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Abstract

Semi-inclusive charge-changing neutrino reactions on targets of heavy water are investigated

with the goal of determining the relative contributions to the total cross section of deuterium and

oxygen in kinematics chosen to emphasize the former. The study is undertaken for conditions where

the typical neutrino beam energies are in the few GeV region, and hence relativistic modeling is

essential. For this, the previous relativistic approach for the deuteron is employed, together with

a spectral function approach for the case of oxygen. Upon optimizing the kinematics of the final-

state particles assumed to be detected (typically a muon and a proton) it is shown that the oxygen

contribution to the total cross section is suppressed by roughly an order of magnitude compared

with the deuterium cross section, thereby confirming that CCν studies of heavy water can effectively

yield the cross sections for deuterium, with acceptable backgrounds from oxygen. This opens the

possibility of using deuterium to determine the incident neutrino flux distribution, to have it serve

as a target for which the nuclear structure issues are minimal, and possibly to use deuterium

to provide improved knowledge of specific aspects of hadronic structure, such as to explore the

momentum transfer dependence of the isovector axial-vector form factor of the nucleon.

PACS numbers: 25.30.Pt, 12.15.Ji, 13.15.+g, 21.45.Bc
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I. INTRODUCTION

In two recent studies the subject of semi-inclusive charge-changing neutrino (CCν) re-

actions with nuclei [1] and application to the special case of deuterium [2] were presented.

Analogous to the semi-inclusive reaction (e, e′x) where one assumes that the scattered elec-

tron and some particle x are detected in coincidence, in the weak interaction case one

considers reactions of the type (ν`, `
−x) and (ν̄`, `

+x). These involve incident neutrinos or

anti-neutrinos of specific flavor (` = e, µ or τ) together with coincident detection of the

corresponding charged leptons and some particle x. In the present work we shall focus on

nucleons ejected from the nucleus, and hence x = N , where N = p or n. Note that in

the nuclear case the “natural” type of nucleon may not be the one of interest, whereas for

a single-nucleon target and when no other particle is produced other that the final-state

nucleon (i.e., no pion production, kaon production, etc.) charge conservation forces the

final-state nucleon to be only of one type. Namely, in this latter case one only has reactions

of the type ν` + n → `− + p and ν̄` + p → `+ + n. In the present work we shall specialize

still further and consider only incident neutrinos, final-state negative leptons and emission

of protons (x = p). For completeness in defining the terminology commonly being used, we

note that reactions where only the final-state leptons are detected, such as (e, e′), (ν`, `
−) or

(ν̄`, `
+), are called inclusive reactions.

As has become quite clear in recent years, the typical high-energy neutrino beams used

in studies of neutrino oscillations, typically at neutrino energies of around a GeV to tens

of GeV, Eν , have rather broad spreads in energy. These experiments use detectors which

measure CCν reactions from a variety of nuclei and extraction of the incident neutrino energy

then depends upon either measurement of three-particle final states [3] or on the use nuclear

models and formulas for reconstructing the neutrinos energy from inclusive scattering cross

sections [4]. The second approach, which is most commonly in use, requires models of the

inclusive reaction and use of event generators including only simple models of the inclusive

reaction. This introduces model dependence into the extraction of the incident neutrino

energy Eν and therefore also into the distance over energy ratio L/Eν that enters in the

standard oscillation expressions. However, as discussed in [2], deuterium provides, at least

in principle, an exception to the typical case of heavier nuclei. Namely, once so-called “no-

pion” events are isolated, all that can occur for the case of incident neutrinos is the reaction
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ν` + 2H→ `− + p + p. Upon detecting two of the three particles in the final state and

knowing the direction of the incident neutrino the neutrino’s energy can be reconstructed

using nothing beyond the kinematics of the reaction. This indeed was used in the original

bubble chamber experiments to extract the axial form factor (see [5] and references therein.)

In [2] a specific relativistic model for the deuterium ground state and final NN scattering

state was employed to model this reaction; in the present study we use the same model for

the A = 2 states and the required electroweak current matrix elements.

This said, there are still practical issues of which to be aware. Namely, making very

large target/detectors of hydrogen or deuterium is problematical because of the safety is-

sues involved and the difficulty of providing very large amounts of these nuclei. Using

target/detectors of something involving large fractions of deuterium together with other

light nuclei, such as heavy water (D2O) or deuterated methane (CD4), might alleviate the

safety issue and could provide practical amounts of deuterium, although having other nuclei

such as oxygen or carbon present will introduce greater complexity to the analysis of the

data. In this study we have focused on a specific case to explore how such mixed nuclear

cases behave; specifically, here we consider the case of 2H2
16O. The goal is to take what

we have already done for deuterium, add model results for CCν semi-inclusive reactions on

16O and determine whether this approach can potentially be used as an alternative to the

methods currently in use. One expects the deuteron events to be very peaked and to occur

in a different part of the kinematic space involved from the oxygen events, and, as well, the

oxygen events to be much more spread in the appropriate kinematic variables so that the

ratio of deuterium to oxygen becomes quite favorable. Indeed, we shall show that this is the

case.

