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Abstract

In a holographic probe-brane model exhibiting a spontaneously spatially mod-
ulated ground state, we introduce explicit sources of symmetry breaking in
the form of ionic and antiferromagnetic lattices. For the first time in a holo-
graphic model, we demonstrate pinning, in which the translational Goldstone
mode is lifted by the introduction of explicit sources of translational symme-
try breaking. The numerically computed optical conductivity fits very well to
a Drude-Lorentz model with a small residual metallicity, precisely matching
analytic formulas for the DC conductivity. We also find an instability of the
striped phase in the presence of a large-amplitude ionic lattice.
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1 Introduction

Electronic systems at low temperature exhibit a range of phases with spontaneously
broken translation symmetries. A charge density wave (CDW) is a typical example, in
which continuous translation symmetry is broken in one direction, leading to stripes
of modulated charge density.1 Other order parameters can become spatially modu-
lated, such as spin density waves (SDW) or persistent circulating currents. Complex
combinations of intertwined orders can occur, such as the pair-density waves (PDW)
found in certain underdoped cuprates, featuring spatially modulated charge, spin,
and superconducting phase.

Spontaneously striped phases have interesting properties and rich dynamics. The
charge conductivity, in particular, can feature striking behavior. Because the sym-
metry breaking is spontaneous, striped phases feature a Goldstone mode which is the
translation zero-mode. An applied electric field can easily cause the stripes to slide,
resulting in collective charge transport.

In practice, however, additional sources of explicit symmetry breaking, such as
impurities or the underlying lattice, typically generate a spatially-varying potential
for the stripes and lift the Goldstone mode. The stripes are then pinned in place and
can only slide if the potential barrier is overcome by a sufficiently large electric field.
This depinning transition results in a highly nonlinear conductivity.

Spontaneous striped order is a common feature of many condensed matter systems.
In some cases, the underlying physics can be understood in a weakly interacting,
quasiparticle description. However, other examples are found in strongly coupled
materials, such as the pseudogap regime of cuprate superconductors [2, 3], and are
more amenable to a holographic approach.

Holographic modeling of striped phases has been a subject of much attention in
recent years. In most of the examples, translation symmetry is broken explicitly.
A spatially modulated chemical potential can represent an ionic lattice [4, 5], and
a sum of such potentials with different frequencies and random phases can model
disorder [6].

Comparatively less attention has focused on the more interesting case of spon-
taneous symmetry breaking. Striped phases of several holographic models featuring
non-perturbative spontaneous striped order have been constructed; see e.g., [7–23]. In
a few cases, phases with spontaneous order in two directions have been found [24–26].
However, the unique transport properties of these states are just beginning to be
studied.

In [27], we initiated the analysis of the conductivity of a spontaneously striped
state. We focused on the D3-D7’ probe-brane model, a well-studied holographic model

1For a review, see [1].
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featuring a spontaneously striped phase with modulated magnetization, persistent
transverse currents, and modulated charge density. Phases with such complex inter-
twined orders appear in, for example, cuprate [28] and ferrous superconductors [29],
and have recently also been modeled holographically, for example, in [23]. We found
that the stripes slide with a velocity proportional to the applied electric field and
carry a significant fraction of the current.

In experimental systems, spontaneous breaking coexists with disorder or an under-
lying lattice. Several recent studies have investigated how explicit symmetry breaking
affects the formation of holographic striped phases. In [23, 30], background linear
scalars were shown to impact the modulated instability of the homogeneous phase
and wavelength of the resulting stripes. Even more interestingly, [31] demonstrated
that an explicit ionic lattice of sufficient amplitude can force the wavelength of the
modulated instability to be half-integer multiples of the lattice wavelength, indicating
a commensurate lock-in between the lattice and the stripes. However, the effects of
an explicit lattice on the conductivity, especially the pinning of holographic stripes,
the focus of this paper, have not previously been investigated.2

In this paper, we analyze the linear conductivity of the D3-D7’ model with the
addition of explicit translation symmetry breaking, either in the form of an modulated
chemical potential (ionic lattice) or a background antiferromagnetic field (magnetic
lattice). This explicit breaking lifts the Goldstone mode and pins the stripes. The
resulting longitudinal conductivity is well fit by a Drude-Lorentz model. We find a
small residual DC conductivity, computed semi-analytically in terms of background
horizon data, which represents the current of charge carriers flowing across both the
stripes and the lattice.

The transverse conductivity is relatively unaffected by the addition of the explicit
lattice and is still well fit by a Drude-like form. As a result, the surprising approximate
symmetry between the longitudinal and transverse DC conductivities found in [27] is
strongly broken. The DC conductivity across the stripes is now an order of magnitude
smaller than along the stripes.

The DC Hall conductivity in the absence of a lattice [27] features a delta peak due
to the persistent transverse current oscillating as stripes slide. Adding a lattice pins
the stripes and regulates this delta peak into a modified Lorentzian form, with the
same resonance frequency and relaxation time as seen in the longitudinal conductivity.

