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The Relaxion: A Landscape Without Anthropics

Ann Nelson∗ and Chanda Prescod-Weinstein†

Department of Physics, University of Washington, Seattle, Washington 98195-1560

The relaxion mechanism provides a potentially elegant solution to the hierarchy

problem without resorting to anthropic or other fine-tuning arguments. This mech-

anism introduces an axion-like field, dubbed the relaxion, whose expectation value

determines the electroweak hierarchy as well as the QCD strong CP violating θ̄

parameter. During an inflationary period, the Higgs mass squared is selected to

be negative and hierarchically small in a theory which is consistent with ’t Hooft’s

technical naturalness criteria. However, in the original model proposed by Graham,

Kaplan, and Rajendran [1], the relaxion does not solve the strong CP problem, and

in fact contributes to it, as the coupling of the relaxion to the Higgs field and the

introduction of a linear potential for the relaxion produces large strong CP violation.

We resolve this tension by considering inflation with a Hubble scale which is above

the QCD scale but below the weak scale, and estimating the Hubble temperature

dependence of the axion mass. The relaxion potential is thus very different during

inflation than it is today. We find that provided the inflationary Hubble scale is

between the weak scale and about 3 GeV, the relaxion resolves the hierarchy, strong

CP, and dark matter problems in a way that is technically natural.

I. INTRODUCTION

Although the Standard Model represents a significant triumph for both theoretical and

experimental particle physics, questions remain. One outstanding challenge is the strong

CP problem, where the non-detection of an electric dipole moment for the neutron requires

a tremendous fine-tuning of the strong CP violating θ̄ parameter [2–4]. The most elegant

solution to this problem is the Peccei-Quinn (PQ) mechanism, in which θ̄ is determined

by the expectation value of a pseudo-Nambu-Goldstone boson known as the axion [5–7].
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The energy density of the QCD vacuum is minimized at the CP conserving value of θ̄ = 0.

Even though the weak interactions violate CP , the ground state of the full theory is at

θ̄ ∼ 10−16, [8] which is much smaller than the experimental limit of θ̄ < 10−10 from the

electric dipole moment of the neutron [9–11]. The coupling of the axion can be made

arbitrarily weak, allowing it to escape various direct detection searches [12–14].

Happily, for sufficiently weak coupling, the axion is inevitably produced in the early

universe via the misalignment mechanism, in which case the axion can address another

outstanding problem: which particle(s) constitutes the dark matter that appears to dominate

cosmic structures [15–17]. Axion dark matter has become the subject of active detection

searches, with the Axion Dark Matter Experiment exploring the theoretically preferred mass

range [18–21].

Recently, Graham, Kaplan and Rajendran (GKR) [1] proposed a new use for the axion:

to address the electroweak hierarchy problem. While one might naively expect that the

weak scale would be coincident with the Planck scale, instead Fermi’s constant GF , which is

determined by the Higgs expectation value, is 34 orders of magnitude larger than Newton’s

constant GN . In the Standard Model, the Higgs expectation value is determined by a mass

squared parameter whose renormalized value is 34 orders of magnitude smaller than the

Planck scale squared, and it is unknown why the Higgs has this mass.

Furthermore, the tiny value of the Higgs mass squared parameter violates the ’t Hooft

naturalness condition that a parameter should be very small only when a value of zero

increases the symmetry of the theory [22]. The relaxion model tackles this problem by

having the Higgs mass squared determined by dynamics which selects a small value. The

relaxion theory does contain a small parameter, namely a tiny coupling of the relaxion to the

Higgs field, but this small parameter is natural in the ’t Hooft sense, as it breaks the Peccei-

Quinn (PQ) symmetry. During inflation the relaxion evolves slowly until the Higgs mass

squared parameter becomes negative. Then the Higgs develops an expectation value and

the resulting back reaction stops the evolution of the relaxion and the Higgs mass squared

value remains small and negative.