We will be drawing on our previous study of semi-inclusive CCν reactions in [1] to high-

light and quantify the differences of deuterium and a more typical nucleus such as oxygen

(here the nucleus could be chosen to be carbon or any other relatively light nucleus). As a

specific model for the oxygen case we employ the spectral function approach of [6, 7]. The

goal will be to optimize the selection of semi-inclusive events for the case of deuterium and

then see what emerges for the “background” from the oxygen events.

The paper is organized as follows. In Sect. II we summarize the necessary formalism for

the semi-inclusive CCν reaction, taking as a basis the previous study reported in [1], and

include some of the relevant formalism needed to inter-relate the experimental “lab frame”
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FIG. 1. (color online) Feynman diagram for semi-inclusive charge-changing neutrino reactions

involving a target nucleus with nucleon number A with emission and detection of a nucleon with

four-momentum PµN together with detection of a final-state charged lepton with four-momentum

K ′µ

to the so-called “q-frame”. In Sect. III we specialize the results of the previous section to

the case of deuterium to make very clear the advantage provided by this particular nucleus.

We do not repeat the discussion of the formalism for the dynamics and currents involved

in the deuterium case, since these have been reported in [2]. For the case of oxygen we

present the required formalism in the context of the spectral function in Sect. IV, following

which we employ the two models discussed above to obtain typical results for heavy water

and present these in Sect. V. In Sect. VI we offer our conclusions, while in the Appendix

we collect expressions for the off-shell single-nucleon response functions employed for the

oxygen spectral function case.

II. SEMI-INCLUSIVE CROSS SECTION

Semi-inclusive CCν scattering is represented by the Feynman diagram shown in Fig. 1,

where Qµ is the four-momentum of the W-boson,

Kµ = (ε,k) (1)

is the incident lepton four-momentum and

K ′
µ

= (ε′,k′) (2)
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is the four-momentum of the lepton in the final state, where ε =
√
k2 +m2 and ε′ =√

k′2 +m′2 are the energies of the incident and final leptons with respective masses m and

m′. Then the four-momentum transfer is

Qµ = Kµ −K ′µ = (ε− ε′,k − k′) = (ω, q) . (3)

The four-momentum of the target nucleus with nucleon number A can be written in its rest

frame as

P µ
A = (MA,0) . (4)

The four-momentum of the detected nucleon is

P µ
N = (EN ,pN) , (5)

where mN is the nucleon mass, EN ≡
√

p2
N +m2

N and the four-momentum of the residual

A− 1 system is

P µ
A−1 = (

√
p2
m +W 2

A−1,pm) (6)

with the invariant mass WA−1.

The energy of an incoming neutrino can be determined by measuring the three-momenta

of the outgoing charged lepton, which we take to be a muon in what follows (although clearly

the e or τ cases can also be considered), and nucleon, corresponding to kinematics B of [1].

In this case the four-fold differential cross section in the laboratory frame is then

dσ

dk′dΩk′dpNdΩL
N

=
G2 cos2 θcmNk

′2p2NWA−1

2(2π)5kε′EN

∫
d3pm√

p2m +W 2
A−1

ηµνW
µν

× δ4(K + PA −K ′ − PN − PA−1)

=
G2 cos2 θcmNk

′2p2NWA−1

2(2π)5kε′EN

∫
d3pm√

p2m +W 2
A−1

ηµνW
µν

× δ(ε+MA − ε′ − EN −
√
p2m +W 2

A−1)δ(k − k′ − pN − pm) , (7)

where G is the weak interaction coupling constant and θc is the Cabibbo mixing angle.

Defining

EB = ε′ + EN −MA (8)

and

pB = k′ + pN , (9)
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the cross section becomes

dσ

dk′dΩk′dpNdΩL
N

=
G2 cos2 θcmNk

′2p2NWA−1

2(2π)5kε′EN

∫
d3pm√

p2m +W 2
A−1

ηµνW
µν

× δ(ε− EB −
√
p2m +W 2

A−1)δ(k − pB + pm)

=
G2 cos2 θcmNk

′2p2NWA−1

2(2π)5kε′EN

1√
(pB − k)2 +W 2

A−1

ηµνW
µν

× δ(ε− EB −
√

(pB − k)2 +W 2
A−1) . (10)

Using the remaining δ-function, the incident neutrino momentum and energy are given by

k0 =
1

aB

(
XBpB cos θB + EB

√
X2
B +m2aB

)
(11)

and

ε0 =
1

aB

(
EBXB + pB cos θB

√
X2
B +m2aB

)
, (12)

where

XB =
1

2

(
p2B − E2

B +W 2
A−1 −m2

)
(13)

and

aB = p2B cos2 θB − E2
B . (14)

