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Studies of the reaction γπ → ππ, in the context of the ongoing Primakoff program of the COM-
PASS experiment at CERN, give access to the radiative couplings of the ρ(770) and ρ3(1690) reso-
nances. We provide a vector-meson-dominance estimate of the respective radiative width of the ρ3,
Γρ3→πγ = 48(18) keV, as well as its impact on the F -wave in γπ → ππ. For the ρ(770), we establish
the formalism necessary to extract its radiative coupling directly from the residue of the resonance
pole by analytic continuation of the γπ → ππ amplitude to the second Riemann sheet, without any
reference to the vector-meson-dominance hypothesis.
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I. INTRODUCTION

Apart from the two-photon decay of the neutral pion,
the process γπ → ππ is the simplest manifestation of the
Wess–Zumino–Witten anomaly [1, 2]. The leading order
in the chiral expansion [3–5],

F3π =
eNc

12π2F 3
π

= 9.76(3)GeV−3, (1)

is determined by the number of colors Nc, the elec-
tric charge e =

√
4πα, and the pion decay constant

Fπ = 92.28(9)MeV [6]. Given that early measure-
ments, most prominently F3π = 12.9(1.0)GeV−3 [7], sug-
gested some tension with the low-energy theorem, cor-
rections beyond the leading order (1) have been worked
out [8–13], with the net result that higher-order and
electromagnetic corrections reduce the value to F3π =
10.7(1.2)GeV−3. Together with a similar extraction from
π−e− → π−e−π0 [14], leading to F3π = 9.6(1.1)GeV−3,
the low-energy theorem is now tested at the 10% level,
far behind the 1.5%-level accuracy that has been reached
in π0 → γγ [15, 16]. Meanwhile, a first lattice calculation
of γ∗π → ππ has been reported in [17, 18].
In contrast to earlier measurements, the Primakoff

studies at COMPASS cover not only the threshold region
of γπ → ππ, but extend to much higher center-of-mass
energies. As pointed out in [19], this allows one to use
the ρ resonance as a lever to vastly increase the statistics
of the anomaly extraction, combining constraints from
analyticity, unitarity, and crossing symmetry into a two-
parameter description of the amplitude whose normal-
ization coincides with F3π . More recently, interest in
the γπ → ππ reaction has been triggered by its relation
to the hadronic-light-by-light contribution to the anoma-
lous magnetic moment of the muon, where it appears as
a crucial input quantity for a data-driven determination
of the π0 → γ∗γ∗ transition form factor [20], which in
turn determines the strength of the pion-pole contribu-
tion in a dispersive approach to hadronic light-by-light
scattering [21–25].

In fact, the kinematic reach of the COMPASS exper-
iment extends up to and including the ρ3(1690), the
first resonance in the F -wave. In this paper, we esti-
mate its impact on the γπ → ππ cross section based
on vector-meson-dominance (VMD) assumptions, which
corresponds to an estimate of the radiative width Γρ3→πγ ,
see Sect. II. For the ρ(770) such a simplified approach
is not adequate anymore, precisely due to the amount
of statistics available at the ρ peak that should allow
one to significantly sharpen the test of the chiral low-
energy theorem in the future [26]. Instead, the analytic
continuation of the γπ → ππ amplitudes that underlie
this extraction, in combination with the known ρ-pole
parameters and residues from ππ scattering [27, 28], de-
termines the ρπγ coupling constant, gρπγ , once the free
parameters of the representation have been fit to the cross
section. The precise prescription how to extract the ra-
diative coupling of the ρ, defined through the residue of
the pole in a model-independent way, is spelled out in
Sect. III. Combining all currently available information,
prior to the direct COMPASS measurement, we predict
the line shape of the cross section in Sect. IV. A short
summary is provided in Sect. V.

