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Fermion bag approach to Hamiltonian lattice field theories in continuous time
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We extend the idea of fermion bags to Hamiltonian lattice field theories in the continuous time formulation.
Using a class of models we argue that the temperature is a parameter that splits the fermion dynamics into
small spatial regions that can be used to identify fermion bags. Using this idea we construct a continuous time
quantum Monte Carlo algorithm and compute critical exponents in the 3d Ising Gross-Neveu universality class
using a single flavor of massless Hamiltonian staggered fermions. We find η = 0.54(6) and ν = 0.88(2) using
lattices up to N = 2304 sites. We argue that even sizes up to N = 10, 000 sites should be accessible with
supercomputers available today.

PACS numbers: 03.65.Ta, 03.67.-a

I. INTRODUCTION

Quantum Monte Carlo (QMC) methods of studying
strongly correlated fermion systems are known to be notori-
ously difficult [1]. Even if sign problems can be solved it is
difficult to study large system sizes close to critical points, es-
pecially when the system contains long range fermionic cor-
relations. Many strongly interacting quantum critical points
were predicted long ago in 2 + 1 dimensions in the presence
of massless Dirac fermions [2, 3], but their properties have not
yet been determined accurately using quantum Monte Carlo
methods. Due to developments in condensed matter physics
related to the physics of graphene and the associated develop-
ments in topological insulators the field has become interest-
ing again and there is new impetus to study the critical points
better [4–7].

Studies based on the Lagrangian formulation on space-time
lattices use the Hybrid Monte Carlo (HMC) algorithm [8–11].
Although it is expected to have better scaling properties with
system size compared to other fermion algorithms, it encoun-
ters singularities in the presence of massless fermions, espe-
cially near strongly interacting quantum critical points. In or-
der to avoid such singularities, studies include a fermion mass.
The presence of two infrared scales, in the form of a fermion
mass and a finite lattice size, makes accurately extracting the
critical exponents difficult. Ways to circumvent these prob-
lems would be very helpful.

Lagrangian formulations have other limitations as well.
Ultra-local actions on space-time lattices can create extra dou-
bling of fermion degrees of freedom due to time discretiza-
tion. Along with chiral symmetry some internal flavor sym-
metries may also be lost. For example, the semi-metal insu-
lator phase transition in graphene was studied recently using
the Lagrangian formulation with staggered fermions [12–14].
While these formulations capture many interesting physics
qualitatively, the SU(2) spin symmetry of graphene is ex-
plicitly broken, which may affect the critical behavior. Re-
cently, Lagrangian formulations of Dirac fermions in 2+1 di-
mensions have begun to use overlap or domain wall fermions
[15–17]. While these formulations preserve many symme-
tries of continuum Dirac fermions, they are computationally
much more expensive, especially near strongly coupled quan-
tum critical points.

We can circumvent some of the limitations of Lagrangian
formulations by constructing the partition function starting
from a lattice Hamiltonian. Since we can eliminate time dis-
cretization errors we can avoid an extra fermion doubling and
preserve more symmetries [18–20]. Also, unlike the HMC ap-
proach the auxiliary field Monte Carlo (AFMC) methods used
in the Hamiltonian formulation can also work with exactly
massless fermions without encountering singularities [21, 22].
In principle the time to perform a single sweep in AFMC can
be reduced to scale as βN3 where N is the number of spa-
tial sites and β is the inverse temperature. However, there
can be bottlenecks due to numerical instabilities on large lat-
tices. Several recent studies of semi-metal-insulator phase
transitions in 2 + 1 Dirac systems have emerged recently us-
ing this approach [23–25], and the largest lattices explored
are roughly of the order of N = 2500 on honeycomb lattices
and N = 1600 on square lattices [26]. Calculations in the
continuous time limit involve much smaller sizes. Although
the HMC algorithm continues to be improved for Hamiltonian
formulations, problems related to the singularities mentioned
above remain to be a bottleneck until now [27–29].

A few years ago one of us proposed a new idea called
the fermion bag approach as an alternative way to construct
fermion algorithms [30, 31]. The idea was originally formu-
lated within the Lagrangian formulation and has allowed us
to study large lattices with exactly massless Dirac fermions
and accurately extract critical exponents at some of the quan-
tum critical points in 2 + 1 dimensions [32, 33]. In this work
we extend the idea to Hamiltonian formulations in continuous
time. Using it we are able to study lattices containing up to
N = 10, 000 sites without encountering numerical instabili-
ties. Although computing quantities close to quantum critical
points on such large lattices still requires supercomputers, we
are able to study square lattices with up to N = 2304 sites on
small computer clusters.