In many respects the ionic and magnetic lattices have qualitatively similar effects.
However, because the charge modulation of the stripes is subleading, the potential
well due to the ionic lattice is shallower. As a result, the resonant frequency is an
order of magnitude smaller than for the magnetic case.

2Pinning in a holographic CDW was reported in [19]. However, as the model lacks an explicit
source of symmetry breaking to lift the Goldstone mode, we disagree with the identification of the
reported conductivity as being due to pinning.
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However, one surprising result is that an ionic lattice of sufficient amplitude leads
to an instability. We find that, as the lattice amplitude is increased, at a certain
point the resonant frequency goes to zero and then becomes imaginary. This is a sign
that a pole in the current-current correlator has acquired a positive imaginary part,
corresponding to an exponentially growing pseudo-Goldstone mode.

The rest of this paper is organized as follows. In Sec. 2, we will review the construc-
tion of the D3-D7’ model and the spontaneously spatially modulated phase. Sec. 2.2
introduces the explicit modulation. Then, in Sec. 3, we recompute the conductivities,
first for the magnetic lattice in Sec. 3.2 and then ionic lattice in Sec. 3.3. We conclude
with a summary and open questions in Sec. 4.

Note added : Two papers on closely related topics are appearing concurrently with
this one. Ref. [32] investigates the conductivity and pinning of a spontaneously striped
phase of a holographic Bianchi VII construction in the presence of an explicit lattice.
Ref. [33] studies transverse, gapped pseudo-phonons in the context of a holographic
massive gravity model.

2 Set-up

The D3-D7’ model is a holographic model of strongly interacting fermions on a (2 +
1)-dimensional defect [34], which in many ways resembles graphene [35–37]. The
construction consists of a probe D7-brane embedded in a D3-brane background such
that supersymmetry is completely broken and stabilized by internal magnetic fluxes
wrapping 2-cycles in the S5. We will only briefly review the relevant aspects of the
model here; for more details, see [27]. It is noteworthy to mention other closely
related holographic constructions [38–46], which have significantly contributed to the
understanding of the current setting.

The probe D7-brane is embedded so that it spans the t, x, and y Minkowski
directions, is extended in the holographic radial direction r, and wraps both of the
2-spheres. The bulk solutions are specified by the embedding functions z and ψ and
the worldvolume gauge field aµ. The D7-brane action consists of a Dirac-Born-Infeld
term and a Chern-Simons term:

S = −T7

∫
d8x e−Φ

√
−det(gµν + 2πα′Fµν)−

(2πα′)2T7

2

∫
P [C4] ∧ F ∧ F . (1)

From this action, we obtain equations of motion for the embedding fields ψ and z as
well as the worldvolume gauge fields at, ax, and ay.

3

We scale out the temperature T by rescaling the spatial coordinates xµ and gauge
field aµ by the horizon radius rT . We furthermore work with a compact radial coor-

3The equation for the radial component au gives a constraint enforcing the radial gauge condition
au = 0.
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dinate
u =

rT
r
, (2)

which sets the location of the horizon at u = 1 and the anti-de Sitter (AdS) boundary
at u = 0.

We can include a chemical potential µ and magnetic field b by turning on appro-
priate components of the bulk gauge field aµ. For a particular ratio of charge density
to magnetic field, the D7-brane can take a Minkowski embedding, which is holograph-
ically dual to a gapped, quantum Hall phase [34,47–49]. However, we will concentrate
in this paper on the generic black hole embedding, which is dual to a gapless quantum
fluid. We will further restrict to embeddings with zero fermion mass.

2.1 Spontaneous stripes

At large chemical potential and small magnetic field, the homogeneous solution of
the D3-D7’ model was found to exhibit an instability at nonzero momentum [50,51].
In [20], this instability was shown to lead to a striped ground state, featuring spatially
modulated charge density, magnetization, and persistent current along the stripes.
Rotation invariance allows us to choose the modulation to be in the x direction,
while translation symmetry is preserved in the y direction.

The spontaneous modulation has a dynamically determined spatial frequency k0,
which is an increasing function of µ and a decreasing function of b. The transverse
gauge field ay and the embedding ψ exhibit the leading modulation. Because all
the bulk fields are nontrivially coupled, these induce a subleading modulation with
a frequency 2k0 in the temporal gauge field at and embedding scalar z. The spatial
period of the solution is L = 2π/k0.

In [27], we analyzed the electrical conductivity for this striped state at zero mag-
netic field. We computed the DC conductivity σDC semi-analytically in terms of
horizon data using the procedure of [52–55], and the AC conductivity σ(ω) was com-
puted numerically. As expected, the conductivity of both the homogenous and striped
phases fit very well to a Drude-like form.

Our most significant result was that the stripes move as a result of an electric
field Ex applied across the stripes. The stripes have a sliding mode which is the
Goldstone mode of the spontaneously broken translation symmetry. In the absence of
an underlying lattice or localized impurities explicitly breaking translation invariance,
the stripes are not pinned to any particular location. The D3-brane sector acts as
a momentum sink, analogous to uniformly smeared impurities, providing friction to
the sliding stripes. This results in a sliding velocity vs proportional to Ex and a finite
σDC
xx .

