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A systematic analysis of the structure of single-baryon correlation functions calculated with lattice
QCD is performed, with a particular focus on characterizing the structure of the noise associated
with quantum fluctuations. The signal-to-noise problem in these correlation functions is shown, as
long suspected, to result from a sign problem. The log-magnitude and complex phase are found to
be approximately described by normal and wrapped normal distributions respectively. Properties
of circular statistics are used to understand the emergence of a large time noise region where stan-
dard energy measurements are unreliable. Power-law tails in the distribution of baryon correlation
functions, associated with stable distributions and “Lévy flights”, are found to play a central role
in their time evolution. A new method of analyzing correlation functions is considered for which
the signal-to-noise ratio of energy measurements is constant, rather than exponentially degrading,
with increasing source-sink separation time. This new method includes an additional systematic
uncertainty that can be removed by performing an extrapolation, and the signal-to-noise problem
re-emerges in the statistics of this extrapolation. It is demonstrated that this new method allows
accurate results for the nucleon mass to be extracted from the large-time noise region inaccessible
to standard methods. The observations presented here are expected to apply to quantum Monte
Carlo calculations more generally. Similar methods to those introduced here may lead to practical
improvements in analysis of noisier systems.

PACS numbers: 11.15.Ha, 12.38.Gc

I. INTRODUCTION

Modern nuclear physics research relies upon large-scale high-performance computing (HPC) to predict the properties
of a diverse array of many-body systems, ranging from the properties of hadrons computed from the dynamics of
quarks and gluons, through to the form of gravitational waves emitted from inspiraling binary neutron star systems.
In many cases, the entangled quantum nature of these systems and the nonlinear dynamics that define them, preclude
analytic calculation of their properties. In these cases, precise numerical evaluations of high-dimensional integrations
that systematically approach the quantum path integral are required. Typically, it is average quantities that are
determined by Monte Carlo (MC) path integral evaluations. These average values are to be used subsequently in
direct comparison with experiment, as input to analytic frameworks with outputs that can then be compared with
experiment, or as predictions for critical components of systems that are inaccessible to experiment such as the
equation of state of dense matter in explosive astrophysical environments. Enormous amounts of HPC resources are
used in such MC calculations to determine average values of quantities and their uncertainties. The central limit
theorem, and in particular the 1/

√
N scaling anticipated for the uncertainties associated with average values, are

used to make estimates of projected resource requirements. When a system has a “sign problem”, for which the
average value of a quantity of interest results from cancellations of (relatively) large contributions, such as found
when averaging eiθ, the HPC resources required for accurate numerical estimates of the average(s) are prohibitively
large. This is the case for numerical evaluations of the path integrals describing strongly interacting systems with
even a modest non-zero net baryon number.

While the quantum fluctuations (noise) of many-body systems contain a wealth of information beyond average
values, only a relatively small amount of attention has been paid to refining calculations based upon the structure
of the noise. This statement, of course, does not do justice to the fact that all observables (S-matrix elements) in
quantum field theory calculations can be determined from vacuum expectation values of products of quantum fields.
However, in numerical calculations, it is generally the case that noise is treated as a nuisance, something to reduce as
much as needed, as opposed to a feature that may reveal aspects of systems that are obscured through distribution
among many expectation values. In the area of Lattice Quantum Chromodynamics (LQCD), which is the numerical
technique used to evaluate the quantum path integral associated with Quantum Chromodynamics (QCD) that defines
the dynamics of quarks and gluons, limited progress has been made toward understanding the structure of the noise
in correlation functions and the physics that it contains.

Strongly interacting quantum systems can be described through path integral representations of correlation func-
tions. In principle, MC evaluation of lattice regularized path integrals can solve QCD as well as many strongly
interacting atomic and condensed matter theories. In practice, conceptual obstacles remain and large nuclei and
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nuclear matter are presently inaccessible to LQCD. In the grand canonical formulation, LQCD calculations with
non-zero chemical potential face a sign problem where MC sampling weights are complex and cannot be interpreted
as probabilities. In the canonical formulation, calculations with non-zero baryon number face a Signal-to-Noise (StN)
problem where statistical uncertainties in MC results grow exponentially at large times. Like the sign problem, the
StN problem arises when the sign of a correlation function can fluctuate, at which point cancellations allow for a mean
correlation function of much smaller magnitude than a typical MC contribution.

The nucleon provides a relatively simple and well-studied example of a complex correlation function with a StN
problem. The zero-momentum Euclidean nucleon correlation function G(t) is guaranteed to be real by existence of a
Hermitian, bounded transfer matrix and the spectral representation

G(t) = 〈Ci(t)〉 =
∑
x

〈
N(x, t)N(0)

〉
=

∞∑
n=0

Z̃nZ
†
ne
−Ent ∼ e−MN t , (1)

where Ci denotes an individual nucleon correlation function calculated from quark propagators in the presence of the
i-th member of a statistical ensemble Ui of i = 1, . . . , N gauge field configurations, 〈·〉 denotes an average over gauge
field ensembles in 〈Ci(t)〉 and an average over quark and gluon fields in the middle term, N and N are nucleon creation

and annihilation interpolating operators, Z̃†n and Zn represent the overlap of these interpolating operators onto the
n-th QCD eigenstates with quantum numbers of the nucleon, En is the energy of the corresponding eigenstate, t is
Euclidean time, MN is the nucleon mass, and ∼ denotes proportionality in the limit t → ∞. A phase convention
for creation and annihilation operators is assumed so that Ci(0) is real for all correlation functions in a statistical
ensemble. At small times Ci(t) is approximately real, but at large times it must be treated as a complex quantity.
The equilibrium probability distribution for Ci(t) can be formally defined as

P (Ci(t)) = Z−1

∫
DU e−S(U)δ(C(U ; t)− Ci(t)) with Z =

∫
DU e−S(U) , (2)

where U is a gauge field, C(U ; t) is the nucleon correlation function in the presence of a background gauge field U , DU
is the Haar measure for the gauge group, and S(U) is the gauge action arising after all dynamical matter fields have
been integrated out. For convenient comparison with LQCD results, a lattice regulator with a lattice spacing equal to
unity will be assumed throughout. Unless specified, results will not depend on details of the ultraviolet regularization
of P(Ci(t)).

MC integration of the path integral representation of a partition function, as performed in LQCD calculations,
provides a statistical ensemble of background quantum fields. Calculation of Ci(t) in an ensemble of QCD-vacuum-
distributed gauge fields Ui provides a statistical ensemble of correlation functions distributed according to P(Ci(t)).
Understanding the statistical properties of this ensemble is essential for efficient MC calculations, and significant
progress has been achieved in this direction since the early days of lattice field theory. Following Parisi [1], Lepage [2]
argued that Ci(t) has a StN problem where the noise, or square root of the variance of Ci(t), becomes exponentially
larger than the signal, or average of Ci(t), at large times. It is helpful to review the pertinent details of Parisi-Lepage
scaling of the StN ratio.

Higher moments of Ci(t) are themselves field theory correlation functions with well-defined spectral representa-
tions. 1 Their large-time behavior is a single decaying exponential whose scale is set by the lowest energy state
with appropriate quantum numbers. Assuming that matter fields have been integrated out exactly rather than
stochastically, Ci(t)

†Ci(t) will contain three valence quarks and three valence antiquarks whose net quark numbers
are separately conserved. This does not imply that |Ci(t)|2 will only contain nucleon-antinucleon states, as nothing
prevents these distinct valence quarks and antiquarks from forming lower energy configurations such as three pions.
Quadratic moments of the correlation function, therefore, have the asymptotic behavior〈

Ci(t)
2
〉
∼ e−2MN t ,

〈
|Ci(t)|2

〉
∼ e−3mπt . (3)

At large times, the nucleon StN ratio is determined by the slowest-decaying moments at large times, taking the form,

〈Ci(t)〉√
〈|Ci(t)|2〉

∼ e−(MN− 3
2mπ)t . (4)

1 The n-th moment 〈Ci(t)n〉 represents the n-nucleon nuclear correlation function in the absence of Pauli exchange between quarks in
different nucleons. This is formally a correlation function in a partially-quenched theory with nNf valence quarks and Nf sea quarks.
In general, such a theory is guaranteed to have a bounded, but not necessarily Hermitian, transfer matrix [3].
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and is therefore exponentially small. 2 The quantitative behavior of the variance of baryon correlation function in
LQCD calculations was investigated in high-statistics studies by the NPLQCD collaboration [9–11] and more recently
by Detmold and Endres [12, 13], and was found to be roughly consistent with Parisi-Lepage scaling. One of us [14]
extended Parisi-Lepage scaling to higher moments of Ci(t) and showed that all odd moments of Ci(t) are exponentially
suppressed compared to even moments at large times, see Ref. [11, 15] for further discussion. Nucleon correlation
function distributions are increasingly broad and symmetric with exponentially small StN ratios at large times, as
seen, for example, in histograms of the real parts of LQCD correlation functions in Ref. [11].

Beyond moments, the general form of correlation function distributions has also been investigated. Endres, Kaplan,
Lee, and Nicholson [16] found that correlation functions in the nonrelativistic quantum field theory describing unitary
fermions possess approximately log-normal distributions. They presented general arguments, that are discussed below,
suggesting that this behavior might be a generic feature of quantum field theories. Knowledge of the approximate form
of the correlation function distribution was exploited to construct an improved estimator, the cumulant expansion,
that was productively applied to subsequent studies of unitary fermions [17–20]. Correlation function distributions
have been studied analytically in the Nambu-Jona-Lasinio model [15, 21], where it was found that real correlation
functions were approximately log-normal but complex correlation functions in a physically equivalent formulation of
the theory were broad and symmetric at large times with qualitative similarities to the QCD nucleon distribution.
DeGrand [22] observed that meson, baryon, and gauge-field correlation functions in SU(Nc) gauge theories with
several choices of Nc are also approximately log-normal at small times where imaginary parts of correlation functions
can be neglected. Log-normal distributions have also been observed and applications of the cumulant expansion
have been explored in theories relevant to condensed matter systems [23, 24]. These various observations provide
strong empirical evidence that the distributions of real correlation functions in generic quantum field theories are
approximately log-normal.

A generalization of the log-normal distribution for complex random variables that approximately describes the QCD
nucleon correlation function at large times is presented in this work. To study the logarithm of a complex correlation
function, it is useful to introduce the magnitude-phase decomposition

Ci(t) = |Ci(t)|eiθi(t) = eRi(t)+iθi(t) . (5)

At small times where the imaginary part of Ci is negligible, previous observations of log-normal correlation func-
tions [22] demonstrate that Ri is approximately normally distributed. It is shown below that Ri is approximately
normal at all times, and that θi is approximately normal at small times. Statistical analysis of θi is complicated by
the fact that it is defined modulo 2π. In particular, the sample mean of a phase defined on −π < θi ≤ π does not
necessarily provide a faithful description of the intuitive average phase (consider a symmetric distribution peaked
around ±π with a sample mean close to zero). Suitable statistical tools for analyzing θi are found in the theory of
circular statistics and as will be seen below that θi is described by an approximately wrapped normal distribution. 3

This work is based on a high-statistics analysis of 500,000 nucleon correlation functions generated on a single en-
semble of gauge-field configurations by the NPLQCD collaboration [28] with LQCD. This ensemble has a pion mass
of mπ ∼ 450 MeV, physical strange quark mass, lattice spacing ∼ 0.12 fm, and spacetime volume 323 × 96. The
Lüscher-Weisz gauge action [29] and Nf = 2 + 1 clover-improved Wilson quark actions [30] were used to generate
these ensembles, details of which can be found in Ref. [28]. Exploratory data analysis of this high-statistics ensemble
plays a central role below.

Sec. II discusses standard statistical analysis methods in LQCD that introduce concepts used below. In Section III,
the magnitude-phase decomposition of the nucleon correlation function and connections to the StN problem are
discussed. Section III A describes the distributions of the log-magnitude and its time derivative in more detail, while
Section III B describes the distribution of the complex phase and its time derivative and explains how their features
lead to systematic bias in standard estimators during a large-time region that is dominated by noise. Section IV
draws on these observations to propose an estimator for the nucleon mass in which accurate results can be extracted
from the large-time noise region with a precision that is constant in source-sink separation time t but exponentially
degrading in an independent time parameter ∆t. Section V conjectures about applications to the spectra of generic
complex correlation functions and concludes.

2 QCD inequalities [4–8] have been used to prove that MN ≥ 3
2
mπ . Assuming that interaction energy shifts in the three-pion states

contributing to the variance correlation function are negligible, the nucleon StN ratio is therefore exponentially small for all quark
masses.

3 See Refs. [25–27] for textbook introductions to circular statistics.
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II. RELEVANT ASPECTS OF STANDARD ANALYSIS METHODS OF CORRELATION FUNCTIONS

Typically, in calculations of meson and baryon masses and their interactions, correlation functions are generated
from combinations of quark- and gluon-level sources and sinks with the appropriate hadron-level quantum numbers.
Linear combinations of these correlation functions are formed, either using Variational-Method type techniques [31],
the Matrix-Prony technique [9], or other less automated methods, in order to optimize overlap onto the lowest lying
states in the spectrum and establish extended plateaus in relevant effective mass plots (EMPs). In the limit of an
infinite number of independent measurements, the expectation value of the correlation function is a real number at
all times, and the imaginary part can be discarded as it is known to average to zero. The large-time behavior of
such correlation functions becomes a single exponential (for an infinite time-direction) with an argument determined
by the ground-state energy associated with the particular quantum numbers, or more generally the energy of the
lowest-lying state with non-negligible overlap.

