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Abstract

We report a comprehensive analysis of the light and strange disconnected-sea quarks contribution

to the nucleon magnetic moment, charge radius, and the electric and magnetic form factors. The

lattice QCD calculation includes ensembles across several lattice volumes and lattice spacings with

one of the ensembles at the physical pion mass. We adopt a model-independent extrapolation of

the nucleon magnetic moment and the charge radius. We have performed a simultaneous chiral,

infinite volume, and continuum extrapolation in a global fit to calculate results in the continuum

limit. We find that the combined light and strange disconnected-sea quarks contribution to the

nucleon magnetic moment is µM (DI) = −0.022(11)(09)µN and to the nucleon mean square charge

radius is 〈r2〉E (DI) = −0.019(05)(05) fm2 which is about 1/3 of the difference between the 〈r2
p〉E

of electron-proton scattering and that of muonic atom and so cannot be ignored in obtaining the

proton charge radius in the lattice QCD calculation. The most important outcome of this lattice

QCD calculation is that while the combined light-sea and strange quarks contribution to the nucleon

magnetic moment is small at about 1%, a negative 2.5(9)% contribution to the proton mean square

charge radius and a relatively larger positive 16.3(6.1)% contribution to the neutron mean square

charge radius come from the sea quarks in the nucleon. For the first time, by performing global

fits, we also give predictions of the light and strange disconnected-sea quarks contributions to the

nucleon electric and magnetic form factors at the physical point and in the continuum and infinite

volume limits in the momentum transfer range of 0 ≤ Q2 ≤ 0.5 GeV2.
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I. INTRODUCTION

Nucleon electromagnetic form factors of a hadron are of substantial interest because

they are related to the dynamical content of the electric and magnetic currents distribution

inside the hadron and characterize the internal structure of a non-pointlike particle. The

quest for a detailed quantitative understanding of the nucleon electromagnetic form factors

is an active field of the experimental nuclear physics, lattice QCD simulations, and other

model calculations. However, some unsolved questions still remain regarding the nucleon

electromagnetic form factors and their properties at low momentum transfer (Q2). Detailed

reviews of various experimental results and model calculations can be found in [1, 2] and

the references therein. The most recent surprising discrepancy of the proton charge radius

measured from the Lamb shift in muonic hydrogen [3, 4] differs by more than 5σ from the

radius extracted with 1% precision using the electron-proton scattering measurements and

hydrogen spectroscopy. While the current Committee on Data for Science and Technology

(CODATA) value of proton charge radius is rpE = 0.8751(61) fm [5], the most recent muonic

hydrogen Lamb shift experiment measures rpE = 0.84087(39) fm [6] which is 4% smaller

than, and differs by 7σ from the CODATA value. Other than the possibility that one of the

proton charge radius extractions is wrong or involves considerable systematic uncertainties,

the consequence of the “proton charge radius puzzle” can have serious impacts such as a new

physics signature, anomalous QCD corrections, a 5σ adjustment of the Rydberg constant

(in the absence of new physics explanations) which is measured with an accuracy of about 5

parts per trillion, and/or revision of sources of systematic uncertainties in the measurements

of neutrino-nucleus scattering observables. Recent results and reviews of the proton charge

radius puzzle can be found in the Refs. [7–9].

A complete first-principles lattice QCD calculation of the nucleon magnetic moment and

charge radius including both the valence and connected-sea quarks, called connected inser-

tion (CI), and the disconnected-sea quarks contribution, called disconnected insertion (DI),

is of immense importance and is not yet present in the literature. By disconnected inser-

tions, we mean the nucleon matrix elements involving self-contracted quark graphs (loops),

which are correlated with the valence quarks in the nucleon propagator by the fluctuating

background gauge fields. It has also been found in various experiments that non-valence

components in the nucleon hold surprisingly large effects in describing its properties. One
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desires to perform a simulation at the physical pion mass and consider large volumes and

small lattice spacings and overall obtain a very good signal-to-noise ratio to compare the

lattice results with the experimental value – which is a highly ambitious goal of the lattice

QCD community with current numerical resources. In two previous lattice QCD calcula-

tions [10, 11] the authors have calculated the light disconnected-sea quarks contribution to

the nucleon electromagnetic form factors. In Ref. [10], the simulation has been done with

quark mass equivalent to pion mass 370 MeV and the authors obtained light disconnected-

sea quarks contribution to the nucleon electromagnetic form factor (EMFF) consistent with

zero within uncertainties. In Ref. [11], the light disconnected-sea quarks contribution to the

nucleon EMFF was obtained to be non-zero in the momentum transfer range of 0 ≤ Q2 <∼ 1.2

GeV2 with the simulation performed at a quark mass equivalent to pion mass 317 MeV.

The light disconnected-sea quarks contribution to the nucleon EMFF has not been con-

sidered in most of the lattice calculations because of the following reasons: 1) the current

status of the lattice QCD simulations with disconnected quark loops are numerically in-

tensive and in general very noisy, especially near the physical pion mass, and 2) most of

the previous lattice QCD calculations were performed under the assumption that DI light-

quarks contribute a negligible amount to the nucleon magnetic moment and charge radius.