The energy-conserving δ-function can be rewritten as

δ(ε− EB −
√

(pB − k)2 +W 2
A−1) =

ε0

√
(pB − k)2 +W 2

A−1√
X2
B +m2aB

δ(k − k0) . (15)

The cross section then becomes

dσ

dk′dΩk′dp2NdΩL
N

=
G2 cos2 θcmNk

′2ε p2NWA−1v0

2(2π)5kε′EN
√
X2
B +m2aB

F2
χδ(k − k0) , (16)

where F2
χ ≡ ηµνW

µν/v0 with v0 ≡ (ε+ ε′)2 − q2. The resulting response may be written

F2
χ =V̂CC(w

V V (I)
CC + w

AA(I)
CC ) + 2V̂CL(w

V V (I)
CL + w

AA(I)
CL ) + V̂LL(w

V V (I)
LL + w

AA(I)
LL )

+ V̂T (w
V V (I)
T + w

AA(I)
T )

+ V̂TT

[
(w

V V (I)
TT + w

AA(I)
TT ) cos 2φN + (w

V V (II)
TT + w

AA(II)
TT ) sin 2φN

]
+ V̂TC

[
(w

V V (I)
TC + w

AA(I)
TC ) cosφN + (w

V V (II)
TC + w

AA(II)
TC ) sinφN)

]
+ V̂TL

[
(w

V V (I)
TL + w

AA(I)
TL ) cosφN + (w

V V (II)
TL + w

AA(II)
TL ) sinφN

]
7



+ χ
[
V̂T ′w

V A(I)
T ′ + V̂TC′(w

V A(I)
TC′ sinφN + w

V A(II)
TC′ cosφN)

+V̂TL′(w
V A(I)
TL′ sinφN + w

V A(II)
TL′ cosφN)

]
(17)

with

χ =

 −1 for neutrinos

1 for antineutrinos
. (18)

The kinematic functions Va and response functions wij are as defined in [1] with the explicit

dependence on azimuthal angle φN defined in the q-fixed frame. Response functions labeled

by the superscript (II) vanish in the plane-wave limit.

If the neutrino momentum distribution normalized to unity is designated as P (k), the

cross section weighted by this distribution is then given by〈
dσ

dk′dΩk′dpNdΩL
N

〉
=

∫ ∞
0

dk
G2 cos2 θcmNk

′2ε p2NWA−1

2(2π)5kε′EN
√
X2
B +m2aB

v0F2
χδ(k − k0)P (k)

=
G2 cos2 θcmNk

′2ε0 p
2
NWA−1v0

2(2π)5k0ε′EN
√
X2
B +m2aB

F2
χP (k0) . (19)

Next it is useful to inter-relate the variables in the laboratory frame shown in Fig. 2 to

those in the so-called q-system shown in Fig. 3. We have the following identities relating

the angles in the two systems:

cos θN = cos θLN cos θq − cosφLN sin θLN sin θq (20)

sin θN =
√

1− cos2 θN (21)

cosφN =
cosφLN sin θLN cos θq + cos θLN sin θq

sin θN
(22)

sinφN =
sinφLN sin θLN

sin θN
(23)

and the inverse relations are given by

cos θLN = cos θN cos θq + cosφN sin θN sin θq (24)

sin θLN =
√

1− cos2 θLN (25)

cosφLN =
cosφN sin θN cos θq + cos θN sin θq

sin θLN
(26)

sinφLN =
sinφN sin θN

sin θLN
. (27)

Note that as the neutrino energy changes, even for fixed directions for the outgoing muon

and nucleon, the direction of the momentum transfer also changes, and, therefore, through
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FIG. 2. (color online) Semi-inclusive (νµ, µ
−p) CCν reaction in the laboratory frame. Here the

incident neutrino with three-momentum k is along the 3′ direction, the neutrino and the final-state

muon with three-momentum k′ lie in the 1′–3′ plane and the normal to the plane defines the 2′

direction. The outgoing nucleon (here a proton) has three-momentum pN and is traveling in the

direction characterized by polar angle θLN and azimuthal angle φLN in the lab system, as shown.

these relationships, the polar and azimuthal angles in the q-system also change. The lab

system is relevant when experimental issues are being considered; however, the q-system

with the 3-direction along the momentum of the exchanged boson has special symmetries

that are masked in the lab system.