II. VECTOR MESON DOMINANCE

Throughout, we follow the conventions of [19]. The
amplitude for the process

γ(q)π−(p1) → π−(p2)π
0(p0) (2)

is decomposed according to

Mγπ→ππ(s, t, u) = iǫµναβǫ
µpν1p

α
2 p

β
0F(s, t, u), (3)

in terms of the scalar function F(s, t, u), the photon po-
larization vector ǫµ, and Mandelstam variables chosen as
s = (q + p1)

2, t = (p1 − p2)
2, and u = (p1 − p0)

2, with
s+ t+ u = 3M2

π, particle masses defined by the charged
states, and a relation to the center-of-mass scattering an-
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gle z = cos θ according to

t = a(s) + b(s)z, u = a(s)− b(s)z,

a(s) =
3M2

π − s

2
, b(s) =

s−M2
π

2
σπ(s),

σπ(s) =

√

1− 4M2
π

s
. (4)

Crossing symmetry implies that the scalar function
F(s, t, u) is fully symmetric in s, t, u. In the conventions
of (3) the cross section becomes

σ(s) =
(s− 4M2

π)
3/2(s−M2

π)

1024π
√
s

∫ 1

−1

dz
(

1−z2
)

|F(s, t, u)|2.
(5)

Later, we also need the partial-wave decomposition [29]

F(s, t, u) =
∑

odd l

fl(s)P
′

l (z), (6)

where P ′

l (z) denotes the derivative of the Legendre poly-
nomials, and the inversion is given by

fl(s) =
1

2

∫ 1

−1

dz
(

Pl−1(z)− Pl+1(z)
)

F(s, t, u). (7)

Elastic unitarity relates these partial waves to the isospin
I = 1 ππ phase shifts δ1l (s),

MI=1
ππ (s, t) = 32π

∑

odd l

(2l + 1)t1l (s)Pl

(

1 +
2t

s− 4M2
π

)

,

t1l (s) =
e2iδ

1
l
(s) − 1

2iσπ(s)
, (8)

by means of

Im fl(s) = σπ(s)
(

t1l (s)
)

∗

fl(s)θ
(

s− 4M2
π

)

. (9)

The fact that the phase of fl(s) coincides with δ1l (s)
is a manifestation of Watson’s final-state theorem [30].
Finally, the dominant electromagnetic correction [12]
amounts to

F(s, t, u) → F(s, t, u)− 2e2F 2
π

t
F3π. (10)

A. ρ(770)

The VMD amplitude for γπ → ππ can be constructed
by combining the ρ → ππ amplitude from

Lρππ = gρππǫ
abcπa∂µπbρcµ, (11)

with isospin indices a, b, c, together with

Mρπγ = egρπγǫµναβǫ
µ
ρ ǫ

ν
γp

α
1 p

β
2 , (12)

γ

ω

π

π

π

ρ3

FIG. 1: VMD mechanism for the ρ3 contribution to γπ → ππ.

where p1 and p2 refer to the momenta of the pion and the
photon, and ǫµρ , ǫ

ν
γ to the ρ and γ polarization vectors.

The result reads

fVMD
1 (s) =

2egρπγgρππ
M2

ρ − iMρΓρ − s
, (13)

where the finite width of the ρ has been taken into
account by means of a Breit–Wigner propagator. In
Sect. III we will reinterpret both couplings, gρππ and
gρπγ , as residues of the respective poles, but for the mo-
ment we first collect the phenomenological information
available when treating the ρ as a narrow resonance. In
this approximation, the width becomes

Γρ→ππ =
|gρππ|2
48πM2

ρ

(

M2
ρ − 4M2

π

)3/2
, (14)

i.e. |gρππ| ∼ 5.95(2), with masses and widths as listed
in [6] (accounting for the different phase space, the results
for charged and neutral channels are virtually identical).
Similarly, the radiative decay width becomes

Γρ→πγ =
e2|gρπγ |2
96πM3

ρ

(

M2
ρ −M2

π

)3
. (15)

Within the narrow-width approximation, one could then
extract |gρπγ | from the measured cross section for γπ →
ππ and thereby determine Γρ→πγ . At a similar level
of accuracy, SU(3) symmetry (see e.g. [31]) suggests
Γρ→πγ = Γω→π0γ/9 = 79(2) keV, indeed close to
Γρ0→π0γ = 69(9) keV, Γρ±→π±γ = 68(7) keV [6]. A
model-independent extraction of the radiative coupling
of the ρ from γπ → ππ will be discussed in Sect. III.

