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We exploit a conjectured continuity between super Yang-Mills on R3 × S1 and pure Yang-Mills
to study k-strings in the latter theory. As expected, we find that Wilson-loop correlation functions
depend on the N-ality of a representation R to the leading order. However, the next-to-leading
order correction is not universal and is given by the group characters, in the representation R,
of the permutation group. We also study W-bosons in super Yang-Mills and show that they are
deconfined on the string worldsheet, and therefore, can change neither the string N-ality nor its
tension. This phenomenon mirrors the fact that soft gluons do not screen probe charges with non-
zero N-ality in pure Yang-Mills. Finally, we comment on the scaling law of k-strings in super Yang-
Mills and compare our findings with strings in Seiberg-Witten theory, deformed Yang-Mills theory,
and holographic studies that were performed in the ’t Hooft large-N limit.

I. INTRODUCTION

Flux tubes, or strings, are among the most fascinating
objects in physics. They emerge as long-distance phenom-
ena of various field theories, from abelian Higgs model
to quantum chromodynamics (QCD). Although we have
a good understanding of abelian strings (Abrikosov-
Nielsen-Olesen type [1, 2]), QCD strings remain poorly
understood [3, 4], thanks to the strong coupling of QCD.

One of the important questions in Yang-Mills theories
is how the string tension depends on the representation of
the probe charges. The general lore, which is based on a
pure physical argument, is that the string tension cannot
depend on the representation. Instead, it can only depend
on its N-ality. The N-ality of a representation R of su(N)
is defined as the number of boxes in the Young tableau of
R modulo N . The physical argument in pure Yang-Mills
goes as follows: since one can convert one representation
R1 with N-ality k to another representation R2 with the
same N-ality by emitting soft gluons1, the string tension
σk will depend only on the N-ality k and not on the
representation. Unfortunately, it is extremely difficult to
provide a direct mathematical proof of such an intuitive
argument; the strong coupling nature of QCD hinders the
chances to find such proof.

Lattice field theory provides a nonperturbative defini-
tion of strongly coupled theories, and therefore, one hopes
that direct simulations of Yang-Mills theory can provide
complete nonperturbative pictures of QCD strings. Prac-
tical lattice simulations of QCD, however, suffer from lat-
tice artifacts leading to some dependence of the string
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1 The gluons are in the adjoint representation, and hence they have

zero N-ality. Also, remember that in pure Yang-Mills there is no
dynamical matter that can screen the probe charges.

tension on the representation [5–7], which is particularly
evident in the case of a large number of colors. This is be-
cause the relaxation time of higher representation strings
can be exponentially large, which mistakenly can signal
a dependence of the string tension on the representation
rather than its N-ality. Lattice strong coupling expansion,
in addition, suffers from the same artifact [8].

Fortunately, the AdS/CFT correspondence can shed
some light on the question at hand. In particular, it was
shown in [8] (also see [9]) that the expectation value of the
Polyakov’s Loop in a representationR is given by 〈PR〉 =
F (R)e−σkA, where A is the area of the Polyakov’s loop.
Thus, as expected, the string tension depends only on
the N-ality k, while there is a nonuniversal representation
dependent prefactor F (R). This behavior, however, was
shown only in the ’t Hooft large-N limit, leaving behind
the finite N case with no direct answer.

The lack of a direct proof of the expected universal-
ity of string tension, specially for finite N , calls for a
new perspective on the problem. A novel way to ap-
proach strongly coupled pure Yang-Mills is to exploit a
conjectured continuity that first appeared in [10]. This
is a continuity between softly broken (via a mass term)
N = 1 super Yang-Mills on R3 × S1, where S1 is a spa-
tial rather than a thermal circle, and pure Yang-Mills
at finite temperature. According to this continuity, the
quantum phase transition in the former theory is contin-
uously connected to the thermal phase transition in the
latter one. This is illustrated in FIG. 1. At small circle
circumference L and small gaugino mass m (this is the
lower left corner, the red curve, of FIG. 1) the theory is
confining, in a weakly coupled regime, has a preserved
ZN center symmetry, and is under complete analytical
control. Therefore, by varying m or L the theory expe-
riences a quantum phase transition and one goes from a
center-symmetric phase (at small m and L) to a center-
broken phase (larger values of m and L). On the other
hand, as m → ∞ the gaugino decouples and the the-
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FIG. 1. Continuity between mass deformed N = 1 super
Yang-Mills on R3 × S1 and pure Yang-Mills at finite tem-
perature. The red thick curve in the lower left corner is the
phase separation between the center symmetric and center
broken phases in super Yang-Mills on R3 × S1. This part of
the phase diagram is under analytical control since the theory
is in its weakly-coupled semi-classical regime. The black curve
in the upper right corner is the phase separation between the
confined and deconfined phases of the strongly-coupled pure
Yang-Mills. This part of the curve can be envisaged using
lattice Monte Carlo simulations. The dotted curve is conjec-
tured to be smoothly connecting both the weakly coupled and
strongly coupled theories.

