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Using the example of a two dimensional four-fermion lattice field theory we demonstrate that Feynman dia-
grams can generate a mass gap when massless fermions interact via a marginally relevant coupling. We intro-
duce an infrared cutoff through the finite system size so that the perturbation series for the partition function
and observables become convergent. We then use the Monte Carlo approach to sample sufficiently high orders
of diagrams to expose the presence of a mass gap in the lattice model.
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I. INTRODUCTION

Understanding how a mass gap is generated in an asymptot-
ically free theory like Yang-Mills theory continues to be a fas-
cinating topic of research. Using Wilson’s lattice formulation
the origin of the mass gap is easy to derive within the strong
coupling expansion [1]. Monte Carlo calculations have shown
that the mass gap continues to exist and scales appropriately
even for much weaker couplings. However, the challenge is to
begin with a weak coupling expansion and show the presence
of the mass gap. A Monte Carlo method that directly works
within the weak coupling expansion could perhaps shed more
light on the subject.

Recently, Monte Carlo methods have emerged that sample
weak coupling Feynman diagrams in a variety of models [2–
7]. Can such methods also be applicable to asymptotically
free theories like Yang Mills theories and QCD? The obvious
problem is that the weak coupling approach is an expansion
in powers of the coupling g, while mass gaps in these theo-
ries arise non-perturbatively through an essential singularity
of the form M ∼ e−β/g
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. So, at least naively, it seems im-
possible that weak coupling diagrams can be combined with
Monte Carlo methods to generate a mass gap. As a first step
in addressing this impasse, one can even ignore complications
of a gauge theory and ask whether these weak coupling ap-
proaches can generate a mass gap in simpler two dimensional
spin models that are known to be asymptotically free. This
question was raised recently and partially addressed within
the context of the two dimensional O(N) and U(N)×U(N)
model in the large N limit [8, 9]. The strategy that seems
to work is to regulate the infrared divergences in a control-
lable way so as to make the weak coupling series convergent.
A resummation of the convergent series then exposes the ex-
istence of the mass gap. Other non-perturbative approaches
have also been used to compute mass gaps in two dimensional
non-linear sigma models at large values of N [10–12].

Instead of two dimensional non-linear sigma models, in this
work we consider an SU(4) symmetric two dimensional four-
fermion model. Such models are known to be asymptotically
free [13, 14], and have a completely convergent weak cou-
pling expansion when formulated on a finite space-time lat-
tice. Thus, they are ideally suited to explore the question

of whether Feynam diagrams can generate a non-perturbative
mass gap. However, without the simplifications of large N ,
the weak coupling diagrammatic series may converge only af-
ter summing over many terms. In our model we accomplish
this by using a Monte Carlo sampling procedure, since there
are no sign problems. Thus, we are able to expose the pres-
ence of a non-perturbative mass gap that is independent of the
infrared regulator. By tuning the bare coupling to zero we can
also explore the continuum limit. From a continuum quan-
tum field theory perspective, we believe there are connections
of our approach to recent ideas of using resurgent functions
and trans-series combined with boundary conditions that con-
trol infrared divergences to define the perturbation series non-
perturbatively [15–17].

The physics of our SU(4) symmetric lattice model is in-
teresting from other perspectives as well. For example it was
recently studied extensively in three and four dimensions [18–
22] and contains a weak coupling massless fermion phase and
a strong coupling massive fermion phase without any spon-
taneous symmetry breaking. In three dimensions one finds a
second order phase transition that separates these two phases.
This quantum critical point is exotic and may contain emer-
gent gauge fields [23]. We believe this critical point moves
to the origin in two dimensions. Thus, the mass generation
mechanism in our model is similar to the one discussed in
[24].