II. IDEA OF FERMION BAGS

The idea of fermion bags is based on the intuition that it
should be possible to write a fermionic partition function as a
sum over weights of configurations where each configuration
weight is obtained as a product of weights of smaller configu-
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rations. This is accomplished by dividing the fermion degrees
of freedom of the entire system into many smaller entangled
regions (or fermion bags) that are essentially independent of
each other [30]. The fermion bag weight is obtained by sum-
ming over all quantum fluctuations within the bag. If this
weight is positive an efficient Monte Carlo algorithm could
be designed. The idea of fermion bags is an extension of the
meron cluster approach [34].

While the idea of fermion bags is widely applicable there
is no unique recipe to identify the bags for a given model.
One guiding principle is that weights of fermion bags must
be positive (which is not always guaranteed). One can also
use efficiency of Monte Carlo sampling as the other guiding
principle. If the fermion bags can identify the entanglement
that arises naturally from the underlying physics and fermion
bag weights remain positive, then the Monte Carlo sampling
usually becomes efficient. For example, fermion bags can be
identified differently at strong couplings as compared to weak
couplings. At weak couplings Feynman diagrams suggest a
natural choice for the fermion bags and then the approach
is identical to the determinantal diagrammatic Monte Carlo
methods [35–37]. But such an identification leads to ineffi-
cient Monte Carlo sampling at stronger couplings since the
entanglement of the fermion degrees of freedom changes. Ef-
ficiency can be improved by combining weak and strong cou-
pling fermion bags at intermediate couplings.

Recently we discovered that the idea of fermion bags can
be useful even if a fermion bag becomes entangled with the
rest of the system. We realized that this entanglement can be
stored in the form of a large matrix. If this can be computed
and stored we can perform fast updates of fermion bags. This
extension of the fermion bag idea is similar to the idea of lo-
cal factorization of the determinant proposed recently [38]. In
our case it has allowed us to study 603 lattices near a quan-
tum critical point with exactly massless fermions for the first
time [39]. In this work we argue that a similar idea should be
applicable for Hamiltonian lattice fermions.

In order to illustrate how the idea of fermion bags can be ex-
tended to Hamiltonian formulations in continuous time, in this
work we focus on those that can be written asH =

∑
x,dHx,d

where

Hx,d = −ω〈x,d〉 e
2α〈x,d〉

∑Nf
a=1

(
cax

†ca
x+d̂

+ca
x+d̂

†cax

)
. (1)

Here x is a spatial lattice site, d̂ labels the directions such
that 〈x, d〉 labels a unique nearest neighbor bond. The oper-
ators cax

† and cax are fermionic creation and annihilation op-
erators at the site x with a flavor a = 1, 2.., Nf . The cou-
plings of the model are defined through the real constants
ω〈x,d〉 > 0 and α〈x,d〉. In the discussions below we focus
on the Nf = 1 model on a two dimensional square lattice
with periodic boundary conditions and L sites in each direc-
tion with N = L2. However, they can be extended to any
value of Nf and all bi-partite lattice models where the sites
connected to the bond 〈x, d〉 lie on different sub-lattices.

Although the Hamiltonians we consider are unconventional
they contain rich physics. We have designed them so that the
idea of fermion bags is applicable [40]. For a fixed Nf they

are invariant under an O(2Nf ) flavor symmetry in addition to
the usual lattice symmetries, some of which may be broken
spontaneously at quantum critical points [41]. When Nf =
1 our model is equivalent (up to an constant) to the model
(sometimes referred to as the t− V model in the literature),

Hx,d = −tηx,d
(
c†xcx+d̂ + c†

x+d̂
cx

)
− V ΦxΦx+d̂, (2)

where V > 0. Here we define Φx = (−1)x1+x2(c†xcx −
1/2), assuming a lattice site with coordinates x = (x1, x2).
The equivalence requires that we set ω〈x,d〉 = t2/(V (1 −
(V/2t)

2
)), and α〈x,d〉 = αηx,d where cosh 2α = (1 +

(V/2t)
2
)/(1−(V/2t)

2
), and sinh 2α = (V/t)/(1−(V/2t)

2
)

[42]. If we define η〈x,1〉 = 1 and η〈x,2〉 = (−1)x1 , the model
describes interacting two dimensional massless Hamiltonian
staggered fermions [43].