Therefore, most of the earlier simulations aimed to calculate only the isovector nucleon

quantities and simulations were performed at relatively heavier pion masses [12–19]. Since

gauge configurations with simulations directly at the physical pion mass are now becoming

available, some collaborations are pursuing lattice QCD calculations near or at the physical

pion mass. Nonetheless, simulations near the physical pion mass exhibit increased sensitiv-

ity to statistical fluctuations and one requires a large number of measurements to obtain

good signal-to-noise ratio and to control the undesired excited-states contaminations. Thus

a majority of the recent calculations near the physical pion mass still concentrate on the CI

calculations only [20–23].

By performing a first-principles calculation, we find that the total contribution of the light

(up and down) and strange disconnected-sea quarks to the nucleon mean square charge ra-

dius is negative and significant. Combining the result of the strange quark magnetic moment

and charge radius calculated in our previous work [24] with the DI light-quarks contribution,

we obtain the total contribution to the nucleon magnetic moment and mean square charge

radius from the disconnected-sea quarks. Our overall DI calculation uncertainty is large
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compared to the precision of the experimental measurement of the proton charge radius

and one also needs to perform a CI calculation at the physical point with high precision

to draw any conclusion as to whether the DI contribution has a significant impact on the

understanding of the 4% discrepancy of the proton charge radius puzzle from the lattice

QCD viewpoint. Nonetheless, the present work gives the first calculation of the light and

strange disconnected-sea quarks contribution to the nucleon EMFF at the physical point and

provides important information about the sign of the disconnected-sea quarks contribution

to the nucleon EMFF. While almost all lattice QCD connected-insertion calculations con-

centrate on extractions of the proton charge radius, the neutron Sachs electric form factor

Gn
E(Q2) calculation is challenging due to the poor signal-to-noise ratio, as shown in Ref. [25].

A recent lattice QCD calculation [26] performed at the physical pion mass also shows that

obtaining a precise prediction of Gn
E(Q2) and neutron charge radius close to the experimental

value is indeed a challenging problem. In this work, we have investigated the importance of

the DI contribution to the neutron electric form factor calculation and a clear message is to

be taken that one must include the DI contribution to the neutron charge radius to shift the

lattice estimates toward the experimental value. It also gives a non-negligible contribution

to the proton charge radius.

This paper is organized as follows: an overview of the simulation details and statistics

used in this work is provided in Sec. II. In Sec. III, we provide examples of a hybrid two-

states fit to compute matrix elements from the ratio of nucleon three-point to two-point

correlation functions. We implement a model-independent extrapolation of nucleon magnetic

moment and mean square charge radius from the EMFFs in the momentum transfer range

of 0.051 <∼ Q2 <∼ 1.31 GeV2 and show examples in Sec. IV. In Sec. V, finite lattice spacing

and finite volume corrections are included in a global fit with 24 valence quark masses on

four different lattice ensembles with different lattice spacings, different volumes, and four

sea quark masses including one at the physical point. From the fit coefficients of the model-

independent z-expansion, we perform global fits to get estimates of the light and strange

disconnected-sea quarks contributions to the nucleon electromagnetic form factors at the

physical point. Finally, we present a conclusion to our lattice QCD analysis in Sec. VI.
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II. SIMULATION DETAILS

Our calculation comprises numerical computation with valence overlap fermion on four

ensembles of (2+1) flavor RBC/UKQCD domain-wall fermion (DWF) gauge configurations.

We use 24 valence quark masses in total for the 24I, 32I, 32ID, and 48I ensembles corre-

sponding to pion masses in the range mπ ∈(0.135, 0.403) GeV to explore the quark-mass

dependence of the DI EMFFs. Details of these ensembles can be found in Table I. For the

Ensemble L3 × T a (fm) mπ (GeV) Nconfig

24I [27] 243 × 64 0.1105(3) 0.330 203

32I [27] 323 × 64 0.0828(3) 0.300 309

32ID [28] 323 × 64 0.1431(7) 0.171 200

48I [28] 483 × 96 0.1141(2) 0.139 81

TABLE I. The parameters for the DWF ensembles: spatial and temporal size, lattice spacing, the

pion mass corresponding to the degenerate light-sea quark mass and the numbers of configurations

used in this work.

24I and 48I lattices, we use 12-12-12-32 (16-16-16-32 for 32I and 32ID) random Z3-noise grid

sources with Gaussian smearing. Here, the first three numbers in the notations such as 12-

12-12-32 denote the intervals of the grid in the 3-spatial directions and the last number is the

interval between time slices. Therefore, on the 24I ensemble, the number of points in grid has

the pattern of 2-2-2-2. We place two nucleon-sources on the time slices t = 0 and t = 32 and

perform the inversion simultaneously. In addition, we repeat the inversion multiple times,

shifting these nucleon-sources in every two-time slices and therefore have 32 nucleon-sources

with 8 sets of stochastic noises for each of the 16 inversions on different time slices to tie the

three-quarks together for each smeared source. Therefore, the number of measurements for

one configuration on the 24I ensemble is Ngrids×Nsources = (23×2)×32. Finally, for the 203

configurations of 24I ensemble, we have in total (23× 2)× 32× 203 = 103936 measurements

from 1×32×203 = 6496 inversions. Similarly, the number of measurements and the number

of inversions on the 32I and 32ID ensembles per configuration are the same as those on the