This relaxion mechanism satisfies ’t Hooft’s technically natural standard, but it also

introduces new problems. In addition to potential problems with fine-tuning [23, 24], the

θ̄ angle which the axion mechanism was introduced to make small ends up being ∼ O(1),

as it is determined by equal competition between QCD dynamics, which prefers a value of
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zero, and the PQ symmetry breaking coupling of the relaxion to the Higgs field. In the

original axion mechanism, the minimum of the potential is θ̄ ∼ 0, but in this new relaxion

picture, the potential is tilted and that is no longer the case. Thus, while the relaxion

mechanism may provide an elegant resolution to the electroweak hierarchy problem, in

doing so it (re)produces a new (old) problem. In fact the problem is worse, because while

in the minimal standard model θ̄ is a free parameter, in the relaxion model θ̄ is dynamically

determined to be large.

GKR suggested solving this problem by having the relaxion-Higgs coupling determined by

the inflaton field and having this coupling reduce dramatically post inflation, so that today

the relaxion value is determined solely by QCD. However, there are no a priori technical or

naturalness arguments for this particular resolution. Another possibility they suggested is to

keep the QCD axion uncoupled to the Higgs, and have the relaxion be an axion-like particle

for a new, nonstandard interaction, a resolution that does not share the axion’s appealing

necessity to resolve another challenge faced by the Standard Model.

In this paper, we consider the Hubble scale dependence of the relaxion potential and

the resulting parameter space. The Hubble scale during inflation acts like a temperature,

cutting off infrared effects, with similar effects on dynamics. Although at low temperatures

(below the QCD scale) the axion mass is temperature-independent, above the QCD scale,

this is not the case. We find that by relaxing the Kaplan et al. requirement that the Hubble

scale remain below the QCD scale [25, 26], it is possible to find ourselves in an inflated

patch of the universe where there is a high ratio between the high-temperature mass of the

relaxion and the low-temperature mass.

In this scenario, the strength of the relaxion-higgs coupling can be reduced tremendously

with the relaxion mechanism still determining a hierarchically small value of the weak scale

during inflation, as long as during inflation the back reaction for the Higgs vacuum expec-

tation value of the relaxion potential has similar size to the PQ symmetry breaking scale.

The effects of QCD on the relaxion potential at low temperature are then much larger after

inflation than they are during inflation. Therefore, the value of the relaxion today is mostly

determined by the QCD contribution to the potential, and it approximately aligns with the

CP-conserving value of θ̄.

In Section II, we review the GKR relaxion mechanism in some detail. Section III goes

on to describe how the relaxion mechanism is affected by finite temperature field theory
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considerations during inflation. In this section we introduce the “landscape relaxion” in

which different patches of the universe have different values of the relaxion. We consider a

statistical ensemble of inflated patches and show that a patch like ours with a small weak

scale and small θ̄ is typical. Finally, in Section IV, we discuss our conclusions and suggest the

use of the relaxion for Weinberg’s anthropic landscape solution to the cosmological constant

problem [27].

II. REVIEW OF THE (REL)AXION

The axion is a (pseudo-)scalar field φ that implements the Peccei-Quinn (PQ) solution to

the strong CP problem. The PQ mechanism addresses this Standard Model issue through a

spontaneously broken global U(1) symmetry, which leads to the production of a Goldstone

boson, the axion. Because the PQ symmetry is not exact in the presence of nonperturbative

QCD effects, the axion obtains a potential, which is minimized when the θ̄ parameter is

zero. Having such a symmetry is technically natural as the PQ symmetry breaking is only

due to nonperturbative effects which are negligible at short distances. At low temperatures,

the axion potential is of the form

V (φ) = Λ4 (1− cos (φ/fa)) . (1)

Λ ∼ 0.1 GeV is a parameter of order the QCD scale, and fa is the PQ symmetry breaking

scale, often referred to as the axion decay constant.

The axion is a potential candidate for dark matter because it can be shown that the

abundance of axion dark matter in the universe is determined by fa with value

Ωa ∼
(

fa
1011−12 GeV

)7/6

. (2)

Uncertainty in the expression comes from the temperature-dependence of the axion mass,

as well as uncertainties in axion cosmology such as whether the PQ symmetry breaks before

or after inflation, and, in the former case, on the value of the axion expectation value in our

patch of the universe during inflation.