B. ρ3(1690)

For the generalization to the ρ3(1690) contribution to
γπ → ππ and the determination of its radiative width, we
follow [32, 33]. To this end, we first remark that G-parity
dictates the photon in this process to have isoscalar quan-
tum numbers. In the VMD picture, it therefore couples
to the ρ3 and a pion predominantly via the ω meson (as-
suming the φ to be negligible due to OZI suppression).
As we aim for a prediction of the radiative decay of the
ρ3, we in particular need to assume strict VMD with-
out a direct ρ3πγ coupling. Figure 1 therefore suggests
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that we need to determine the coupling constants gρ3ππ,
gρ3πω, as well as gωγ .
Starting from [33]

Lρ3
=

gρ3ππ

4F 2
π

〈ρµνλ

[

∂µ
π, ∂ν∂λ

π
]

〉

+
gρ3πω

2Fπ
ǫλαβγ〈ρµνλ∂

µ∂απ〉∂ν∂βωγ ,

Lωγ = −eM2
ω

gωγ
Aµωµ, (16)

with spin-3 fields ρµνλ = ρaµνλτ
a, pion isotriplet π =

πaτa, the isoscalar vector field ωµ, and the electromag-
netic field Aµ, one finds the partial decay widths

Γρ3→ππ =
|gρ3ππ|2

4480πF 4
πM

2
ρ3

(

M2
ρ3

− 4M2
π

)7/2
,

Γρ3→πω =
|gρ3πω|2

13440πF 2
πM

7
ρ3

λ
(

M2
ρ3
,M2

ω,M
2
π

)7/2
, (17)

where λ(x, y, z) = x2 + y2 + z2 − 2(xy + xz + yz). To-
gether withMρ3

= 1688.8(2.1)MeV, Γρ3
= 161(10)MeV,

BR(ρ3 → ππ) = 23.6(1.3)%, and BR(ρ3 → πω) =
16(6)% [6] this fixes the parameters according to

|gρ3ππ| = 0.056(2), |gρ3πω| = 1.2(2)GeV−2. (18)

Similarly, one then finds for the radiative width

Γρ3→πγ =
e2|gρ3πω|2

13440πF 2
π |gωγ |2M7

ρ3

(

M2
ρ3

−M2
π

)7
, (19)

and with |gωγ | = 16.7(2) extracted from

Γω→e+e− =
e4(M2

ω − 4m2
e)

1/2

12π|gωγ|2
(

1 +
2m2

e

M2
ω

)

, (20)

we obtain the prediction

Γρ3→πγ = 48(18) keV. (21)

This result lies slightly higher than the quark-model es-
timate Γρ3→πγ = 21 keV [34]. Finally, the resonant con-
tribution to the γπ → ππ F -wave becomes

fVMD
3 (s) =

egρ3ππgρ3πω(s− 4M2
π)(s−M2

π)
2

60F 3
πgωγs(M2

ρ3
− iMρ3

Γρ3
− s)

. (22)

III. RADIATIVE COUPLING OF THE ρ(770)

A. ππ scattering

In a model-independent way, the properties of the
ρ(770) are encoded in the pole position and residues of
the S-matrix on the second Riemann sheet. The prime
process to determine the parameters is I = 1 ππ scatter-
ing, whose partial-wave amplitude in the vicinity of the
pole can be written as

t11,II(s) =
g2ρππ(s− 4M2

π)

48π(sρ − s)
, sρ =

(

Mρ−i
Γρ

2

)2

, (23)