II. LATTICE MODEL

Two dimensional lattice four-fermion models have been
studied extensively using Monte Carlo methods in the past,
but mostly within the Wilson fermion formulation [25–29].
Efficient Monte Carlo methods have also been designed using
the worldline representation [30, 31]. However, none of these
studies have focused on the question whether weak coupling
perturbation theory using Feynman diagrams can generate a
non-perturbative mass gap. A simple model that is suitable
for addressing this question is the reduced staggered fermion
model whose action is given by

S(ψ) =
1

2

∑
x,y,a

ψax Mx,y ψ
a
y − U

∑
x

ψ4
xψ

3
xψ

2
xψ

1
x, (1)
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where Mx,y is the free staggered fermion matrix

Mx,y =
1

2

∑
α

ηα,x
(
δx+α̂,y − δx−α̂,y

)
, (2)

with the phase factors η1,x = 1, η2,x = (−1)x1 and a labels
the four flavors. We can obtain (1) by naively discretizing the
continuum two dimensional model,

Scont =

∫
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ψ
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(3)

on a space-time lattice and using the well known spin di-
agonalization transformation to reduce the fermion doubling
[32, 33]. In the continuum model (3), the flavor index a = 1, 2
runs only over two values and i = 1, 2 refers to the spin. The
matrices σα, α = 1, 2 are two Pauli matrices. Such a connec-
tion between the continuum model and a similar lattice model
in four dimensions was recently discussed in [21, 34].

Note that there are no ψ
a

x fields in our lattice action. In the
reduced staggered formulation, one keeps only the minimimal
number of fermion fields per site and defines them as ψax on
all sites. The partition function of our model is given by

Z = Z0

∫
[dψ] e−S(ψ) (4)

where Z0 is a constant chosen so that Z = 1 in the free the-
ory. The Grassmann integration measure [dψ] is a product of
(dψ1

xdψ
2
xdψ

3
xdψ

4
x) on every site x.

At U = 0, when we focus on the physics at very large
length scales as compared to the lattice spacing, our model
will describe four flavors of free massless (two-component)
Dirac fermions. As a probe of the long distance physics we
can take space-time to be a torus of side L (in lattice units) in
each direction with anti-periodic boundary conditions. In two
dimensions, a free fermion field is expected to have a mass
dimension [ψia] = 1/2, which means the fermion propagator
has the mass dimension of one and must decay as Gf (x, y) ∼
1/|x − y| for large separations. In Fig. 1 we plot the scaling
of the propagator at a separation of |x − y| = L/2 along one
of the directions, R = Gf (0, L/2) as a function of L and
find that R ∼ 1.671/L. In the same figure we also show the
scaling of the susceptibility

χ1 =
1

2Z

∫
[dψ]e−S

∑
y

{
ψa0ψ

b
0ψ

b
yψ

a
y

}
, (5)

as a function of L. From continuum power counting, χ1 is
expected to be dimensionless and can only have a logarithmic
dependence on L. Indeed we see that it diverges logarithmi-
cally. We will see later that U , which is also expected to be di-
mensionless perturbatively, becomes marginally relevant and
generates an exponentially small mass gap when U > 0. This
is consistent with asymptotic freedom as predicted originally
by Gross and Neveu [13].
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FIG. 1: Scaling of the fermion propagator at the mid point (R) and
the susceptibility (χ1) as a function of L in the free theory.

III. THE PARTITION FUNCTION

When the partition function of our model is expanded in
powers of the coupling U ,

Z =
∑
k

zkU
k =

∑
k

(∑
[x;k]

Ω([x; k])
)
Uk, (6)

the coefficients zk can be written as a sum over weights of all
possible vertex configurations [x; k] = {x1, x2, ..., xk}. Each
vertex configuration is an ordered set of k different lattice sites
where interactions occur and its weight

Ω([x; k]) = Z0

∏
a

(∫
[dψa]e−

1
2ψ

a
xMx,yψ

a
y ψax1

ψax2
...ψaxk

)
,

(7)
can be computed as a sum over Feynman diagrams. For each
flavor a the sum is given by the Pfaffian of a k × k matrix
W ([x; k]), whose matrix elements are given by the free stag-
gered fermion propagator Gf (xi, xj) between the sites in the
vertex configuration [21]. Thus, we obtain