The structure of the source and sink play a crucial role in determining the utility of sets of correlation functions.
For many observables of interest, it is desirable to optimize the overlap onto the ground state of the system, and
to minimize the overlap onto the correlation function dictating the variance of the ground state. In the case of the
single nucleon, the sources and sinks, O, are tuned in an effort to have maximal overlap onto the ground-state nucleon,
while minimizing overlap of OO† onto the three-pion ground state [12]. NPLQCD uses momentum projected hadronic
blocks [32] generated from quark propagators originating from localized smeared sources to suppress the overlap into

the three-pion ground state by a factor of 1/
√
V where V is the lattice volume, e.g. Ref. [9]. For such constructions,

the variance of the average scales as ∼ e−3mπt/(V N) at large times, where N is the number of statistically independent
correlation functions, while the nucleon correlation function scales as ∼ e−MN t. For this set up, the StN ratio scales as
∼
√
V Ne−(MN−3mπ/2)t, from which it is clear that exponentially large numbers of correlation functions or volumes are

required to overcome the StN problem at large times. The situation is quite different at small and intermediate times
in which the variance correlation function is dominated, not by the three-pion ground state, but by the “connected”
nucleon-antinucleon excited state, which provides a variance contribution that scales as ∼ e−2MN t/N .

This time interval where the nucleon correlation function is in its ground state and the variance correlation function
is in a nucleon-antinucleon excited state has been called the “golden window” [9] (GW). The variance in the GW
is generated, in part, by the distribution of overlaps of the source and sink onto the ground state, that differs at
each lattice site due to variations in the gluon fields. In the work of NPLQCD, correlation functions arising from
Gaussian-smeared quark-propagator sources and point-like or Gaussian-smeared sinks that have been used to form
single-baryon hadronic blocks. Linear combinations of these blocks are combined with coefficients (determined using
the Matrix-Prony technique of Ref. [9] or simply by minimizing the χ2/dof in fitting a constant to an extended
plateau region) that extend the single-baryon plateau region to earlier times, eliminating the contribution from the
first excited state of the baryon and providing access to smaller time-slices of the correlation functions where StN
degradation is less severe. High-statistics analyses of these optimized correlation functions have shown that GW
results are exponentially more precise and have a StN ratio that degrades exponentially more slowly than larger time
results [9, 33, 34] (for a review, see Ref. [10]). In particular StN growth in the GW has been shown to be consistent
with an energy scale close to zero, as is expected from a variance correlation function dominated by baryon, as opposed
to meson, states. Despite the ongoing successes of GW analyses of few-baryon correlation functions, the GW shrinks
with increasing baryon number [9, 33, 34] and calculations of larger nuclei may require different analysis strategies
suitable for correlation function without a GW.

EMPs, such as that associated with the Ξ-baryon shown in Fig. 1, are formed from ratios of correlation functions,
which become constant when only a single exponential is contributing to the correlation function,

M(t) =
1

tJ
ln

[
〈Ci(t)〉

〈Ci(t+ tJ)〉

]
→ E0 , (6)

where E0 is the ground state energy in the channel with appropriate quantum numbers. The average over gauge
field configurations is typically over correlation functions derived from multiple source points on multiple gauge-field
configurations. This is well-known technology and is a “workhorse” in the analysis of LQCD calculations. Typically,
tJ corresponds to one temporal lattice spacing, and the jackknife and bootstrap resampling techniques are used to
generate covariance matrices in the plateau interval used to extract the ground-state energy from a correlated χ2-
minimization [10, 11, 35]. 4 The energy can be extracted from an exponential fit to the correlation function or by a
direct fit to the effective mass itself. Because correlation functions generated from the same, and nearby, gauge-field

4 For pedagogical introductions to LQCD uncertainty quantification with resampling methods, see Refs. [11, 36–38].
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FIG. 1: The EMP associated with the Ξ-baryon correlation function with tJ = 2 (left panel) and the energy scale associated
with the standard deviation of the ground state energy (right panel). This correlation function is a tuned linear combination of
those resulting from localized smeared and point sinks and from a localized smeared source at a pion mass of mπ ∼ 450 MeV
calculated from 96 sources per configuration on 3538 statistically independent isotropic clover gauge-field configurations [28].
They have been blocked together to form 100 independent samplings of the combined correlation function. The red dashed line
in the right panel corresponds to the lowest energy contributing to the StN ratio that is expected to dominate at large times.

configuration are correlated, typically they are blocked to form one average correlation function per configuration, and
blocked further over multiple configurations, to create an smaller ensemble containing (approximately) statistically
independent samplings of the correlation function.

It is known that baryon correlation functions contain strong correlations over ∼ m−1
π time scales, and that these

correlations are sensitive the presence of outliers. Fig. 2 shows the distribution of the real part of small-time nucleon
correlation functions, which resembles a heavy-tailed log-normal distribution [22]. Log-normal distributions are as-
sociated with a larger number of “outliers” than arise when sampling a Gaussian distribution, and the sample mean
of these small-time correlation function will be strongly affected by the presence of these outliers. The distribution
of baryon correlation functions at very large source-sink separations is also heavy-tailed; David Kaplan has analyzed
the real parts of NPLQCD baryon correlation functions and found that they resemble a stable distribution [39].
Cancellations between positive and negative outliers occur in determinations of the sample mean of this large-time
distribution, leading to different statistical issues that are explored in detail in Sec. III.

FIG. 2: The distribution of the real part of 103 nucleon correlation functions at time slices t = 6 (left panel), t = 16 (middle
panel) and t = 24 (right panel).

To analyze temporal correlations in baryon correlation functions in more detail, results for inverse covariance
matrices generated through bootstrap resampling of the Ξ baryon effective mass are shown in Fig. 3. The size of
off-diagonal elements in the inverse covariance matrix directly sets the size of contributions to the least-squares fit
result from temporal correlations in the effective mass, and so it is appropriate to use their magnitude to describe
the strength of temporal correlations. The inverse covariance matrix is seen to possess large off-diagonal elements
associated with small time separations that appear to decrease exponentially with increasing time separation at a
rate somewhat faster than m−1

π . Mild variation in the inverse covariance matrix is seen when tJ is varied. Taking
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tJ � m−1
π decreases correlations between Ci(t) and Ci(t − tJ) and is expected to reduce off-diagonal correlations

between M(t) and M(t′), but this effect is not clearly visible in the inverse covariance matrix on the logarithmic scale
shown in Fig. 3.

FIG. 3: The logarithm of the inverse of the Ξ-baryon effective mass covariance matrix for tJ = 1, 2, 3, 16 determined using
booststrap resampling of the sample mean. Lines with |t− t′| = m−1

π are shown to demonstrate expected hadronic correlation
lengths. The correlation function is the same as in Fig. 1. The normalization of the color scale is identical for all tJ .

The role of outliers in temporal correlations on timescales . m−1
π is highlighted in Fig. 4, where inverse covariance

matrices determined with the Hodges-Lehmann estimator are shown. The utility of robust estimators, such as the
median and the Hodges-Lehmann estimator, with reduced sensitivity to outliers, has been explored in Ref. [11].
When the median and average of a function are known to coincide, there are advantages to using the median or
Hodges-Lehmann estimator to determine the average of a distribution. The associated uncertainty can be estimated
with the “median absolute deviation” (MAD), and be related to the standard deviation with a well-known scaling
factor. Off-diagonal elements in the inverse covariance matrix associated with timescales . m−1

π are visibly smaller
on a logarithmic scale when the covariance matrix is determined with the Hodges-Lehmann estimator instead of the
sample mean. This decrease in small-time correlations when a robust estimator is employed strongly suggests that
short-time correlations on scales . m−1

π are associated with outliers.

FIG. 4: Ξ-baryon effective mass inverse covariance matrices with the same range of tJ , color scale normalization, and lines
at |t − t′| = m−1

π as Fig. 3. In contrast to Fig. 3, the covariance matrices are determined using bootstrap resampling of the
Hodges-Lehman estimator.

III. A MAGNITUDE-PHASE DECOMPOSITION

In terms of the log-magnitude and phase, the mean nucleon correlation functions is

〈Ci(t)〉 =

∫
DCi P(Ci(t)) e

Ri(t)+iθi(t) . (7)

In principle, eRi(t) could be included in the MC probability distribution used for importance sampling. With this
approach, Ri(t) would contribute as an additional term in a new effective action. The presence of non-zero θi(t)
demonstrates that this effective action would have an imaginary part. The resulting weight therefore could not be
interpreted as a probability and importance sampling could not proceed; importance sampling of Ci(t) faces a sign
problem. In either the canonical or grand canonical approach, one-baryon correlation functions are described by
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complex correlation functions that cannot be directly importance sampled without a sign problem, but it is formally
permissible to importance sample according to the vacuum probability distribution, calculate the phase resulting
from the imaginary effective action on each background field configuration produced in this way, and average the
results on an ensemble of background fields. This approach, known as reweighting, has a long history in grand
canonical ensemble calculations but has been generically unsuccessful because statistical averaging is impeded by
large fluctuations in the complex phase that grow exponentially with increasing spacetime volume [40–42]. Canonical
ensemble nucleon calculations averaging Ci(t) over background fields importance sampled with respect to the vacuum
probability distribution are in effect solving the sign problem associated with non-zero θi(t) by reweighting. As
emphasized by Ref. [15], similar chiral physics is responsible for the exponentially hard StN problem appearing in
canonical calculations and exponentially large fluctuations of the complex phase in grand canonical calculations.

Reweighting a pure phase causing a sign problem generically produces a StN problem in theories with a mass gap.
Suppose

〈
eiθi(t)

〉
∼ e−Mθt for some Mθ 6= 0. Then because |eiθi(t)|2 = 1 by construction, θi(t) has the StN ratio〈

eiθi(t)
〉√〈

|eiθi(t)|2
〉 =

〈
eiθi(t)

〉
∼ e−Mθt , (8)

which is necessarily exponentially small at large times. Non-zero Mθ guarantees that statistical sampling of eiθi(t) has
a StN problem. Strictly, this argument applies to a pure phase but not to a generic complex observable such as Ci(t)
which might receive zero effective mass contribution from θi(t) and could have important correlations between Ri(t)
and θi(t). MC LQCD studies are needed to understand whether the pure phase StN problem of Eq. (8) captures some
or all of the nucleon StN problem of Eq. (4).

To determine the large-time behavior of correlation functions, it is useful to consider the effective-mass estimator
commonly used in LQCD spectroscopy, a special case of eq. (6),

M(t) = ln

[
〈Ci(t)〉
〈Ci(t+ 1)〉

]
. (9)

As t → ∞, the average correlation function can be described by a single exponential whose decay rate is set by
the ground state energy, and therefore M(t) → MN . The uncertainties associated with M(t) can be estimated by
resampling methods such as bootstrap. The variance of M(t) is generically smaller than that of ln 〈Ci(t)〉 due to
cancellations arising from correlations between ln [〈Ci(t)〉] and ln [〈Ci(t+ 1)〉] across bootstrap ensembles. Assuming
that these correlations do not affect the asymptotic scaling of the variance of M(t), propagation of uncertainties for
bootstrap estimates of the variance of ln [〈Ci(t)〉] shows that the variance of M(t) scales as

Var (M(t)) ∼ Var (Ci(t))

〈Ci(t)〉2
∼ e2(MN− 3

2mπ)t . (10)

An analogous effective-mass estimator for the large-time exponential decay of the magnitude is

MR(t) = ln

[ 〈
eRi(t)

〉〈
eRi(t+1)

〉] , (11)

and an effective-mass estimator for the phase is

Mθ(t) = ln

[ 〈
eiθi(t)

〉〈
eiθi(t+1)

〉] = ln

[
〈cos(θi(t))〉
〈cos(θi(t+ 1))〉

]
, (12)

where the reality of the average correlation function has been used.
Figure 5 shows EMPs for M(t), MR(t), and Mθ(t) calculated from the LQCD ensemble described previously. The

mass of the nucleon, determined from a constant fit in the shaded plateau region 15 ≤ t ≤ 25 indicated in Fig. 5,
is found to be MN = 0.7253(11)(22), in agreement with the mass obtained from the golden window in previous
studies [28] of MN = 0.72546(47)(31). MR(t) and Mθ(t) do not visually plateau until much larger times. For the
magnitude, a constant fit in the shaded region 30 ≤ t ≤ 40 gives an effective mass MR(t) → MR = 0.4085(2)(13)
which is close to the value 3

2mπ = 0.39911(35)(14) [28] indicated by the red line. For the phase, a constant fit to the
shaded region 25 ≤ t ≤ 29 gives an effective mass Mθ(t) → Mθ = 0.296(20)(12), which is consistent with the value
MN − 3

2mπ = 0.32636(58)(34) [28] indicated by the red line. It is unlikely that the phase has reached its asymptotic
value by this time, but a signal cannot be established at larger times. For t ≥ 30, large fluctuations lead to complex
effective mass estimates for M(t) and Mθ(t) and unreliable estimates and uncertainties. MR(t) + Mθ(t) agrees with
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FIG. 5: The left panel shows the nucleon effective mass M(t) as a function of Euclidean time in lattice units. The middle and
right panels show the effective masses MR(t) and Mθ(t) of the magnitude and phase respectively. The asymptotic values of
MR(t) and Mθ(t) are close to 3

2
mπ and MN − 3

2
mπ respectively, whose values are indicated for comparison with horizontal red

lines. The uncertainties are calculated using bootstrap methods. Past t & 30 the imaginary parts of 〈Ci(t)〉 and 〈cos θi(t)〉 are
not negligible compared to the real part. Here and below we display the real part of the complex log in Eq. (9)-(12); taking the
real part of the average correlation functions before taking the log or some other prescription would modify the results after
t & 30 in the left and right panels. All definitions are equivalent in the infinite statistics limit where 〈Ci(t)〉 is real.