Here, we want to express the cross section in lab frame. This can be done by using

Eqs. (22) and (23) to replace the azimuthal angular dependence in Eq. (17) and by defining

the three-momenta

k = kû3′ , (28)

k′ = k′ (sin θlû1′ + cos θlû3′) (29)

and

pN = pN
(
cosφLN sin θLN û1′ + sinφLN sin θLN û2′ + cos θLN û3′

)
, (30)

where θl is the lepton scattering angle. The unit vectors in the lab frame are û1′ , û2′ and

û3′ , as shown in Fig. 2. The three-momentum transfer is

q = k − k′ (31)
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FIG. 3. (color online) Semi-inclusive (νµ, µ
−p) CCν reaction in the q-system. Here the three-

momentum transfer q defines the 3 direction, the neutrino and the final-state muon lie in the 1–3

plane and the normal to the plane defines the 2 direction. The outgoing nucleon (here a proton)

has three-momentum pN and is traveling in the direction characterized by polar angle θN and

azimuthal angle φN in the q-system, as shown.

and its square is

q2 = k2 + k′
2 − 2kk′ cos θl. (32)

The angle between k and q can be obtained from

k · q = kq cos θq = k · k − k · k′ = k2 − kk′ cos θl , (33)

which can be solved to yield

cos θq =
k − k′ cos θl

q
. (34)

Similarly we can use

k · pB = kpB cos θB = k · (k′ + pN) = (kk′ cos θl + kpN cos θLN) (35)

to obtain

pB cos θB = k′ cos θl + pN cos θLN . (36)

The remaining expressions needed to obtain the cross section in the lab frame are

p2B = k′
2

+ p2N + 2k′ · pN = k′
2

+ p2N + 2k′pN
(
cosφLN sin θLN sin θl + cos θLN cos θl

)
(37)
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and

p2m = k2 + p2B − 2k · pB = k2 + p2B − 2kpB cos θB . (38)

As noted in [2], Eq. (19) applies also to the case of exclusive scattering from the deuteron

by making the substitutions MA →Md and WA−1 → mN .

III. DEUTERIUM

For the purpose of determining whether the deuterium cross section can be separated

from that of oxygen, we wish to choose kinematics which are optimal for the deuteron and

then use the values k′ and pN determined from the deuteron in calculating the semi-inclusive

scattering from oxygen.

To obtain the optimal kinematics for scattering from the deuteron we start with Man-

delstam s for the virtual W and the deuteron. This is given by

s = (Pd +Q)2 = (Md + ω)2 − q2 . (39)

The scaling variables [8]

y =
(Md + ω)

√
s(s− 4m2

N)

2s
− q

2
(40)

and

Y = y + q (41)

can be used to obtain limiting values for the magnitude of the missing momentum pm as

|y| ≤ pm ≤ Y . (42)

Since the deuteron cross section behaves roughly as the deuteron momentum distribution

n(pm), which peaks at pm = 0, the cross section can be optimized by choosing kinematics

such that y = 0. Solving this for the incident neutrino energy yields

ε0 =
1

2
[
(ε′ −Md +mN)2 − k′2 cos2(θl)

] {ζk′ cos(θl)
[
−2ε′

2 (
m2 − 2(Md −mN)2

)
−4ε′(Md −mN)

(
−m2 +M2

d − 2MdmN +m′
2
)

+ 2k′
2
m2 cos(2θl) +m4 − 2m2M2

d

+4m2MdmN − 4m2m2
N +M4

d − 4M3
dmN + 4M2

dm
2
N + 2M2

dm
′2 − 4MdmNm

′2 +m′
4
] 1

2

−2ε′
2
Md + 2ε′

2
mN + ε′m2 + 3ε′M2

d − 6ε′MdmN + 2ε′m2
N + ε′m′

2 −m2Md +m2mN
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−M3
d + 3M2

dmN − 2Mdm
2
N −Mdm

′2 +mNm
′2
}
, (43)

where

ζ =

 −1 for θl ≤ π
2

1 for θl >
π
2

(44)

Four-momentum conservation for the deuteron requires that

0 =Md + ω −
√
p2N +m2

N −
√
p2m +m2

N (45)

0 =q − pN + pm . (46)

Using Eq. (45) the square of the detected nucleon momentum is

p2N =

(
Md + ω −

√
p2m +m2

N

)2

−m2
N . (47)

Using Eq. (46),

pm = q − pN , (48)

yields

p2m = q2 + p2N − 2pNq cos θN . (49)

Solving this for cos θN gives

cos θN =
q2 + p2N − p2m

2pNq
. (50)

By specifying k′, θl, φN and using Eqs. (47) and (50), the lab frame angles are then given by

Eqs. (24), (25), (26) and (27). This provides a complete set of input variables to evaluate

the deuteron and oxygen cross sections. Note that Eq. (50) results in a correlation of the

values of pN and cos θLN .

All of the conditions required by these constrained kinematics can only be satisfied by

limiting

0 ≤ θl ≤

 cos−1
(
ε′−Md+mN

k′

)
for − k′ < ε′ −Md +mN ≤ k′

π for ε′ −Md +mN ≤ −k′
. (51)

The deuterium matrix elements needed to construct the cross section are described in [2].