The optical conductivity in both the x and y directions exhibits a Drude-like
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form at low frequency. Surprisingly, the conductivity across the stripes and along the
stripes is equal to within a few percent, despite the anisotropy of the background and
very different mechanisms for charge transport in the two directions.

The Hall conductivity σyx illustrates the effect of the sliding stripes. The striped
ground state features a modulated transverse persistent current jy(x), which slides
along with the stripes. The transverse current at a fixed location therefore oscillates in
time as the stripes slide past. This results in a delta peak in the DC Hall conductivity
with a modulated strength.

2.2 Introducing lattices

In this paper, we add explicit translation symmetry breaking on top of the non-
linear spontaneous striping. As the striped background consists of both modulated
magnetization and charge density, there are two interesting ways we can introduce
explicit translation symmetry breaking. We can consider modulation either in the
background magnetic field or in the chemical potential. We refer to the resulting field
theory configurations as magnetic and ionic lattices, respectively. And, note that we
only introduce one type of lattice at a time, not both simultaneously.

In a sufficiently strong periodic potential, striped states will typically adjust their
wavelength to be commensurate with that of the potential. Such commensurate lock-
in has been observed in a holographic context in [31], and we expect such an effect
to occur in this model. However, we leave this investigation for future work.

In the meantime, we set the wavelength of the lattice equal to the wavelength
dynamically preferred by the stripes in the absence of a lattice. The spatial frequency
of the magnetic lattice is then k0 to match the spontaneous magnetization of the
stripes, and the ionic lattice is given a frequency 2k0 to match the stripes’ charge
density modulation. We furthermore choose the phase of the lattice such that the
discrete symmetries of the striped solution are respected. Essentially, we impose
commensurability of the lattice and the stripes by hand.

These lattices are dual in the bulk to modulated boundary conditions for the dual
components of the world volume gauge field. For the two lattices, the boundary
conditions that we introduce are then as follows:

Magnetic lattice : ay(x, u = 0) = bx+ αb sin(k0x) (3)

Ionic lattice : at(x, u = 0) = µ+ αµ cos(2k0x) . (4)

The parameters αb and αµ measure the amplitude of the lattices and will play a major
role in the subsequent analysis.4

4We restrict to positive α. Notice that the sign of both α’s can be changed by choosing the
phase of the modulation differently, so formally the boundary conditions with opposite signs are
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In this paper, we will restrict our attention to solutions for which the spatially
averaged background magnetic field vanishes, b = 0. We further set the chemical
potential to be µ = 4, which is sufficiently large that the system is in the spontaneously
striped phase [20].5

Before moving on to study the conductivity, we note that the lattices have a
significant effect on the striped background itself and not just on its excitations. We
show in Fig. 1 the difference between the striped solution with a magnetic lattice αb =
1 and without αb = 0. Not surprisingly, the magnetic lattice directly and strongly
enhances the modulation of ay. The various couplings between all the fields induce
smaller enhanced modulations in ψ, z, and at. Just as the spontaneous modulation
of z and at is twice the frequency of ay and ψ, so too is the enhanced modulation
generated by the lattice. Also note that, although ∆at is substantial, one should
recall that, since the boundary condition sets at(u = 0) = µ = 4, the fractional effect
∆at/at is actually smaller than for ψ.

In Fig. 2, we show the analogous plot for an ionic lattice, the difference between
the striped solutions with αµ = 1 and αµ = 0. Here, the lattice directly generates a
sizable increase in the modulation of at, which is then transmitted to the other fields.
Even though we have in both cases chosen the smallest wave number for the source
which preserves all discrete symmetries, there are also clear differences in the shape
of the response between Fig. 1 and Fig. 2. In particular, for ψ and ay, the ionic lattice
primarily enhances the amplitude of the mode with frequency 3k0 rather than k0.

One important effect of the lattices is that, even though the added modulation does
not change the average chemical potential, the charge density is strongly impacted.
As shown in Fig. 3, both the average charge density 〈d〉 and the amplitude at which
the charge density is modulated, ∆d = max|d(x) − 〈d〉|, increase with both αb and
αµ. In particular, the ionic lattice induces a strong modulation of the charge density.

3 Conductivities

We now turn to our main topic, the linear electric conductivity of the striped state in
the presence of an explicit lattice. We first present formulas for the DC conductivities
in terms of the horizon data of the background solution. Then we present numerical
computations of the optical conductivity, first for the magnetic lattice and then for
the ionic case.

equivalent. Separate branches of solutions obtained by a deformation of the α = 0 solution towards
negative α do exist, however, but only for |α| � 1. We expect that they are subdominant even in
the narrow range where they exist.

5In fact, we only know definitively that the system is in the striped phase for µ = 4 when
αb = αµ = 0. We postpone a detailed analysis of the phase diagram in the presence of explicit
lattices to future work.
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Figure 1: The difference between the bulk stripe solution with a magnetic lattice
αb = 1 solution and without αb = 0. Top left: ∆ψ, top right: ∆z, bottom left: ∆ay,
and bottom right: ∆at.