Using the well known CT-INT expansion of the partition
function [18–20] we can write

Z =
∑
k

∫
[dt]

∑
[〈x,d〉]

Tr
(
Hxk,dk ... Hx2,d2 Hx1,d1

)
, (3)

where there are k insertions of the bond Hamiltonian Hx,d

inside the trace at times t1 ≤ t2 ≤ ... ≤ tk. The symbol
[dt] represents the k time-ordered integrals and [〈x, d〉] =
{〈x1, d1〉, 〈x2, d2〉, ...〈xk, dk〉} represents the configuration
of bonds at different times. Since a configuration of bonds
also requires the information of the times where the bonds are
inserted we label the configuration as [x, d, t]. An illustration
of a bond configuration is shown in Fig. 1. Each bond repre-
sents the operator Hx,d that is present inside the trace in (3).
It can be shown that the traces that appear in (3) are always
positive [44, 45].

We can imagine Hx,d as creating a quantum entanglement
between the fermions at x and x + d̂. Thus, all spatial sites
connected by bonds to each other at various times become
entangled with each other. Such a group of entangled sites
can be defined as a fermion bag. For the bond configuration
in Fig. 1 we identify four fermion bags as shown in Fig. 2.
When two bonds x, d and x′, d′ do not share a site between
them the bond Hamiltonians commute, i.e., [Hx,d, Hx′,d′ ] =
0. This implies that the weight of the bond configuration can
be written as a product of weights from fermion bags.

Since the space-time density of bonds is a physical quan-
tity related to the energy density of the system [42], for ev-
ery coupling V we expect a fixed density of bonds. This im-
plies that we can use the temperature as a parameter to con-
trol the size of fermion bags. At high temperatures we will
have fewer bonds and many small fermion bags. Note that lat-
tice sites that are not connected to any bonds form their own
fermion bags. As the temperature is lowered fermion bags
will begin to merge to form a single large fermion bag. At
very low temperatures there will only be a few isolated small
fermion bags. This suggests that at some optimal tempera-
ture the fermion bags may efficiently break up the system into
smaller regions that do not depend on the system size. Even
at low temperatures, we may be able to divide the imaginary
time axis into many time-slices and update a single time-slice
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FIG. 1. An example configuration. The
horizontal axis labels the spatial sites, the
vertical axis is imaginary time.
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FIG. 2. The bonds in this configuration
form four fermion bags between t = 0
and t = β.
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FIG. 3. Timeslices are added and MT and MB re-
gions defined. Fermion bags are highlighted in the
MT region, and the current update block is shaded.

efficiently. This is illustrated in Fig. 3, where the imaginary
time extent is divided into four-time slices and in the shaded
time-slice there are eight fermion bags, instead of the four
shown in Fig. 2. While there seems to be a connection of the
fermion bag size to a notion of a percolation transition, as far
as we know nothing physical occurs at this transition.

In order to test if the maximum fermion bag size remains
independent of the lattice size even for large lattices we have
studied the t−V model (2) on a square lattice near its critical
point. Taking β = 4.0 we divided the imaginary time direc-
tion into 16 time-slices and studied the fermion bag size as a
function of the lattice size. For equilibrated configurations of
L = 48, 64 and 100, the average maximum fermion bag size
within a time slice was about 30–independent of L. Further
tests suggests that the optimal temperature is roughly 0.25.
Since bond insertions in different fermion bags commute with
each other, we can efficiently update fermion bags in space-
time blocks (shown as a box in the shaded time slice in Fig. 3)
involving 30 to 60 spatial sites within each time slice. During
this update the effects of the bonds outside this block are taken
into account through the fixed N ×N matrix as we discuss in
the next section.

III. ALGORITHM AND UPDATES

We now discuss our Monte Carlo algorithm to calculate the
correlation observable

〈C〉 = Tr
(
Φ(0,0)Φ(L/2,0)e

−βH) /Tr
(
e−βH

)
. (4)

to illustrate the advantages of the fermion bag approach. This
observable is used in the next section to study the quantum
critical behavior of the t − V model. In our algorithm we
generate configurations ([x, d, t]; t0) in two sectors: the parti-
tion function sector (n = 0) with weight Ω0([x, d, t]; t0) and
the observable sector (n = 1) with weight fΩ1([x, d, t]; t0)
where

Ωn([x, d, t]; t0) = Tr [Hxk,dk ...Cn...Hx2,d2Hx1,d1 ] (5)

Here 0 ≤ t0 ≤ β is a time where the operator Cn is intro-
duced. In the partition function sector C0 = I (the identity
operator) and in the observable sector C1 = Φ(0,0)Φ(L/2,0).
The factor f > 0 is chosen so that the two sectors can be sam-
pled with roughly equal probabilities. We record the number

N =
Ω1([x, b, t]; t0)

Ω0([x, b, t]; t0) + fΩ1([x, b, t]; t0)
(6)

for each configuration generated. It is easy to prove that
〈C〉 = 〈N〉/(1− f〈N〉).