ory flows to a pure Yang-Mills over S1 (the right side
in FIG. 1). This is a pure Yang-Mills theory 2 at finite
temperature T = 1/L. This is a strongly coupled theory
whose phase transition can only be inferred from strong
coupling calculations, e.g., lattice simulations. According
to the continuity conjecture in [10], the quantum phase
transition in super Yang-Mills is continuously connected
to the thermal phase transition in pure Yang-Mills. This
continuity is indicated by the dashed line in the interme-
diate region in FIG. 1. Despite the fact that a proof of
the continuity is still lacking, many checks have shown
that various physical observables share the same qualita-
tive behavior in both limits m → 0 and m → ∞. This
includes the nature of phase transition, i.e. first versus
second order [10–13], the dependence of the critical tem-
perature on the θ angle [14], and the dependence of the
fundamental string on temperature [12].

In the present note we push the continuity even fur-
ther: we check whether correlation functions in the mass
deformed N = 1 super Yang-Mills on R3×S1 and in pure
Yang-Mills are continuously connected. This demands
that correlation functions do not experience a phase tran-
sition as long as we do not cross the phase separation line
in FIG. 1. The validity of this conjecture as well as its

2 In the limit m → ∞ there is no dynamical matter. Hence, the
fact that we started with a spatial , rather than a thermal, circle
does not make any difference, since the gauge fluctuations always
obey periodic boundary conditions.

limitations is the main subject of the present work. If this
continuity holds, then it can provide a new venue to ana-
lytically study various observables, including the strings,
which are otherwise very hard to compute directly in the
strongly coupled theory.

There are two types of strings in super Yang-Mills on
R3×S1: the strings on R3 between two probe charges lo-
cated on the R2 plane, which we denote3 by SR3 , and
the strings that wrap around the circle S1, which we
denote by SS1 . According to the continuity picture, the
SS1 strings are the “would be” k-strings in pure Yang-
Mills theory in the limit m → ∞; the S1 circle (which
is a space-like circle) becomes the thermal circle in pure
Yang-Mills in the decoupling limit. This picture is de-
picted in FIG.2.

In particular, in this work we calculate the tension
of these “would be” k-strings in pure Yang-Mills the-
ory. This is carried out by computing the Polyakov-Loop
correlator in super Yang-Mills deep in the weak-coupling
confining regime. This is the Polyakov-loop that wraps
around the spatial S1 circle: PR = TrR exp

[
i
∮
S1 A3

]
,

where A3 is the gauge field component along the cir-
cle and the trace is take in representation R. Be-
cause the theory is in a gaped phase, then for a very
large separation between two Polyakov’s loops one has

limr→∞〈PR(0)P†R(r)〉 = FRe−σRrL, where σR is a con-
stant that can be exactly determined since the theory is
in a calculable regime. According to the conjectured con-
tinuity σR should correspond to the string tension in pure
Yang-Mills that also wraps around S1. Thus, by comput-
ing the trace in any representation R, one can infer the
dependence of the string tension on R. Our calculations
show that for any finite N the string tension σR depends,
to leading order, on the N-ality of the representation R.
The pre-coefficient FR, however, is found to depend on
the representation. Albeit in a weakly coupled regime,
this is the first direct proof of the leading-order indepen-
dence of the string tension of its representation for finite
N .

Our work is organized as follows. In Section II we re-
view the basics of mass deformed super Yang-Mills on
R3 × S1 and set up the notation and convention. Since
this topic has been studied in great details in the lit-
erature, we only provide the necessary formalism that
enable the reader to grasp the main ideas. The main re-
sults of this section are Eqs. 17, 18, and 19. Experts can
skip this section to Section III, where we provide a di-
rect proof that the Polyakov-loop correlator depends, to
leading order, on the N-ality of a representation. In Sec-
tion IV we study the W-bosons on the string worldsheet
of super Yang-Mills and show that these bosons are de-
confined on the string, and therefore, they cannot affect
the string tension or its N-ality. Finally in Section V,

3 The SR3 strings in deformed Yang-Mills theory are thoroughly
studied in [15]. A similar study of SR3 in super Yang-Mills is left
for a future work.
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FIG. 2. There are two types of strings in super Yang-Mills on
R3×S1. The first type (the green color line), which we denote
by SR3 , is the string between two prob charges located on the
R2 plane. The other type of strings (the red color), which we
denote by SS1 , wraps around the S1 circle. It is this second
type of strings that can be interpreted as pure Yang-Mills
k-strings in the limit m→∞.

we comment on the scaling of the SS1 strings and their
large-N limit and we compare our findings with strings
in Seiberg-Witten and deformed Yang-Mills theories.