3.1 DC conductivities

We computed in [27] the DC conductivities of the striped solution in the absence of
a lattice. This computation involved the method developed in Refs. [52–55] using
conserved bulk quantities to express the currents in terms of quantities which depend
only on background fields at the horizon. To describe a system with spontaneous
symmetry breaking, we generalized this method to include the translational Goldstone
mode. The stripes then slide at a velocity vs proportional to the applied electric field
Ex. The value of vs was fixed in [27] by comparing numerically the zero-frequency
limit of the fluctuations sourced by the electric field to the profile of the Goldstone
mode.6

Introducing a lattice does not alter the computation of [27] except that, because

6The fact that vs cannot be fixed analytically is likely an artifact of working only to linear order
when computing the conductivity. In a fully nonlinear sliding solution, we believe vs will be fixed.

8



Figure 2: The difference between αµ = 1 solution and αµ = 0. Top left: ∆ψ, top
right: ∆z, bottom left: ∆ay, and bottom right: ∆at.
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Figure 3: The spatial average of the charge density 〈d〉 and its modulation amplitude
∆d = max |d(x)− 〈d〉|. Left: magnetic lattice. Right: ionic lattice.

the Goldstone mode is lifted, the stripes can no longer slide. The averaged7 DC

7Spatial averages are denoted by 〈. . .〉 =
∫ L
0
dx(. . .)/L.
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conductivities are therefore given by nearly the same expressions as in [27]:

〈σxx〉 = 〈σ̂−1〉−1 (5)

+ δαb,αµ,0
vs
Ex

[√
2〈c(ψ0)a′y,0〉 − 〈at,0σ̂(a′2y,0+ ψ′20 + z′20 )〉+ 〈at,0〉〈σ̂−1〉−1− 〈at,0σ̂〉

]
〈σyy〉 =

〈
σ̂(1 + z′20 + ψ′20 ) +

1

σ̂

(√
2c(ψ0)− σ̂at,0a′y,0

)2
〉

(6)

〈σxy〉 = 〈σyx〉 = 0 , (7)

where

σ̂ =

√
(1 + 8 sin4 ψ0(x))(1 + 8 cos4 ψ0(x))

2
√

2(1− at,0(x)2)(1 + a′y,0(x)2 + ψ′0(x) + z′20 (x))
(8)

and the subscript 0 denotes values of the background fields evaluated at the horizon,
with the exception of at(x, u) = at,0(x)(u− 1) +O ((1− u)).8

We have introduced a Kronecker delta in the last term of (5), signaling an abrupt
change of physics in the absence of explicit translation symmetry breaking α = 0.
This discontinuity is a result of computing the conductivity to linear order. Because
the finite modulation α is parametrically larger than the infinitesimal electric field
Ex, there is no way to overcome the pinning potential and cause the stripes to slide
across the lattice. We hope in future work to compute the nonlinear conductivity in
response to finite Ex.

Although the addition of this Kronecker delta may seem ad hoc, we verify that
it is correct in Secs. 3.2 and 3.3 by matching σDC

xx from Eq. (5) to the zero-frequency
limit of the optical conductivity.

3.2 Magnetic lattice

We now focus our attention on the specific case of the magnetic lattice and impose the
boundary condition (3) on ay. We construct the modulated background numerically
as in Ref. [20]. The DC conductivities can directly be computed from Eqs. (5) and
(6) using the horizon values of the numerical solution.

To compute the optical conductivity, we consider linear fluctuations on top of the
the striped backgrounds with the form:

f = f̄(x, u) + e−iωt(1− u)−iω/4δf(x, u) , (9)

where f represents each of the bulk fields ψ, z, at, ay, and ax. To turn on electric
fields ex or ey, we choose one of the following boundary conditions:

iωδax(x, 0) + ∂xδat(x, 0) = iω ex (10)

δay(x, 0) = ey . (11)

8For x-dependent expressions, we refer the reader to Ref. [27].
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As usual, an extra factor of ω was included in the definitions of ex and ey so that the
physical electric fields are ∝ iω ex,ye

−iωt. No other sources are turned on, so that

∂uδψ(x, 0) = 0 = δz(x, 0) . (12)

In addition, we require infalling conditions, i.e., that δf are regular at the horizon,
and that δat(x, 1) = 0. We then solve the linearized equations of motion numerically
and extract the conductivities as follows:(

jx(ω, x)
jy(ω, x)

)
=

(
∂uδâx(x, u = 0)
∂uδây(x, u = 0)

)
=

(
σxx(ω, x) σxy(ω, x)
σyx(ω, x) σyy(ω, x)

)(
iω ex
iω ey

)
. (13)

For further details, we refer the reader to [27], and for a similar computation with
complementary discussion, see [55].