FIG. 6: Variances of the effective mass estimates shown in Fig. 5. The blue points common to all panels show the variance

of M(t). The red line in the left plot shows a fit to e2(MN−
3
2
mπ)t variance growth, where the normalization has been fixed to

reproduce the observed variance at t = 22. The orange points in the middle panel show the variance associated with MR(t).
The green points in the right panel show the variance associated with Mθ(t).

M(t) up to . 5% corrections at all times, demonstrating that the magnitude and cosine of the complex phase are
approximately uncorrelated at the few percent level. This suggests the asymptotic scaling of the nucleon correlation
function can be approximately decomposed as

〈Ci(t)〉 ≈
〈
eRi(t)

〉〈
eiθi(t)

〉
∼
(
e−

3
2mπt

)(
e−(MN− 3

2mπ)t
)

. (13)

For small times t . 10, the means and variances of M(t) and MR(t) agree up to a small contribution from Mθ(t).
This indicates that the real part of the correlation function is nearly equal to its magnitude at small times. At
intermediate times 10 . t . 25, the contribution of Mθ(t) grows relative to MR(t), and for t & 15 the variance of the
full effective mass is nearly saturated by the variance of Mθ(t), as shown in Fig. 6. At intermediate times a linear fit

normalized to Var(M(t = 22)) with slope e2(MN− 3
2mπ)t provides an excellent fit to bootstrap estimates of Var(M(t)),

in agreement with the scaling of Eq. (10). Var(Mθ(t)) is indistinguishable from Var(M(t)) in this region, and mθ(t)
has an identical StN problem. Var(MR(t)) has much more mild time variation, and MR(t) can be reliably estimated
at all times without almost no StN problem. At intermediate times, the presence of non-zero θi(t) signaling a sign
problem in importance sampling of Ci(t) appears responsible for the entire nucleon StN problem.
M(t) approaches its asymptotic value much sooner than MR(t) or Mθ(t). This indicates that the overlap of

N(0)N(0) onto the three-pion ground state in the variance correlation function is greatly suppressed compared to the
overlap of N(0) onto the one-nucleon signal ground state. Optimization of the interpolating operators for high signal
overlap contributes to this. Another contribution arises from momentum projection, which suppresses the variance
overlap factor by ∼ 1/(m3

πV ) [33]. A large hierarchy between the signal and noise overlap factors provides a GW
visible at intermediate times 10 . t . 25. In the GW, M(t) approaches it’s asymptotic value but Var(M(t)) begins
to grow exponentially and Mθ(t) is suppressed compared to MR(t). Reliable extractions of M(t) are possible in the
GW.
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FIG. 7: EMPs from an ensemble of 500 blocked correlation functions, each of which is equal to the sample mean of 1000
nucleon correlation functions. The left panel shows the effective mass M(t) of the blocked correlation functions. The middle
panel shows the magnitude contribution mR(t) and, for reference, a red line at 3

2
mπ and a blue line at MN are shown. The

right panel shows the phase mass mθ(t) of the blocked correlation functions along with a red line at MN − 3
2
mπ.

FIG. 8: Bootstrap estimates of the variance of the effective mass using blocked correlation functions. The left panel shows
the variance of M(t) for blocked data in blue and the almost indistinguishable variance of M(t) for unblocked data in gray.
The middle panel shows the variance of blocked estimates of mR(t) in orange and the right panel shows the variance of blocked
estimates of mθ(t) in green.

The effects of blocking, that is averaging subsets of correlation functions and analyzing the distribution of the
averages, are shown in Fig. 7. Mθ(t) is suppressed compared to MR(t) for larger times in the blocked ensemble, and
the log-magnitude saturates the average and variance of M(t) through intermediate times t . 25. Blocking does not
actually reduce the total variance of M(t). Variance in M(t) is merely shifted from the phase to the log-magnitude at
intermediate times. This is reasonable, since the imaginary part of Ci(t) vanishes on average and so blocked correlation
functions will have smaller imaginary parts. Still, blocking does not affect 〈C(t)〉 and only affects bootstrap estimates
of Var(M(t)) at the level of correlations between correlation functions in the ensemble. Blocking also does not delay
the onset of a large-time noise region t & 35 where M(t) and mθ(t) cannot be reliably estimated.

Eventually the scaling of Var(M(t)) begins to deviate from Eq. (10), and in the noise region t & 35 the observed
variance remains approximately constant (up to large fluctuations). This is inconsistent with Parisi-Lepage scaling.
While the onset of the noise region is close to the mid-point of the time direction t = 48, a qualitatively similar onset
occurs at earlier times in smaller statistical ensembles. Standard statistical estimators therefore do not reproduce the
scaling required by basic principles of quantum field theory in the noise region. This suggests systematic deficiencies
leading to unreliable results for standard statistical estimation of correlation functions in the noise region. The
emergence of a noise region where standard statistical tools are unreliable can be understood in terms of the circular
statistics describing θ(t) and is explained in Sec. III B. A more straightforward analysis of the distribution of Ri(t) is
first presented below.

A. The Magnitude

Histograms of the nucleon log-magnitude are shown in Fig. 9. Particularly at large times, the distribution of Ri(t)
is approximately described by a normal distribution. Fits to a normal distribution are qualitatively good but not
exact, and deviations between normal distribution fits and Ri(t) results are visible in Fig. 9. Cumulants of Ri(t) can
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FIG. 9: Normalized histograms of Ri(t) derived from the LQCD results. The blue curves correspond to best fit normal
distributions determined from the sample mean and variance, while the purple curves correspond to maximum likelihood fits
to generic stable distributions. See the main text for more details.

be used to quantify these deviations, which can be recursively calculated from its moments by

κn (Ri(t)) = 〈Ri(t)n〉 −
n−1∑
m=1

(
n− 1

m− 1

)
κm (Ri(t))

〈
Ri(t)

n−m〉 . (14)

The first four cumulants of a probability distribution characterize its mean, variance, skewness, and kurtosis respec-
tively. If |Ci(t)| were exactly log-normal, the first and second cumulants of Ri(t), its mean and variance, would fully
describe the distribution. Third and higher cumulants of Ri(t) would all vanish for exactly log-normal |Ci(t)|. Fig. 10
shows the first four cumulants of Ri(t). Estimates of higher cumulants of Ri(t) become successively noisier.

FIG. 10: The first four cumulants of R(t) as functions of t. Cumulants are calculated from sample moments using Eq. (14) and
the associated uncertainties are estimated by bootstrap methods. From left to right, the panels show the cumulants κ1(R(t))
(mean), κ2(R(t)) (variance), κ3(R(t)) (characterizing skewness) and κ4 (characterizing kurtosis).

The cumulant expansion of Ref. [16] relates the effective mass of a correlation function to the cumulants of the
logarithm of the correlation function. The derivation of Ref. [16] is directly applicable to MR(t). The characteristic
function ΦR(t)(k), defined as the Fourier transform of the probability distribution function of Ri(t), can be described
by a Taylor series for ln[ΦR(t)(k)] whose coefficients are precisely the cumulants of Ri(t),

ΦR(t)(k) =
〈
eikRi(t)

〉
= exp

[ ∞∑
n=1

(ik)n

n!
κn(Ri(t))

]
. (15)

The average magnitude of Ci(t) is given in terms of this characteristic function by〈
eRi(t)

〉
= ΦR(t)(−i) = exp

[ ∞∑
n=1

κn(Ri(t))

n!

]
. (16)

This allows application of the cumulant expansion in Ref. [16] to the effective mass in Eq. (11) to give,

MR(t) =

∞∑
n=1

1

n!
[κn(Ri(t))− κn(Ri(t+ 1))] . (17)
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Since κn(Ri(t)) with n > 2 vanishes for normally distributed Ri(t), the cumulant expansion provides a rapidly
convergent series for correlation functions that are close to, but not exactly, log-normally distributed. Note that the
right-hand-side of Eq. (17) is simply a discrete approximation suitable for a lattice regularized theory of the time
derivative of the cumulants.

FIG. 11: Contributions to MR(t) from the first four terms in the cumulant expansion of Ref. [16] given in Eq. (17). In the
leftmost panel, the gray points correspond to the unapproximated estimate for MR(t) (that are also shown in Fig. 5), while the
orange points show the contribution from the mean κ1(R(t)). The other panels show the contributions to Eq. (17) associated
with the higher cumulants κ2(Ri(t)), κ3(R(t)), and κ4(R(t)), respectively.

Results for the effective mass contributions of the first few terms in the cumulant expansion of Eq. (17) are shown in
Fig. 11. The contribution κ1(Ri(t))−κ1(Ri(t+1)), representing the time derivative of the mean, provides an excellent
approximation to MR(t) after small times. (κ2(Ri(t))−κ2(Ri(t+1)))/2 provides a very small negative contribution to
MR(t), and contributions from κ3(Ri(t)) and κ4(Ri(t)) are statistically consistent with zero. As MR(t) approaches its
asymptotic value, the log-magnitude distribution can be described to high-accuracy by a nearly normal distribution
with very slowly increasing variance and small, approximately constant κ3,4. The slow increase of the variance of Ri(t)
is consistent with observations above that |Ci(t)| has no severe StN problem. It is also consistent with expectations
that |Ci(t)|2 describes a (partially-quenched) three-pion correlation function with a very mild StN problem, with a
scale set by the attractive isoscalar pion interaction energy.

As Eq. (17) relates MR(t) to time derivatives of moments of Ri(t), it is interesting to consider the distribution of
the time derivative dRi

dt . Defining generic finite differences,

∆Ri(t,∆t) = Ri(t)−Ri(t−∆t) , (18)

the time derivative of lattice regularized results can be defined as the finite difference,

dRi
dt

= ∆Ri(t, 1) . (19)

If Ri(t) and Ri(t − 1) were statistically independent, it would be straightforward to extract the time derivatives
of the moments of Ri(t) from the moments of dRi

dt . The presence of correlations in time, arising from non-trivial

QCD dynamics, obstructs a naive extraction of MR(t) from moments of dR)i
dt . For instance, without knowledge of

〈Ri(t)Ri(t− 1)〉 it is impossible to extract the time derivative of the variance of Ri(t) from the variance of dRidt . While

the time derivative of the mean of Ri(t) is simply the mean of dRi
dt , time derivatives of the higher cumulants of Ri(t)

cannot be extracted from the cumulants of dRi
dt without knowledge of dynamical correlations.

FIG. 12: The first four cumulants of dRi
dt

, determined analogously to the cumulants in Fig. 10.

The cumulants of dRi
dt are shown in Fig. 12. As expected, the mean of dRi

dt approaches 3
2mπ at large times. The

variance of dRidt is tending to a plateau which is approximately one-third of the variance of Ri(t). This implies there are
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correlations between Ri(t) and Ri(t− 1) that are on the same order of the individual variances of Ri(t) and Ri(t− 1).
This is not surprising, given that the QCD correlation length is larger than the lattice spacing. No statistically
significant κ3 is seen for dRi

dt at large times, but a statistically significant positive κ4 is found. Normal distribution fits

to dRi
dt are found to be poor, as shown in Fig. 13, as they underestimate both the peak probability and the probability

of finding “outliers” in the tails of the distribution. Interestingly, Fig. 12, and histograms of dRi
dt shown in Fig. 13,

suggest that the distribution of dRi
dt becomes approximately time-independent at large times.

FIG. 13: Histograms of dR
dt

, defined as the finite difference ∆R(t, 1) given in Eq. (18). The blue curves in each panel correspond
to the best-fit normal distribution, while the purple curves correspond to the best-fit stable distribution.

Stable distributions are found to provide a much better description of dRi
dt , and are consistent with the heuristic

arguments for log-normal correlation functions given in Ref. [16]. Generic correlation functions can be viewed as
products of creation and annihilation operators with many transfer matrix factors describing Euclidean time evolution.
It is difficult to understand the distribution of products of transfer matrices in quantum field theories, but following
Ref. [16] insight can be gained by considering products of random positive numbers. As a further simplification, one
can consider a product of independent, identically distributed positive numbers, each schematically representing a
product of many transfer matrices describing time evolution over a period much larger than all temporal correlation
lengths. Application of the central limit theorem to the logarithm of a product of many independent, identically
distributed random numbers shows that the logarithm of the product tends to become normally distributed as the
number of factors becomes large. The central limit theorem in particular assumes that the random variables in
question originate from distributions that have a finite variance. A generalized central limit theorem proves that
sums of heavy-tailed random variables tend to become distributed according to stable distributions (that include the
normal distribution as a special case), suggesting that stable distributions arise naturally in the logs of products of
random variables.