II. MASS DEFORMED SUPER YANG-MILLS

We considerN = 1 super Yang-Mills theory on R3×S1.
This is an su(N) Yang-Mills theory endowed with a single
adjoint Weyl fermion (gaugino) obeying periodic bound-
ary conditions along the circle S1. If we take the cir-
cumference of the circle, L, to be much smaller than
the strong scale of the theory Λ, i.e. NΛL � 1, then
the theory enters its weakly coupled regime and becomes
amenable to semi-classical treatment. Upon dimension-
ally reducing from 3 + 1 to 3 dimensions the theory gen-
erates a scalar field, which is the Wilson line holonomy
along the circle: Φ =

∫
S1 A3. Supersymmetry guarantees

the vanishing of the perturbative potential V (Φ) that re-
sults from integrating out the tower of massive Kaluza-
Klein excitations of gauge bosons and gauginos. Thus,
the theory has a perturbatively exact flat direction such
that turning on any non-zero value of Φ causes the break-
ing of su(N) to the maximum abelian torus u(1)N−1. In
three dimensions the photons are dual to scalars, and
hence, the 3-D long-distance effective field theory con-
tains massless scalars and fermions not charged under
u(1)N−1. The action of the theory reads:

S =
1

L

∫
d3x

{
− 1

g2
(∂µΦ)

2 − g2

16π2
(∂µσ)

2

−i2L
2

g2
λ̄σ̄µ∂µλ

}
, (1)

where g is the four-dimensional coupling which is kept
small, σ are the dual photons, and λ are the fermions.

All light fields have components only along the Cartan
generators H = (H1, H2, ...,HN−1), which are denoted
by bold face letters, e.g., σ = (σ1, σ2, ..., σN−1).

The story does not end at the perutrabative sector.
The theory, in addition, admits nonperturbative saddles.
These are the monopole-instantons which lift the flat di-
rection and generate masses for the photons. The details
of the story can be found in [10, 12, 16–18]. In essence,
the monopole-instantons generate the superpotential:

W ∼
N∑
a=1

eαa·X+2πiτδa,N , (2)

where X is the chiral multiplet, τ = i 4π2

g2 + θ
2π , and

θ is the vacuum angle. The sum is over the simple
roots {αa}, a = 1, 2, .., N − 1 as well as the affine root

αN = −
∑N−1
a=1 αa. The inclusion of the affine root is a

crucial ingredient in order for the theory to have a stable
vacuum. In fact, including this root in the sum is how the
theory remembers its four dimensional origin and, as we
will see, is responsible in a direct way for the observation
that the string tension depends only on the N-ality of the
representation to the leading order.

The superpotential will generate the scalar potential

(we call it the bion potential4) Vbion = Kij̄ ∂W∂Xi
∂W̄
∂X†j ,

where Kij̄ is the Kähler potential, which to zeroth or-
der in the coupling constant g is given5 by Kij̄ = δij .
As we mentioned in the introduction, we also turn on
a small gaugino mass which breaks the supersymmetry
softly and generates a perturbative potential6. In addi-
tion, the gaugino mass lifts the monopole-instanton zero
modes and give an additional contribution to the scalar
potential Vm.

The supersymmetric theory, in the small m and L
regime, has a preserved center symmetry and the vac-
uum expectation value of the Wilson line holonomy is

Φ0 = 2π
N ρ, where ρ =

∑N−1
a=1 ωa is the Weyl vector, and

ωa are the fundamental weights. Now we write

Φ = Φ0 +
g2

4π2
b , (3)

such that b are the small fluctuations of the adjoint scalar
about the vacuum. After taking the monopoles and gaug-
ino mass into account, we find that the total bosonic La-
grangian in terms of σ and b is given by

L =
1

12π

mW

log(mW /Λ)

(
(∂µb)

2
+ (∂µσ)

2
)

+Vnp + Vpert , (4)

4 Magnetic and neutral bions are correlated events made of two

monopoles, which appear as a direct sequence of Kij̄ ∂W
∂Xi

∂W̄
∂X†j ,

see [10, 19] for details.
5 The one-loop correction to the Kähler potential was worked out

in [12]. This correction becomes important only if the gauge
group does not have a center, e.g., G2. See [12] for details.

6 The perturbative potential is the one-loop contribution from the
Kaluza-Klein tower of gauge bosons and massive gauginos.
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where Vnp and Vpert are respectively the nonperturbative
and perturbative potentials and mW = 2π

NL is the W-
boson mass. As was shown in [10], Vpert is suppressed
by three powers of log(mW /Λ) compared to Vnp, and
hence, we neglect it in our analysis. The nonperturbative
potential contains contributions from two parts: (1) the
monopole part, which is non-vanishing if and only if the
gauginos are massive (massless gauginos have two zero
modes in the background of monopoles, and hence, the
latter cannot contribute to the bosonic potential), and
(2) the magnetic and neutral bion potential, see footnote
4. The nonperturbative potential is given by

Vnp = V 0
bion

[
N∑
a=1

e−2αa·b − e−(αa+αa+1)·b

× cos [(αa −αa+1) · σ]]

−V 0
mon

[
N∑
a=1

e−αa·b cos [αa · σ + ψ]