IV. SPECTRAL FUNCTION

For this work we estimate the oxygen semi-inclusive cross sections using a factorized

spectral function model. The current matrix element for this model can be written as

〈pN , sN ;PA−1, sA−1 |Jµ(q)|PA, sA〉 = ū(pN , sN)aJ
µ(q)abΨ(PA−1, sA−1;PA, sA)bc , (52)
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FIG. 4. (color online) Feynman diagram for a factorized approximation to the semi-inclusive

charge-changing neutrino reaction illustrated for the general case in Fig. 1.

where sN , sA and sA−1 are the spins of the ejected proton, target nucleus and residual

system, respectively, and Ψ(PA−1, sA−1;PA, sA) represents a three-point function with the A

line truncated. The Dirac indices are explicitly indicated. The nuclear response tensor is

then given by

W µν =
∑
sN

∑
sA

∑
sA−1

ū(pN , sN)aJ
ν(q)abΨ(PA−1, sA−1;PA, sA)bc

× Ψ̄(PA−1, sA−1;PA, sA)cdJ
µ(−q)deu(pN , sN)e

=
∑
sN

ū(pN , sN)aJ
ν(q)ab

1

8π
Λ+(pm)bdS(pm, Em)Jµ(−q)deu(pN , sN)e

=
1

8π
Tr
[
Jµ(−q)Λ+(pN)Jν(q)Λ+(pm)

]
S(pm, Em)

=
1

8π
wµν(PA − PA−1, Q)S(pm, Em) , (53)

where wµν(PA−PA−1, Q) is an off-shell single-nucleon response tensor and S(pm, Em) is the

spectral function. The missing energy is approximated by

Em ∼= Es + E , (54)

where Es is the separation energy,

E =
√
p2m +W 2

A−1 −
√
p2m +W 0

A−1
2
, (55)

and W 0
A−1 is the invariant mass of the lowest state of the residual system. Energy conserva-

tion requires that

0 =MA + ω −
√
p2N +m2

N −
√
p2m +W 2

A−1
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=MA + ω −
√
p2N +m2

N −
√
p2m +W 2

A−1 +

√
p2m +W 0

A−1
2 −

√
p2m +W 0

A−1
2

=MA + ω −
√
p2N +m2

N − E −
√
p2m +W 0

A−1
2
. (56)

So E can also be written as

E = MA + ω −
√
p2N +m2

N −
√
p2m +W 0

A−1
2
. (57)

From momentum conservation pN = q − pm, and therefore

E = MA + ω −
√

(q − pm)2 +m2
N −

√
p2m +W 0

A−1
2
. (58)

The range of E is then limited by

E+ ≤ E ≤ E− , (59)

where

E− = MA + ω −
√

(pm − q)2 +m2
N −

√
p2m +W 0

A−1
2

(60)

and

E+ = max(MA + ω −
√

(pm + q)2 +m2
N −

√
p2m +W 0

A−1
2
, 0) . (61)

The normalization of the spectral function S(pm, Em) is defined here such that∫ ∞
0

dEmS(pm, Em) = n(pm) (62)

is the momentum distribution and

1

(2π)3

∫ ∞
0

dpmp
2
mn(pm) = A− Z . (63)

Expressing the four-momentum of the struck nucleon as

P µ
A − P

µ
A−1 = (MA −

√
p2m +W 2

A−1,−pm) , (64)

defining

p = −pm (65)

and using energy conservation

MA −
√
p2 +W 2

A−1 =
√
p2N +m2

N − ω , (66)

one has

P µ
A − P

µ
A−1 =(

√
p2N +m2

N − ω,p)

14



=(
√
p2N +m2

N − ω −
√
p2 +m2

N +
√
p2 +m2

N ,p)

=(
√
p2N +m2

N − ω −
√
p2 +m2

N ,0) + (
√
p2 +m2

N ,p)

=(δ,0) + (
√
p2 +m2

N ,p) = ∆µ + P µ , (67)

where

P µ = (
√
p2 +m2

N ,p) (68)

is an on-shell four-vector and

∆µ = (δ,0) (69)

is off-shell with

δ =
√
p2N +m2

N −
√
p2 +m2

N − ω . (70)

The quantity F2
χ in Eq. (19) is then given by

F2
χ
∼=

1

8π
F̃2
χS(pm, Em) , (71)

where

F̃2
χ =V̂CC

(
w̃
V V (I)
CC + w̃

AA(I)
CC

)
+ 2V̂CL

(
w̃
V V (I)
CL + w̃

AA(I)
CL

)
+ V̂LL

(
w̃
V V (I)
LL + w̃

AA(I)
LL

)
+ V̂T

(
w̃
V V (I)
T + w̃

AA(I)
T

)
+ V̂TT

(
w̃
V V (I)
TT + w̃

AA(I)
TT

)
cos 2φN

+ V̂TC

(
w̃
V V (I)
TC + w̃

AA(I)
TC

)
cosφN + V̂TL

(
w̃
V V (I)
TL + w̃

AA(I)
TL

)
cosφN

+ χ
[
V̂T ′w̃

V A(I)
T ′ + V̂TC′w̃

V A(I)
TC′ sinφN + V̂TL′w̃

V A(I)
TL′ sinφN

]
. (72)

The off-shell single-nucleon response functions w̃ij are listed in the Appendix.