Ω([x; k]) =
(

Pf(W ([x; k])
)4
, (8)

which is guaranteed to be positive. Hence we can use a
Monte Carlo method to sample vertex configurations [x; k]
distributed according to the probability distribution

Pk(U, [x; k]) =
Uk

Z(U)
Ω([x; k]). (9)

Due to symmetries of our model, only configurations [x; k]
with an equal number of even and odd sites have non-zero
weights. This implies that only even values of k contribute to
the expansion (6).

The partition function Z of four-fermion models like the
one we study in our work, is a completely convergent series in
U on a finite lattice. In our model since the maximum number
of vertices that are allowed in the partition function is L2, it
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FIG. 2: Probability distribution of vertices in the partition function
as a function of the lattice size at U = 0.1 for L = 32, 64 and 96.
The average density of vertices ρk = 〈k〉/L2 ≈ 0.00267 remains
constant in all the three cases.

is in fact a polynomial. Thus, we wish to understand how the
infrared divergences present in an asymptotically free theory
arise from this polynomial as L2 becomes large. In order to
gain some insight into the dominant terms in the expansion
we define the probability distribution Pk(U) = zkU

k/Z(U),
which is the sum of Pk(U, [x, k]) over all vertex configura-
tions [x; k] with a fixed k. In Fig. 2 we plot this probabil-
ity distribution of vertices at U = 0.1 for different values
of L obtained using Monte Carlo sampling. As we can see,
sectors with large number of vertices are suppressed expo-
nentially and the average number of vertices is much smaller
than the maximum value kmax = L2. We also discover
that a more useful quantity is the average density of vertices
ρ(U) = 〈k〉/L2. In the inset of Fig. 3 we plot the density at
U = 0.1 for various lattice sizes and observe that it does not
change much as a function of L. At U = 0.1, the average
density is ρ = 0.0027, but this changes with U as shown in
the main plot.

It is easy to understand why the average density of vertices
approaches a constant in the thermodynamic limit. From a sta-
tistical mechanics point of view one expects that the partition
function scales as Z = exp(f(U)L2) in the thermodynamic
limit, where f(U) is the free energy density. The average den-
sity of vertices is related to f(U) through the relation

ρ(U) =
〈k〉
L2

= (U/L2)(∂ lnZ(U)/∂U) = U(∂f(U)/∂U).

(10)
Since f(U) is independent of the volume for sufficiently large
volumes, so is ρ(U). The connection betweenZ(U) and f(U)
is well known in diagrammatic perturbation theory; the former
contains contributions from disconnected diagrams, while the
latter gets contributions only from connected diagrams. At
a fixed value of L, like Z(U) we can also expand f(U) =
f2U

2 + f4U
4 + ... and find connections between fk’s and

zk’s. For example f2 = z2/L
2 and f4 = (z4 − z22/2)/L2 and

so on.
From the discussion above, we know that Z(U) is a poly-
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FIG. 3: Plot of the density of vertices ρ(U) as a function of U . The
inset shows the density at U = 0.1 as a function of L. We see that
the density of vertices remains the same as L increases.
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FIG. 4: Plot of the perturbative coefficients f2 and f4 in the expan-
sion of the free energy as a function of L.

nomial in U on a finite lattice, but this is not the case for f(U).
In fact we cannot rule out the possibility that f(U) will be di-
vergent for some value of U even on a finite lattice. If there
are infrared divergences in perturbation theory they would ap-
pear in fk in the thermodynamic limit. In Fig. 4 we plot f2
and f4 as functions of L for our model and see that both these
coefficients are well behaved and do not show infrared diver-
gences. This seems to be a feature of our current model due
to its symmetries. We have not explored higher order terms
in this work. Note that even if the fk’s contained divergences,
we can still extract f(U) through the integral

f(U) =

∫ U

0

ρ(U)/U, (11)

if we can compute ρ(U) non-perturbatively by summing over
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the distribution of vertices. In our work this is performed us-
ing the Monte Carlo method. Thus, the usual infrared diver-
gences in perturbation theory disappear once this resumma-
tion is performed at every finite value of L.