]
, (5)

where ψ = 2π`+θ
N , and the parameter ` = 0, 1, .., N − 1

labels the vacuum branch, i.e. the branch with minimum
ground energy. The bion and monopole coefficients V 0

bion
and V 0

mon, expressed in terms of the physical mass mW

and the strong scale Λ, are given by

V 0
bion =

27

8π

Λ6

m3
W

log
(mW

Λ

)
,

V 0
mon =

9

2π

mΛ3

mW
log
(mW

Λ

)
. (6)

For convenience, we also introduce the dimensionless
gaugino mass parameter

cm =
V 0

mon

V 0
bion

=
4mm2

W

3Λ3
=

16π2m

3Λ(ΛLN)2
. (7)

To further proceed, one needs to find the masses
of the fluctuations b. Expanding Vnp to quadratic or-
der in b and σ and rescaling b and σ as {b2a, σ2

a} →
6π log(mW /Λ)

mW
{b2a, σ2

a} to have a canonically normalized La-
grangian, we obtain:

L =
1

2
(∂µb)

2
+

1

2
(∂µσ)

2
+ V , (8)

and

V = −Ncm cosψ

+m2
0

N∑
a=1

[
(αa · b)2 − (αa+1 · b) (αa · b)

+ (αa · σ)
2 − (αa+1 · σ) (αa · σ)

+
cm
2

(
(αa · σ)

2 − (αa · b)2
)

cosψ

−cm (αa · σ) (αa · b) sinψ] , (9)

where

m2
0 =

81

4

Λ6 [log(mW /Λ)]
2

m4
w

. (10)

The easiest way to obtain the mass spectra of the
quadratic Lagrangian is to go to the RN root basis. In
this basis the weights of the fundamental representations
are given by

νa = ea −
1

N
, a = 1, 2, ..., N , (11)

while the roots are

{αa = ea − ea+1, 1 ≤ a ≤ N − 1 ,

aN = eN − e1} . (12)

Notice the cyclic structure of the roots in these basis.
Also, notice that the affine root aN is the link that com-
pletes the cycle.

The cyclic nature of {αa}, a = 1, .., N enable us to use
the discrete Fourier transform defined by:{

bj
σj

}
=

1√
N

N−1∑
p=0

{
b̃p
σ̃p

}
e−2πi

pj
N . (13)

In doing so, we have introduced the fictitious degree of
freedom b0, the zero mode, which decouples from the rest
of excitations. Had we not included the monopole corre-
sponding to the affine root, we would not be able to use
the discrete Fourier transform to simplify our calcula-
tions. As we will see in the next section, this transform
is pivotal in our proof of the N-ality dependence of the
string tension. Now, we substitute the RN root vectors
into Eq. 9 and use the discrete Fourier transform to find
after straightforward algebra

V = −Ncm cosψ

+m2
0

∑
p

A−b̃pb̃−p +A+σ̃pσ̃−p + Cσ̃pb̃−p , (14)

where

A± = 8 sin4
(πp
N

)
± 2cm sin2

(πp
N

)
cosψ ,

C = −4cm sin2
(πp
N

)
sinψ . (15)

In order to further decouple σ̃p and b̃p, we define new

fields σ̃′p and b̃′p:

b̃′p = cos
ψ

2
b̃p + sin

ψ

2
σ̃p ,

σ̃′p = − sin
ψ

2
b̃p + cos

ψ

2
σ̃p . (16)

The mass square eigenvalues of σ̃′p and b̃′p are

M2
σ̃′
p

= 16m2
0

[
sin4

(pπ
N

)
+
cm
4

sin2
(pπ
N

)]
,

M2
b̃′p

= 16m2
0

[
sin4

(pπ
N

)
− cm

4
sin2

(pπ
N

)]
, (17)

where p = 1, 2, ..., N−1, and we neglected the zero mode
p = 0.

Now we are in a position to calculate the correlator
〈b̃p(0)b̃−p(r)〉. We consider the Euclidean version of our
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theory such that r is a three dimensional vector (the Eu-
clidean time is taken along the third direction). Keeping

in mind that the fields σ̃′p and b̃′p do not couple, we find

that the propagator 〈b̃p(0)b̃−p(r)〉 is given by:

〈b̃p(0)b̃−p(r)〉 = cos2 ψ

2
〈b̃′p(0)b̃′−p(r)〉+ sin2 ψ

2
〈σ̃′p(0)σ̃′−p(r)〉 =

1

4πr

{
cos2 ψ

2
e
−Mb̃′p

r
+ sin2 ψ

2
e
−Mσ̃′p

r
}
. (18)

In sequence, we use the inverse discrete Fourier transform
to obtain the correlator

〈bj(0)bl(r)〉 =
1

N

N−1∑
p=0

e−
2πip
N (j−l)〈b̃p(0)b̃−p(r)〉 . (19)

The exponents of the correlator 〈bj(0)bk(r)〉 are indepen-
dent of 7 θ. From here on, we set θ = 0 and select the vac-
uum branch ` = 0. Therefore, the correlator 〈bj(0)bk(r)〉
receives a contribution only from the first term in (18).
We note that the masses Mb̃p

are much lighter than the

W-boson mass, π
NL , as can be checked from (10). The

string SS1 that wraps around S1 is made of the light ex-
citationsMb̃p

, and therefore, the string thickness ∼M−1

b̃p

is much bigger than the circle S1. This fact is responsible
for the square sine scaling of the SS1 string, as we discuss
in the conclusion.