Since the invariant mass of the residual A−1 system is not measured, it is necessary that

the semi-inclusive cross section be integrated over all possible values of WA−1 to give〈
dσ

dk′dΩL
k′dpNdΩL

N

〉
=

∫ ∞
W 0

A−1

dWA−1
G2 cos2 θcmNk

′2ε0p
2
NWA−1v0

8(2π)6k0ε′EN
√
X2
B +m2aB

F̃2
χS(pm, Em)P (k0) , (73)

where W 0
A−1 is the lowest possible mass for the residual system which in some cases may not

be a bound state. For the specific case considered in the present study this corresponds to

the ground-state mass of 15O.

Note that the integral over the invariant mass requires that k0 and ε0 in Eqs. (11) and

(12) must take on a range of values rather than being fixed as in the case of the deuteron.
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FIG. 5. (color online) DUNE flux converted to a probability density as a function of k in GeV.

V. RESULTS

For the purposes of this paper, we have chosen to weight the cross sections using the flux

momentum distribution for the DUNE experiment [9] normalized to unit area, represented

P (k) as shown in Fig. 5. The spectral function for oxygen is from [6, 7] renormalized

according to the units and conventions used here.

Figures 6, 7 and 8 show cross sections for 2H and 16O for k′ = 1, 2 and 3 GeV respectively,

as a function of the polar angle of the detected proton θLN , for a variety of lepton scattering

angles subject to the y = 0 constraint (see Sect. III) and the restriction required by Eq. (51).

For each scattering angle, the values of the incident neutrino energy k and the momentum

transfer q are given for the deuteron. For oxygen these quantities cover a range of values

due to their dependence on the invariant mass WA−1 which is integrated over to the semi-

inclusive cross section. For completeness, each figure contains the momentum of the detected

proton pN as a function of θLN with values given by the right-hand scale. Since for 2H2
16O

there are two deuterium nuclei for each oxygen nucleus, the cross sections for deuterium are

multiplied by a factor of 2. In all cases the maximum value of the oxygen cross section

is at most one tenth of the deuterium cross section at its maximum value with the relative

size decreasing for increased muon energy and scattering angle. It should be remembered,

however, that these cross sections are evaluated and kinematics chosen to maximize the
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FIG. 6. (color online) Probability weighted cross sections for k′ = 1 GeV for various scattering

angles θl. The solid lines represent twice the deuteron cross section and the dashed lines are for

the oxygen cross section versus θLN . The value of pN is represented by the dotted lines.
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FIG. 7. (color online) As for Fig. 6 but now for k′ = 2 GeV.

contribution of deuterium.

The size of the deuterium cross sections relative to those of oxygen may still seem rather

startling. The explanation for this is straightforward. The semi-inclusive cross sections are

roughly proportional to the neutron momentum distributions for the two nuclei as shown in

Fig 9. Note that the maximum value of the deuterium momentum distribution is roughly

five times as large as that for oxygen. Given that there are two deuterium nuclei for each

oxygen nucleus, this difference in the peak values of the deuterium and oxygen momentum

distributions explains the difference in the size of the cross section shown above. Figure 10
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FIG. 8. (color online) As for Fig. 6 but now for k′ = 3 GeV.

shows the inclusive cross sections for deuterium and oxygen as a function of the incident

neutrino momentum. This shows that integrating over all possible values of proton three-

momentum results in a much larger and broader quasielastic peak for oxygen than for

deuterium, as should be expected. This indicates that the unconstrained semi-inclusive cross

section is distributed over a much larger region of phase space than that for deuterium.

