1

z
)A5(z, p) = 0

∆c(p
2)c(z, p) ≡ 1

kz
(p2 + zD5

1

z
D5)c(z, p) = 0 . (145)

Up to possible contributions from zero modes, ∆G(p2), ∆5(p2) and ∆c(p
2) have

the same spectrum for consistent boundary conditions, as defined below. Then when
we integrate out the fields Am, A5, and (c, c) we find

(det ∆G)4/2(det ∆5)1/2(det ∆c)
−1 = (det ∆G)3/2 . (146)

The contribution of a gauge boson to the Coleman-Weinberg potential is then

VG = +
3

2

∫ d4p

(2π)4
log det ∆G(−p2) . (147)

This is the precise expression for the det(A) term in (10). The operators ∆G, ∆5 are
related to the operators ∆L, ∆R defined in (127) for fermion fields with c = 1

2
, by

∆L = z3/2(kz∆G)
1

z3/2
∆R = z3/2(kz∆5)

1

z3/2
. (148)

Thus, the calculation of the determinant of ∆G and ∆5 for gauge fields are special
cases of the determinant calculation for fermion fields.
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For A5(z) = 0, the homogeneous equations (145) are solved by

Am , c ∼ z1(J1(pz), Y1(pz)) A5 ∼ z1(J0(pz), Y0(pz)) . (149)

Standard identities for Bessel functions imply that these solutions are interchanged
by the action of ∂5 and kz∂5(1/kz).

The Green’s functions for gauge fields are

〈Am(z, p)An(z′,−p)〉 = ηmnG(z, z′, p)

〈A5(z, p)A5(z′,−p)〉 = G5(z, z′, p)

〈c(z, p)c(z′,−p)〉 = Gc(z, z′, p) . (150)

These satisfy the differential equations in z

∆G(p2)G(z, z′, p) = δ(z − z′)
∆5(p2)G5(z, z′, p) = δ(z − z′)
∆c(p

2)Gc(z, z′, p) = δ(z − z′) . (151)

The solutions to the gauge field equations are interrelated by

A5(z) = D5Am(z) Am(z) = kzD5
1

kz
A5 . (152)

These transformations interchange the boundary conditions

+ : D5Am(z) = 0 − : Am(z) = 0

− : A5(z) = 0 + : kzD5(
1

kz
A5(z)) = 0

(153)

If Am(z) is assigned the boundary condition + (respectively, −), then consistently
A5(z) must be assigned the boundary condition − (respectively, +).

C Proof of Falkowski’s Theorem

In this appendix, we provide a proof of Falkowski’s Theorem (27) by explicit
calculation of A5 tadpole diagrams. In Appendices A and B, we have obtained the
operators ∆Ψ, ∆G, ∆5 and ∆c from the quadratic Lagrangian for fermion and gauge
fields under the background field

AaM = (0, 0, 0, 0, Aa5(z)) . (154)
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Then, the effective potential from each field can be written as the functional deter-
minant of the corresponding operator.

In this derivation, we will turn on the gauge field Aa5 along a fixed direction in
the adjoint representation. Then we will simplify by writing Aa5t

a = A5t. It will be
important to remember that, while the mixing matrix UM in (33) can mix fermion
fields in a more arbitrary way, the matrices t and UW can only connect fermions in
the same gauge representations, which must therefore have the same value of c. (For
gauge bosons, always c = 1

2
.) If t is proportional to the unit matrix, it generates a

pure phase in UW . This affects the determinant of C, but such a phase manifestly
cancels out of the equation (22) and so has no effect on A. In the proof of the theorem
below, we can then assume that t generates no overall phase,∑

AB

tABδ
AB = 0 . (155)

Consider first the fermion case

VΨ = −
∫ d4p

(2π)4
log det ∆Ψ . (156)

where p is the 4d Euclidean momentum. Varying A5(z), we find

δVΨ = −
∫ d4p

(2π)4
tr
[
∆−1

Ψ δ∆Ψ

]
= −

∫ d4p

(2π)4

∫ zR

z0
dz tr

[
G(z, z)

1

(kz)4
(−igΓδA5(z)t)

]

= −
∫ d4p

(2π)4

∫ zR

z0
dz(−igδA5(z)) tr

[
1

(kz)4
(−GLL(z, z) + GRR(z, z))t

]
.