IV. THE MASS GAP

In order to see how Feynman diagrams generate the mass
gap in our model, we have studied two observables that are
sensitive to the mass gap and both of them give very similar
results [35]. Here we focus on one of them, which is the finite
size susceptibility χ1 defined in (5). As we already pointed out
earlier, in the free theory χ1 diverges logarithmically for large
values of the lattice sizeL (see Fig. 1). However, if a mass gap
M is generated in the fermion bilinear channel, we expect χ1

to level off roughly around L ∼ M−1. The calculation of
χ1 can also be expressed as a sum over Feynman diagrams
through the relation,

χ1 =
∑
y,k

(∑
[x;k]

Γ0,y([x; k]) Pk(U, [x; k])
)

(12)

where Γ0,y([x; k]) is the ratio of two quantities. The numer-
ator is the sum over all Feynman diagrams with two exter-
nal sources ψa0ψ

b
0 and ψbyψ

a
y , the former located at the origin

and the latter at y, in addition to the configuration of inter-
action vertices [x; k] = {x1, x2, ..., xk}. The denominator
is Ω([x; k]), i.e., the sum over Feynman diagrams without the
sources. This ratio makes Γ0,y([x; k]) scale like a “connected”
Feynman diagram for large volumes since a factor that scales
exponentially in the volume is cancelled between the numera-
tor and the denominator.

In order to compute χ1 we first generate vertex configura-
tions [x; k] with probability Pk(U, [x; k]). For each configu-
ration we then compute Γ0,y([x; k]) by choosing two source
points, one chosen at random (which becomes the origin) and
the other at the site y. We then sum over Γ0,y([x; k]) obtained
by varying y over all possible locations, while keeping the
other source fixed. The value we thus obtain is a Monte Carlo
estimate of χ1 for the particular vertex configuration gener-
ated. If χ1 contains infrared divergences, the Monte Carlo
average of our estimates will increase indefinitely with L. At
U = 0 the configurations [x; k] generated are always trivial
with no vertices (i.e., k = 0), and the value of χ1 does in-
crease with L as shown in Fig. 1. On the other hand, as we
discussed above, in our model we expect χ1 to level off when
L > M−1. In the left plot of Fig. 5 we show χ1 as a function
of L at U = 0.3 and 0.4. We observe that indeed χ1 begins
to level off around L ∼ 128 at U = 0.3 and around L ∼ 32
at U = 0.4. The fact that it takes substantially larger lattice
sizes to level off at U = 0.3 as compared to U = 0.4 is an
indication that M is decreasing rapidly. In the figure we also
plot the U = 0 results for comparison.

Statistically speaking this implies that for most vertex con-
figurations [x; k] the Monte Carlo estimate of Γ0,y[x; k] be-
gins to decay exponentially for points y far from the origin.
This implies that the infrared divergences of perturbation the-
ory disappear for sufficiently large lattices when we take into
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FIG. 5: Plot of the susceptibility χ1 as a function of U for different
lattice sizes. For value of L, we can define the mass scaleM ′

b = 1/L
that is generated when the location of the peak U = Up determines
the scale M ′

b = 1/L.
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FIG. 6: Fluctuations of χ1 in a sample of 500 vertex configurations
generated consecutively during Monte Carlo sampling.