VI. CONCLUSIONS

The study presented in this paper of the semi-inclusive charge-changing neutrino reaction

(νµ, µ
−p) on a target of heavy water (D2O) indicates that by careful choice of muon and

proton three-momenta it is theoretically possible to separate deuterium events from those

for oxygen. Naive considerations such as simply counting the number of neutrons provided

by the two nuclei, namely, two for the two deuterium nuclei versus eight for the oxygen

might lead one to expect that the latter will constitute a large background when the goal is

to focus on events from the former. Such is basically the case for inclusive scattering where
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FIG. 10. (color online) Inclusive CCν cross sections for 2H (solid line) and 16O (dashed line).

only the muon is assumed to be detected and integrations over the complete missing-energy-

momentum region allowed by the lepton kinematics are involved. However, as discussed in

the previous section where results are given, this expectation is not necessarily the case for

semi-inclusive studies: the spectral function for deuterium is sharply peaked at small values

of the missing momentum, whereas that for oxygen peaks at larger missing momenta where

contributions from the 1p-shell are dominant and at low missing momenta but at higher
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missing energies where the 1s-shell contributions occur. Furthermore, these contributions to

the oxygen spectral function are spread much more widely in missing momentum than the

corresponding sharply peaked ones for deuterium, roughly by the factor of four obtained by

forming the ratio of the Fermi momenta for the two nuclei, namely 55 MeV/c for deuterium

and 230 MeV/c for oxygen. These simple considerations alone indicate why detection of

both the muon and proton for appropriate choices of kinematics hold promise for isolating

the deuterium events from those involving the oxygen. The basic idea is to choose the

kinematics to favor the former while avoiding the dominant 1p-shell contributions of the

latter.

In passing we note that the high missing energy/missing momentum region, while con-

tributing perhaps 20% to the inclusive cross section, is essentially irrelevant for the semi-

inclusive cross section as the strength there is very broadly distributed and little is picked

up when the line integrals over the oxygen spectral function are performed. Typically this

region accounts for only a few percent compared with the dominant “shell-model” regions.

In contrast, for inclusive scattering a wide region in the missing-energy-momentum plane

must be integrated, and thus, even though spread over a wide region, a very different con-

clusion is reached, namely, that this region contributes much more significantly to the total

cross section.

In summary, from this theoretical study it appears that targets such as heavy water or

deuterated methane containing significant amounts of deuterium together with light nu-

clei such as oxygen or carbon have the potential to provide unique information for studies

of charge-changing neutrino reactions. Upon isolating the deuterium events using semi-

inclusive reactions the kinematics alone will yield the incident neutrino energy on an event-

by-event basis. Moreover, the cross section for such reactions on deuterium are arguably

the best known throughout the periodic table even at quite high energies where relativistic

modeling of the type used in the present work is undertaken. This being the case, such

measurements hold the promise of determining the incident neutrino flux, thereby provid-

ing a very high-quality calibration of other existing or planned near detectors for neutrino

oscillation experiments. Additionally, the fact that the nuclear structure issues are so well

under control for the case of deuterium means that measurements of this type could serve in

determining other aspects of the reaction, for instance, yielding new insights into the nature

of the isovector axial-vector form factor of the nucleon.
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The next step is to determine whether or not this method is practicable. This requires

that the deuterium and oxygen cross sections be studied as functions of the five required

input variables at kinematics other than the constrained kinematics used here. This is

necessary to determine the accuracy with which one must measure the magnitudes of the

muon and proton momenta and angles. This is complicated due to the coupling of these

variables that arises from the requirement that the missing mass and energy fall within the

region where appreciable support is provided by the spectral functions of the nuclei, and

by the rotation from the natural coordinate system located along the direction of the three

momentum transfered by the leptons to the nucleus, which is not measurable, to the known

direction of the neutrino beam. In effect, with finite resolutions the line integrals over the

oxygen spectral function presented in the present work become integrations over specific

areas in the missing-energy-momentum plane. Preliminary explorations of the kinematics

suggest that, while still much more selective that a full integration over the kinematically

allowed region as would be the case for inclusive scattering where one has no knowledge

about the final-state ejected proton, this is nevertheless a nontrivial issue. The issue when

the goal is to isolate the deuterium contribution from the oxygen contribution is to have

sufficient resolution to be able to select events that cover the former, but avoid the main

strength of the latter, namely, contributions arising from the p-shell parts of the oxygen

spectral function. Clearly this is not possible for fully inclusive measurements; however, the

preliminary explorations of the semi-inclusive cross section look promising. Nevertheless, to

be meaningful such explorations of the semi-inclusive cross section require the involvement

of experimentalists with the experience and resources to perform simulations in which the

capabilities of real-world detectors are taken into account, and clearly such simulations lie

outside the scope of the present theoretical study, although some work has begun in this

direction.

Once the kinematical requirements are sufficiently understood, the issue now is an ex-

perimental one: can a practical target/detector of heavy water be realized? How are the

protons in the final state to be detected? Can layers of (normal, un-deuterated) scintillator

be used, as some have suggested, or are there other techniques to employ? Also: what is

the optimal oscillation experiment using heavy water? While a near detector of heavy water

appears worth contemplating, a far detector would be more challenging. Perhaps this last

issue should be viewed in reverse, starting with the largest practical heavy water detector,
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then using the cross section to find how far from the neutrino source it could be placed, and

then, finally, determining from the “sweet spot” for oscillation studies what beam energy is

appropriate.