(157)

We can obtain the Green’s function by gauging A5 away to the UV boundary, as
explained in the Section 3. The full Green’s function is related to the Green’s function
for A5(z) = 0 by

G(z, z′) = exp[−ig
∫ zR

z
dzA5(z)t] G0(z, z′) exp[+ig

∫ zR

z′
dzA5(z)t] . (158)

In our method of turning on A5, this field is essentially Abelian, and the exponential
factors cancel out for z = z′. Then we can use the expression of the Green’s function
from (135) to evaluate (157). The trace part within the integrand becomes

T =
1

(kz)4
tr [(−GLL(z, z) + GRR(z, z))t]
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= 2p2zzR
∑
A,B

tBAAAB

(−G(A)
+,−AR

(z, zR)G
(B)
−,−BR

(z, zR) +G
(A)
−,−AR

(z, zR)G
(B)
+,−BR

(z, zR)) . (159)

The factor 2 comes from the trace over spinor indices. Note that the terms with δAB

in GABLL (z, z) and GABRR (z, z) are identical in the symmetric limit z → z′ and cancel
each other. Here and in the rest of this appendix, summation over field indices A, B.
etc. is always explicitly shown.

From (24), we have

CAC = (UMUW )AC G
(C)
−A0,−CR

. (160)

Using (22) and (135), we can formally solve for AAB,

AAB =
∑
C,D

(C−1)AC(UMUW )CDDRδ
DBG

(D)
−C0,+BR

. (161)

In last line of (159), the states A and B are connected by tBA. Then these states have
the same value of c, and so we can use (48) to evaluate the expression in parentheses,

(−G(A)
+,−AR

(z, zR)G
(B)
−,−BR

(z, zR) +G
(A)
−,−AR

(z, zR)G
(B)
+,−BR

(z, zR))

=


0 AR = BR

−1/p2zzR AR = +, BR = −
+1/p2zzR AR = −, BR = +

= (BRδAR,−BR
)/p2zzR (162)

Assembling the pieces,

T = 2
∑
A,B,C

(C−1)AC((UMUW )CBBRG
(B)
−C0,+BR

) tBA (BRδAR,−BR
)

= 2
∑
A,B,C

((C−1)AC (UMUW )CBG
(B)
−C0,−AR

) tBA δAR,−BR
. (163)

The two factors of BR cancel, and then we are very close to the desired form.

There is one further issue: The sum in (159) is taken only over pairs (A,B) such
that AR = −BR. We would like to extend this to a sum over all pairs. To do this,
use the identity C−1C = 1. Writing this out using (160), we have∑

C

(C−1)AC(UMUW )CBG
(B)
−C0,−BR

= δAB (164)

For (A,B) such that AR = BR, this has the same form as the summand of (163). For
A 6= B, (164) is zero and we can add these terms to (163). For A = B, for which
necessarily AR = BR, the trace of this identity with tAB is δABtAB = 0, and so we can
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also add back those terms. Then there is no change in (163) if we extend the sum to
all pairs (A,B).

Finally, we find

δVΨ = −2
∫ d4p

(2π)4

∑
A,B,C

(C−1)AC(UMUW )CB

(
−ig

∫
dzδA5(z)t

)
BA

G
(B)
−C0,−AR

= −2
∫ d4p

(2π)4

∑
A,B,C

C−1
AC δCCA

= −2
∫ d4p

(2π)4
δ log det C (165)

Integrating up from A5(z) = 0, we obtain the contribution of a fermion to the
Coleman-Weinberg potential

VΨ = −2
∫ d4p

(2π)4
log det C(p) (166)

up to an additive, A5-independent constant. This completes the proof of Falkowski’s
Theorem for the fermion determinants.

In (148), we pointed out that the evaluations of the gauge boson determinants
were special cases of the evaluations of the fermion determinants with c = 1

2
. Thus,

this method of evaluation holds also for the gauge boson determinants.

D Properties of the fermionic Coleman-Weinberg potentials
for SU(2) doublets

In this appendix, we discuss the expansion of the canonical attractive and repulsive
potentials (59) and (61) for small values of sW .

The symmetry under reversal of boundary conditions and the sign of c noted at
the end of Appendix A implies that

VA(sW ,−c) = VA(sW , c) VR(sW ,−c) = VR(sW , c) . (167)

So, in this Appendix, we will restrict ourselves to c ≥ 0.