account a constant density of vertices. In other words we will
need to consider large orders of perturbation theory, especially
when U is small, before a mass gap will be observed. But
what about divergences that we know exist at even small or-
ders of perturbation theory? We believe these are the ones
that cause the enhancement in χ1 at small values of L (see left
figure of Fig. 5) but eventually become statistically insignif-
icant at large values of L. In other words they are rare and
hidden in the Monte Carlo estimate of χ1. We do see such
rare fluctuations in our data. For example in Fig. 6 we plot the
fluctuations in χ1 during a sample of the Monte Carlo time
history for L = 64 and U = 0.4. For these parameters a
mass gap has been generated and χ1 has almost saturated to
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FIG. 7: (Left Figure) Plot of χ1 as a function of U for different values of L. The locations of the peak are obtained by fitting the data to a
quartic curve are listed in Tab. I. (Right Figure) Plot of Up and χ1,p as a function of L and the fits to Eq.(13).

its thermodynamic value of approximately 3.7. However, as
Fig. 6 shows there are still large but rare fluctuations in χ1 that
are five times larger than the average value. The fact that these
divergent contributions will be rare as compared to finite con-
tributions once the theory is regularized in the infrared, cannot
be easily uncovered in usual perturbation theory.

For a quantitative analysis, instead of measuring the con-
ventional mass gap M , in this work we define a slightly dif-
ferent mass scale Mb as follows. We first note that the sus-
ceptibility χ1 has a peak when it is plotted as a function of U
for a fixed value of L. This behavior is clearly visible in the
right plot in Fig. 5, where χ1 is plotted as a function of U at
L = 32 and 128. For a fixed L if the peak in χ1 occurs at
U = Up, then we define Mb ≡ L1 as the non-perturbative
mass scale generated at the coupling U = Up. Comparing the
left and right plots of Fig. 5 we see that our definition of Mb

is also roughly consistent with the value of M obtained using
the value of L where χ1 begins to saturate. We have accu-
rately located the peaks at various lattice sizes by fitting the
data to quartic functions as shown in Fig. 7. Table I gives the
values of these peaks along with systematic errors that arise
from our fitting procedures [35].

L χ1,p Up L χ1,p Up

16 2.293(2) 0.492(1) 32 3.368(5) 0.398(2)
64 4.520(20) 0.330(3) 128 5.760(30) 0.283(3)

256 6.950(60) 0.242(4)

TABLE I: Fit values for χ1,p and Up as a function of L.

In an asymptotically free theory we expect Mb ∼
Λ exp(−β/Up) at leading order. Further, since χ1,p is dimen-
sionless it is expected to grow logarithmically in the contin-
uum limit. Thus, for sufficiently large values of L we try to fit
our data to the form

χ1,p = α log(Λ1L), Up =
β

log(Λ2L)
. (13)

In Fig. 7 we show our results, which are consistent with both
these expectations. The parameters obtained from the fit to
our data are α = 1.77(4), β = 1.33(4), Λ1 = 0.20(1) and
Λ2 = 0.88(9) [35]. It is usually difficult to match β with the
results of one loop perturbation theory, since this can require
extremely large correlation lengths [36]. On the other hand
qualitative exponential scaling of mass gaps, as we do in the
current work, can be observed more easily with lattice sizes
like the ones we study in this work [37].

V. CONCLUSIONS

In this work we have shown how weak coupling Feynman
diagrams can contain the information of a non-perturbative
mass gap in an asymptotically free theory. Using a specific
lattice model we first tamed the infrared divergences in the
usual perturbation theory by formulating the problem in a fi-
nite volume. We then showed that the physics of the mass gap
arises at sufficiently large volumes when we sample Feynman
diagrams containing a finite density of interactions. The in-
frared divergences of the original perturbative expansion seem
to be hidden in a few statistically insignificant vertex configu-
rations. Our work suggests that a perturbative expansion orga-
nized in terms of Feynman diagrams containing a fixed den-
sity of interactions may be worth exploring. Exploring exten-
sions of our work to gauge theories would also be interesting.
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