In the relaxion scenario, the axion is repurposed to address the electroweak hierarchy

problem. A PQ breaking linear term in the φ potential is introduced, as well as a coupling

between φ and the Higgs field h. In addition, the range over which φ can vary is expanded
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exponentially. As the relaxion rolls down its potential, initially the Higgs mass squared is

positive and the quarks are massless. With massless quarks, there is no QCD contribution

to the relaxion potential. The Higgs mass squared parameter decreases until it becomes

negative and the Higgs field acquires a vacuum expectation value. At this point, the quarks

obtain mass and a QCD contribution to the relaxion potential turns on. The QCD con-

tribution stops the relaxion from evolving further and the Higgs has apparently naturally

arrived at the correct value.

Unlike in the original axion model, if one views the relaxion as a pseudo-Goldstone boson

corresponding to spontaneous breaking of a Peccei-Quinn symmetry, the model must contain

an exponentially large discrete symmetry group and the range of the field is much larger

than the Planck scale [28]. Note however that some recent work [29, 30] shows how certain

multi-field models can produce such an effective theory. The full set of relaxion couplings

are

L = c1gM
2φ− (M2 − gφ)|h2|+

(
φ

fa

)(
g2

16π2

)
GG̃ . (3)

Here φ is the relaxion, h is the Higgs field, g is a small coupling, c1 is a positive parameter

of order one, M is a high mass, and fa is similar to the usual axion decay constant. There

is a symmetry φ → φ + c in the limit where nonperturbative QCD effects are turned off

and g → 0. The cutoff scale of this effective theory is taken to be of order the higgs mass

parameter M . The range ∆φ over which the relaxion can evolve is taken to be ∆φ > M2/g,

which will turn out to be much larger than fa. The origin of the small parameter g is not

addressed, but any renormalization of g is proportional to g. Conceivably g might arise from

nonperturbative breaking of the PQ symmetry from something other than QCD. As long as

some high scale new physics cuts off any quadratic divergences at the scale M , the theory

is technically natural.

III. RELAXION DURING INFLATION: A LANDSCAPE PHENOMENON

Since it is expected that during inflation perturbations in the metric can induce fluctations

of the Higgs field which scale with Hubble such that per Hubble time [31]

δh =
H

2π
, (4)
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Kaplan et al. impose a requirement on the relaxion that the classical deterministic evolution

should dominate over the random thermal wandering in a Hubble time,

H < ΛQCD, H < (gM2)1/3. (5)

Then using

gM2fa ∼ m2
af

2
a (6)

and

H > M2/MPl (7)

(so that the inflationary energy density was greater than the change in the energy density

due to φ rolling) they concluded

M <
(m2

af
2
aM

3
Pl

fa

)1/6
∼ 107

(109 GeV

fa

)1/6
. (8)

With this constraint, the Hubble scale during inflation is necessarily below the QCD scale.

Phenomenologically this is consistent with current constraints on the tensor-to-scalar ra-

tio from data [32]. However in this scenario, the θ̄ parameter is of order one today, in

contradiction with laboratory experiments [33].

A. Addressing the CP Problem

To address the relaxion’s strong CP problem, we first note that the effects of the horizon

during inflation has similar effects on the dynamics as does a finite temperature (see, e.g.

ref. [34] for a review). Therefore, we estimate the effects of a high Hubble scale by using

the finite temperature computation of the relaxion mass evaluated at a temperature of H.

We then confront the relaxion’s CP problem by relaxing the requirement of eq. 5 and do

not try to suppress the landscape of final relaxion values. In the process, we do not invoke

any anthropic principle for the weak scale, but rather we examine the parameters for which

the majority of vacua agree with observation in that they have a hierarchically small weak

scale. We call the result the “landscape relaxion.”