24I ensemble. With the grid pattern of 4-4-4-3 on the 48I ensemble and the nucleon-sources

placed at time slices t = 0, 32, 64 and these sources shifted in every three-time slices, the
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number of measurements with 81 gauge configurations is 43 × 3 × 32 × 81 = 497664 and

the number of inversions is 1 × 32 × 81 = 2592. A more detailed explanation of the grid

source and the smearing can be found in Ref. [29]. We apply eigenmode deflation during the

inversion of the quark matrix and utilize the low-mode substitution technique developed in

Refs. [30, 31] to construct the nucleon propagator. The low-frequency part of the hadron

correlators constructed using low mode substitution (LMS) makes the use of grid source

feasible, otherwise no extra statistics can be gained for the nucleon [30]. As for the quark

loops, the low-mode part is exactly calculated with the low eigenmodes of the overlap oper-

ator which is called low-mode average (LMA) and the high-mode part is estimated by 8 sets

of 4-4-4-2 Z4 noise grids with even-odd dilution as well as additional time dilution [31, 32].

The noise-estimated high-mode part requires calculation of two noise propagators for the

even-odd spatial dilution and another two noise propagators for the time dilution, repeating

these inversions for 8 grids. Therefore, with 8 different sets of Z4 noise grids, we have to

perform 2 × 2 × 8 = 32 inversions. With these techniques implemented, our statistics are

from ∼ 100k to ∼ 500k measurements on the 24I to 48I ensembles.

We define the nucleon two-point (2pt) and three-point (3pt) correlation functions as

Π2pt(~p ′,t2;t0)≡
∑
~x

e−i~p
′·~x〈0|T [χ(~x,t2)

∑
xi∈G

e~p
′·~xi χ̄S(xi,t0)]|0〉 ,

Π3pt
Vµ

(~p ′, t2;~q,t1;t0)≡
∑
~x2,~x1

e−i~p
′·~x2+i~q·~x1〈0|T [χ(~x2,t2)Vµ(~x1,t1)

∑
xi∈G

χ̄S(xi,t0)]|0〉 , (1)

where t0 and t2 are the source and sink temporal positions, respectively, ~p ′ is the sink

momentum, respectively, and t1 is the time at which the bilinear operator Vµ(x) = q̄(x)γµq(x)

is inserted with q a light (up or down) or strange quark. xi are points on the spatial grid G

(as described above), χ is the usual nucleon point interpolation field and χ̄S is the nucleon

interpolation field with smeared stochastic grid source (Z3-noise source), and the three-

momentum transfer is ~q = ~p ′ − ~p with ~p the source momentum. For the point sink and

smeared source with t0 = 0 and ~p = ~0 and ~q = ~p ′, the Sachs FFs can be obtained by the

ratio of a combination of 3pt and 2pt correlations with appropriate kinematic factors,

Rµ(~q, t2, t1) ≡
Tr[ΓmΠ3pt

Vµ
(~q, t2,t1)]

Tr[ΓeΠ2pt(~0, t2)]
e(Eq−m)·(t2−t1) 2Eq

Eq +m
. (2)

Here, Eq =
√
m2
N + ~q 2 and mN is the nucleon mass. The choice of the projection operator

for the magnetic form factor is Γm=Γk =−i(1 + γ4)γkγ5/2 with k=1, 2, 3 and that for the

electric form factor is Γe=(1 + γ4)/2.
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Notice that we use smeared grid source and point sink. We have performed numerical

check on the 32ID ensemble to examine the signal-to-noise ratio of the smeared-smeared

nucleon 3pt/2pt correlation function ratio to that of the smeared-point 3pt/2pt correlation

function ratio. For this particular ensemble, at the unitary point (sea quark mass corre-

sponding to mπ = 171 MeV), we find that the smeared-source and smeared-sink 3pt/2pt

correlation function ratio is about 2− 6.5% noisier than the smeared-source and point-sink

3pt/2pt correlation function ratio in the time window where we perform two-states fit to

obtain nucleon matrix elements. A careful check also shows that the smeared-smeared 2pt

correlation function is only about 1 − 2.5% noisier than the smeared-point 2pt correlation

function in the time window where we perform fit to obtain nucleon effective mass, while the

central value of the nucleon effective mass remains almost the same for both cases. Since the

statistical uncertainty of the nucleon matrix elements near the unitary point on the 32ID

ensemble is about 50%, therefore the final result would not be significantly different if we

use smeared-point or smeared-smeared 2pt correlation function in our calculation. There-

fore, we have used the smeared-point two-point function for the numerical analysis in this

work. Also, without much additional computational cost, we cannot implement the standard

square-root technique to calculate the nucleon 3pt/2pt ratio. We use the smeared source for

the three-point function which would invoke a smeared-smeared two-point function in the

square-root formula. Since we use the smeared-source-point-sink three-point function, the

factor Zp(q)/Zp(0), where Zp(q) is the interpolation-field overlap factor for a point source