Our first goal is to match the ω → 0 limit of the optical conductivities computed
numerically with the DC conductivities computed from Eqs. (5) and (6). We plot
these in Fig. 4, and they match to excellent accuracy.9
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0.8

〈σxx
DC〉

5 10 15 20
αb

5

10

15

20

25

〈σyy
DC〉

Figure 4: Comparison of the numerical ω → 0 limit of the optical conductivities (red
dots) to the formula (5) for the DC conductivities (blue curves), plotted against the
amplitude of the magnetic lattice αb. Left: 〈σDC

xx 〉. Right: 〈σDC
yy 〉.

Turning now to nonzero ω, our results for the optical conductivity 〈σxx(ω)〉 for the
magnetic lattice are shown for various values of αb in Fig. 5 (left). As αb increases,
the peak in Re〈σxx(ω)〉, located at ω = 0 for αb = 0, shifts to higher frequencies.
In addition, the height of the peak shrinks and the width broadens. Notably, the
conductivity at small ω immediately drops by an order of magnitude when αb becomes
nonzero, as is demonstrated more clearly in the right hand plot of Fig. 5.

9The zero-frequency limit of the optical conductivity (red dots in Fig. 4) is extracted as follows.
For conductivity in the x direction, the dependence of the 〈σxx〉 on ω was so weak that we simply
take the data at lowest available ω. For 〈σyy〉 in y direction, we fit the data at low ω to a Drude-like
form (see Fig. 9 below) because the peak at small ω becomes so narrow, in particular at large αb,
that extrapolation to ω = 0 is needed.
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Figure 5: Left: The averaged optical conductivity 〈σxx〉 for a magnetic lattice. The
real part is shown in thick, blue curves and imaginary part in thin, red curves. Solid,
dashed, dotted, and dot-dashed curves correspond to αb = 0.1, 1, 4, and 10, respec-
tively. For comparison, we also show the result at αb = 0 as thin, long-dashed black
curves. Right: A zoom into the region with low ω, showing the optical conductivities
at αb = 0 and at αb = 0.1. The circles are the values of the DC conductivities from
Eq. (5) (The higher value includes the contribution from the sliding stripes [27]).

This result can be fit very well with a Drude-Lorentz model of the following form:

〈σxx(ω)〉 =
〈σDC

xx 〉
1− iτxxω

+
Kxxτxx

1− iτxxω
(

1− ω2
xx

ω2

) =
〈σDC

xx 〉
1− iτxxω

+
iKxxω

ω2 − ω2
xx + iω/τxx

. (14)

There are three parameters Kxx, τxx, and ωxx which we fit to the data,10 and
the results are plotted in Fig. 6. In the left hand plot we show examples of the fit
compared to the data at two values for the amplitude of modulation, αb = 0.1 and
αb = 4. The conductivity (14) is a sum of two terms. The first term is the Drude-
like form and describes the residual metallicity of charge carriers flowing across the
stripes. Since we already demonstrated above that the zero-frequency limit of the
optical conductivity matches with the result of Eq. (5), we fix 〈σDC

xx 〉 by using this
formula.

The second term is a Lorentzian which describes pinned stripes [1,56] and results
from modeling the motion of the stripes in the lattice potential as a driven, damped
harmonic oscillator. The resonance frequency ωxx is related to the lattice potential.
The harmonic oscillator model predicts ωxx ∼ α

1/2
b , which roughly fits the data for

small αb.

Notice that the second term vanishes as ω → 0, and the stripes do not contribute
to the DC conductivity. The exception is when ωxx = 0, in which case there is an
extra contribution to the DC conductivity is given by Kxxτxx. In fact, ωxx vanishes

10The fit for σxx (as well as the fit for σyx below) was done using a least-squares method, using
the data within a range of about two half-widths around the peak.
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precisely is the absence of the lattice potential. Then the stripes can slide [27], and
the result agrees with the DC formula (5), which similarly has an extra term which
is nonzero when αb = 0.

The fit of the data to Eq. (14) is generally quite good. Notice that we simultane-
ously fit both the real part and the imaginary part of the conductivity with the same
parameter values. At small αb, it is best for ω . 1. The fit is worse at larger ω be-
cause there is a “continuum” contribution to the conductivity which is not captured
by the formula (14). The quality of the fit also drops with increasing αb, as the peak
moves to higher frequencies and interferes with the continuum part. For αb & 6 (not
shown) the fit fails to reproduce the ω-dependence of the data.

We made the assumption in Eq. (14) that the decay times of the Drude-like con-
tribution and the Lorentzian are the same, which does not necessarily need to be the
case. However, recall that the DC conductivity of the pinned system is highly sup-
pressed, so consequently the contribution from Drude peak is subleading by roughly
an order of magnitude with respect to the Lorentzian. Therefore, our fit is not sensi-
tive to the details of the Drude peak, and because of this, we have chosen not to fit its
decay time independently. Instead, we have tested that replacing the first term in (14)
by a different formula, e.g., a constant [57] does not improve the fit significantly. If
we had an access to the quasinormal mode spectrum, we could systematically include
higher order poles contributing to the optical conductivities [58].
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Figure 6: The averaged optical conductivity 〈σxx(ω)〉. Left: The dots show the
numerical data, and the curves are the results of the fit. Real parts are the thick,
blue curves and larger dots, and imaginary parts are the thin, red curves and smaller
dots. Solid curves and round dots are at αb = 0.1, whereas dashed curves and boxes
are for αb = 4. Right: The three fit parameters Kxx, τxx, and ωxx as functions of αb.