When the Higgs field h has a positive mass squared, it does not have a vacuum expectation

value (VEV), and the quarks are massless. Massless quarks greatly suppress the effects of

QCD instantons, which give the relaxion its mass. Neglecting the variation in the Hubble
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(a)GKR relaxion during inflation (b)landscape relaxion during inflation

(c)late universe GKR relaxion (d)late universe landscape relaxion

FIG. 1. This figure is primarily to give readers an intuition for the similarities and differences in
the two models. In the landscape case the QCD contribution to the potential is greatly reduced
during inflation, and the explicit PQ symmetry breaking is also much smaller. The scales on the
left and right differ drastically. In both cases, during inflation, the relaxion dynamics are affected
by both the PQ breaking parameter and QCD nonperturbative affects. For the GKR case the
relaxion potential during inflation is almost the same as it is today. For the landscape case, the
QCD contribution to the potential is vastly larger today than it was during inflation, so the scale
used for depicting V (φ) is increased accordingly for the late universe. Top left: during inflation,
H . ΛQCD, θ ∼ 1; Bottom left: late universe, H ∼ 0, θ ∼ 1; Top right: during inflation,
MW > H >> ΛQCD, θ ∼ 1; Bottom right: late universe, H ∼ 0, θ ∼ 0.

scale during inflation, and including the effects of QCD instantons, we take the relaxion

potential to be

V (φ) = −gM2φ+ (M2 − gφ)|h2| − f(v)

b
(m2

af
2
a ) cos

(
φ

fa

)
(9)

where the zero temperature value of the relaxion mass is ma. The factor b is the ratio of

the zero temperature value of the relaxion mass squared to the value of the mass squared

during inflation. We assume that the non-zero temperature value of the relaxion mass is

given per [16] and [35]. We parameterize the back reaction of the Higgs VEV on the relaxion

potential by the function f(v) which is a function of the Higgs VEV v, noting that v is a
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function of φ. We take f(v) = 1 when the Higgs VEV takes its final value. When the Higgs

mass squared is positive, which happens when (M2−gφ) > 0, we neglect the tiny correction

to the relaxion potential and take f(v) to be zero.

We give a qualitative description of the relaxion dynamics as follows. At the start of

inflation we have (M2 − gφ) > 0, a positive Higgs mass squared, and v = 0. Every Hubble

time, H−1, φ wanders randomly by an amount of order H/(2π). In addition the expectation

value of φ evolves classically. When v = 0, the expectation value of φ is pushed by the

−gM2φ term in the potential and changes by an amount gM2/H2 per Hubble time. After

N ∼ H2/g2 Hubble times, the relaxion average value has changed by ∼ (M2/g), as needed

for the average value of the Higgs mass squared to be negative. Using a random walk model

of ∆φ ∼ H per Hubble time gives a spread in the value of φ of order
√
NH ∼ H2/g. Thus

after H2/g2 Hubble times the Higgs mass squared has evolved to ∼ 0±H2. We assume H

to be much smaller than the value of the Higgs mass in our patch of the universe. After

∼ (1 + H2/M2)(H2/g2) e-folds, most of the relaxion values are such that the Higgs mass

squared is slightly negative.

For classical evolution, as was assumed by GKR, the slow roll of the average expectation

value stops due to back reaction when M2g = f(v)(m2
af

2
a )/(fab). We take this to happen

by definition at (M2 − gφ) = −m2
h, where −m2

h is the value of the Higgs mass parameter in

our world, which happens after about ∼ (1 + m2
h/M

2)(H2/g2) e-folds. If the back reaction

happens in a similar manner when H is large, the universe consists of a tremendous number

of causally disconnected patches, each with a different value of φ. However, due to the

small value of g, at the time when the back reaction takes place, the spread in the value of

the Higgs mass squared parameter is small, of order H2. The probability distribution will

continue to spread until the end of inflation, with the variance in the weak scale of order

g
√
H3t. Therefore as long as inflation does not last for more than m4

h/(g
2H2) e-folds, the

variance in the weak scale is less than the weak scale.

We now examine this picture more quantitatively.

B. The Probability Distribution of Relaxion Values

The large spread in relaxion values is not in accord with a deterministic classical picture

of the dynamics. We may examine the back reaction using the Fokker-Planck equation, as
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described in the context of Higgs dynamics in ref. [36].