We use four different types of updates to generate the con-
figurations ([x, d, t]; t0) in the two sectors, which are de-
tailed in [46]. Each sweep consists of at least one of each
of these four updates. The two most time intensive up-
dates are the sector-update and the bond-update: the sector-
update flips the sector n→ 1− n while keeping ([x, d, t]; t0)
fixed, and the bond-update changes the entire bond con-
figuration [x, d, t] ↔ [x′, d′, t′] while keeping t0 and n
fixed. For these updates we need to compute the ratio R =
Ωn ([x, b, t]; t0) /Ω′n ([x′, b′, t′]; t0) to calculate the transition
probabilities in the Metropolis accept/reject step. Since the
sector update is a special case of the bond update we only fo-
cus on the details of the bond updates. Using the BSS formula
[47] we can show

Ωn ([x, t, b]; t0) = det (1N +Bxk,dk ...On...Bx2,d2Bx1,d1) ,
(7)

where 1N , Bxi,di and On are all N × N matrices with rows
and columns labeled by spatial lattice sites. The matrix 1N is
the identity matrix, while Bxi,di is the identity matrix except
in a 2 × 2 block labeled by the rows and columns of the sites
that touch the bond 〈xi, di〉. Within this block, Bxi,di takes
the form

Bx,d =

(
cosh 2α ηx,d sinh 2α

ηx,d sinh 2α cosh 2α

)
. (8)

Finally, the matrixOn depends on the sector n and is given by
O0 = 1N and (O1)x,y = δx,y − 2δx,(0,0) − 2δx,(L/2,0).

Before we begin the bond update we divide the configu-
ration space into time-slices of width 0.25 with t0 chosen to
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FIG. 4. Plot showing β = L equilibration of the total number of
bonds Nb in a bond configuration starting from zero, as a function of
Monte Carlo sweeps. The horizontal lines show the expected equi-
librated values. The time for a single bond-update on a single core
are approximately 30 days for L = 100, 30 hours for L = 64, and 4
hours for L = 48. Inset shows equilibration at L = 100, β = 4.

be at the beginning of the first time slice. We then update
bonds within each time-slice sequentially. During the update
of a time-slice we define twoN×N matrices: the background
matrixMB (which is a product of all of theBx,d matrices out-
side the selected time-slice and On), and the time-slice matrix
MT , which is the product of all the Bx,d matrices within the
time-slice being updated. Figure 3 shows what contributes to
MB and MT . When the configuration of bonds within the
time-slice is changed then onlyMT changes toM ′T . The ratio
R is given by

R =
det(1N +MBM

′
T )

det(1N +MBMT )
= det (1N +GB∆) , (9)

where we have defined two new N × N matrices GB =
(1N +MBMT )

−1
MBMT and ∆ =

(
M−1T M ′T − 1N

)
.

Since the bond matrices Bx,d in different fermion bags com-
mute, it is easy to verify that ∆ is non-zero only within a
block which contains spatial sites connected to fermion bags
that change. If we randomly choose a spatial block contain-
ing about 30− 60 sites and focus on updating the bonds only
within that block, during such a block-update the size of the
matrix ∆ cannot be greater than the sum of the sites in the
fermion bags that touch the sites within the block. We refer to
this set of sites, which can be larger than the block size, as a
super-bag and denote its size as s. Since ∆ is non-zero only
in an s× s block, it is easy to show that the computation of R
(the ratio of the weight of the current configuration with that
of the background configuration that existed at the time when
the block update began) using (9), reduces to the computation
of the determinant of an s × s matrix. Since GB and MT

are fixed matrices during the entire block-update, they can be
computed and stored. All proposals to update the current con-
figuration within the block reduce to taking the determinant of

an s × s matrix, independent of system size. Details for how
to update GB in a stable way can be found in [46].