Stable distributions are named as such because their shape is stable under averaging of independent copies of a
random variable. Formally, stable distributions form a manifold of fixed points in a Wilsonian space of probability
distributions where averaging independent random variables from the distribution plays the role of renormalization
group evolution. A parameter α, called the index of stability, dictates the shape of a stable distribution and remains
fixed under averaging transformations. All probability distributions with finite variance evolve under averaging to-
wards the normal distribution, a special case of the stable distribution with α = 2. Heavy-tailed distributions with
ill-defined variance evolve towards generic stable distributions with 0 < α ≤ 2. In particular, stable distributions with
α < 2 have power-law tails; for a stable random variable X the tails decay as X−(α+1). The heavy-tailed Cauchy,
Levy, and Holtsmark distributions are special cases of stable distributions with α = 1, 1/2, and 3/2 respectively, that
arise in physical applications. 5

Stable distributions for a real random variable X are defined via Fourier transform,

PS(X;α, β, µ, γ) =

∫
dk

2π
e−ikXΦX(k;α, β, µ, γ) , (20)

5 Further details can be found in textbooks and reviews on stable distributions and their applications in physics. See, for instance,
Refs. [43–47] and references within.
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of their characteristic functions

ΦX(k;α, β, µ, γ) = exp

(
iµk − |γk|α

[
1− iβ k

|k|
tan(πα/2)

])
, (21)

where 0 < α ≤ 2 is the index of stability, −1 ≤ β ≤ 1 determines the skewness of the distribution, µ is the location
of peak probability, γ sets the width. For α = 1, the above parametrization does not hold and tan(πα/2) should be
replaced by − 2

π ln |k|. For α > 1 the mean is µ, and for α ≤ 1 the mean is ill-defined. For α = 2 the variance is

σ2 = γ2/2 and Eq. (21) implies the distribution is independent of β, while for α < 2 the variance is ill-defined.

FIG. 14: Maximum likelihood estimates for stable distribution fits of Ri(t) in terms of the parameters of Eq. (20)-(21). α = 2
corresponds to a normal distribution. The associated uncertainties are estimated by bootstrap methods. Changes in β do not
affect the likelihood when α = 2, and reliable estimates of β(Ri(t)) are not obtained at all times.

The distributions of Ri(t) obtained from the LQCD calculations can be fit to stable distributions through maximum
likelihood estimation of the stable parameters α, β, µ, and γ, obtaining the results that are shown in Fig. 14. Estimates
of α(Ri) are consistent with 2, corresponding to a normal distribution. This is not surprising, because higher moments
of |Ci(t)| would be ill-defined and diverge in the infinite statistics limit if Ri(t) were literally described by a heavy-tailed
distribution. β(Ri) is strictly ill-defined when α(Ri) = 2, but results consistent with β(Ri) = −1 indicate negative
skewness in agreement with observations above. Estimates of µ(Ri) and γ(Ri) are consistent with the cumulant
results above if a normal distribution (α(Ri) = 2) is assumed. Fits of R(t) to generic stable distributions are shown in
Fig. 9, and are roughly consistent with fits to a normal distribution, though some skewness is captured by the stable
fits.

FIG. 15: Maximum likelihood estimates for stable distribution fits of dRi
dt

similar to Fig. 14. The associated uncertainties are
estimated by bootstrap methods.

Stable distribution fits to dRi
dt indicate statistically significant deviations from a normal distribution (α = 2), as

seen in Fig. 15. The large-time distribution of dRi
dt appears time independent, and fitting α

(
dRi
dt

)
in the large-time

plateau region gives an estimate of the large-time index of stability. Recalling dRi
dt describes a finite difference over a

physical time interval of one lattice spacing, the estimated index of stability is

α (∆R(t→∞,∆t ∼ 0.12 fm))→ 1.639(4)(1). (22)

Maximum likelihood estimates for µ
(
dRi
dt

)
are consistent with the sample mean, and β

(
dRi
dt

)
is consistent with zero

in agreement with observations of vanishing skewness. Therefore, the distribution of dRi
dt is symmetric, as observed

in Fig. 13, with power-law tails scaling as ∼ (∆Ri)
−2.65

over this time interval of ∆t ∼ 0.12 fm.
The value of α

(
dRi
dt

)
depends on the physical time separation used in the finite difference definition Eq. (18), and

stable distribution fits can be performed for generic finite differences ∆Ri(t,∆t). For all ∆t, the distribution of ∆Ri
becomes time independent at large times. Histograms of the large-time distributions ∆R for ∆t = 4, 8 are shown
in Fig. 16, and the best fit large-time values for α (∆Ri) and γ (∆Ri) are shown in Fig. 17. Since QCD has a finite
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FIG. 16: Histograms of ∆Ri(t,∆t) for selected large-time values of t. The top row shows results for ∆t = 4, the bottom row
shows results for ∆t = 8, and Fig. 13 shows the results for ∆t = 1. The blue curves represent fits to a normal distribution,
while the purple curves represent fits to a stable distribution.

correlation length, ∆Ri(t,∆t) can be described as the difference of approximately normally distributed variables
at large ∆t. In the large ∆t limit, ∆Ri is therefore necessarily almost normally distributed, and correspondingly,
α(∆Ri), shown in Fig. 17, increases with ∆t and begins to approach the normal distribution value α(∆Ri) → 2 for
large ∆t. A large ∆t plateau in α(∆Ri) is observed that demonstrates small but statistically significant departures
from α(∆Ri) < 2. This deviation is consistent with the appearance of small but statistically significant measures
of non-Gaussianity in Ri(t) seen in Fig. 10. Heavy-tailed distributions are found to be needed only to describe the
distribution of ∆Ri when ∆t is small enough such that Ri(t) and Ri(t−∆t) are physically correlated. In some sense,
the deviations from normally distributed differences, i.e. α(∆Ri) < 2, are a measure the strength of dynamical QCD
correlations on the scale ∆t.

FIG. 17: Maximum likelihood estimates for the index of stability, α (∆Ri(t,∆t)) and width γ (∆Ri(t,∆t)), in the large-time
plateau region as a function of ∆t. Associated uncertainties are estimated with bootstrap methods.

The heavy-tailed distributions of ∆Ri for dynamically correlated time separations correspond to time evolution dRi
dt

that is quite different to that of diffusive Brownian motion describing the quantum mechanical motion of free point
particles. Rather than Brownian motion, heavy-tailed jumps in Ri(t) correspond to a superdiffusive random walk or
Lévy flight. Power-law, rather than exponentially suppressed, large jumps give Lévy flights a qualitatively different
character than diffusive random walks, including fractal self-similarity, as can be seen in Fig. 18. The dynamical
features of QCD that give rise to superdiffusive time evolution are presently unknown, however, we conjecture that
instantons play a role. Instantons are associated with large, localized fluctuations in gauge fields, and we expect that
instantons may also be responsible for infrequent, large fluctuations in hadronic correlation functions generating the
tails of the dRi/dt distribution. It would be interesting to understand if α

(
dRi
dt

)
can be simply related to observable

properties of the nucleon. It is also not possible to say from this single study whether α
(
dRi
dt

)
has a well-defined
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FIG. 18: The two-dimensional motion of tests particles with their random motion taken from symmetric Stable Distributions.
At each time step, the angle of the outgoing velocity is chosen randomly with respect to the incident velocity while the
magnitude of the velocity is chosen from a symmetric Stable Distribution with α = 2 corresponding to Brownian motion (left
panel), and α = 1.5 corresponding to a Holtsmark distribution (right panel). In the right panel, the large separations between
clusters achieved during one time interval correspond to Lévy flights.

continuum limit for infinitesimal ∆t. Further LQCD studies are required to investigate the continuum limit of α
(
dRi
dt

)
.

Lattice field theory studies of other systems and calculations of α
(
dRi
dt

)
in perturbation theory, effective field theory,

and models of QCD could provide important insights into the dynamical origin of superdiffusive time evolution. 6

One feature of LQCD dRi
dt results is not well described by a stable distribution. The variance of heavy-tailed

distributions is ill-defined, and were dRi
dt truly described by a heavy-tailed distribution then the variance and higher

cumulants of dRi
dt would increase without bound as the size of the statistical ensemble is increased. This behavior is

not observed. While the distribution of dRi
dt is well-described by a stable distribution near its peak, the extreme tails

of the distribution of dRidt decay sufficiently quickly that the variance and higher cumulants of dRdt shown in Fig. 12 give

statistically consistent results as the statistical ensemble size is varied. This suggests that dRi
dt is better described by a

truncated stable distribution, a popular model for, for example, financial markets exhibiting high volatility but with
a natural cutoff on trading prices, in which some form of sharp cutoff is added to the tails of a stable distribution [46].
Note that the tails of the dRi

dt distribution describe extremely rapid changes in the correlation function and are sensitive

to ultraviolet properties of the theory. One possibility is that dRi
dt describes a stable distribution in the presence of

a (perhaps smooth) cutoff arising from ultraviolet regulator effects that damps the stable distribution’s power-law
decay at very large dRi

dt . Further studies at different lattice spacings will be needed to understand the form of the
truncation and whether the truncation scale is indeed set by the lattice scale. It is also possible that there is a strong
interaction length scale providing a modification to the distribution at large dRi

dt , and it is further possible that stable

distributions only provide an approximate description at all dRidt . For now we simply observe that a truncated stable

distribution with an unspecified high-scale modification provides a good empirical description of dRi
dt .

Before turning to the complex phase of Ci(t), we summarize the main findings about the log-magnitude:

• The log-magnitude of the nucleon correlation function in LQCD is approximately normally distributed with
small but statistically significant negative skewness and positive kurtosis.

• The magnitude effective mass MR(t) approaches 3
2mπ at large times, consistent with expectations from Parisi-

Lepage scaling for the nucleon variance |Ci(t)|2 ∼ e−3mπt. The plateau of M(t) marks the start of the golden
window where excited state systematics are negligible and statistical uncertainties are increasing slowly. The
much larger-time plateau of MR(t) roughly coincides with the plateau of Mθ(t) to MN − 3

2mπ and occurs after

variance growth of M(t) reaches the Parisi-Lepage expectation e2(MN− 3
2mπ)t. Soon after, a noise region begins

where the variance of M(t) stops increasing and the effective mass cannot be reliably estimated.

6 For example, an analysis of pion correlation functions from the same ensemble of gauge-field configurations shows that Ri and dRi
dt

are
both approximately normally distributed, with α = 1.96(1) and α = 1.97(1), respectively. We conclude that the pion shows only small
deviations from free particle Brownian motion.
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• The log-magnitude does not have a severe StN problem, and MR(t) can be measured accurately across all 48
timesteps of the present LQCD calculations. The variance of the log-magnitude distribution only increases by
a few percent in 20 timesteps after visibly plateauing.

• The cumulant expansion describes MR(t) as a sum of the time derivatives of the cumulants of the log of the
correlation function. At large times, the time derivative of the mean of Ri(t) is constant and approximately
equal to MR(t). Contributions to MR(t) from the variance and higher cumulants of Ri(t) are barely resolved in
the sample of 500, 000 correlation functions.

• Finite differences in Ri(t), ∆Ri(t,∆t), are described by time independent distributions at large times. For large
∆t compared to the QCD correlation length, ∆R describes a difference of approximately independent normal
random variables and is therefore approximately normally distributed. For small ∆t, ∆Ri describes a difference
of dynamically correlated variables. The mean of dRi

dt is equal to the time derivative of the mean of Ri(t) and
therefore provides a good approximation to MR(t). The time derivatives of higher cumulants of Ri(t) cannot
be readily extracted from cumulants of dRi

dt without knowledge of dynamical correlations.

• At large times, dRidt is well described by a symmetric, heavy-tailed, truncated stable distribution. The presence

of heavy tails in dRi
dt indicates that Ri(t) is not described by free particle Brownian motion but rather by a

superdiffusive Lévy flight. Deviations of the index of stability of dRi
dt from a normal distribution quantify the

amount of dynamical correlations present in the nucleon system, the physics of which is yet to be understood.
Further studies are required to determine the continuum limit value of the index of stability associated with
dRi
dt and the dynamical origin and generality of superdiffusive Lévy flights in quantum field theory correlation

functions.

B. The Phase

The reality of average correlation functions requires that the distribution of θi(t) be symmetric under θi(t)→ −θi(t).
Cumulants of θi(t) calculated from sample moments in analogy to Eq. (14) are shown in Fig. 19. The mean and κ3

FIG. 19: The first four cumulants of θi(t). In these fits, no special care is given to the fact that θi(t) is a phase defined
on −π < θi(t) ≤ π and standard sample moments are used to determine these cumulants in analogy to Eq. (14). Uniform

distribution results of π2

3
variance and − 2π4

15
fourth cumulant are shown as green lines for reference.

are noisy but statistically consistent with zero as expected. The variance and κ4 are small at small times since every
sample of θi(t) is defined to vanish at t = 0, and grow linearly at intermediate times 10 < t < 20 around the golden
window. After t = 20, this linear growth slows and they become constant at large times, and are consistent with
results from a uniform distribution. Histograms of θi(t) shown in Fig. 20 qualitatively suggest that θi(t) is described
by a narrow, approximately normal distribution at small times and an increasingly broad, approximately uniform
distribution at large times. θi(t) is only defined modulo 2π and can be described as a circular variable defined on
the interval −π < θi ≤ π. The distribution of θi(t) can therefore be described with angular histograms, as shown in
Fig. 21. Again, θi(t) resembles a uniform circular random variable at large times.