We now turn to the Hall conductivity σyx. As discussed in Sec. 2.1, in the absence
of a lattice, σyx contains a delta peak at ω = 0. As the stripes slide due to an
infinitesimal electric field, the finite persistent transverse current at any fixed location
varies, leading to an infinite DC Hall conductivity [27].

As we turn on nonzero αb, the delta peak is regulated, becoming lower, broader,
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and moving to larger ω. Our numerical results are shown in Fig. 7. Although the
Hall conductivity is nonzero, its spatial average vanishes. So, instead of 〈σyx〉, we
plot the σyx at a specific point, x = 0. And, the result oscillates as x is varied.
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ω

-20
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σyx(ω,x=0)

Figure 7: The optical conductivity σyx(ω) at x = 0 for small ω and small lattice
amplitude αb. The real parts are denoted by thick, blue curves, and the imaginary
parts are shown by thin, red curves. Solid, dashed, dotted, and dotdashed curves
correspond to αb = 0.05, 0.1, 0.25, and 0.5, respectively, and the results for αb = 0
are shown as thin, long-dashed, black curves.

We fit the Hall conductivity at nonzero αb to the following modified Lorentzian
form:11

σyx(ω, x) =
Kyx(x)/τyx

ω2 − ω2
yx + iω/τyx

, (15)

with three parameters Kyx, ωyx, and τyx which we fit to the numerical data. The
results are shown in Fig. 8. As we saw for σxx above, the fit is very good at small
αb but deteriorates as αb grows. All the x dependence is in Kyx, which to good
accuracy varies as cos(2πx/L). We observe that, to within the precision of the fits,
ωxx = ωyx and τxx = τyx, which is expected since the peaks in the two components of
the conductivity are due to the same resonant physics.

The modified Lorentzian form of (15) comes from the same driven, damped har-
monic oscillator model of the stripes as in (14). The difference between (15) and (14)
can be understood by their different relationship to the motion of the stripes. The
Hall current depends on the location of the stripes, in particular, the local value of
the persistent current, while the longitudinal current depends on the velocity of the
stripes. The difference in the conductivities then amounts to an extra time derivative
in σxx, which yields an extra factor of iω in (14) compared to (15).

11Notice that the parameters ωyx and τyx, which determine the location of the resonance on the
complex ω-plane, do not depend on x.
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Figure 8: The Hall conductivity σyx(ω) at x = 0. Left: The dots show the numerical
data, and the curves are the results of the fit. Real parts are the thick, blue curves
and larger dots, and imaginary parts are the thin, red curves and smaller dots. Solid
curves and round dots show αb = 0.1, whereas dashed curves and boxes shown αb = 4.
Right: The three fit parameters Kyx, τyx, and ωyx as functions of αb.

Moreover, notice that as ωyx → 0, the modified Lorentzian (15) can be written as
a sum of a delta peak and a Drude-like form,

σyx(ω, x, α = 0) =
τyxKyx(x)

1− iτyxω
−Kyx(x)

(
i

ω
+ π δ(ω)

)
, (16)

which correctly describes the Hall conductivity at small ω in the absence of pin-
ning [27]. This result requires that the modified Lorentzian (15) is constant at small
ω, which is not the case for the Lorentzian form in (14).
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Figure 9: The averaged optical conductivity 〈σyy(ω)〉. Left: The dots show the
numerical data, and the curves are the results of the fit. Real parts are the thick,
blue curves and larger dots, and imaginary parts are the thin, red curves and smaller
dots. Solid curves and round dots are at αb = 0.1, whereas dashed curves and boxes
are for αb = 4. Right: The fit parameters τyy and Kyy as functions of αb.

Finally, we consider the conductivity parallel to the stripes. Because translation
invariance in the y direction is preserved, we do not expect to see any pinning effects
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in σyy. Indeed, we observe instead that the conductivity, is well described in terms of
a single Drude peak,

〈σyy〉 =
〈σDC

yy 〉
1− iτyyω

=
τyyKyy

1− iτyyω
. (17)

The results of fitting the data to this form are shown in Fig. 9. The width of the
Drude peak decreases and the DC conductivity increases with αb, so that the area of
the peak (which is proportional to Kyy) stays roughly constant. The increase in the
conductivity with αb is in accordance with the increase in charge density demonstrated
in Fig. 3 (left). We do not, however, find a direct proportionality between the two
observables, which might be due to a nonlinear contribution from the induced charge
density related to the enhanced amplitude of the stripes.

3.3 Ionic lattice

We now replace the magnetic lattice with an ionic lattice by imposing the spatially
modulated boundary condition (4) on at. We repeat the numerical construction of
the background and analysis of the fluctuations, as discussed in Sec. 3.2. Many of
the effects of the ionic lattice are qualitatively similar to the magnetic lattice, but we
will highlight several relevant differences.