Appendix A: Off-shell single-nucleon response functions
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P (|Q|2)ωq (A4)

8m4
N w̃

V V (I)
LL =16F 2

1 (|Q|2)m2
Np‖(p‖ + q)− 8F1(|Q|2)F2(|Q|2)m2

Nq
2
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+ F 2
2 (|Q|2)

(
|Q|2(2p‖ + q)2 − 4m2

Nq
2
)
− 2δF 2

2 (|Q|2)q(2Ep + ω)(2p‖ + q)

− δ2F 2
2 (|Q|2)q(4p‖ + q) (A5)

8m4
N w̃

AA(I)
LL =16G2

A(|Q|2)m2
Np‖(p‖ + q)− 8GA(|Q|2)GP (|Q|2)m2

Nq
2 +G2

P (|Q|2)q2|Q|2

− 2δG2
P (|Q|2)ωq2 − δ2G2

P (|Q|2)q2 (A6)

8m4
N w̃

V V (I)
T =4(4F1(|Q|2)F2(|Q|2)m2

N |Q2|+ F 2
2 (|Q|2)(2m2

N + p2⊥)|Q2|

+ 2F 2
1 (|Q|2)m2

N(2p2⊥ + |Q2|))− 16δF1(|Q|2)m2
Nω

+ δ2
[
8E2

pF
2
2 (|Q|2) + 8EpF

2
2 (|Q|2)ω − 8F 2

1 (|Q|2)m2
N

−2F 2
2 (|Q|2)|Q|2(F1(|Q|2) + F2(|Q|2))

]
+ 4δ3F 2

2 (|Q|2)(2Ep + ω)

+ 2δ4F 2
2 (|Q|2) (A7)

8m4
N w̃

AA(I)
T =8G2

A(|Q|2)m2
N

(
4m2

N + 2p2⊥ + |Q|2
)
− 16δG2

A(|Q|2)m2
Nω

− 8δ2G2
A(|Q|2)m2

N (A8)

8m4
N w̃

V V (I)
TT =− 4p2⊥

(
4F 2

1 (|Q|2)m2
N + F 2

2 (|Q|2)|Q|2
)

(A9)

8m4
N w̃

AA(I)
TT =− 16G2

A(|Q|2)m2
Np

2
⊥ (A10)

8m4
N w̃

V V (I)
TC =4

√
2p⊥(2Ep + ω)

(
4F 2

1 (|Q|2)m2
N + F 2

2 (|Q|2)|Q|2
)

+ 4
√

2δp⊥
(
F 2
2 (|Q|2)

(
−2Epω − ω2 + |Q|2

)
+ 4F 2

1 (|Q|2)m2
N

)
− 4δ2

√
2F 2

2 (|Q|2)ωp⊥ (A11)

8m4
N w̃

AA(I)
TC =16

√
2G2

A(|Q|2)m2
Np⊥(2Ep + ω) + 16

√
2δG2

A(|Q|2)m2
Np⊥ (A12)

8m4
N w̃

V V (I)
TL =4

√
2p⊥(2p‖ + q)

(
4F 2

1 (|Q|2)m2
N + F 2

2 (|Q|2)|Q|2
)

− 4
√

2δF 2
2 (|Q|2)p⊥q(2Ep + ω)− 4

√
2δ2F 2

2 (|Q|2)p⊥q (A13)

8m4
N w̃

AA(I)
TL =16

√
2G2

A(|Q|2)m2
Np⊥(2p‖ + q) (A14)

8m4
N w̃

V A(I)
T ′ =− 32GA(|Q|2)m2

N(F1(|Q|2) + F2(|Q|2))(ωp‖ − Epq)

− 16δGA(|Q|2)m2
N(2F1(|Q|2)p‖ − F2(|Q|2)q) (A15)

8m4
N w̃

V A(I)
TC′ =− 32

√
2GA(|Q|2)m2

Np⊥q(F1(|Q|2) + F2(|Q|2))

− 4
√

2δF2(|Q|2)GP (|Q|2)ωp⊥q (A16)

8m4
N w̃

V A(I)
TL′ =− 32

√
2GA(|Q|2)m2

Nωp⊥(F1(|Q|2) + F2(|Q|2))

− 4
√

2δp⊥
(
8F1(|Q|2)GA(|Q|2)m2

N − F2(|Q|2)GP (|Q|2)q2
)
, (A17)
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where

p‖ =
p · q
q

(A18)

p⊥ =
|p× q|
q

(A19)

Ep =
√
p2 +m2

N (A20)

|Q2| = q2 − ω2 . (A21)

The isovector electromagnetic form factors F1 and F2 are from [10, 11] and the weak form

factors GA and GP are simple dipole forms as used in [2].
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