with the nucleon momentum q, is not exactly cancelled in the ratio defined in Eq. 2. In

the continuum limit, this extra factor is unity and, on the lattice, it will have a q2a2 error

which can be absorbed in the zero-momentum extrapolation of GM and charge radius and

the subsequent continuum extrapolations. We have numerically checked on about 100 con-

figurations on the 32I (smallest lattice spacing) and 32ID (largest lattice spacing) ensembles

that the interpolation field overlap factors indeed do not cancel for nonzero momentum but

have a small effect on the matrix element (typically 5-6% for the largest momentum and

the lightest pion mass). Upon performing the z-expansion [33, 34] to obtain the magnetic

moment at Q2 = 0, the effect on the final result is even smaller, about 1− 2%. The charge

radius calculated with such correction has a change of about 2% on the 32I ensemble and

1% on the 32ID ensemble lattice results. Since our statistical uncertainty is about 25%

in the global fit for the magnetic moment and the charge radius with an additional 10%
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(for magnetic moment) and 20% (for charge radius) systematic uncertainties from the z-

expansion results will be included in the final result of the global fits, this small effect of

interpolation-field overlap factors does not affect our calculation in a significant way. For the

32ID and 48I ensembles, the Q2 are much smaller than those of 24I and 32I ensembles and

the overlap ratio itself is at the 1− 2% level. We thus ignore it in order to reduce additional

computational costs.

In the limits (t2 − t1)� 1/∆m and t1 � 1/∆m, one can obtain the Sachs magnetic and

electric FFs by an appropriate choice of projection operators and current directions µ:

Rµ=i(Γk)
(t2−t1)�1/∆m,t1�1/∆m−−−−−−−−−−−−−−−→ εijkqj

Eq +mN

GM(Q2),

Rµ=4(Γe)
(t2−t1)�1/∆m,t1�1/∆m−−−−−−−−−−−−−−−→GE(Q2), (3)

with i, j, k 6= 4 and ∆m the mass gap between the ground state and the first excited state.

The Sachs magnetic and electric FFs in the spacelike region are related to the nucleon Dirac

(F1) and Pauli FF (F2) through the relations:

GM(Q2) = F1(Q2) + F2(Q2)

GE(Q2) = F1(Q2)− Q2

4m2
N

F2(Q2). (4)

III. COMBINED TWO-STATES FIT

In lattice QCD simulations, nucleon correlation functions suffer from an exponentially

increasing noise-to-signal ratio which imposes a serious limitation on the source-sink sep-

aration t2, especially when DI calculations are performed. In general, DI calculations are

notoriously noisier compared to the CI calculations. It is also hard to extract the ground-

state properties of the nucleon since the lowest excited-state, the Roper resonance - N(1440)

lies close to the nucleon mass. There can also be an additional excited-states contamination,

for example from the πN -states. Therefore, ideally one requires a substantially large source-

sink separation, approximately t2 = 1.5 fm to extract nucleon ground-state matrix elements

so as not to be much affected by the excited-states contamination. Though it is possible to

go up to about 1.4 fm source-sink separation in some of the CI calculations [17, 22] only, at

the present stage of numerical simulation it is quite challenging to go much beyond t2 ≈ 1 fm

and obtain a reasonable signal-to-noise ratio for the DI calculations. Therefore, to have an

8



estimate of the nucleon ground-state matrix elements, we employ a hybrid joint two-state

correlated fit by simultaneously fitting the standard 3pt/2pt ratio R(t2, t1) and the widely

used summed ratio SR(t2) [35] to calculate DI matrix elements. The R(t2, t1) and SR(t2)

fitting formulas for a given direction of current and momentum transfer can be written,

respectively, as [36]

R(t2, t1) = C0 + C1e
−∆m(t2−t1) + C2e

−∆mt1 + C3e
−∆mt2 , (5)

SR(t2) ≡
t1≤(t2−t′′)∑

t1≥t′
R(t2, t1)

= (t2 − t′ − t
′′

+ 1)C0 + C1
e−∆mt′′ − e−∆m(t2−t′+1)

1− e−∆m

+ C2
e−∆mt′−e−∆m(t2−t′′+1)

1− e−∆m
+C3(t2 −t′ −t′′ +1)e−∆mt2 . (6)

Here, t′ and t
′′

are the number of time slices we drop at the source and sink sides, respectively,

and we choose t′ = t′′ = 1. Ci are the spectral weights involving the excited-states and ∆m

is, in principle, the energy difference between the first excited state and the ground state.

Basically, the two-states fit in Eq. (5) dominates in our combined fit method and, for heavier

pion masses, the final result of the combined fit is almost identical to the standard 3pt/2pt

ratio two-states fit. However, the combined fit becomes useful for getting a stable fit near

the physical pion mass and we gain a slight increase in the signal-to-noise ratio. We choose

t′ and t′′ = 1 by following the strategy of keeping as many points possible for which χ2

is acceptable. We do not obtain any signal for the fit parameter C3 based on the analysis

of our lattice data points for light-sea quarks. Therefore, excluding this factor from the

combined fit does not affect the final outcome of the fit. ∆m is effectively an average of the

mass difference between the proton and the the lowest few excited states and needs to be

determined by the fit.