As with the magnetic lattice, the zero-frequency limit of the optical conductivity
matches the DC computation using Eqs. (5) and (6), as shown in Fig. 10. For 〈σDC

xx 〉,
the slight mismatch is due to numerical error in the fitting of 〈σxx(ω)〉 at small ω.
The sharp peak in 〈σxx(ω)〉 at small ω, which is evident in Fig. 11, makes fitting the
ω → 0 limit challenging. We fitted a polynomial to the data (for ω � 1) in order to
extrapolate to ω = 0.
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Figure 10: Comparison of numerical data for the ω → 0 limit of the optical conduc-
tivities (red dots) to the formulas (5) and (6) for the DC conductivities (blue curves).
Left: 〈σDC

xx 〉. Right: 〈σDC
yy 〉.

The optical conductivity σDC
xx perpendicular to the stripes can be analyzed as in
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Figure 11: Fit results for the averaged optical conductivity 〈σxx(ω)〉 with ionic lattice.
Left: Numerical data (dots) compared to fit results (curves). Real parts are the thick,
blue curves and larger dots, and imaginary parts are the thin, red curves and smaller
dots. Solid curves and round dots are at αµ = 2, whereas dashed curves and boxes
are for αµ = 7. Right: The three fit parameters Kxx, τxx, and ωxx as functions of αµ.
The resonance frequency ωxx is real for αµ . 6, and the real part is shown as a solid
curve. For αµ & 6, it is purely imaginary, and the imaginary part is plotted with
a dashed curve. In addition, the value of ωxx has been multiplied by 10 to make it
visible on the same scale as the other parameters.

the case of the magnetic lattice. We again fit the data12 for the averaged conductivity
to a combination of a Drude peak and a Lorentzian form

〈σxx(ω)〉 =
〈σDC

xx 〉
1− iτxxω

+
iKxxω

ω2 − ω2
xx + iω/τxx

. (18)

In particular, since Fig. 10 shows that the ω → 0 limit of the conductivity agrees
with the analytic expression (5), we fix the coefficient of the Drude term by using
this formula, as we did for the magnetic lattice. The results are shown in Fig. 11.
Thanks to the small size of ωxx, the quality of the fit is clearly better than in the
case of magnetic lattice, as one can see by comparing the left hand plots in Fig. 6
and Fig. 11.

However, there are some key differences between these results and the magnetic
lattice results of Sec. 3.2. First, the magnitude of the pinning frequency ωxx is sup-
pressed by an order of magnitude with respect to Fig. 6. In Fig. 11 (right), we
multiplied the result by a factor of 10 in order to make its structure visible. This is
consistent with subleading charge modulation of the striped phase; explicit breaking
in at only weakly pins the stripes because the leading modulation is in ay and ψ and
the modulation of at is two orders of magnitude smaller.

Second, ωxx hits zero and becomes imaginary for αµ & 6, which signals that the
striped state has become unstable. The frequency of the pseudo-Goldstone mode,

12As the resonant peaks lie at low ω, we choose the data points with ω < 0.5 for the least-squares
fits.
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given by the poles in the second term of (18) are located at

ω = − i

2τxx
± i

√
1

4τ 2
xx

− ω2
xx . (19)

For positive finite τxx, one of the poles lies in the upper complex ω half plane if and
only if ω2

xx < 0. The conductivity is given by a current-current correlator, of which
poles represent quasinormal modes. If such as mode acquires a frequency with a
positive imaginary part, it will be exponentially growing and lead to an instability.
However, it is not completely clear to what state this instability leads; we speculate
on possibilities in Sec. 4.
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Figure 12: Fit results for the optical conductivity σyx(ω) at x = 0 for ionic lattice.
Left: Numerical data (dots) compared to fit results (curves). Real parts are the thick,
blue curves and larger dots, and imaginary parts are the thin, red curves and smaller
dots. Solid curves and round dots are at αµ = 2, whereas dashed curves and boxes
are for αµ = 7. Right: The three fit parameters Kyx, τyx, and ωyx as functions of αµ.
The resonance frequency ωyx is real for αµ . 6, and the real part is shown as a solid
curve. For αµ & 6, it is purely imaginary, and the imaginary part is plotted with
a dashed curve. In addition, the value of ωyx has been multiplied by 10 to make it
visible on the same scale as the other parameters.

Like the magnetic case, our data for the Hall conductivity σyx can be fitted to the
expression (15), and the results for the fit at x = 0 are given in Fig. 12. We observe
that the same mode and the same instability as in σxx also appears here: ωxx = ωyx,
and τxx = τyx, to within the precision of the fit.13 The overall coefficient Kyx has
a strong x dependence, which is ∝ cos(2πx/L) at small αµ, as was the case for the
magnetic lattice. When αµ increases, however, higher Fourier modes set in, which is
not surprising in view of the structure seen in Fig. 2.