A cumulant expansion can be readily constructed for Mθ(t). The mean phase is given in terms of the characteristic
function and cumulants of θi(t) by

〈
eiθi(t)

〉
= Φθ(t)(1) = exp

[ ∞∑
n=0

in

n!
κn(θi(t))

]
, (23)



17

FIG. 20: Histograms of θi(t) with fits to wrapped normal distributions using Eq. (27) shown in blue and fits to wrapped
stable distributions using maximum likelihood estimation of the parameters of Eq. (37) shown in purple. See the main text for
details.

FIG. 21: Angular histograms of θi(t). The unit circle is split into a uniform sequence of bins, and the number of θi(t) samples
falling in each bin sets the radial length of a bar at that angle. Colors ranging from orange to blue also denotes angle, and is
included to indicate the θi = π location of the branch cut in θi(t) = argCi(t).

and the appropriate cumulant expansion for Mθ(t) is therefore, using Eq. (12),

Mθ(t) =

∞∑
n=0

in

n!
[κn(θi(t))− κn(θi(t+ 1))] . (24)

Factors of in dictate that a linearly increasing variance of θi(t) makes a positive contribution to Mθ(t), in contradis-
tinction to the slight negative contribution to MR(t) made by linearly increasing variance of Ri(t). Since the mean of
θi(t) necessarily vanishes, the variance of θi(t) makes the dominant contribution to Eq. (24) for approximately nor-
mally distributed θi(t). For this contribution to be positive, the variance of θi(t) must increase, indicating that θi(t)
has a StN problem. For the case of approximately normally distributed θi(t), non-zero Mθ requires a StN problem
for the phase.

Contributions to Eq. (24) from the first four cumulants of θi(t) are shown in Fig. 22. Contributions from odd
cumulants are consistent with zero, as expected by θi(t) → −θi(t) symmetry. The variance provides the dominant
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contribution to Mθ(t) at small and intermediate times, and is indistinguishable from the total Mθ(t) calculated using
the standard effective mass estimator for t . 15. Towards to end of the golden window 15 . t . 25, the variance
contribution to the effective mass begins to decrease. At very large times t & 30 contributions to Mθ(t) from the
variance are consistent with zero. The fourth cumulant makes smaller but statistically significant contributions to
Mθ(t) at intermediate times. Contributions from the fourth cumulant also decrease and are consistent with zero
at large times. The vanishing of these contributions results from the distribution becoming uniform at large times,
and time independent as a consequence. These observations signal a breakdown in the cumulant expansion at large
times t & 25 where contributions from the variance do not approximate standard estimates of Mθ(t). Notably, the
breakdown of the cumulant expansion at t & 25 coincides with plateaus to uniform distribution cumulants in Fig. 19
and with the onset of the noise region discussed in Sec. III.

FIG. 22: Contributions from the first four terms in the cumulant expansion of Eq. (17). The variance, shown second from
left, is expected to provide the dominant contribution if a truncation of Eq. (17) is reliable. Standard estimates of Mθ(t) from
Eq. (12) are shown as the gray points, alongside the cumulant contribution (green points) in the second from left panel. Other
panels only show cumulant contributions (green points).

Observations of these unexpected behaviors of θi(t) in the noise region hint at more fundamental issues with the
statistical description of θi(t) used above. A sufficiently localized probability distribution of a circular random variable
peaked far from the boundaries of −π < θi(t) ≤ π can be reliably approximated as a standard probability distribution
of a linear random variable defined on the real line. For broad distributions of a circular variable, the effects of a finite
domain with periodic boundary conditions cannot be ignored. While circular random variables are not commonly
encountered in quantum field theory, they arise in many scientific contexts, most notably in astronomy, biology,
geography, geology, meteorology and oceanography. Familiarity with circular statistics is not assumed here, and a
few basic results relevant for understanding the statistical properties of θi(t) will be reviewed without proof. Further
details can be found in Refs. [25–27] and references therein.

A generic circular random variable θi can be described by two linear random variables cos(θi) and sin(θi) with
support on the line interval [−1, 1] where periodic boundary conditions are not imposed. It is the periodic identification
of θi = ±π that makes sample moments poor estimators of the distribution of θi and, in particular, allows the sample
mean of a distribution symmetrically peaked about θi = ±π to be opposite the actual location of peak probability.
Parameter estimation for circular distributions can be straightforwardly performed using trigonometric moments of
cos(θi) and sin(θi). For an ensemble of N random angles θi, the first trigonometric moments are defined by the sample
averages,

C =
1

N

∑
i

cos(θi), S =
1

N

∑
i

sin(θi) . (25)

Higher trigonometric moments can be defined analogously but will not be needed here. The average angle can be
defined in terms of the mean two-dimensional vector (C, S) as

θ = arg
(
C + iS

)
. (26)

A standard measure of a circular distribution’s width is given in terms of trigonometric moments as

ρ2 = C2
+ S2

(27)

where ρ should be viewed as a measure of the concentration of a circular distribution. Smaller ρ corresponds to a
broader, more uniform distribution, while larger ρ corresponds to a more localized distribution.

One way of defining statistical distributions of circular random variables is by “wrapping” distributions for linear
random variables around the unit circle. The probability of a circular random variable equaling some value in
−π < θ ≤ π is equal to the sum of the probabilities of the linear random variable equaling any value that is equivalent
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to θ modulo 2π. Applying this prescription to a normally distributed linear random variable gives the wrapped normal
distribution

PWN (θi;µ, σ) =
1√
2πσ

∞∑
k=−∞

exp

[
− (θi − µ+ 2πk)2

2σ2

]
=

1

2π

∞∑
n=−∞

ein(θi−µ)−σ2n2/2 , (28)

where the second form follows from the Poisson summation formula. Wrapped distributions share the same character-
istic functions as their unwrapped counterparts, and the second expression above can be derived as a discrete Fourier
transform of a normal characteristic function. The second sum above can also be compactly represented in terms of
elliptic-ϑ functions. For σ2 . 1 the wrapped normal distribution qualitatively resembles a normal distribution, but
for σ2 & 1 the effects of wrapping obscure the localized peak. As σ2 →∞, the wrapped normal distribution becomes
a uniform distribution on (−π, π]. Arbitrary trigonometric moments and therefore the characteristic function of the
wrapped normal distribution are given by 〈

einθi
〉
WN

= einµ−n
2σ2/2 . (29)

Parameter estimation in fitting a wrapped normal distribution to LQCD results for θi(t) can be readily performed by
relating θ and ρ above to these trigonometric moments as

µ = θ and e−σ
2

= ρ2 . (30)

Note that Eq. (30) holds only in the limit of infinite statistics. Estimates for the average of a wrapped normal
distribution are consistent with zero at all times, as expected. Wrapped normal probability distribution functions
with σ2(θi(t)) determined from Eq. (30) are shown with the histograms of Fig. 20 and provide a good fit to the data
at all times.

The appearance of a uniform distribution at large times is consistent with the heuristic argument that the logarithm
of a correlation function should be described by a stable distribution. The uniform distribution is a stable distribution
for circular random variables, and in fact is the only stable circular distribution [27]. The distribution describing a
sum of many linear random variables broadens as the number of summands is increased, and the same is true of
circular random variables. A theorem of Poincaré proves that as the width of any circular distribution is increased
without bound, the distribution will approach a uniform distribution. One therefore expects that the sum of many
well-localized circular random variables might initially tend towards a narrow wrapped normal distribution while
boundary effects are negligible. Eventually as more terms are added to the sum this wrapped normal distribution
will broaden and approach a uniform distribution. This intuitive picture appears consistent with the time evolution
of θi(t) shown in Figs. 20, 21.

FIG. 23: The left panel shows estimates of the wrapped normal mean µ(θi(t)) calculated from Eq. (30) as a function of time.
The center panel shows analagous estimates of the wrapped normal variance, σ2(θi(t)). The right panel shows the wrapped
normal effective mass, MWN

θ (t), defined in Eq. (31) (green points) along with the standard complex phase effective mass Mθ(t)
defined in Eq. (24) (gray points).

The wrapped normal variance estimates for θi(t) that are shown in Fig. 23 require further discussion. At intermediate
times, the wrapped normal variance calculated from Eq. (30) rises linearly with a slope consistent with MN − 3

2mπ.
This is not surprising because assuming an exactly wrapped normal θi(t), Mθ(t) becomes

MWN
θ (t) = ln

[ 〈
eiθi(t)

〉
WN〈

eiθi(t+1)
〉
WN

]
= −1

2

[
σ2(θi(t))− σ2(θi(t+ 1))

]
. (31)
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Eq. (31) resembles the first non-zero term in the cumulant expansion given in Eq. (24) adapted for circular random
variables. Results for MWN

θ (t) are also shown in Fig. 23, where it is seen that MWN
θ (t) is indistinguishable from

Mθ(t) at small and intermediate times. In the noise region, both MWN
θ (t) and standard estimates for Mθ(t) are

consistent with zero. Mθ(t) has smaller variance than Mθ(t) in the noise region, but this large-time noise is the only
visible signal of deviation between the two. This is not surprising, because MWN

θ (t) is actually identical to Mθ(t)

when S(θ(t)) = 0. Since S(θi(t)) vanishes in the infinite statistics limit by θi(t) → −θi(t) symmetry, MWN
θ (t) must

agree with Mθ(t) up to statistical noise. At large times t & 30, the wrapped normal variance shown in Fig. 23 becomes
roughly constant up to sizable fluctuations. The region where σ2(θi(t)) stops increasing coincides with the noise region
previously identified.

The time at which the noise region begins depends on the size of the statistical ensemble N . Figure 24 shows
estimates of σ2(θi(t)) from Eq. (30) for statistical ensemble sizes N = 50, 5, 000, 500, 000 varying across four orders
of magnitude. The time of the onset of the noise region varies logarithmically as t ∼ 20, 27, 35. The constant
noise region value of σ2(θi(t)) is also seen to vary logarithmically with N . Equality of MWN

θ (t) and Mθ(t) up
to statistical fluctuations shows that Mθ(t) must be consistent with zero in the noise region. Since corrections to
M(t) ≈Mθ(t) +MR(t) from magnitude-phase correlations appear small at all times, it is reasonable to conclude that
standard estimators for the nucleon effective mass are systematically biased in the noise region and that exponentially
large increases in statistics are required to delay the onset of the noise region.

Besides these empirical observations, the inevitable existence and exponential cost of delaying the noise region can
be understood from general arguments of circular statistics. The expected value of the sample concentration ρ2 can
be calculated by applying Eq. (29) to an ensemble of independent wrapped normal random variables θi in Eq. (27).

The result shows that ρ2 is a biased estimate of e−σ
2

, and that the appropriate unbiased estimator is [25, 27]

e−σ
2

=
N

N − 1

(
ρ2 − 1

N

)
. (32)

For ρ2 < 1/N , Eq. (32) would lead to an imaginary estimate for σ2 and therefore no reliable unbiased estimate can
be extracted. A similar calculation shows that the expected variance of ρ2 is

Var(ρ2) =
N − 1

N3

(
1− e−σ

2
)2
[ (

1− e−σ
2
)2

+ 2Ne−σ
2

]
. (33)

In the limit of an infinitely broad distribution, all circular distributions tend towards uniform and the variance of ρ2

is set by the σ2 → ∞ limit of Eq. (33) regardless of the form of the true underlying distribution. When analyzing
any very broad circular distribution, measurements of ρ2 will therefore include fluctuations on the order of 1/N . For

e−σ
2

< 1/N , the expected error from finite sample size effects in statistical inference based on ρ2 is therefore larger
than the signal to be measured. In this regime ρ2 has both systematic bias and expected statistical errors that are

larger than the value e−σ
2

that ρ2 is supposed to estimate. ρ2 cannot provide accurate estimates of e−σ
2

in this
regime.

Inability to perform statistical inference in the regime e−σ
2

< 1/N matters for the nucleon correlation function

because e−σ
2(θi(t)) = ρ2(θi(t)) = 〈cos(θi(t))〉2 and therefore e−σ

2(θi(t)) decreases exponentially with time. At large

times there will necessarily be a noise region where e−σ
2(θi(t)) < 1/N is reached and ρ2(θi(t)) is not a reliable estimator.

Keeping e−σ
2(θi(t)) larger than the bias and expected fluctuations of ρ2(θi(t)) requires

N > eσ
2(θi(t)) ∼ e2(MN− 3

2mπ)t . (34)

Eq. (34) demonstrates that exponential increases in statistics are required to delay the time where statistical uncer-
tainties and systematic bias dominate physical results estimated from ρ2(θi(t)). Formally, the noise region can be
defined as the region where Eq. (34) is violated. Lines at σ2(θi(t)) = lnN are shown on Fig. 24 for the ensembles
with N = 50, 5, 000, 500, 000 shown. By this definition, the noise region formally begins once σ2(θi(t)) (extrapolated
from reliable estimates in the golden window) crosses above the appropriate line. Excellent agreement can be seen
between this definition and the above empirical characterizations of the noise region based on constant σ2(θi(t)) and
unreliable effective mass estimates with constant errors.