III. POLYAKOV’S LOOP CORRELATOR AND
STRING TENSION

In this section we use the conjectured continuity be-
tween mass deformed N = 1 super Yang-Mills and pure
Yang-Mills to show that the string tension of the lat-
ter theory depends only on the N-ality of the repre-
sentation to the leading order. In order to show that
we visualize the Polyakov’s loop along the S1 circle
TrR exp

[
i
∮
S1 A3

]
as a string wrapping the circle. We

can calculate the correlator of two Polyakov’s loop in
the small L and m regime, where the theory is confin-
ing, has a preserved center symmetry, weakly coupled,
and under analytical control. We prove that the corre-

lator limr→∞〈PR(0)P†R(r)〉 = FRe−σRr, where σR is a
constant that depends only on the N-ality of the repre-
sentation R and the pre-factor FR depends on the rep-
resentation R. Then, by continuity (the absence of phase
transitions as we take the gaugino mass to infinity), we
argue that σR can be interpreted as the string tension of
a pure Yang-Mills theory that depends only on its N-ality,
as expected on physical grounds.

7 Thus, we need to go to the next to leading order correction in g
to find the dependence of the string tension on θ; see [12, 20, 21].

A. From the fundamental to any representation of
su(N)

We first summarize a few important results from group
theory concerning traces of su(N) elements in general
representations. The following discussion holds for any
N ≥ 3. Let R = (y1, y2, . . . , yN−1) denote the Young
tableau with yi columns of i boxes (where bigger columns
are placed on the left as usual), which is associated with
a particular tensor representation R of su(N). Now, let
P be an element in su(N). The trace of P in a general
representation R can be written as a sum of products of
fundamental traces as is given by the Frobenius formula:

TrRP =
1

n!

∑
~j∈Sn

χR

(
~j
)

(TrFP )
j1
(
TrFP

2
)j2

×... (TrFP
n)
jn , (20)

where n is the number of boxes in Young tableau of rep-
resentation R (not mod N) and Sn is the permutation

group. The permutations ~j = {j1, · · · , jn} ∈ Sn are most
easily found as solutions of

∑n
k=1 kjk = n. For example,

for S2 we have ~j = {(2, 0), (0, 1)} and for S3 we have

~j = {(3, 0, 0), (1, 1, 0), (0, 0, 1)}, etc. χR

(
~j
)

is the group

character, in the representation R, of the permutation
~j. This sets the ground to obtaining the Polyakov-loop
correlator in any representation R in terms of the funda-
mental representation. We will show that the correlator,
to leading order, depends only on the N-ality of the rep-
resentation and not on the representation itself.

B. Perturbative expansion of the Polyakov’s loop
correlator

We now turn to the derivation of the Polyakov’s loop
correlator in a general representation R of su(N). Since
our effective field theory is valid to zeroth-loop order, we
shall focus on the correlator expansion up to O

(
g4
)

in
the coupling constant. The Wilson line operator reads:

Ω(r) = exp

[∮
S1
iA3

]
= eiH·Φ(r) , (21)

with r being a three dimensional Euclidean vector and
the Wilson line wraps the S1 circle. For su(N), the vac-
uum is given by Φ0 = 2π

N ρ. As we pointed out in Section
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II, we write

Φ = Φ0 +
g2

4π
b . (22)

We are interested in the Polyakov-loop correlator in rep-
resentation R:

〈PR(0)P†R(r)〉 ≡ 〈TrRΩ(0)TrRΩ†(r)〉. (23)

This is the correlator between two Polyakov’s loops wrap-
ping around the S1 circle and located at 0 and r. To
this end, let us pick any k 6= 0 (mod N) and define

Ωk0 ≡ eikH·φ
(0)
0 , whose eigenvalues are evenly spread

around the unit circle, whence, TrFΩk0 = 0. We now ex-
pand in powers of b the trace in the fundamental of the
k-th power of Polyakov’s operator (recall that the Cartan
generators H commute and that b are small fluctuations
of the holonomy field about the vacuum):

TrFΩk(r) = TrF

[
Ωk0 exp

(
ikg2

4π
H · b(r)

)]
∼= TrF

[
Ωk0

{
1 +

ikg2

4π
H · b̃(r) +

g4

32π2
(ikH · b(r))

2

}]
+O

(
g6
)

=
ikg2

4π
Bk(r) +

g4

32π2
Ck(r) +O

(
g6
)
, (24)

where

Bk(r) ≡ TrF
[
Ωk0H · b(r)

]
,

Ck(r) ≡ TrF

[
Ωk0 (ikH · b(r))

2
]
. (25)

Moreover, since there is noO
(
g0
)

term, we further obtain

(
TrFΩk(r)

)2
= − k

2g4

16π2
B2
k(r) +O

(
g6
)
, (26)

and
(
TrFΩk(r)

)a ∼ O (g6
)

for a > 2.