Ref. Mρ [MeV] Γρ [MeV] |gρππ| arg(gρππ) [40]

[28], GKPY 763.7+1.7
−1.5 146.4+2.0

−2.2 6.01+0.04
−0.07

(

− 5.3+1.0
−0.6

)

◦

[28], Roy 761+4
−3 143.4+3.8

−4.6 5.95+0.12
−0.08

(

− 5.7+1.1
−1.4

)

◦

[27], Roy 762.4(1.8) 145.2(2.8)

TABLE I: Pole parameters of the ρ(770) from dispersion re-
lations. The phase arg(gρππ) in the last column is only deter-
mined modulo 180◦.

where the conventions have been chosen in such a way
that in the narrow-width limit the coupling gρππ matches
onto the Lagrangian definition (11). Elastic unitarity
for ππ scattering relates the amplitudes on the first and
second Riemann sheets according to

t11,I(s)− t11,II(s) = −2σπ(s)t11,I(s)t
1
1,II(s), (24)

where we have introduced [35]

σπ(s) =

√

4M2
π

s
− 1, σπ(s± iǫ) = ∓iσπ(s), (25)

so that the pole parameters can be determined from the
condition that t11,I(sρ) = 1/(2σπ(sρ)) = −i/(2σπ(sρ))

(since Im sρ < 0), once a reliable representation of t11(s)
on the first sheet is available. Such a representation is
provided by dispersion relations, in the form of Roy equa-
tions [36–38] or variants thereof, the so-called GKPY
equations [39]. The latter produce the pole parameters
given in the first line of Table I, in good agreement with
the determination from Roy equations, but with smaller
uncertainties. In the following, we use the GKPY pa-
rameters from [28] together with the I = 1 phase shifts
from [39]. Within uncertainties, this covers similar de-
terminations listed in the table. Note that gρππ is a com-

plex coupling, with a phase that is observable (modulo
180◦), although Table I shows that this phase is rather
small [40].

B. Pion form factor

The simplest quantity that probes the electromagnetic
interactions of the pion is its form factor FV

π (s). Given
the wealth of experimental data, it provides an ideal test-
ing ground to study how well VMD predictions fare when
confronted with real data, in this case for gργ instead of
gρπγ . In analogy to (24), the elastic unitarity relation,

ImFV
π (s) = σπ(s)

(

t1l (s)
)

∗

FV
π (s)θ

(

s− 4M2
π

)

, (26)

defines the analytic continuation of the form factor onto
the second sheet

FV
π,I(s)− FV

π,II(s) = −2σπ(s)FV
π,I(s)t

1
1,II(s). (27)

In the vicinity of the pole we may write

FV
π,II(s) =

gρππ
gργ

sρ
sρ − s

, (28)
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where the conventions are chosen in such a way that in
the narrow-width and SU(3) limit gργ = gωγ/3, cf. (16).
Altogether one finds

1

gργgρππ
= i

σ3
π(sρ)

24π
FV
π,I(sρ), (29)

which allows one to extract gργ from the form factor
evaluated at sρ on the first sheet and the previously
determined gρππ. The dispersive formalism for the an-
alytic continuation to sρ has been studied in detail in
the literature, see [25, 41–49], and data abound, mostly
motivated by the ππ contribution to hadronic vacuum
polarization in the anomalous magnetic moment of the
muon. In this way, the dominant uncertainties actually
arise from the error in gρππ as well as the systematics of
the fit, e.g. whether ρ–ω mixing (as present in the fit to
e+e− data [50–55], but not in τ → ππν [56]) is included
in the definition of the form factor.
In the end, the results of the fits fall within the range

|gργ | = 4.9(1), so that, in this case, the VMD expecta-
tion, |gVMD

ργ | = |gωγ |/3 = 5.6(1), agrees with the full
result at the 10% level (strict VMD as derived from
ρ → e+e− in analogy to (20), without SU(3) assump-
tions, even produces |gVMD

ργ | = 5.0). The phase comes
out around arg(gρππgργ) ∼ −7◦, so that gργ is almost
real (with the same sign as the one chosen for gρππ).