We illustrate two examples in FIGs. 1 and 2 to obtain magnetic form factors at given

Q2-values from the lattice data and present the fitting details in Table II. The source-sink

separation we use for the fitting of 32I ensemble data is t2 ∈ (6, 13) and t2 ∈ (5, 10) for the

48I ensemble data. As discussed earlier, as with almost all of the DI calculations, we are

forced to constrain the t2-window around 1.1 fm due to the limitations of good signal-to-

noise ratio. However, in principle, the two-states fit should compensate for this limitation
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to a certain degree. We perform a correlated combined fit of the ratio and summed ratio

data. Likewise, all of the subsequent fits in the article are also correlated fits.
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(a) Two-states 3pt/2pt ratio fit
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(b) Summed ratio fit

FIG. 1. Combined correlated two-states fit of the 32I ensemble 3pt/2pt-ratio and summed ratio

data. The transparent bands show the fit results based on the fit parameters listed in Table II.

The green bands in the above figures show the final fit result of the light disconnected-sea quarks

magnetic form factor Glight-sea
M (Q2) at Q2 = 0.218 GeV2.
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(a) Two-states 3pt/2pt ratio fit
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FIG. 2. Combined correlated two-states fit of the 48I ensemble 3pt/2pt-ratio and summed ratio

data. The transparent bands show the fit results based on the fit parameters listed in Table II.

The blue bands in the above figures show the final fit result of the light disconnected-sea quarks

magnetic form factor Glight-sea
M (Q2) at Q2 = 0.051 GeV2.

From the combined fit Eqs. (5) and (6), it is seen that when ∆m is large, the data

points for different source-sink separation should have overlap amongst themselves or the

separation between them should be small. A comparison between the fit values of ∆m in
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Ensemble mπ (GeV) Q2 (GeV2) C0 C1 C2 ∆m (GeV) χ2/d.o.f.

32I 0.330 0.218 −0.036(09) 0.018(06) 0.025(06) 0.350(121) 1.26(5)

48I 0.207 0.051 −0.088(29) 0.062(18) 0.072(23) 0.637(250) 1.04(7)

TABLE II. The parameters of correlated combined two-states fits to obtain light disconnected-sea

quarks magnetic form factor at given momentum transfers.

Table II and FIGs. 1, 2 agrees with this assessment. It is seen from FIG. 1 that a smaller

value of ∆m is consistent with the well separated data points with different sink-source

separations on the 32I ensemble. One can see from FIG. 2 and ∆m = 0.637(250) GeV

from Table II that a larger value of the energy gap is consistent with the overlapping data

points at different t2 and therefore, the final fit result is closer to the plateau region of the

data points at source-sink separation t2 = 9 of the 48I ensemble lattice data. However, a

clear understanding of why the ∆m fit value is larger for the data with smaller pion mass

on the 48I ensemble than that of the heavier pion mass on the 32I ensemble is lacking

at this moment. As mentioned before, this ∆m actually gives an effective measure of the

energy difference between the nucleon ground state and a sum of several excited states whose

energies are above the ground state. Since ∆m reflects a weighted sum of the excited states,

we speculate that when the quark mass is low enough, multiple π N and ππ N states start to

appear and it could give a higher effective ∆m. Moreover, like most of the present-day lattice

DI calculations, we are also limited by our statistics to go beyond a source-sink separation

of 1.5 fm to extract nucleon ground state matrix element and obtain a clearer understanding

of the excited-states contamination.

We perform similar combined correlated two-states fits to obtain the DI Sachs electric

form factor and ensure that the fit window is as large as possible; in most cases the χ2/d.o.f

is in the vicinity of 0.9-1.1. We choose the largest possible fit window as long as goodness

of the fit is ensured and one can obtain a reasonable signal-to-noise ratio in the fits.

IV. EXTRACTION OF THE DI MAGNETIC MOMENT AND CHARGE RADIUS

It has been a topic of long discussion about what type of form one should use to describe

the Q2-behavior of different form factors. A choice based on the phenomenological inter-
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pretation of various data is the dipole form [37] which has been widely used. But a simple

polynomial fit does not converge when there exist cuts in the timelike domain. For example,

in the case of a photon to two pion transition, there exists a cut at q2 = −Q2 = 4m2
π in the

timelike domain as shown in FIG. 3. Because of the existence of this pole 1/(q2 − 4m2
π),

a polynomial expansion of the FF should not converge for any Q2 > 4m2
π. The weight of

this pole may be small but one should not ignore its effect when fitting the FF data. To

overcome this problem, a conformal mapping of variable Q2 to another variable z has been

proposed in Refs. [33, 34]. The conformal mapping is performed in such a way that one is

allowed to perform a polynomial expansion in z, such that the timelike momentum transfers

(i.e. all poles of the FFs) map onto the unit circle z = 1 and the spacelike momentum

transfers map onto the real line |z| < 1. For more details, see [33, 34].

FIG. 3. Model-independent z-expansion: Conformal mapping of the cut plane to the unit circle.