Now, let us make use of the Frobenius formula (20). For
a representation R of su(N), corresponding to a Young
tableaux of n boxes (not mod N), express TrRΩ(x) in
terms of TrF and expand in g. The only O

(
g2
)

con-
tribution in this expansion comes from the term with
~j = (0, 0, 0, ..., 1), i.e., the term (TrFP

n)jn with jn = 1.
Assuming that n 6= 0, N, 2N, 3N, ..., then there is no
O
(
g0
)

term, and thus we have:

〈PR(0)P†R(r)〉 =
n2g4

16π2
χI
R〈Bn(0) ·B†n(r)〉+O

(
g6
)

=
n2g4

16π2
χI
R

N∑
j,l=1

TrF [Ωn0Hj ] TrF
[
Ω−n0 Hl

]
〈bj(0)bl(r)〉+O

(
g6
)
, (27)

where χI
R ≡ χR

(
~j = (0, 0, 0, ..., 1)

)
and we have used the

RN basis in writing the double sum in (27). As we will see
next, despite the fact that the pre-factor depends on the
representation R, the rest of this expression is a function
of TrF [Ωn0Hj ], which only depends on the N-ality of R
since Ωn0 = Ω

n (mod N)
0 .

The case n = 0 (mod N) (e.g. the adjoint) gives a
term O

(
g0
)
, which leads to the behavior of the correla-

tor 〈PR(0)P†R(r)〉 ∼ constant +O(g2). The O(g0) term
is interpreted as the breaking of the flux tube. This is
the expected behavior of all zero N-ality representations
since the probe charges of these representation can be

completely screened by soft gluons. The breaking of ad-
joint strings are extremely difficult to see in lattice simu-
lations, see e.g., [6, 7]. The continuity conjecture, on the
other hand, provides a neat way to seeing the breaking.

C. Combining everything: the string tension

So far we have set the stage to finally obtain a
closed-form expression of the Polyakov’s loop corre-
lator. First we recall that the Cartan generators Hi

are the components of the weights in the fundamen-
tal representation (defining representation), i.e. Hi =
diag ((ν1)i, (ν2)i, ..., (νN )i). Then, substituting (19) into
(27) we obtain
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〈PR(0)P†R(r)〉 =
n2g4

16π2N
χI
R

N∑
j,l,k,m=1

N∑
p=1

e
2πin
N (νk−νm)·ρ (νk)j (νm)l e

− 2πip
N (j−l)〈b̃p(0)b̃−p(r)〉 .

(28)

Recalling that in the RN basis we have (νa)i = δai − 1
N , and that ρ =

∑N−1
b=1 ωb, where

ωb =

b∑
a=1

ea −
b

N

N∑
a=1

ea , (29)

we find ρ ·νb = −b+ N+1
2 . Using this information in (28) we find three main terms that come from the multiplication

(νk)j(νm)l:

1. The constant term 1
N2 , which is the constant part of (νk)j(νm)l. This term is multiplied by the sum

∑N
m=1 e

i2πnm
N ,

which is zero.

2. The term
δkj
N . Again, this term is multiplied by the sum

∑N
m=1 e

i2πnm
N , which is zero.

3. Finally, we have the term δkjδml, which is the only term contributing a non-zero value to 〈PR(0)P†R(r)〉:

N∑
j,l,k,m=1

N∑
p=1

e
2πin
N (νk−νm)·ρδkjδmle

− 2πip
N (j−l)〈b̃p(0)b̃−p(r)〉

=
∑
p,k,l

e−
2πik(n+p)

N e
2πil(n+p)

N 〈b̃p(0)b̃−p(r)〉 = N

N∑
p,l

δn+p=0e
2πil
N (n+p)〈b̃p(0)b̃−p(r)〉

= N2〈b̃p(0)b̃−p(r)〉p=−n (mod N) (30)

Therefore, we finally obtain

〈PR(0)P†R(r)〉 =
Nn2g4

16π2
χI
R〈b̃k(0)b̃−k(r)〉k=n (mod N) . (31)

Eq. (31) is the main result of this work. It shows that
apart from a nonuniversal and representation dependent
pre-factor, the Polyakov-loop Correlator can only depend
on the N-ality of representation.

We can use Eq. (31) to obtain the string tension
as follows. We are interested in length scales, r >
Mb̃′

k=n (mod N)
, which is much bigger than the compacti-

fication length L. Therefore, we take the limit r →∞ in
(18):

limr→∞ log〈PR(0)P†R(r)〉
= constant−Mb̃′

k=n (mod N)
r , (32)

from which we read the string tension

σk = L−1Mb̃′
k=n (mod N)

. (33)

Thus, the string tension of the representation R will only
depend on n (mod N) 6= 0, which is the N-ality of the
representation.