The repulsive case is more straightforward. The integrand of (61) can be expanded
under the integral sign. Then

VR(sW , c) =
1

4π2z4
R

[
AR(c)s2

W +
1

2
BR(c)s4

W + · · ·
]
, (168)
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as in (62), where

AR(c) =
∫ ∞

0
dp p3 z4

R

p2z0zRG−+G+−

BR(c) =
∫ ∞

0
dp p3 z4

R

(p2z0zRG−+G+−)2
. (169)

The functions G−+, G+− increase exponentially with p according to (50), and so the
integrals are convergent in the UV. In addition, these functions behave as p→ 0 as

G−+G+− =
1

p2z0zR
(1 +O(p)) , (170)

so the integrals are convergent in the IR. Also note that AR and BR depend only on
the ratio z0/zR, not on z0 or zR individually. There is a weak dependence on z0/zR
when z0 � zR, the case of interest to us.

For the representative case z0/zR = 0.01, the values of these coefficients at c = 0
are

AR(0) = 1.4078 BR(0) = 0.2169 , (171)

and the dependence on c is qualitatively described by

AR(c)

AR(0)
≈ exp[−2.9c2]

BR(c)

BR(0)
≈ exp[−4.4c2] . (172)

For the attractive case, more care is necessary. The functions G−−, G++ go to
constants as p→ 0. Let

G0 = z0zRG−−(0)G++(0) . (173)

For c = 0 and zR � z0, G0 ≈ z2
R. The leading coefficient in VA(s2

W ) is the convergent
integral

AA(c) =
∫ ∞

0
dp p3 z4

R

p2z0zRG−−G++

. (174)

To evaluate the s4
W terms, differentiate VA twice with respect to s2

W ,

∂2VA
∂(s2

W )2
=
∫
dp p3 z4

R

(p2z0zRG−−G++ + s2
W )2

(175)

and evaluate the integral by breaking it into two parts at a value ε such that s2
W �

ε2G0 � 1. The integral for p < ε can be evaluated directly. The integral for p > ε can
be evaluated by adding and subtracting a term that cancels the infrared divergence.
This gives

∂2VA
∂(s2

W )2
=
z4
R

2

[
1

(G0)2
(log

1

s2
W

− γ− 1) +
∫ ∞

0

dp2

p2
{ 1

(z0zRG−−G++)2
− 1

(G0)2
e−G0p2}

]
.

(176)
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Integrating back, we find

VA(sW , c) =
1

4π2z4
R

[
−AA(c)s2

W +
1

2
BA(c)s4

W +
1

2
CA(c)s4

W log
1

s2
W

+ · · ·
]
, (177)

as in (62), where

AA(c) =
∫ ∞

0
dp p3 z4

R

p2z0zRG−−G++

BA(c) = z4
R

[
1

(G0)2
[
1

4
− γ

2
] +

∫ ∞
0

dp

p
{ 1

(z0zRG−−G++)2
− 1

(G0)2
e−G0p2}

]

CA(c) =
z4
R

2(G0)2
(178)

These coefficients also have a weak dependence on z0/zR.

For the representative case z0/zR = 0.01, the values of these coefficients at c = 0
are

AA(0) = 1.8771 BA(0) = 0.1958 CA(0) = 0.5205 , (179)

and the dependence on c is qualitatively described by

AA(c)

AA(0)
≈ exp[−3.3c2]

CA(c)

CA(0)
≈ exp[−6.7c2] , (180)

where BA(c) has a non-trivial dependence on c, with maximum at BA(0.1981) =
0.2029 and exponential suppression for large c.

Again for z0/zR = 0.01, the solution to the equation

AA(c1) = AR(0) (181)

is
c1 = 0.2997 . (182)

This point gives the tip of the locus of second-order transitions in Fig. 5. Along the
line of phase transitions, we can parametrize the total quartic term as a function of
c1. The coefficient of s4

W log 1
s2W

term is simply C(c1) = CA(c1). The coefficient of s4
W

is well approximated by a linear equation,

B(c1) = 0.41− 0.99(c1 − 0.3) for 0.3 < c1 < 0.6 , (183)

and approaches zero for large c1.
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