Another reason we do not use the dipole fit in the calculation is because the Q2 behaviors

of the disconnected light and strange form factors are unknown and one would prefer not to

be biased with a specific form of the extrapolation. (There exist also other phenomenological

models for the Q2-dependence of strange form factors, for example in Ref. [38].) Therefore

we adopt the model-independent z-fit. We take tcut = 4m2
π for fitting the light disconnected-

sea quarks FF and tcut = 4m2
K for the strange quark FF. We have verified that a different

choice of tcut such as 9m2
π has less than a few percent effect on our extrapolations.

In FIG. 4, we show three examples of the extractions of light-sea-quarks magnetic moment

at Q2 = 0 from the FF data at different Q2 using the z-fit:

Gq,z−exp
E,M (Q2) =

kmax∑
k=0

akz
k, (7)
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where

z =

√
tcut +Q2 −

√
tcut√

tcut +Q2 +
√
tcut

.

We see from Fig. 4 and also from our previous work [24] that the lattice data of 48I ensemble

is quite a bit noisier than the 24I and 32I ensemble data. Therefore we show in Figs. 4b

and 4c two examples of how we extract the light-sea and strange quarks contributions to

the nucleon magnetic moment by performing simulation around the physical pion mass

mπ ∈ (0.135, 0.150) GeV.

As discussed in our previous work [24], we keep the first 3-terms in the z-expansion for-

mula (7) and perform the Q2-extrapolation. Unlike for the strange quark magnetic moment

extraction in [24], for the light disconnected-sea quarks magnetic moment, constraining a2

with a prior width of 2 × |a2,avg| does not have any effect since the uncertainties in the fit

values of a2 are already smaller than 2× |a2,avg| for most all of the pion masses. Therefore

we do not set any prior on a2 for the extraction of the magnetic moments. However, for

the extraction of the charge radii, we calculate the jackknife ensemble average a2,avg of the

coefficient a2 and then perform another fit by setting a2 centered at a2,avg with a prior width

equal to 2×|a2,avg|. We find that the effect of setting this prior is almost insignificant for the

24I and 32I ensemble data, especially at heavier quark masses. However, the prior stabilizes

the extrapolation of Gq
E(Q2) for pion masses around the physical point for the 48I ensemble.

Since the z-expansion method guarantees that ak coefficients are bounded in size and that

higher order ak’s are suppressed by powers of zk, we carefully check the effect of the a3

coefficient in our fit formula and estimate this effect to calculate the systematic uncertain-

ties in the z-expansion fits. We calculate the difference in the central values of Gq
M(0) with

and without the addition of the a3 term for the lightest quark masses at the unitary point

for each lattice ensemble. We find the addition of the a3-term in the z-expansion after we

constrain a2 has the largest effect, as expected, for the quark mass equivalent to mπ ∼ 140

MeV of the 48I ensemble and obtain the difference in the central value of Glight-sea
M (0) to be

about 11%. Therefore, we take a conservative approach and estimate a systematic error of

11% of the final continuum value of Gq
M(0) obtained from the global fit.

Similarly, one can extract the light and strange disconnected-sea quarks contributions

to the nucleon charge radius by calculating the slope of Gq
E(Q2) near Q2 = 0. We find

that adding the a3 term in the z-expansion has a larger effect on calculating the charge

13
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FIG. 4. Light and strange disconnected-sea quarks magnetic moment Glight-sea, strange
M (0) extrapo-

lation for three different quark masses of the 32I (FIG. 4a) and 48I (FIGs. 4b, 4c) ensembles using

z-expansion from the lattice Glight-sea, strange
M (Q2). The χ2/d.o.f. for the extrapolations are in the

range of 0.52− 0.88. Charge factors are not included in the form factors. Note the Q2 ranges are

different in the 32I and 48I cases.

radius than in extracting the magnetic moment and such an effect of adding the a3 term for

the charge radius calculation is 12 − 20%. Therefore a 20% uncertainty has been added to

the systematics in the global fit of charge radius as a part of our conservative assessment.

One important observation from FIG. 5 is that although the data of light quark electric

FF are not very precise, nevertheless the uncertainty band of the z-expansion is narrower

compared to the magnetic FF extrapolation. The reason is due to charge conservation as

the disconnected Gq
E(Q2) is constrained to be 0 at Q2 = 0. Another important observation

from FIG. 5 is that the light disconnected-sea quarks contribution to the Glight-sea
E (Q2) is
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almost 6-10 times larger than the strange quark contribution Gs
E(Q2).
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FIG. 5. Light and strange disconnected-sea quarks contributions to the nucleon electric FF

G
light-sea/strange
E (Q2) for two different quark masses of the 32I (FIG. 5a) and 48I (FIGs. 5b, 5c)

ensembles. The χ2/d.o.f. for the two fits are in the range of 0.49 − 0.81. Charge factors are not

included in the form factors. Note the Q2 ranges are different in the 32I and 48I cases.

V. GLOBAL FITS OF THE DISCONNECTED INSERTIONS OF NUCLEON

PROPERTIES

With the extrapolated results from the z-expansion in hand, we now have 24 data points

for the magnetic moments and charge radii calculated from the slopes near Q2 = 0 of the

electric FFs. For the empirical global fit formula of the light-sea-quarks magnetic moment,

we employ chiral extrapolation from Ref. [39] and volume extrapolation from Ref. [40].