IV. W-BOSONS ON THE STRING
WORLDSHEET

As a corollary of our main result, Eq. (31) one can also
examine the effect of W-bosons on the string between
two probe charges in representation R. We repeat our
previous analysis in super Yang-Mills on a small circle by
computing correlators of Polyakov’s loops wrapping the
S1 circle with W-bsosns insertions. In the semi-classical
limit the W-bosons are heavy and we can neglect their ki-
netic energies. They are charged under the moduli fields8,
b, (the charges live in the root system), and hence, they
can exchange quanta of b with the probe charges. There-
fore, W-bosons can be thought of as adjoint Polyakov’s
loops wrapping the circle and their effect on the string
can be inferred by computing higher Polyakov-loop corre-
lators. A typical correlator that is invariant under charge

8 See [22] for details.
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1r 2r 3r
Q

W WQ

FIG. 3. W-bosons on the worldsheet of the SR3 string. In this
specific example, the quarks, Q, Q̄, are taken in the funda-
mental representation of su(2). Since the W-bosons are in the
adjoint representation, they carry twice the charge of the fun-
damental quark. The shown configuration is the only one that
satisfies the conservation of the electric flux. r1,2,3 label the
W-bosons positions on the worlsheeet.

conjugation takes the form

C(r, r1, r2) = 〈TrRΩ(0)TradjΩW (r1)

×TradjΩ
†
W (r2)TrRΩ†(r)〉 , (34)

and we assume that the N-ality of R is k 6= 0. Since the
W-bosons are in the adjoint representation, we have

TradjΩW (r1) ∼= −1 + i
g2

4π
Tradj

[
eiH·ΦH · b

]
+O(g4) .

(35)

By assumption, the N-ality of R is not zero, and hence,
the expansion of TrRΩ starts at O(g2). Then, the leading
order contribution to C(r, r1, r2) comes from the first
term in (35) and O(g2) term of TrRΩ. Using (31), we
find that the correlator, to O(g4), is given by

C(r, r1, r2) = 〈PR(0)P†R(r)〉 =
Nn2g4

16π2
χI
R〈b̃k(0)b̃−k(r)〉k=n (mod N) . (36)

This shows that the N-ality of the string does not change
by placing W-bosons on the string worldsheet. Also, the
string tension is unaffected, to leading order in g, by the
presence of W-bosons. The fact that the string tension
does not get contribution from the W-bosons leads us to
conclude that they are deconfined on the string world-
sheet.

This result was also reached in [23] by analyzing the
SR3 strings on R3. Here, we provide a simple explana-
tion of this interesting phenomenon. Let us consider two
fundamental probe charges (quarks) of su(2), Q and Q̄,
with opposite charges separated a distance r and ending
on the opposite sides of our SR3 string. The total en-
ergy of the system is E = 2mQ + Tr, where mQ is the
quark mass and T is the SR3 string tension. The force be-
tween the quarks is F = −dE/dr = −T and hence they
experience linear confinement. Now, consider the same
situation but with two W-bosons placed on the string
worldsheet. Since the W-bosons belong to the adjoint
representation, and hence they carry twice the charge of
a fundamental quark, it is easy to convince oneself that
the only configuration that respects the flux conservation
is as shown in FIG. 3. The total energy of the system is
E = 2mQ + 2mW + T (r1 + r2 + r3), where mW is the
W-boson mass. Fixing the distance between the probe
charges to be r1 + r2 + r3 = r = constant, we find that
placing the W-bosons anywhere on the string worldsheet
cannot change the energy of the system. Hence, the W-
bosons do not experience any force on the string world-
sheet despite the fact that they interact logarithmically

off the string9.
Therefore, we learn from the above treatment of the

W-bosons on SS1 and SR3 that they are deconfined on
the worldsheets (experience no force) and they do not
affect the string tension. On the pure Yang-Mills side,
the W-bosons are the soft gluons that cannot screen
the non zero N-laity probe charges. This is a very in-
tuitive phenomenon that is hardly proven in the strongly
coupled regime. Nevertheless, we have shown that this
phonomenon can be rigorously proven in the mass de-
formed super Yang-Mills on R3 × S1 and by continuity
we conclude that the same phenomenon takes place in
pure Yang-Mills theory.

V. DISCUSSION

In this work we have shown that the tension of the
string wrapping the S1 circle depends, to leading order,
on the N-ality of the representation. The next to lead-
ing order effect depends on the representation R, and is
expressed in terms of the group characters of the permu-
tation group in representation R. These findings exactly
match holographic computations that were performed in
the ’t Hooft large-N limit [8]. It is extremely important

9 Super Yang-Mills on R3×S1 is dimensionally reduced to R3. Elec-
tric charges in a three-dimensional theory experience logarithmic
interactions.
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to emphasize the role of center symmetry and the affine
monopole in arriving to this result. The affine root is the
way the theory remembers its four dimensional origin,
and including the corresponding monopole is crucial to
link super Yang-Mills to pure Yang-Mills via the conjec-
tured continuity.