Breakdown of statistical inference for sufficiently broad distributions is a general feature of circular distributions.
Fisher notes that circular distributions are distinct from more familiar linear distributions in that “formal statistical
analysis cannot proceed” for sufficiently broad distributions [25]. The arguments above do not rely on the particular
form of the wrapped normal model assumed for θi(t), and the basic cause for the onset of the noise region for broad
θi(t) is that ρ2 has an uncertainty of order 1/N for any broad circular distribution that begins approaching a uniform
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FIG. 24: Wrapped normal variance of the phase σ2(θi(t)) for statistical ensembles of various sizes. Results for an ensemble
of N = 50 nucleon correlation functions are shown in yellow, N = 5, 000 in brown, and N = 500, 000 in green. Lines of each
color are also shown at σ2(θi(t)) = ln(N). Above the relevant line, Eq. (34) is violated for each ensemble and measurements of
σ2(θi(t)) are expected to be roughly equal to ln(N) instead of the underlying physical value of σ2(θi(t)). Estimates of σ2(θi(t))
reaching these lines marks the beginning of the noise region defined by violations of Eq. (34) for each ensemble.

distribution. 7 Analogs of Eq. (34) can be expected to apply to statistical estimation of the mean of any complex
correlation function. As long as the asymptotic value of Mθ is known, Eq. (34) and analogs for other complex
correlation functions can be used to estimate the required statistical ensemble size necessary to reliably estimate the
mean correlation function up to a desired time t.

The pathological features of the large-time distribution of θi are not shared by dθi
dt . As with the log-magnitude, it

is useful to define general finite differences,

∆θi(t,∆t) = θi(t)− θi(t−∆t) , (35)

and a discrete (lattice) time derivative,

dθi
dt

= ∆θi(t, 1) . (36)

The sample cumulants of dθidt are shown in Fig. 25, histograms of dθidt are shown in Fig. 26, and angular histograms are

shown in Fig. 27. Much like dRi
dt , dθi

dt appears to have a time independent distribution at large times. While dθi
dt is a

circular random variable, it’s distribution is still well-localized at large times and can be clearly visually distinguished
from a uniform distribution. This suggests that statistical inference of dθi

dt should be reliable in the noise region.

7 One may wonder whether there is a more optimal estimator than ρ2 that could reliably calculate the width of broad circular distributions
with smaller variance. While this possibility cannot be discarded in general, it is interesting to note that it can be in one model. The
most studied distribution in one-dimensional circular statistics is the von Mises distribution, which has a simpler analytic form than the
wrapped normal distribution. The von Mises distribution is also normally distributed in the limit of a narrow distribution, uniform in
the limit of a broad distribution, and in general a close approximation but not identical to the wrapped normal distribution. Von Mises
distributions provide fits of comparable qualitative quality to θi(t) as wrapped normal distributions. For the von Mises distribution,
N
N−1

(
ρ2 − 1

N

)
is an unbiased maximum likelihood estimator related to the width. By the Cramér-Rao inequality, a lower mean-squared

error cannot be achieved if θi(t) is von Mises. Particularly in the limit of a broad distribution where all circular distributions tend
towards uniform, it would be very surprising if an estimator could be found that satisfied this bound for the von Mises case but could
reliably estimate the width of θi(t) in the noise region if a different underlying distribution is assumed.
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FIG. 25: The first four cumulants of dθi
dt

.

FIG. 26: Histograms of dθi
dt

with fits to a wrapped stable mixture distribution shown as the purple curves. See the main text
for details.

Like dRi
dt , dθi

dt shows evidence of heavy tails. The time evolution of Ri(t) and θi(t) for three (randomly selected)
correlation functions are shown in Fig. 28, and exhibit large jumps in both Ri(t) and θi(t) more characteristic of Lévy
flights than Brownian motion, leading us to consider stable distributions once again. Wrapped stable distributions
can be constructed analogously to wrapped normal distributions as

PWS(θi;α, β, µ, γ) =

∞∑
k=−∞

PS(θi + 2πk;α, β, µ, γ)

=
1

2π

∞∑
n=−∞

exp

(
iµn− |γn|α

[
1− iβ n

|n|
tan(πα/2)

])
,

(37)

where, as in Eq. (21), tan(πα/2) should be replaced by − 2
π ln |n| for α = 1. This wrapped stable distribution is still

not appropriate to describe dθi
dt for two reasons. First, dθi

dt describes a difference of angles and so is defined on a

periodic domain −2π < dθi
dt ≤ 2π. This is trivially accounted for by replacing 2π by 4π in Eq. (37). Second, θi(t) is

determined from a complex logarithm of Ci(t) with a branch cut placed at ±π. Whenever θi(t) makes a small jump
across this branch cut, dθi

dt will be measured to be around 2π even though the distance traveled by θi(t) along its

full Riemann surface is much smaller. This behavior results in the small secondary peaks near dθi
dt = ±2π visible in

Fig. 26. This can be accommodated by fitting dθi
dt to a mixture of wrapped stable distributions peaked at zero and 2π.

Since θi(t) → −θi(t) symmetry demands that both of these distributions are symmetric, a probability distribution
able to accommodate all observed features of dθi

dt is given by the wrapped stable mixture distribution

P̃WS(θi;α1, α2, γ1, γ2, f) =
1

4π

[
1 + 2

∞∑
n=1

(1− f)e−|γ1n|
α1

cos(nθi) + fe−|γ2n|
α2

cos(n(θi − 2π))

]
, (38)

where f represents the fraction of dθi
dt data in the secondary peaks at dθi

dt = ±2π representing branch cut crossings.

Fits of dθidt to this wrapped stable mixture model performed with maximum likelihood estimation are shown in Fig. 26
and are in good qualitative agreement with the LQCD results.
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FIG. 27: Angular histograms of dθi
dt

. Since dθi
dt

is defined on −2π < dθi
dt
≤ 2π, normalizations are such that 1

2
dθi
dt

is mapped
to the unit circle in analogy to Fig. 21.

FIG. 28: Time series showing Ri(t) on the horizontal axis and θi(t) on the vertical axis for three individual nucleon correlation
functions, where the color of the line shows the time evolution from violet at t = 0 to red at t = 48. The evolution of Ri(t)
shows a clear drift towards increasingly negative Ri(t). Some large jumps where θi(t) changes by nearly ±2π correspond to
crossing the branch cut in θi(t). There are also sizable jumps where θi(t) changes by nearly ±π which likely do not correspond
to crossing a branch cut.

If the widths of the main and secondary peaks in dθi
dt were sufficiently narrow, it would be possible to unambiguously

associate each dθi
dt measurement with one peak or the other and “unwrap” the trajectory of θi(t) across its full Riemann

surface by adding ±2π to measured values of dθi
dt whenever the branch cut in θi(t) is crossed. This should become

increasingly feasible as the continuum limit is approached. However, the presence of heavy tails in the dθi
dt primary

peak prevent unambiguous identification of branch cut crossings in the LQCD correlation functions considered here.
Due to the power-law decay of the primary peak, there is no clear separation visible between the main and secondary
peaks, and in particular, points near dθi

dt = ±π cannot be unambiguously identified with one peak or another.

For descriptive analysis of dθi
dt , it is useful to shift the secondary peak to the origin by defining

∆̃θi = Mod (∆θi + π, 2π)− π . (39)

∆̃θi is well-described by the wrapped stable distribution of Eq. (37). Histograms of the large-time behavior of ∆̃θi
are shown in Fig. 29 for ∆t = 4, 8 and fits of the index of stability of ∆̃θi are shown in Fig. 30. The large-time

distribution of ∆̃θi(t,∆t) appears time independent for all ∆t. Heavy tails are visible at all times, even as ∆t becomes
large. The large ∆t behavior visible here is consistent with a wrapped Cauchy distribution. The estimated index of
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FIG. 29: Histograms of ∆̃θi along with fits to wrapped normal distributions in blue and wrapped stable distributions in
purple.

FIG. 30: Maximum likelihood estimates for the wrapped stable index of stability α
(

∆̃θi
)

, left, and width γ
(

∆̃θi
)

, right

extracted from the large-time plateau region as functions of ∆t.

stability of ∆̃θi differs significantly from that of ∆R, and for ∆t = 1, the large-time behavior is found to have

α
(

∆̃θi(t→∞,∆t ∼ 0.12 fm)
)
→ 1.267(4)(1). . (40)

This result is consistent with maximum likelihood estimates of α1

(
dθi
dt

)
in the wrapped stable mixture model of

Eq. (38). α2

(
dθi
dt

)
, associated with the peak shifted from θi = ±π in the wrapped stable mixture model, cannot

be reliably estimated from the available LQCD correlation functions. The continuum limit index of stability of dθi
dt

cannot be determined without additional LQCD studies at finer lattice spacings.

As seen in Fig. 30, the large-time width of ∆̃θi(t,∆t) increases with increasing ∆t. This behavior is shared by
∆θi(t,∆t). In accordance with the observations above that the wrapped normal variance of θi(t) increases linearly
with t, the constant large-time wrapped normal variance of ∆θi(t,∆t) increases linearly with ∆t. This is consistent
with a pciture of ∆θi(t,∆t) as the sum of ∆t single time step differences, dθidt , that make roughly equal contributions

to ∆θi(t,∆t). In accordance with the scaling σ2(θi(t)) ∼ (MN − 3
2mπ)t discussed previously, this linear scaling gives

σ2(∆θi(t,∆t)) ∼ 2(MN − 3
2mπ)∆t.

We summarize our observations on the phase of C(t):

• The phase of the nucleon correlation function is described by an approximately wrapped normal distribution
whose width increases with time. At small times the distribution is narrow and resembles a normal distribution.
At large times the distribution becomes broad compared to the 2π range of definition of θi(t) and resembles a
uniform distribution.
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• The phase effective mass Mθ(t) appears to plateau to a value close to MN − 3/2mπ. Since |eiθi(t)|2 = 1 is
time-independent by construction, this non-zero asymptotic value of Mθ implies θi(t) has a severe StN problem.

• Mθ(t) can be determined from the time derivative of the wrapped normal variance of θi(t) in analogy to the
cumulant expansion. The effective mass extracted from growth of the wrapped normal variance is identical to
Mθ(t) up to statistical fluctuations. This leads to scaling of the wrapped normal variance of θi(t) consistent
with σ2(θi(t)) ∼ 2(MN − 3

2mπ)t.

• Standard estimators for the wrapped normal variance have a systematic bias and for a sufficiently broad distri-
bution the minimum expected statistical uncertainty is set by finite sample size 1/N effects. Once the wrapped
normal variance becomes larger than lnN , finite sample size fluctuations become larger than the signal required
to extract Mθ(t). Since the width of θi(t) increases with time, a region where finite sample size errors prevent
reliable extractions of Mθ(t) will inevitably occur at sufficiently large times. This is the noise region empirically
identified above. Standard effective mass estimates are systematically biased in the noise region. Exponentially
large increases in statistics are necessary to delay the onset of the noise region.

• Finite differences, ∆θi(t,∆t), are described by time-independent distributions at large times. ∆θi is heavy-tailed
for all ∆t considered here, and dθi

dt is well-described by a wrapped stable mixture distribution. Further studies

will be needed to understand the continuum limit of the index of stability of dθi
dt .

IV. AN IMPROVED ESTIMATOR

The proceeding observations suggest that difficulties in statistical analysis of nucleon correlation functions arise
from difficulties in statistical inference of θi(t). The same exponentially hard StN and noise region problems obstruct
large-time estimation of the wrapped normal variance of θi(t) and of M(t). Conversely, the width of ∆θi(t,∆t)
distributions does not increase with time, and there is no StN problem impeding statistical inference of ∆θi(t,∆t).
This suggests that it would be preferable to construct an effective mass estimator relying on statistical inference of
∆θi(t,∆t).

First consider the magnitude for simplicity. The mean correlation function magnitude can be expressed in terms of
∆Ri as 〈

eRi(t)
〉

=

〈
exp

(
Ri(0) +

t∑
t′=1

dRi
dt

∣∣∣∣
t′

)〉

=

〈
exp

(
Ri(0) +

t−∆t∑
t′=1

dRi
dt

∣∣∣∣
t′

)
exp

(
t∑

t′=t−∆t+1

dRi
dt

∣∣∣∣
t′

)〉
=
〈
eRi(0)+∆Ri(t−∆t,t−∆t)e∆Ri(t,∆t)

〉
.