One can add the m2
π log(m2

π) term [39] in the chiral extrapolation of light disconnected-sea
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quarks magnetic moment, but we do not obtain any signal for this term by fitting the lattice

data and the final value of the magnetic moment is independent of addition of this term.

Therefore we dropped this term from the chiral extrapolation of light-sea-quarks magnetic

moment. Since the overlap fermion action is already O(a) improved, therefore, we apply an

O(a2) correction to the global fit formula:

Glight-sea
M (Q2 = 0,mπ,mK ,mπ,vs, a, L) = A0 + A1mπ + A2mK

+A3 a
2 + A4mπ(1− 2

mπ L
) e−mπL (8)

where mπ (mK) is the valence pion (kaon) mass, and mN is the nucleon mass. We show the

extrapolation of the nucleon light disconnected-sea quarks magnetic moment in FIG. 6. At

the physical point and in the limit, i.e. a→ 0 and L→∞, we obtain

Glight-sea
M (0)

∣∣∣
physical

= −0.129(30)(13)(18)µN , (9)

where the magnetic moment is measured in the unit of nucleon magneton (µN). The first

uncertainty in the value of the the magnetic moment in Eq. (9) comes from the statistics,

the second uncertainty comes from adding the higher order a3-term in the z-expansion and

the third uncertainty comes from the variation of the central value in the global fit formula

with the introduction of additional terms. The parameter values we obtain according to

the global fit are: A1 = 0.38(12), A2 = −0.40(16), A3 = 0.30(39), A4 = −1.26(2.75). An

attempt to add a partial quenching term m2
π,vs = 1/2(m2

π +m2
π,ss) with mπ,ss the pion mass

corresponding to the sea quark mass in the global fit formula does not describe our lattice

data well and the fit parameters A1, A2 do not have any signal in this case. With the

partial-quenching term included, one obtains Glight-sea
M (0)

∣∣∣
physical

= −0.147(33)µN . However,

we include the second systematic error in our final result due to the possible inclusion of

this partial quenching term in the global fit fit (8).

In Sec. IV, we have obtained the light disconnected-sea quarks contribution to the charge

radii using the z-expansion method by calculating the slope of Glight-sea
E (Q2) using the fol-

lowing definition:

〈ρ2
light-sea〉E ≡ −6

dGlight-sea
E

dQ2

∣∣∣∣∣
Q2=0

(10)

where we used the symbol ρ instead of the conventional symbol r for the charge radius to

emphasize the fact that charge factors are not yet included in the Glight-sea
E (Q2) form factor
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FIG. 6. Light disconnected-sea quark magnetic moment at 24 quark masses on 24I, 32I, 48I, and

32ID ensembles as a function of the pion mass. The curved blue line in the figure shows the behavior

in the infinite volume and continuum limit. The cyan band shows the combined statistical (blue

band) and systematic uncertainties added in quadrature. The χ2/d.o.f. of the fit is 0.67.

data. Using the charge radius values at 3 different volumes and lattice spacings and 24

valence-quark masses from four ensembles, we perform a simultaneous continuum and chiral

extrapolation to obtain the final value of the charge radius using the following global fit

formula:

〈ρ2
light-sea〉E (mπ,mπ,vs,mK , a, L) = A0 + A1 log (mπ) + A2m

2
π + A3m

2
π,vs

+A4 a
2 + A5

√
Le−mπL. (11)

The chiral extrapolation in the empirical formula (11) has been adopted from [41] by replac-

ing mK with mπ and the volume correction similar to the pion charge radius correction has

been obtained from [42]. In the continuum limit, we obtain

〈ρ2
light-sea〉E

∣∣
physical

= −0.061(16)(11)(10) fm2, (12)

and the fit parameters are: A1 = 0.077(24), A2 = −0.280(99), A3 = 0.151(100), A4 =

−0.015(13), and A5 = −0.054(58). The extraction of the charge radius from the FFs is

sensitive to the lowest value of Q2 and momentum transfer range of the data used, and also

on the form of the fit. However, one wants to go to very low Q2-values to extract the charge
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radii and the 48I ensemble has a lowest momentum transfer which is almost 4 times smaller

than those of the 24I and 32I lattice data. It is seen from FIG. 7 that the uncertainties in

the charge radii obtained from 48I and 32ID ensembles are large compared to the 24I and

32I ensemble results. We find that the uncertainty of the global fit result is almost equal to

the uncertainty of charge radius obtained from the 48I ensemble at the valence quark mass

equivalent to mπ = 150 MeV.
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FIG. 7. Light disconnected-sea quark charge radius at 24 quark masses on 24I, 32I, 48I, and 32ID

ensembles as a function of the pion mass. The curved blue line in the figure shows the behavior

in the infinite volume and continuum limit. The cyan band shows the combined statistical (blue

band) and systematic uncertainties added in quadrature. The χ2/d.o.f. of the fit is 0.46.