∂P

∂t
=

∂

∂φ

(
H3

8π2

∂P

∂φ
+
V ′P

3H

)
(10)

Here P (φ, t) is the probability of finding value φ for the relaxion at time t.

For constant H and constant V ′, just as indicated by our qualitative discussion, a solution

to eq. 10 is a spreading gaussian, with the width growing as t1/2, and mean value slowly

rolling down the potential. We define P0(φ, t) to be the probability of finding value φ for

the relaxion at time t, for the case where the initial distribution is a delta function and the

back reaction from QCD is turned off, so that V ′ = −gM2.

P0(φ, t) =

√
2π√
H3t

e−2π
2 (φ−gM2t/(3H))

2

H3t (11)

GKR assumed for an initial distribution with a small spread in the values of φ, P stops

evolving when most of the values of φ are in a regime where V ′ ∼ 0. Because V ′ is an

oscillating function of φ, this approximation requires that P can be approximated by a delta

function of φ.

A qualitative picture of the dynamics when the center of the distribution P0 reaches the

regime where the QCD contribution to the potential is important is as follows. P (φ, t) will

evolve to become larger in regions where the potential is locally minimized with respect to

φ and smaller in regions of local maxima. Due to this back reaction, the expectation value

of φ will stop increasing.

In order to give a more quantitative treatment, as we do not know how to find an

exact solution of the Fokker-Planck equation in the presence of the QCD term, we treat

the QCD contribution as a perturbation. We take V ′ to be −gM2 + λε′(φ), where ε′ =

−f(v)
fab

(m2
af

2
a ) sin( φ

fa
). We take P = P0 + λp(φ, t) and treat λ as an expansion parameter.

Collecting terms which are linear in λ we find p satisfies

∂p

∂t
=

∂

∂φ

(
H3

8π2

∂p

∂φ
+
ε′(φ)P0(φ, t)

3H

)
(12)

We see that equation for the perturbation has the same form as the heat equation with

a driving term, also known as the forced heat equation, and we may solve it using a Green’s

function technique, which results in an explicit albeit complicated integral. The appropriate
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Greens function G is the solution to the homogenous equation multiplied by a step function:

G(t, t0, φ, φ0) =

√
2πθ(t− t0)√
H3(t− t0)

e
−2π2 (φ−φ0)

2

H3(t−t0) (13)

so we take the integral of this Green’s function multiplied by the driving term

p(φ, t) =

∫ t

0

dt0

∫ ∞
−∞

dφ0

√
2π√

H3(t− t0)
e
−2π2 (φ−φ0)

2

H3(t−t0)
∂

∂φ0

(
ε′(φ0)P0(φ0, t0)

3H

)
=

∫ t

0

dt0

∫ ∞
−∞

dφ0
−(2π)

5
2 (φ− φ0)

H
9
2 (t− t0)3/2

e
−2π2 (φ−φ0)

2

H3(t−t0)
ε′(φ0)P0(φ0, t0)

3H

=

∫ t

0

dt0

∫ ∞
−∞

dφ0
−8π3(φ− φ0)ε

′(φ0)

3H7(t− t0)
3
2 t

1
2
0

e
−2π2

(
(φ−φ0)

2

H3(t−t0)
+

(φ0−gM
2t0/(3H))2

H3t0

)

≈
∫ t

0

dt0

∫ ∞
−∞

dφ0
−8π3(φ− φ0)ε

′(φ0)

3H7(t− t0)
3
2 t

1
2
0

e
−2π2

(
(φ0−φt0/t)

2t+φ2(t−t0)t0/t
H3(t−t0)t0

)

=

∫ t

0

dt0

∫ ∞
−∞

dφ0
−8π3(φ(1 + t0/t)− φ0)ε

′(φ0 + φt0/t)

3H7(t− t0)
3
2 t

1
2
0

e
−2π2

(
(φ0)

2t+φ2(t−t0)t0/t
H3(t−t0)t0

)
(14)

where we have changed variables φ0 → φ0 +φt0/t and dropped terms which are proportional

to g in the fourth line since we are mainly interested in studying the effects of the back

reaction from QCD. Note that this means we are taking the distribution function to be

localized at φ = 0 at t = 0, an acceptable assumption since we may always shift t and φ

to an arbitrary value. It is also acceptable to ignore the evolution of the mean value of P0

during the back reaction because as we show below, the back reaction sets in quickly enough

that we may ignore the terms proportional to g during this process.