13The quality of the fit is slightly worse than for σxx because, due to the smallness of ωyx, the
conductivity is strongly peaked near ω = 0 and the peaks are not very well reproduced by our
numerical data. In particular near αµ = 0 and αµ = 6, where ωyx becomes zero, the fit contains
sizable errors. This explains the bumps in τyx and Kyx at the latter location, which are therefore
identified as numerical effects.
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Figure 13: The averaged optical conductivity 〈σyy(ω)〉. Left: The dots show the
numerical data, and the curves are the results of the fit. Real parts are the thick,
blue curves and larger dots, and imaginary parts are the thin, red curves and smaller
dots. Solid curves and round dots are at αµ = 2, whereas dashed curves and boxes
are for αµ = 7. Right: The fit parameters τyy and Kyy as functions of αµ.

As in the case of the magnetic lattice, the conductivity σyy parallel to the stripes
fits well the standard Drude-like form at small ω for all values of αµ. The fit results for
the ionic lattice are shown in Fig. 13. Essentially the only difference with respect to
the results for the magnetic lattice is that the increase in τyy and the DC conductivity
appears to be quadratic in the amplitude αµ of the source modulation.

4 Summary and future directions

In previous work [27], we thoroughly analyzed the electric conductivities of the spon-
taneous striped phase. In particular, we emphasized the relevance of the sliding
behavior of the stripes under an applied external electric field Ex perpendicular to
the modulation.

In this paper, we introduced explicit translational symmetry breaking in the form
of magnetic and ionic lattices. An immediate consequence for both types of lattices
was the generation of mass for the Goldstone mode, pinning the stripes and causing
an order-of-magnitude drop in the longitudinal DC conductivity σDC

xx and regulating
the delta peak in the Hall DC conductivity σDC

yx . The zero-frequency limits of all
optical conductivities, both for weak and strong lattices, precisely matched the ana-
lytic results derived previously in [27]. The form of the optical conductivity σxx(ω)
changed from a Drude peak to a Lorentzian, with a resonant peak at nonzero ω,
further reflecting the pinning of the stripes.

Because we only computed the linear conductivities, our calculation was not able
to capture the expected depinning transition at finite electric field. To do so, we
would have to treat not only the lattice nonlinearly but the electric field as well. Our
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expectation is that upon constructing time-dependent solutions with finite electric
field, the Knonecker delta currently in the conductivity (5) will be rendered into a
transition between the pinned and sliding regimes at some nonzero threshold electric
field.

To a large extent, our expectations for the magnetic lattice were met. Not only
did we observe the pinning of the stripes and the suppression of σDC

xx , but we also
found that σyy was enhanced as a function of the amplitude of the magnetic lattice
αb. As shown in Fig. 3, an increase of αb adds more charge to the system, and the
increase in charge carriers leads to an increase in σyy.

A striking surprise was the instability associated with the ionic lattice. For weak
explicit symmetry breaking, the situation was qualitatively similar to the magnetic
lattice. However, for a lattice with amplitude αµ ∼ 6, we observed a novel instability,
which was signaled by a tachyonic mode: the frequency of the pseudo-Goldstone
mode entered the upper-half of the complex ω-plane. The fact that the unstable
mode appears in the current-current correlator suggests that the charges would like
to redistribute themselves. In fact, already for values of αµ & 1, there are regions
of both positive and negative charges, which may be an unstable configuration; an
analysis along the lines of [59] might resolve this issue.

The question remains, what does this instability signal? One possibility is that
the instability is due to a change in the lock-in structure: the charges would prefer
to redistribute in x direction so that the ground state would be modified in the IR
and could be characterized by a wave number different from k0. Such an instability
could also be related to the appearance of higher Fourier modes in the background
solution, which was seen in Fig. 2. Another possibility is that the charges would prefer
to redistribute in the y direction, so that the translational symmetry in the y direction
is spontaneously broken. In this case, the endpoint of the instability could be bubbles,
i.e., coexistence of phases with different charge densities in the y-direction with phase
boundaries, or a phase with stripes also in the y-direction, i.e., a checkerboard or
d-wave structure. The former have been seen in fractional quantum Hall fluids [60],
which very strongly resemble the system studied here.

Given the instability, it is important to extend our work to find the true ground
state beyond the commensurate case studied here. We plan to investigate the phase
structure with lattices of incommensurate wave number. In addition, we aim to ana-
lyze fluctuations of the spontaneous stripes relevant for the breakdown of translational
symmetry in the y direction.

There are a number of other interesting directions for further research. One in-
volves turning on a constant external magnetic field and studying the electric trans-
port properties of the parity-broken metallic gapless quantum fluid. Another potential
avenue would be to investigate how the striped order vanishes in the vicinity of the
gapped quantum Hall state.
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Generalizing the model by an SL(2,Z) transformation [48, 49, 61–64]14 allows us
to address the transport of striped anyonic fluids [69], which are notoriously difficult
to tackle with perturbative methods.

Finally, it would be interesting to try to include 1/N effects to model quantum
phase fluctuations in order to see the transition to the bad metal phase and to connect
to the recent interesting work in [57].
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