It is important to note that the magnetic moment and charge radius results in Eqs. (9)

and (12) do not include charge factors. We define the magnetic moment in the unit of nucleon

magneton µM and the charge radius as 〈r2〉E with the proper charge factors included. After

including the charge factors and using the results from [24] and Eqs. (9), (12) we obtain

µs
M = −1

3
Gs
M(0)

= 0.021(5)(3)µN , (13)

µlight-sea
M = (

2

3
− 1

3
)Glight-sea

M (0)

= −0.043(10)(08)µN (14)
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Similarly,

〈ρ2
s〉E = −1

3
〈r2

s 〉E

= 0.0014(05)(05) fm2, (15)

〈ρ2
light-sea〉E = (

2

3
− 1

3
)〈r2

light-sea〉E

= −0.0203(53)(49) fm2. (16)

Combining results with the strange quark magnetic moment and charge radius, we obtain

the total contribution from the light and strange disconnected-sea quarks to the nucleon

magnetic moment and charge radius:

µM (DI) = −0.022(11)(09)µN , (17)

〈r2〉E (DI) = −0.019(05)(05) fm2. (18)

Comparing with the PDG values of nucleon magnetic moments [5], our results indicate

that disconnected-sea quarks contribute ∼ 1% to the nucleon magnetic moments, namely,

a negative 0.8(5)% and a 1.2(7)% to the proton and neutron magnetic moments, respec-

tively. Keeping in mind that there is a 4% discrepancy between the measurement of proton

charge radius from the muonic Lamb shift experiment and the electron-proton scattering

experiments, our finding in the present work reveals that the lattice calculation of the DI

gives a negative 2.5(9)% contribution to the proton mean square charge radius. This is

about 1/3 of the discrepancy between the proton mean square charge radii measured in

the electron-proton scattering and the muonic atom. Thus, it is important to have the DI

included when the lattice calculation of the proton charge radius is carried out. Although a

complete lattice QCD calculation including the connected and disconnected insertions at the

physical point is required to draw any definitive conclusion about the accurate percentage

of the disconnected-sea quarks contribution to proton charge radius, this calculation clearly

indicates that there will be a shift towards a smaller value of the proton charge radius when

the light disconnected-sea quarks contribution is included. However, the disconnected-sea

quarks contribution to the neutron mean square charge radius can have a significant ef-

fect, namely 16.3(6.1)% compared to the experimental neutron mean square charge radius

〈r2
n〉 = −0.1161(22) fm2 [5], in obtaining a value closer to the experimental value.
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From the z-expansion fit parameters in Sec. IV, we can now interpolate the light and

strange disconnected-sea quarks contributions to the nucleon electromagnetic form factors.

Although the largest available momentum transfer we have on the 24I and 32I ensemble is

Q2 ∼ 1.3 GeV2, the largest momentum transfer available on the 48I ensemble is Q2 ∼ 0.5

GeV2. Therefore, we note that the extrapolation of the nucleon EMFF starts to break down

after Q2 ∼ 0.4 GeV2 for the 48I ensemble and we constrain the extrapolations of the 48I

ensemble EMFF up to Q2 = 0.5 GeV2. The global fit results of the strange quark EMFFs

have been obtained from [43] and we use similar empirical formulas as Eqs. (8), (11) to

estimate the light-sea quarks contribution to the nucleon EMFF in the continuum limit and

at the physical point. The contributions of GE,M(Q2) (DI) to the nucleon electromagnetic

form factors appear with charge factors. Therefore, we present the results in FIG. 8 with

systematics included and also include charge factors in the form factor calculations so that

the sign and magnitude of the disconnected-quarks contributions to the nucleon EMFFs can

directly be compared to the nucleon total EMFFs. These results will be combined with

the connected insertion calculation of the nucleon EMFFs in our future work to obtain a

complete description of the nucleon EMFF from first-principles calculation.
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FIG. 8. Light and strange disconnected-sea quarks contributions to the nucleon electromagnetic

form factors at the physical point and in the continuum limit. Charge factors are included in the

form factor calculations. The outer error bars in the data points include the systematic uncertain-

ties in the calculations.
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VI. CONCLUSION

In this calculation, we have uncovered the practical importance of including the discon-

nected quark loops contribution to the nucleon magnetic moment and charge radius. In

particular, in accord with the analysis, we find that the light and strange disconnected sea-

quarks contribution to the nucleon charge radius can have an important impact to reconcile

lattice QCD estimates with experimental measurements. A negative 2.5(9)% contribution to

the proton mean square charge radius from the disconnected-sea quarks should have an im-

pact on the “proton charge radius puzzle” where the discrepancy in the mean square charge

radius of ∼ 8% is of the same order. It is seen for the first time that the disconnected quarks

can shift the neutron mean square charge radius calculation towards the experimental value

by about 16%. Especially, because the neutron electric form factor calculation on the lattice

is noisy and the connected-insertion-only quark contribution is smaller than the experimen-

tal Q2 behavior, the disconnected quark loops cannot be ignored for an accurate estimation

of the neutron form factors at low Q2 on the lattice. Our main focus of this calculation was

to show that 1) the disconnected-sea quarks contribution to the nucleon properties at low

Q2 is of significant importance and 2) numerical simulation with controlled systematics and

at the physical pion mass can generate a better theoretical understanding of various nucleon

properties.
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