C. γπ → ππ

The derivation for γπ → ππ proceeds in close analogy
to the pion form factor. From the unitarity relation (9)
we find the analytic continuation

f1,I(s)− f1,II(s) = −2σπ(s)f1,I(s)t
1
1,II(s), (30)

and writing

f1,II(s) =
2egρπγgρππ

sρ − s
(31)

in the vicinity of the pole (to match onto (13) in the
VMD limit), the analog of (29) becomes

egρπγ
gρππ

= i
sρσ

3
π(sρ)

48π
f1,I(sρ). (32)

However, the analytic continuation is less straightfor-
ward than for FV

π (s), due to the fact that, in contrast
to the form factor, the scattering process γπ → ππ pro-
duces a left-hand cut, which, in addition, needs to be con-
structed in such a way that crossing symmetry is main-
tained. The corresponding formalism has been derived
in [19]. Starting from the decomposition

F(s, t, u) = F(s) + F(t) + F(u), (33)

which holds if imaginary parts from partial waves with
l ≥ 3 are neglected, it was shown that the solution of
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FIG. 2: Basis functions F
(i)
2 for γπ → ππ. The black solid

(red dashed) lines refer to the real (imaginary) parts.

the dispersion relation for F(s) can be represented in the
form

F(s) = C
(1)
2 F (1)

2 (s) + C
(2)
2 F (2)

2 (s)

=
1

3

(

C
(1)
2 + C

(2)
2 s

)

+
1

π

∫

∞

4M2
π

ds′

s′2
s2

s′ − s

×
(

C
(1)
2 ImF (1)

2 (s′) + C
(2)
2 ImF (2)

2 (s′)
)

, (34)

where C
(i)
2 refer to the subtraction constants in the twice-

subtracted dispersion relation. These are the free param-

eters of the fit. In contrast, the basis functions F (i)
2 (s)

can be calculated once and for all, for a given input of
the ππ phase shift δ11(s) (the results for the phase shift
from [39] are depicted in Fig. 2). The partial wave f1(s)
follows from

f1(s) =
3

4

∫ 1

−1

dz
(

1− z2
)(

F(s) + F(t) + F(u)
)

= C
(1)
2 + C

(2)
2 M2

π +
1

π

∫

∞

4M2
π

ds′ K(s, s′)

×
(

C
(1)
2 ImF (1)

2 (s′) + C
(2)
2 ImF (2)

2 (s′)
)

, (35)
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with integration kernel

K(s, s′) =
s2

s′2(s′ − s)
+

3

b(s)

{

(

1− x2
s

)

Q0(xs) + xs

}

− 2

s′
+

s− 3M2
π

s′2
, xs =

s′ − a(s)

b(s)
, (36)

and the lowest Legendre function of the second kind

Q0(z) =
1

2

∫ 1

−1

dx

z − x
,

Q0(z ± iǫ) =
1

2
log

∣

∣

∣

∣

1 + z

1− z

∣

∣

∣

∣

∓ i
π

2
θ
(

1− z2
)

. (37)

For the GKPY ρ parameters from [28] we obtain

f1,I(sρ) = C
(1)
2

(

0.588(5) + 0.193(7)i
)

− C
(2)
2

(

0.071(7) + 0.570(5)i
)

GeV2, (38)

where the uncertainties reflect the propagated errors on
the pole parameters only (when experiment reaches few-
percent accuracy, also the uncertainties in the ππ phase

shift will have to be included). Once the C
(i)
2 are fit

to cross-section data, this relation determines f1,I(sρ),
and thus, by means of (32), the radiative coupling of the
ρ(770) (including its phase). The current knowledge of
these couplings, see (40) below, indicates that, similarly
to gργ , gρπγ is almost real with the same sign as gρππ.