This equation is exactly solvable, but the full solution is not needed to serve our pur-

poses. Rather than sharing the exact solution, we focus on extracting information related

to whether the time scale for the back reaction to become significant is short enough, such

that the approximation of neglecting the motion of the center of the probability distribution

is sufficiently accurate. The term ε′ oscillates and the concern is that the integrand will be

greatly suppressed by cancellations. Taking ε′ = q sin(φ/fa), with q = m2
afa/b, we obtain

p(φ, t) ≈
∫ t

0

dt0

∫ ∞
−∞

dφ0

−8π3q(φ(1 + t0/t)− φ0) sin
(
φ0+φt0/t

fa

)
3H7(t− t0)

3
2 t

1
2
0

e
−2π2

(
(φ0)

2t+φ2(t−t0)t0/t
H3(t−t0)t0

)
(15)

=

∫ t

0

dt0
q
√

2πe

(
H3t0(t0−t)

8π2f2a
− 2π2φ2

H3t

) (
H3 (t− t0) t0 cos

(
φt0
tfa

)
− 4π2faφ (t+ t0) sin

(
φt0
tfa

))
3t

3
2 (t− t0)faH

11
2

(16)
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We assume the back reaction stops the expectation value of φ from evolving further once

p becomes of similar magnitude to P0. We wish to examine whether the time scale for this

to happen is short or long compared with the very long timescale thiggs over which the Higgs

VEV changes by order one, which is thiggs ∼ Hm2
h/(g

2M2). We examine the value of the

integral at φ = 0 since this is a relatively arbitrary value as well as being a point at which

the cosine is extremized and the distribution is localizing. We have checked numerically that

our result does not significantly depend on φ. At φ = 0 we get a relatively simple expression:

p(0, t) ≈
2π2qe

− H3t

32π2f2a erfi
(√

H3t
32π2f2a

)
3H4

(17)

while

P0(0, t) ∼
1√
H3t

. (18)

For small t, we Taylor expand eq. 17

p(0, t)

P0(0, t)
∼ qt

Hfa
(19)

where we have dropped O(1) factors for simplicity. The ratio grows approximately linearly

in t and becomes of O(1) at a time tback reaction

tback reaction ∼
faH

q
. (20)

We compare the (long) back reaction time scale with the (very long) time scale thiggs and

obtain
tback reaction

thiggs
∼ fag

m2
h

. (21)

The numbers we will arrive at in the next section give a small value for g relative to all

relevant scales, and the timescale ratio is generally less than ∼ 10−26.

C. A technically natural solution to the Strong CP problem

At the end of inflation the Hubble parameter decreases. As the universe subsequently

cools, the QCD contribution to the relaxion potential increases. The parameter b, which

is defined to be the ratio of the QCD contribution to be relaxion potential today to the

QCD contribution during inflation, determines the value of θ̄ as follows. During inflation

the QCD contribution is comparable to the explicit symmetry breaking. Once the universe
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has cooled, the explicit symmetry breaking remains the same, but the QCD contribution

is larger by a factor of b. Since the QCD contribution is minimized at θ̄ = 0, provided

b > 1010, the strong CP problem is solved. Such a value can occur naturally if, using finite

temperature to estimate the QCD contribution to the relaxion potential during inflation,

the Hubble scale during inflation lies in the approximate range

3 GeV < H < 100 GeV. (22)

The lower bound is determined by estimating the temperature at which the QCD contri-

bution to the potential is at least 1010 times smaller than the zero temperature value, and

the upper bound is required so that the Hubble temperature does not prevent the Higgs

field from gaining an expectation value during inflation. Such low-scale inflationary mod-

els appear to be required by the relaxion but have also been considered relevant in other

cosmological contexts [37–42].