In terms of the strong coupling scale and the mass of
the W-boson, the k-string tension is given by

σk =

√
81

π

NΛ3

mW
log2

(mW

Λ

)
× sin2

(
πk

N

)√
1−

4πmm2
W

3Λ3
sin−2

(
πk

N

)
,(37)

k = 1, 2..., N −1. At small values of m (this is the regime
that is continuously connected to pure Yang-Mills the-
ory), the string tension σn follows a square sine law:

σk
σ1

=
sin2

(
πk
N

)
sin2

(
π
N

) , (38)

where σ1 is the fundamental string tension. This is in con-

tradistinction with the Casimir law, σk =
(

1− k−1
N−1

)
σ1,

or sine law, σk =
sin(πkN )
sin( πN )

σ1, which have been advocated

in the literature as two possible scalings of k-strings in
Yang-Mills theories; see e.g. [24–27]. The sine law in par-
ticular is consistent with ’t-Hooft large-N limit which
requires the next to leading order correction of σk to go
as 1/N2 instead of 1/N , as the Casimir law predicts. It is
also consistent with various supersymmetric gauge theo-
ries and AdS/CFT computations; see e.g. [28–31].

Another question concerns the large-N limit of (37),
which has to be taken with care. In the standard ’t Hooft
limit one takes N → ∞ keeping Ng2 fixed. In this limit
the W-bosons of super Yang-Mills on R3 × S1 become
very light, mW ∼ 1/(NL), which pushes the theory to
strong coupling and invalidates the semi-classical treat-
ment. The proper limit in gauge theories on a circle is the
abelian Large-N limit, which amounts to taking N →∞
keeping the W-boson mass fixed. In this limit we have
σk = k2 + O

(
1
N2

)
, which is different from the expected

’t Hooft large-N limit σk
σ1

= k + O
(

1
N2

)
in non-compact

Yang-Mills theory. In the latter theory, the linear depen-
dence of the string tension on the N-ality k indicates that
the string is made of k independent components that do
not interact with each other, which is not the case for the
SS1 strings in the compactified theory10.

The square sine law scaling in super Yang-Mills on
R3 × S1 as well as the unexpected large-N behavior
is attributed to the fact that the string SS1 is much

10 It was also shown in [32] that super Yang-Mills on R3 × S1 in
the abelian Large-N limit flows to a gapless theory in R4, which
indicates that the large-L and abelian large-N limits do not com-
mute.

thicker than the compactification radius, and therefore,
one should not expect that the string is composed of N
non-interacting components, as in the 4-D ’t Hooft large-
N case. One expects, however, that the string tension de-
parts from the square sine law and approaches the sine
law in the Λ−1 � NL limit. Assuming that the continu-
ity between super and pure Yang-Mills holds, then this
will happen in a way that preserves the N-ality depen-
dence of the representation.

Finally, we compare our findings to other string mod-
els in the literature. In particular, we compare our SS1
strings to the SR3 strings that were studied in deformed
Yang-Mills theory 11 on R3×S1 in [15] and also to strings
in the softly broken Seiberg-Witten (SW) theory [34, 35].
We start with SW theory, where the strings are abelian in
nature and of Abrikosov-Nielsen-Olesen type. The Weyl
group in SW theory is broken, and therefore, one has
N − 1 different flux tubes corresponding to the N − 1
fundamental weights ωa, a = 1, 2, .., N − 1, as was indi-
cated in [30]. The breaking of the Weyl group results in
having different string tensions between quarks belong-
ing to the same representation, depending on the specific
weights of the quarks. For example, in su(3) we have
two non-degenerate strings ω1 and ω2, corresponding to
the two fundamental weights. Hence, fundamental quarks
(anti-quarks) with weights ν1,ν2,ν3 (ν̄1, ν̄2, ν̄3) will have
strings µ1,µ2−µ1,µ2, respectively. This is in contradis-
tinction with SR3 strings in deformed Yang-Mills (dYM)
theory, where we have unbroken Weyl group. This results
in degenerate string tensions between all the fundamental
quarks. For higher N-ality, the string tensions of a repre-
sentation fall into distinct ZN orbits, each of which has
degenerate string tensions. In this regard, the SR3 strings
of dYM are closer in nature to the QCD strings than the
SW strings. The string tension in dYM, however, will
in general depend on the representation, not only on its
N-ality. For example, the two-index symmetric and two-
index antisymmetric representations have different string
tensions. Unlike both types of strings (SW and dYM),
we find that SS1 strings in super Yang-Mills, albeit the
theory is still in the abelian regime, depend only on the
N-ality of the representation, making them identical to
what one expects for QCD.

This work lends extra support to the continuity picture
between a class of deformed Yang-Mills theory on R3×S1

and real world QCD, including the conjectured continu-
ity between super and pure Yang-Mills. Until now, there
have been several tests to check the nature of this conti-
nuity, its regime of validity, and we were able to extract
important lessons about the four dimensional theory [36–
40]. It has been found that the deformed theories share
a range of characteristics that point out to an underly-
ing structure in the four dimensional Yang-Mills, which

11 Deformed Yang-Mills is a theory with massive adjoint fermions
or double trace deformation [33].
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is not yet understood but is similar to the structure of
the deformed theory.
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