IV. LINE SHAPE OF γπ → ππ

Currently available information on the radiative cou-
pling of the ρ(770) [6] largely derives from the high-
momentum Primakoff experiments [57–59], while no ex-
perimental result is available for the ρ3(1690) at all.
Thanks to its high-statistics data, COMPASS has the
unique opportunity to determine these couplings either
for the first time or with unprecedented accuracy; com-
pare their results for the radiative widths of the a2(1320)
and the π2(1670) as extracted from the similar Primakoff
reaction γπ → 3π [60]. For the ρ(770) such a measure-
ment is intimately related to the determination of the chi-
ral anomaly, and, building upon [19], the previous section
establishes the formalism to extract both simultaneously
in a consistent, model-independent way.
In this section, we reverse the argument and collect the

currently available information to predict the line shape
to be expected in the γπ → ππ cross section. First of

all, the combination C
(1)
2 +C

(2)
2 M2

π is related to the chi-
ral anomaly, but only up to an additional quark-mass
renormalization

C
(1)
2 + C

(2)
2 M2

π = F̄3π ≡ F3π

(

1 + 3M2
πC̄

)

, (39)

estimated from resonance saturation to 3M2
πC̄ =

6.6% [8]. We use the corresponding central value, but,

given that we wish to extract F̄3π from the data, as-
sign a 10% uncertainty, F̄3π = 10.4(1.0)GeV−3, to re-
flect the level of accuracy that previous measurements
have established. The second combination of coupling
constants corresponds to the radiative coupling of the
ρ(770), for which we take the SU(3) VMD result |gρπγ | =
0.79(8)GeV−1, but, in view of the results for the pion
form factor in Sect. III B, attach a 10% uncertainty as
well. These constraints translate into

C
(1)
2 = 9.9(1.0)GeV−3, C

(2)
2 = 24.1(2.5)GeV−5,

(40)

where the uncertainty in C
(1)
2 and C

(2)
2 is entirely dom-

inated by F̄3π and |gρπγ |, respectively. For the ρ3(1690)
we use the parameters as given in Sect. II B.

The twice-subtracted dispersion relation (34) is per-

fectly suited to extract the coefficients C
(i)
2 from cross-

section data up to and including the ρ resonance, but
displays a pathological high-energy behavior. To obtain
a description that remains valid in the whole region below

2GeV, we implement a version of the basis functions F (i)
2

with a relatively low cut-off parameter Λ = 1.3GeV that
leaves the low-energy physics virtually unaffected, but al-
lows us to introduce a high-energy completion of the re-
sulting partial wave f1(s) ∼ 1/s, in agreement with gen-
eral arguments based on the Froissart bound [61]. In ad-
dition to the P -wave, the symmetrized version (33) pro-
duces non-vanishing contributions to fl(s) for all (odd)
l in the partial-wave projection. However, we checked
that the corresponding F - and higher partial waves can
be ignored, and similarly effects from excited ρ states, ρ′

and ρ′′, are likely negligible [32, 62] (assuming that these
resonances couple with a comparable relative strength as
in the pion form factor [56]). While inelastic corrections
included directly in the dispersive description by means
of the inelasticity parameter are typically small [33], such
excited ρ states provide an indicator for the size of the
dominant inelasticities from 4π intermediate states; see
also [45].1 Finally, the narrow-resonance approximation
for the ρ3 is strictly meaningful only at the resonance
mass, while the additional momentum dependence in (22)
distorts the resonance shape. To obtain a more realistic
line shape we follow [63, 64] and introduce centrifugal-
barrier factors, which amounts to the replacement

fVMD
3 (s) → fVMD

3 (s)
B3(qf(s)R)B3(qi(s)R)

B3(qf(M2
ρ3
)R)B3(qi(M2

ρ3
)R)