(41)

The last expression above shows that eRi(t) can be expressed as a product of two factors involving the evolution of
Ri(t) in the regions [0, t − ∆t] and [t − ∆t, t] respectively. Because QCD has a finite correlation length, these two
factors should be approximately decorrelated. Correlations should only arise from contributions involving points near
the boundary at t−∆t. At large times, t can be assumed to be much larger than ∆t and than any QCD correlation
length, so boundary effects can be assumed to be negligible for the first region. Boundary effects cannot be neglected
for the smaller region of length ∆t. Treating these boundary effects as a systematic uncertainty allows the correlation
function to be factorized between the regions [0, t−∆t] and [t−∆t, t] as〈

eRi(t)
〉

=
〈
eRi(0)+∆Ri(t−∆t,t−∆t)

〉〈
e∆Ri(t,∆t)

〉 [
1 +O

(
e−δER∆t

)]
. (42)

where δER is the smallest energy scale responsible for non-trivial correlations between the factors on the rhs associated
with [0, t−∆t] and [t−∆t, t], and terms suppressed by e−δER(t−∆t) are neglected.8 If both factors on the rhs of Eq. (42)

8 It is not proven that the magnitude of a correlation function can be expressed as a sum of exponentials; however, the square of the
magnitude contributes to the variance correlation function and must have a spectral representation as a sum of exponentials. Results
of Sec. III demonstrate numerically that the magnitude decays exponentially at large times with a ground-state energy equal to half
the ground-state energy of the variance correlation function. Eq. 44, which further supposes exponential magnitude excited state
contamination, is investigated numerically below, see Fig. 31.
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only receive contributions from the ground state and have single-exponential time evolution, then the product of the
independently averaged factors on the rhs has the same single-exponential behavior as the lhs. If excited states make
appreciable contributions to either factor on the rhs, then the product of sums of exponentials representing multi-
state evolution over [0, t−∆t] and [t−∆t, t] respectively will not exactly equal the sum of exponentials representing
multi-state evolution over [0, t].
eRi(t+1) can similarly be split into an approximately decorrelated product. Performing this split with regions

[0, t−∆t] and [t−∆t, t+ 1] gives〈
eRi(t+1)

〉
=
〈
eRi(0)+∆Ri(t−∆t,t−∆t)

〉〈
e∆Ri(t+1,∆t+1)

〉 [
1 +O

(
e−δER∆t

)]
. (43)

The common term in both expressions cancels when constructing the magnitude effective mass, allowing us to define

M̃R(t,∆t) = ln

[ 〈
e∆Ri(t,∆t)

〉〈
e∆Ri(t+1,∆t+1

〉] = MR(t) +O
(
e−δER∆t

)
. (44)

Identical steps can be applied to the phase, leading to

M̃θ(t,∆t) = ln

[ 〈
ei∆θi(t,∆t)

〉〈
ei∆θi(t+1,∆t+1)

〉] = Mθ(t) +O
(
e−δEθ∆t

)
. (45)

The same steps can also be applied to the full correlation function Ci(t) = eRi(t)+iθi(t). Noting that

e∆Ri(t,∆t)+i∆θi(t,∆t) =
Ci(t)

Ci(t−∆t)
, (46)

the analogous relation for the full effective mass takes the simple form

M̃(t,∆t) = ln

[
〈Ci(t)/Ci(t−∆t)〉
〈Ci(t+ 1)/Ci(t−∆t)〉

]
= M(t) +O

(
e−δE∆t

)
. (47)

The correlation function ratio effective mass estimator M̃(t,∆t) has different statistical properties than the traditional
effective mass M(t) when ∆t is treated as an independent t. Note that although ∆t appears in the numerator and
denominator of correlation function ratios superficially similarly to tJ in Eq. (6), these two parameters induce quite
different statistical behavior. Ci(t+ 1) in Eq. (47) could be replaced by Ci(t+ tJ) (with an appropriate 1/tJ overall
normalization added). Taking tJ > 1 increases the time separation between Ci(t−∆t) and Ci(t+ tJ) in the correlator
ratio in the denominator of Eq. (47), resulting in larger statistical uncertainties in effective mass results, and will not
be pursued further here.

The approximate factorization leading to Eq. (47) can be understood from a quantum field theory viewpoint without
reference to the magnitude and phase individually. Inserting a complete set of states in a correlation function at
t−∆t allows the correlation function to be expressed as a sum of exponentials e−En∆t times prefactors representing
the amplitude for the system being in the n-th state at time t − ∆t. These prefactors for each e−En∆t term are
proportional to e−En(t−∆t), enhancing the amplitude for finding the system in its ground state at large t−∆t. In this
way, the contribution to the correlation function from the region [0, t −∆t] can be thought of as an effective source
for the correlation function in the region [t − ∆t, t] whose ground-state overlap is dynamically improved compared
to the overlap of the original source at time zero. The prefactors for each e−En∆t will depend on the structure of
this effective source, but the exponents are fixed by the QCD spectrum. The factor of Ci(t−∆t)−1 in Eq. (47) can
be considered to be a modification of the effective source in the region [0, t − ∆t]. The presence of Ci(t − ∆t)−1

will modify the prefactor of each e−En∆t term, but it should not affect time evolution of the system in the region
[t−∆t, t]. This suggests that an effective mass designed to extract the ground state energy from the sum of e−En∆t

terms, as in Eq. (47), should provide the exact ground state mass at large ∆t up to corrections arising from excited
state contributions to the e−En∆t sum. These corrections should decrease exponentially with increasing ∆t at a rate
set by the energy gap between the ground and first excited state in the system of interest. The size of this energy gap
will be set by the lowest-lying excitation consistent with the quantum numbers of the system, a derivatively-coupled

pion for the case of the nucleon,9 leading to the expectation M̃(t,∆t) = M(t) +O(e−mπ∆t).

9 Multi-hadron correlation functions contain additional low-lying excitations that may introduce larger correlation lengths than m−1
π

associated for instance with near-threshold bound-states. Such multi-hadron systems are outside the scope of this work.
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It is not straightforward to construct a representation of Ci(t−∆t)−1 in terms of local quark and gluon operators
that would allow a rigorous proof of these statements, and so numerical LQCD calculations are used to investigate the
validity of Eq. (47). Exponential reduction of systematic error is numerically demonstrated, but at a faster rate than
m−1
π . This suggests that the structure of the effective source plays an important role in determining which e−En∆t

terms are appreciable at the large but finite ∆t accessible to LQCD calculations in the same way that the structure
of the source at time zero determines which excited states make appreciable contributions to the standard effective
mass at small t.

FIG. 31: Results for the correlation-function-ratio-based estimators M̃R(t,∆t) and M̃θ(t,∆t) with ∆t = 1, 2, 8. The left
panel shows results for mR(t,∆t) with ∆t = 1 in black, ∆t = 2 in red, and ∆t = 8 in orange. The standard estimator mR(t) is
shown in gray, and a red line is shown for reference at 3

2
mπ. The right panel shows results for mθ(t,∆t) with ∆t = 1 in black,

∆t = 2 in brown, and ∆t = 8 in green. The standard estimator mθ(t) is shown in gray and a red line is shown for reference at
MN − 3

2
mπ.

FIG. 32: Results for the correlation-function-ratio-based estimator M̃(t,∆t). The left panel shows results with ∆t = 1 in
black, ∆t = 2 in purple, and ∆t = 8 in blue, along with the traditional effective mass estimator M(t) shown in gray and a red
line at MN shown for reference.

The LQCD results for M̃R(t,∆t) and M̃θ(t,∆t) with ∆t = 1, 2 , 8 are shown in Fig. 31, and results for M̃(t,∆t)

are shown in Fig. 32. The statistical uncertainties associated with M̃(t,∆t) are the same as those of M(t) within
the golden window, but at large times they become constant in time rather than exponentially increasing. This is in
accord with our observations about the form of the statistical distributions associated with ∆Ri(t,∆t) and ∆θi(t,∆t),
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which, up to small magnitude-phase correlations, indicate that

Var(M̃(t,∆t)) ∼
Var

(
eRi(t,∆t)+iθi(t,∆t)

)〈
eRi(t,∆t)+iθi(t,∆t)

〉2 ∼ e2(MN− 3
2mπ)∆t . (48)

The statistical uncertainties associated with M̃(t,∆t) are constant in t, although they do increase exponentially with
increases in ∆t. Since ∆θi(t,∆t) has constant width at large times, the inevitable onset of the noise region where

statistical inference fails for θi(t) can be avoided. The constraint required for reliable statistical inference of M̃(t,∆t)
at large times is that the wrapped normal variance of ∆θi(t,∆t) can be extracted without large finite sample size
errors. This constraint can be expressed as a bound on the statistical sample size required for a particular choice of
∆t,

N > eσ
2(∆θi(t,∆t)) ∼ e2(MN− 3

2mπ)∆t . (49)

The statistical uncertainties of M̃(t,∆t) determined from the LQCD correlation functions are shown in Fig. 33,
from which it can be seen that they become constant at large times for all fixed ∆t. For small and moderately
large values of ∆t = 1, 7, 15, the expected exponential increase in large-time statistical uncertainties is observed,
consistent with Eq. (49). Once Eq. (49) is violated, exponential scaling of statistical uncertainties with ∆t ceases. For

∆t . ln(N)

2(MN− 3
2mπ)

, the relative statistical uncertainty in M̃(t,∆t) compared to M̃(t,∆t = 1) is approximately equal to

N rather than e2(MN− 3
2mπ)(∆t−1).10 This is seen in Fig. 33 in the large-time behavior of the standard effective mass.

FIG. 33: Variance in the estimates of M̃(t,∆t) as a function of time t for various choices of ∆t. The black points show
∆t = 1, the purple show ∆t = 7, and the blue show ∆t = 15. The gray points show uncertainties in the standard effective mass

estimator equivalent to ∆t = t. The purple and blue lines show the expected large-time variance of M̃(t,∆t) with ∆t = 7, 15
predicted by Eq. (48) with the overall normalization fixed by the ∆t = 1 case. The red line shows the bound of Eq. (33) with
overall normalization again fixed by the ∆t = 1 case. Breakdown of statistical inference of broad circular distributions predicts

that the large-time variance of M̃(t,∆t) will not systematically rise above the red line for any ∆t.

When Eq. (49) is violated, ∆θi(t,∆t) cannot be reliably estimated at large times and increasing ∆t does not improve

the accuracy of M̃(t,∆t). The standard effective mass estimator can be thought of as evolving with t ∼ ∆t, and will
become unreliable because of finite sample size effects at large times scaling as t & lnN/(2(MN− 3

2mπ)). Similarly, our

improved effective mass becomes unreliable for ∆t & lnN/(2(MN − 3
2mπ)). In this extreme case, the bias associated

with neglected correlations in M̃(t,∆t) becomes less important than the bias associated with statistical inference of
overly broad circular random variables. Exponential growth of statistical uncertainties with ∆t suggests that smaller
choices of ∆t where Eq. (49) holds likely lead to smaller overall statistical plus systematic uncertainties.

10 These bounds only indicate scaling with N . To be made more precise, proportionality constants can be computed using the scaling
indicated in Eq. (49).
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The systematic bias of M̃(t,∆t) can be explored through calculations at various ∆t. Fig. 34 shows results for with

∆t = 1, . . . , 9. For ∆t & 7, results for M̃(t,∆t) fit during the large-time noise region 25 ≤ t ≤ 40 are statistically

consistent with fits extracted from the golden window 15 ≤ t ≤ 25. Late-time fits with M̃(t,∆t) have larger statistical
uncertainties than golden window fits. More precise fits than either could be made by including both the golden

window and the noise region in fits of M̃(t,∆t). There is only a minor advantage in including the noisier large-
time points in fits that include a precise golden window, and this exploratory work does not aim for a more precise

extraction of the nucleon mass. Practical advantages of large-time fits of M̃(t,∆t) compared to golden window fits

of M̃(t) are more likely to be found in systems where a reliable golden window cannot be unambiguously identified.

Large-time fits of M̃(t,∆t) would also be more advantageous for lattices with larger time directions.

FIG. 34: In both the left and right panels, results for M̃(∆t) taken from correlated χ2-minimization fits of M̃(t,∆t) to a
constant in the region 25 ≤ t ≤ 40 with fixed ∆t are shown as blue points. The tan bands show the results of correlated χ2-

minimization fits of M̃(t,∆t) in various rectangles of t and ∆t to the three-parameter (constant plus exponential) form shown
in Eq. (50). The three light-brown bands all use data from 25 ≤ t ≤ 40 and then 1 ≤ ∆t ≤ 10, 2 ≤ ∆t ≤ 10, and 3 ≤ ∆t ≤ 10.
The black dashed lines show the extrapolated prediction for the nucleon mass including statistical errors from the 2 ≤ ∆t ≤ 10
fit added in quadrature with a systematic error calculated as half the maximum difference in central values given by the three
fits shown. The horizontal gray bands show MN ± δMN from the precision NPLQCD calculation of Ref. [28], which used a
high-statistics ensemble of correlation functions with optimized sources generated on the same gauge configurations used here.
The right panel shows a much larger range of ∆t and also includes results calculated with a smaller ensemble of N = 5, 000
correlation functions as gray points. Deviations from the asymptotic prediction due to finite statistics are clearly visible and
lead to incorrect results at much earlier ∆t in the smaller ensemble.

Results for a range of ∆t shown in Fig. 34 can also be used to fit the systematic bias in M̃(t,∆t) and formally
extrapolate to the unbiased ∆t → t → ∞ result. During the development of a refined version of this improved
estimator [48], it was realized that the parametric form of the bias can be deduced by considering a decomposition
of [0, t] into an extended “source region” [0, t − ∆t] involving Ci(t) and C−1

i (t − ∆t) and an “evolution region”
[t−∆t, t] only involving Ci(t). Standard QCD time evolution should apply after the boundary of the source region at
t−∆t, and so at large ∆t correlation function ratios should scale with ∼ e−MN∆t relative to their t−∆t boundary
values. Corrections to this ground-state scaling will arise from excited states, which will make contributions to〈
Ci(t)C

−1
i (t−∆t)

〉
scaling as ∼ e−(MN+δE)∆t, where δE is the gap between the nucleon ground and first excited

state energies. This allows the dominant contribution to the bias in M̃(t,∆t) to be parametrized as

M̃(t→∞,∆t) = ln

[
e−MN∆t

(
1 + c e−δE∆t + . . .

)
e−MN (∆t+1)

(
1 + c e−δE(∆t+1) + . . .