The tiny size of g and enormous range of φ required to make this scenario work may seem

rather extravagant. The value of g is given by

g ∼ m2
af

2
a

M2fab
∼ 10−30MeV

(10 TeV)2

M2

1010

b
. (23)

(Note that at zero temperature f 2
am

2
a ∼ (80 MeV)4 for the QCD axion independent of ma.)

This extremely tiny number is, however natural, in the sense that it violates the Peccei-

Quinn symmetry which is otherwise only violated by UV insensitive nonperturbative QCD

effects. Thus radiative quantum corrections to g are proportional to g. With H > 3 GeV,

the number of required e-foldings during inflation is a large number, at least ∼ 1033. The

range of φ is also enormous. With M ∼ 10 TeV, φ must change by ∼ 1044 GeV. An

upper limit on M comes from combining equations 7 and 22, which gives an upper limit of

M < 1011 GeV.

In addition, φ is spread over about at least 1020 distinct vacua and perhaps many more.

These are all similar, as the weak scale only varies by a fraction ∼ H/mh over all of these, and

the strong CP parameter is of order 1/b in all of them. For larger H, g is tinier and b larger.

We note that for H just below the weak scale, the Higgs expectation value during inflation

will be much smaller than it is today, and all 6 quark masses play a role in suppressing

instantons, so extremely large values of b are possible in this limit. Such extreme numbers

are the price to pay to avoid introducing arbitrary couplings or new particles to resolve the

strong CP problem with the relaxion.
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D. Taking Measure of Our Inflationary Universe

In [1], the authors state that the scale of inflation must observe the constraint H <

(gM2)1/3 in order to avoid needing to address the measure problem, which naturally arises

in the context of eternal inflation [43], the attractor configuration for most inflationary

pictures. In the eternal inflation scenario, an infinite number of inflationary regions are

continuously produced, and it is difficult to make statements about probabilities such as

the one estimated in III B. Specifically in the case of the landscape relaxion, our Fokker-

Planck treatment neglects the effects the relaxion energy density on the expansion rate after

inflation has ended. Regions with higher energy density will expand faster and therefore

make up an increasingly large percentage – insofar as one can be calculated – of the physical

spacetime. Thus, the question arises of whether a similar probability estimate to the one

above can be made to address whether we are likely to end up in the region with electroweak

symmetry breaking.

For these reasons, the original attempt to avoid the measure problem is understandable,

although it introduces different challenges. This includes requires an unusually low Hubble

scale that is many orders of magnitude below what is usually modeled in typical inflationary

theories, and the requirement that the linear term in the relaxion potential turn off after

inflation. However, as noted above, low-scale inflation can be workable, so this is not a

catastrophic change to early universe dynamics. Yet another problem of the original relaxion

model is that which we address in this paper, resolving the Strong CP and dark matter

problems. The initially proposed solution involves introducing a coupling to the inflaton

which is only motivated by the need to address the value of θ rather than any fundamental

symmetry considerations. By introducing a solution that raises the minimum Hubble scale

in order to take the temperature-dependence of the axion mass into account, we reintroduce

a landscape which suggests that we should also address the measure problem.

While it may seem like we are now in an impossible situation, where neither the GKR

relaxion nor the landscape relaxion provide satisfactory solutions to both the electroweak

hierarchy problem and the strong CP problem without introducing unattractive cosmolog-

ical features. Yet, we contend that there are promising solutions to the measure problem

which can potentially offer a way out (e.g. [44–46]) and which have distinct observational

signatures [47]. While we leave a more complete picture to future work, we note here that
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the measure problem can be resolved by one particularly promising mechanism known as

the scale-factor cutoff measure [47].