The time to complete a single sweep with our algorithm
scales as βN3, which is similar to the traditional auxiliary
field algorithms. However, using the idea of fermion bags we
have reduced the prefactor significantly as explained in [46].
In Fig. 4 we show equilibration of Nb (the total number of
bonds in a configuration) as a function of sweeps for β =
L = 48, 64, 100 and V = 1.304t. Although the L = 100
data has not equilibrated, there is no bottleneck (see inset of
Fig. 4). We estimate the bond density at equilibrium to be
Nb/βL

2 ≈ 2.7, which means at L = β = 100 we will have
roughly 2.7 million bonds after equilibration. A single sweep
will thus roughly require a month on a single 3GHz CPU core.

IV. RESULTS AT CRITICALITY

Using the algorithm described above, we have studied the
two dimensional t − V model and computed the critical ex-
ponents at the quantum phase transition between the massless
and the massive fermion phases. These critical exponents are
expected to belong to the Ising Gross-Neveu universality class
with Nf = 1 four-component Dirac fermions [48–50]. For
large values of L we expect the observable 〈C〉 to scale as
L−4 in the massless phase and to saturate to a constant in the
massive phase. In the critical region (V ≈ Vc and large values
of L) we expect 〈C〉 to satisfy the leading critical finite size
scaling relation [51, 52]

〈C〉 =
1

L1+η
f
(

(V − Vc)L1/ν/t
)
. (10)

Our Monte Carlo results are consistent with the expectations.
Table I shows our results for 〈C〉 as a function of V and

L near the critical point where we set β = L. Approximating
f(x) = f0+f1x+f2x

2+f3x
3, we perform a seven parameter

combined fit of the data given in Table I, except the L = 32
data at V = 1.4, which does not seem to lie within the scaling
window. From the fit we obtain η = 0.54(6), ν = 0.88(2),
Vc = 1.279(3)t, f0 = 0.77(11), f1 = 0.30(4), f2 = 0.052(8)
and f4 = 0.0033(6). The χ2/DOF for the fit is 0.8. We show
the data and the scaling fit in the left plot of Fig. 5. Theoretical
exponent predictions are compatible with our results [48, 49].

V/t L = 20 L = 24 L = 32 L = 48

1.200 0.00298(3) 0.00184(3) 0.00080(1) −
1.250 0.00545(6) 0.00380(5) 0.00204(2) 0.00074(2)
1.270 0.00699(8) 0.00517(7) 0.00315(4) 0.00151(3)
1.296 0.00946(10) 0.00740(9) 0.00512(6) 0.00339(5)
1.304 0.01022(8) 0.00844(9) 0.00611(6) 0.00423(5)
1.350 0.01705(16) 0.01522(16) 0.01426(18) −
1.400 0.02707(20) 0.02630(35) 0.02637(38) −

TABLE I. Our Monte Carlo results for the t-V model (2) on a square
lattice with 20 ≤ L ≤ 48 and β = L.

The t− V model we study here has been studied earlier on
smaller lattices by two groups. Not surprisingly, the critical
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point and the critical exponents measured are in disagreement
with each other. The first calculation was performed on lat-
tices up toN = 400 sites and it was found that Vc = 1.304(2),
η = 0.318(8) and ν = 0.80(6) [23]. In a later calculation lat-
tices up to N = 484 sites were used and it was found that
Vc = 1.296(1), η = 0.43(2) and ν = 0.79(4) [24].

Our results are obtained from lattice sizes that are five times
larger than earlier studies and suggest a lower critical point
and so a higher value for the exponent η. The value of ν also
seems slightly higher but not inconsistent with previous re-
sults. If we exclude the larger lattice results we do find con-
sistency with previous results. For example, if we assume
Vc/t = 1.296 or 1.304 and fit our data to the form L−(1+η),
after dropping larger values of L we get η = 0.41(4) and
η = 0.31(4) respectively with a reasonable χ2/DOF (see
Figs. 6, 7). However, the fits fail dramatically if L = 32 and
L = 48. On the other hand at V = 1.27t the data fits well
for larger values of L and gives us η = 0.74(2). If we force
Vc = 1.27t in the combined fit, the χ2/DOF increases to 1.3.

V. CONCLUSIONS

In this work we have demonstrated that the idea of fermion
bags can be combined with standard Monte Carlo techniques

to study large system sizes in continuous time. We studied the
quantum critical behavior in the simplest Ising Gross-Neveu
universality class and extracted the critical exponents using
lattice sizes that were five times larger than previous work.
Even larger sizes are feasible with supercomputers available
today. With additional research, the idea of fermion bags
should be applicable to a wide class of models.
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