)]
= MN + c δE e−δE∆t + . . . ,

(50)

where c is the ratio of excited to ground state overlaps produced by the effective boundary at t−∆t. At sufficiently
light quark masses and large ∆t, this excited state gap will be set by mπ. However, it is noteworthy that Eq. (47)
involves products of momentum-projected un-averaged correlation functions. It is familiar from studies of two-baryon
correlation functions formed from products of momentum-projected one-baryon blocks that summing over all points
in the spatial volume separately for each factor in a product leads to a suppression by O(m−3

π V −1) in the fraction of
points in the product where the nucleons are within one pion Compton wavelength of one another. It is expected that
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correlations between Ci(t) and C−1
i (t − ∆t) described by one-pion excitations will be similarly volume suppressed.

The dominant excited state bias is then expected to arise from excitations that could be produced throughout the
lattice volume at the boundary of the source region. Such excitations are generically far from the nucleon and any
other sources of conserved charge, so they should have quantum numbers of the vacuum. The dominant excited state
bias contributing to Eq. (50) is therefore expected to be e−Mσ∆t, where Mσ is the mass of the σ-meson, the lightest
excited state with quantum numbers of the vacuum. Performing a correlated χ2-minimization three-parameter fit of

M̃(t,∆t) to the constant plus exponential form shown in Eq. (50) for noise region data 25 ≤ t ≤ 40 gives

MN = 0.7192(49)(42), c = −0.358(26)(17), δE = 0.512(65)(73), (51)

where the first uncertainty is the statistical uncertainty and the second uncertainty is a measure of systematic uncer-
tainty taken from the variation in the central value of the fit as the fitting range in ∆t is varies. The extrapolated
result in Eq. 34 agrees within uncertainties with the intermediate-time plateau result MN = 0.7253(11)(22) and with
the high-precision GW result MN = 0.72546(47)(31) of Ref. [28]. For the extrapolated large-time result, the total
statistical and systematic uncertainties in quadrature is δMN = 0.0064, which is larger than the total uncertainty
of the plateau region determination δMN = 0.0025. The large-time plateau considered effectively comprises a two-
dimensional region 1 ≤ ∆t ≤ 10 and 25 ≤ t ≤ 40 with 150 points. The value of the χ2-minimization fit to this
two-dimensional region is most sensitive to points with smaller ∆t and therefore exponentially smaller uncertainties
but is equally sensitive to points with all t that are expected to be approximately decorrelated over intervals t & m−1

π .
The intermediate-time plateau region 10 ≤ t ≤ 25 includes 15 points that are expected to be approximately decorre-
lated over intervals t & m−1

π . The value of the standard effective mass fit is most sensitive to points with smaller t
and therefore exponentially smaller uncertainties, though the variance correlation function is not dominated by the
three-pion ground state until t & 20. This indicates that results from the intermediate-time plateau have smaller
point-by-point uncertainties than points from the large-time noise region. The total uncertainty of the noise region
result could be reduced by increasing the length of the lattice time direction, while the length of the smaller-time
plateau available to standard estimators is restricted by the StN problem. The proof-of-principle calculation presented
here demonstrates that accurate results can be extracted from the noise region. In remains to be seen in future calcu-
lations of single- and multi-baryon systems optimized for large-time analysis whether the methods introduced in this
work can be used to achieve significantly higher precision with the same resource budget as calculations optimized for
smaller-time analysis.

The best-fit excitation scale δE = 866(110)(124) MeV in Eq. 34 can be compared with the σ-meson mass extracted
from mesonic sector calculations to test the heuristic arguments above that lighter excitations will make volume-
suppressed contributions. Calculations of the σ-meson face a severe StN problem, particularly at light quark masses
where the σ-meson describes a broad ππ isoscalar resonance rather than a compact QCD bound state, but a recent
calculation by the Hadron Spectrum collaboration has precisely determined Mσ = 758(4) MeV at mπ ∼ 391 MeV
where the σ-meson is weakly bound [49]. Similarly precise results at slightly higher quark masses are not available
for interpolation to mπ ∼ 450 MeV, but a crude extrapolation can be made using the Hadron Spectrum result and
the (real part of the) physical position of the σ-meson pole obtained from dispersive analysis of experimental data:
Mσ = 457(14) MeV [50, 51]. An extrapolation linear in the pion mass gives Mσ ∼ 830 MeV at mπ ∼ 450 MeV,
in rough agreement with the best-fit excitation scale determined above. This agreement is insensitive to the form
of the extrapolation used, as the Hadron Spectrum σ-meson mass result at mπ ∼ 391 MeV is itself less that one
standard deviation smaller than the best-fit nucleon excitation scale. Fits where δE = Mσ is explicitly assumed
can be performed more precisely and lead to consistent results with smaller uncertainties for the nucleon mass
MN = 0.7226(18), as shown in Fig. 35. These fits provide another consistency check on δE but do not appropriately
capture the systematic uncertainties of explicit assumptions about the excited state spectrum.

The improved estimator proposed here exploits physical locality and finite correlation lengths to extract the effective
mass from the evolution of Ci(t) between times t−∆t and t rather than the full evolution between source time t = 0
and sink time t. The correlation function at time t − ∆t is effectively treated as a new source so that the effective
source/sink separation is fixed to be a constant length ∆t rather than an increasing separation t. The effective source
at t −∆t still incorporates the dynamical evolution of the system between time 0 and t −∆t, and in particular has
exponentially reduced excited state contamination in the magnitude compared to the original source. In principle t

can be taken arbitrarily large with ∆t fixed in order to extract a plateau in M̃(t,∆t) with arbitrarily small excited
state contamination in the magnitude and constant statistical uncertainties across the plateau. The length of the
lattice time direction becomes the only factor limiting the length of the plateau in this case.

Similar physical ideas underlie the hierarchical integration approach of Ref. [52]. In that approach, locality is
exploited to decompose correlation functions into products of factors that can be computed on subsets of a lattice
volume with exponentially reduced StN problems. Hierarchical integration has been successfully implemented in
studies of gluonic observables [53–57] and recently explored for baryon correlation functions in the quenched approx-
imation [58] and beyond [59]. For baryon correlators, the method of Ref. [58] implements approximate factorization
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FIG. 35: The blue points and light-brown bands show the same χ2-minimization fit results to large-time M̃(t,∆t) plateaus as
Fig. 34. The horizontal axis has been rescaled to coordinates that would show a linear bias for excited state contributions from
σ-mesons, left, and pions, right. Black lines show the central values of χ2-minimization fits to constrained versions of Eq. (50)
where δE is fixed to be Mσ, left, or mπ, right. The horizontal gray bands correspond to MN ± δMN from the high-precision
NPLQCD calculation of Ref. [28].

with systematically reducible uncertainties, as in the method proposed here. The benefits of the two methods are dis-
tinct. Hierarchical integration also employs standard statistical estimators for observables defined on sub-volumes to
determine correlation functions at large t with exponentially slower StN degradation. The new estimators introduced
here allow data to be extracted from large-t correlation functions with constant StN, but removing all systematic
uncertainties requires an extrapolation to large ∆t with exponential StN degradation of the same severity as the
original correlation function. Investigations of the compatibility of and relations between these methods are left to
future work. In addition, this method also has similarities to the generalized pencil-of-functions method introduced to
LQCD in Ref. [60], where correlation functions involving shifted source and sink times are combined in a variational
basis. In the generalized pencil-of-functions approach, shifted source and sink times have primarily been investigated
to reduce excited-state contamination rather than StN improvement.

In some sense, ∆t can be considered a “factorization” scale in the time direction. The LQCD calculations are valid
for all energy scales below that defined by the inverse lattice spacing, π/a. While well-defined, the MC sampling of the
path integral and analysis of baryon correlation functions fails to converge in the noise region because of the quantum
fluctuations encountered along the paths from the source to large times, which include many incoherent hadronic
volumes. The new estimator provides exponentially-improved signal extraction at large times through limiting the
number of contributing hadronic volumes to those within ∆t, but does not provide a complete description of the IR
behavior of QCD, introducing a bias in the extracted mass of the nucleon. An extrapolation in ∆t, using a form
motivated by low-energy pion physics, is used to remove this bias. While different, this reminds one of matching
LQCD calculations to the p-regime of chiral perturbation theory to remove finite-spatial-volume effects. The idea
of performing an extrapolation to overcome a sign problem is not new. It was introduced thirty years ago to deal
with the sign problem in MC calculations of modest size nuclei [61], and recently used in lattice effective field theory
calculations to continuously evolve between the eigenvalues of nuclear many-body systems described by a Hamiltonian
without a sign problem to one that does have a sign problem [62].

V. SUMMARY AND CONCLUSIONS

This work presents observations about the nucleon correlation function in LQCD that highlight the role of the
complex phase in the signal-to-noise problem. The magnitude is found to have no StN problem and has the large-time
scaling 〈|Ci(t)|〉 ∼ e−

3
2mπt. The nucleon log-magnitude, Ri(t), is approximately described by a normal distribution

with linearly increasing mean and almost constant variance. The complex phase, which gives the direct importance
sampling of Ci(t) a sign problem, has the large-time scaling of approximately 〈eiθi(t)〉 ∼ e−(MN− 3

2mπ)t. The StN
problem arising from reweighting the complex phase of the nucleon correlation function matches the nucleon StN
problem.

We present evidence that nucleon correlation functions are statistically described by a nearly decorrelated product
of an approximately log-normal magnitude and wrapped normal phase. Log-normal times wrapped normal complex



32

correlation functions are consistent with the arguments of Endres, Kaplan, Lee, and Nicholson [16], who suggested
stable distributed correlation function logarithms may be a generic feature of quantum field theory and pursued a
systematic statistical analysis of unitary fermion correlation functions that provides inspiration for this work. The
wrapped normal phase distribution broadens with time, and at large-times cannot be reliably distinguished from
a uniform distribution. A noise region begins at this point where the sample mean phase becomes biased and
systematically deviates from the true mean phase. In contrast, and importantly, dRi

dt and dθi
dt are described by

approximately stable and wrapped stable distributions respectively that become constant at large times and can be
estimated in the noise region with no StN problem.

It is remarkable that the Euclidean-time derivate of the logarithm of the correlation function is described by a
heavy-tailed distribution while the logarithm itself is nearly normally distributed at all times. Further studies will be
needed to understand the dynamical origin, continuum limit behavior, and universality of heavy-tailed Euclidean-time
evolution of correlation functions in quantum field theory. LQCD calculations at finer lattice spacings are needed to
explore the continuum limit of the index of stability describing time evolution of the nucleon correlation function.
Perturbative QCD and model calculations will provide useful insights into the dynamical origin of heavy-tailed time
evolution of the nucleon correlation function. Lattice and continuum studies of other quantum field theories are
required to understand the universality of heavy-tailed Euclidean-time evolution of correlation functions. Implications
for real-time evolution are also left for future investigations.

Building on the observation that dθi
dt has constant width at large times, we have proposed a new estimator in Eq. (47)

for the effective mass of the nucleon correlation function that relies on statistically sampling ratios of correlation
functions at different times. This estimator has a StN ratio that is constant in t, the source-sink separation time, and
the StN problem instead leads to an exponentially degrading StN ratio in ∆t, the difference between the numerator and
denominator sink times. The independence of t and ∆t in this estimator allows similarly precise results to be extracted
from all sufficiently large t rather than from a window of intermediate t with standard estimators. The new estimator
effectively includes ∆t timesteps of time evolution following t −∆t timesteps of dynamical source improvement and
it includes a systematic uncertainty that must be eliminated by extrapolating to the limit ∆t → t → ∞. The
systematic uncertainty of the new estimator is expected to decrease as e−δE∆t for large ∆t, where δE is the energy
gap between the ground state and the first excited state with appropriate quantum numbers and appreciable overlap
with the effective source at t − ∆t. Statistical uncertainties increase with increasing ∆t as ∼ e2(MN− 3

2mπ)∆t. For

∆t & ln(N)

2(MN− 3
2mπ)

additional systematic uncertainties associated with finite-sample-size effects in statistical inference

of circular random variables leads to unreliable results in the same way that t & ln(N)

2(MN− 3
2mπ)

leads to unreliable results

in the noise region of standard estimators.
The properties of the new estimator that we have introduced may prove advantageous in the analysis of LQCD

calculations of nuclei. Such systems are plagued by a reduced golden window compared to the single nucleon, presently
limiting the length of plateaus from which to extract energy eigenvalues. A re-analysis of existing nuclear correlation
functions generated by the NPLQCD collaboration [28, 63, 64] is planned in order to determine the utility of this work
for such systems. Binding momenta and other scales appearing in multi-body hadronic systems may affect the form of
the extrapolation used to remove the bias of the new estimator. It will be important to verify and further understand
the scaling of the new estimator with pion mass and lattice spacing, as well as to investigate dependences on smearing
scales and other scales appearing in LQCD calculations. Studies of the vacuum channel including glueballs and scalar
mesons and analyses of disconnected diagrams provide additional directions for further studies. Forming ratios of
position space, rather than momentum space, correlation functions may be advantageous in future studies. Other
types of LQCD calculations may also benefit from the new estimator, for instance in the isoscalar meson sector and
those at non-zero baryon chemical potential.

It is not expected that the statistical properties of θi(t) discussed here and, in particular the constant large-time
width of dθi

dt , are unique to single-nucleon correlation functions. If analogous statistical properties apply to generic
complex correlation functions in quantum field theory, then estimators analogous to Eq. (47) can be constructed
to extract the spectra of complex correlation functions and reweighted complex actions without StN problems. It
remains to be seen if the approaches developed in this work can be fruitfully applied to other systems in particle,
nuclear, and condensed matter physics that encounter sign and StN problems.
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