In the scale-factor cutoff scenario, the relative probability of any two events A and B

occurring is calculated in the following manner:

p(A)

p(B)
≡ lim

tc→∞

n
(
A,Γ(Σ, tc)

)
n
(
B,Γ(Σ, tc)

) , (24)

where n(A,Γ) and n(B,Γ) are the number of events of types A and B, respectively, in a

spacetime region we call Γ, which is constructed from a hypersurface Σ and a time coordinate

t. The time coordinate has been implicitly introduced via the cutoff tc, which selects a finite

spacetime region before the limit of tc is taken to infinity. Thus we start with an inflating

spatial region Σ and follow its evolution along geodesics orthogonal to it. Following the global

time cutoff mechanism [44, 48, 49], the cutoff time tc is introduced, but ultimately taken to

infinity. Therefore we calculate probabilities by averaging over the spacetime volume that

exists in a comoving region measured in time t, which ultimately goes to infinity. It can be

shown that these probabilities are independent of which hypersurface Σ is chosen.

The scale-factor cutoff measure is our preferred mechanism for addressing the problem

because it provides a method for stating a numerical probability given a correct theory

of quantum gravity while not suffering from various difficult to resolve issues that arise in

other mechanisms, for example the problem of bias toward young observers, which introduces

another problem known as “the youngness paradox.” In addition, it has been shown in [47]

that this mechanism provides a compelling resolution to the cosmological constant problem,

so it is reasonable to expect that the same will be true for the landscape relaxion. We leave

to future work a detailed calculation which shows this.

IV. IN CONCLUSION, A LANDSCAPE

In the original relaxion paper, GKR imposed the restriction H < ΛQCD, giving as an

explanation that they wished to avoid a landscape of possible values for the relaxion field.

Unfortunately that prediction gives the wrong answer for the QCD strong CP parameter θ̄.

GKR proposed some solutions, e.g. having the PQ breaking parameter become exponentially

small when the inflaton turns off, but do not propose a symmetry-protected reason for how

this could happen. They also considered having the relaxion be distinct from the QCD
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axion.

In the current work, we conclude that if we relax the upper bound on H given in the

original relaxion paper, at the price of introducing a small but symmetry-protected number

and assuming an even longer period for inflation with an even larger range for the relaxion,

then the relaxion may be used to also solve the strong CP problem and provide dark matter.

When the inflationary Hubble scale is higher than ΛQCD (but still below the weak scale), then

the Hubble scale acts like a temperature in suppressing the effects of large QCD instantons.

Small instantons means that the explicit PQ breaking is also much smaller while maintaining

sufficient back reaction to implement the relaxion mechanism.

Once the post-inflationary universe has cooled to well below the QCD scale, the instanton

effects become much larger, by a factor b, and dominate the relaxion potential. The zero

temperature value of θ̄ comes out to order 1/b, so that the relaxion solves the strong CP

problem provided that b > 1010. The restriction that b > 1010 places a lower bound on

H of order 3 GeV, which is above the upper bound of GKR. In this higher H scenario,

the expectation value of the relaxion is spread over an exponentially large number of local

minima of the relaxion potential. However the spread in the value of the weak scale is still

small. Thus the relaxion provides a natural mechanism for the production of a landscape of

universes with similar values of the weak scale but different vacuum energies.

While our relaxion does populate a landscape of vacua, we have not invoked any an-

thropic arguments for the strong CP, weak hierarchy, or dark matter problems. However,

we still have a finely tuned cosmological constant in most or all of these vacua. We conclude

by succumbing to the temptation to remark that the relaxion landscape could allow a way

to address the cosmological constant problem via Weinberg’s anthropic landscape [27]. The

argument of Weinberg is that only those vacua with energy small enough to allow for struc-

ture formation before the expansion of the universe accelerates will have galaxies, stars and

observers. The change in the value of the energy density between adjacent metastable vacua

is M2gfa ∼ m2
af

2
a/b. With an extreme value of b, the energy differences between vacua with

similar particle properties are smaller than the size of the cosmological constant. Such a

large value of b could be possible in the case where the inflationary Hubble scale is not too

far below the weak scale. This would at least reduce the scope of the cosmological constant

problem to ensuring that the range of energies scanned by metastable vacua includes the

value 0.
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