,

(41)

with B3(x) = 15/
√
225 + 45x2 + 6x4 + x6, initial- and

1 We wish to emphasize that our dispersive representation of the
P -wave is very reliable mostly below 1GeV, and the model for
the F -wave around the ρ3 resonance. Despite the indications
for comparably smaller ρ′, ρ′′ contributions, we do not claim to
make a high-precision prediction of the line shape between 1 and
1.5GeV.
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FIG. 3: Total cross section for γπ → ππ. The dashed line
refers to our central solution, using (18) and (40).

final-state momenta

qi(s) =
s−M2

π

2
√
s

, qf(s) =

√

s

4
−M2

π , (42)

and a scaleR ∼ 1 fm. The resulting cross section is shown
in Fig. 3. Note in particular that the peak of the F -wave
cross section,

σF

(

M2
ρ3

)

=
3
(

M2
ρ3

− 4M2
π

)3/2(
M2

ρ3
−M2

π

)

896πMρ3

∣

∣f3
(

M2
ρ3

)
∣

∣

2

=
56πM2

ρ3

(

M2
ρ3

−M2
π

)2

Γρ3→ππΓρ3→πγ

Γ2
ρ3

= 1.7(6)µb, (43)

amounts to roughly 6% of the dominant ρ(770) peak.
While currently the uncertainties are large, an improved
measurement of the energy dependence would immedi-
ately translate to better constraints on the underlying
QCD parameters, most notably the chiral anomaly F3π,
but also, as we have shown in this paper, the radiative
couplings of the ρ(770) and ρ3(1690) resonances.

V. SUMMARY

Extending the dispersive formalism for γπ → ππ de-
veloped in [19], we have worked out the analytic contin-
uation necessary to extract the radiative coupling of the
ρ(770), as defined by the residue at its resonance pole.
Throughout, we have indicated the correspondence to the
parameters that would occur within a narrow-resonance
description, and collected the current phenomenological
information. Combined with a VMD estimate for the
ρ3(1690), we have obtained a prediction for the cross sec-
tion of γπ → ππ up to 2GeV, with uncertainties domi-
nated by the current knowledge of the underlying param-
eters: the chiral anomaly F3π and the radiative couplings
of the ρ(770) and ρ3(1690) resonances.

This prediction can be considered a benchmark for
the ongoing Primakoff program at COMPASS. Measur-
ing the cross section with reduced uncertainties compared
to Fig. 3 would allow one to test the narrow-width esti-
mate of the ρ3 → πγ decay rate, Γρ3→πγ = 48(18) keV,
and to improve the determination of the chiral anomaly
and the ρ → πγ coupling, both without relying on model
assumptions while still profiting from the full statistics
of the ρ resonance. Such improved experimental infor-
mation on γπ → ππ is particularly timely given its rela-
tion to hadronic light-by-light scattering in the anoma-
lous magnetic moment of the muon as well as recent lat-
tice calculations. We look forward to the results of the
ongoing analysis of the π−π0 channel at COMPASS that
will provide an important step in this direction.
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073008 (2005) [hep-ph/0402285].
[45] C. Hanhart, Phys. Lett. B 715, 170 (2012)

[arXiv:1203.6839 [hep-ph]].
[46] B. Ananthanarayan, I. Caprini, D. Das and I. Sen-

titemsu Imsong, Phys. Rev. D 89, 036007 (2014)
[arXiv:1312.5849 [hep-ph]].

[47] B. Ananthanarayan, I. Caprini, D. Das and I. Sen-
titemsu Imsong, Phys. Rev. D 93, 116007 (2016)
[arXiv:1605.00202 [hep-ph]].

[48] M. Hoferichter, B. Kubis, J. Ruiz de Elvira, H.-W. Ham-
mer and U.-G. Meißner, Eur. Phys. J. A 52, 331 (2016)
[arXiv:1609.06722 [hep-ph]].

[49] C. Hanhart, S. Holz, B. Kubis, A. Kupść, A. Wirzba
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