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Abstract

We study the spectrum of the large N quantum field theory of bosonic rank-3 tensors,
whose quartic interactions are such that the perturbative expansion is dominated by the mel-
onic diagrams. We use the Schwinger-Dyson equations to determine the scaling dimensions
of the bilinear operators of arbitrary spin. Using the fact that the theory is renormalizable in
d = 4, we compare some of these results with the 4− ε expansion, finding perfect agreement.
This helps elucidate why the dimension of operator φabcφabc is complex for d < 4: the large N
fixed point in d = 4− ε has complex values of the couplings for some of the O(N)3 invariant
operators. We show that a similar phenomenon holds in the O(N)2 symmetric theory of a
matrix field φab, where the double-trace operator has a complex coupling in 4−ε dimensions.
We also study the spectra of bosonic theories of rank q − 1 tensors with φq interactions. In
dimensions d > 1.93 there is a critical value of q, above which we have not found any com-
plex scaling dimensions. The critical value is a decreasing function of d, and it becomes 6
in d ≈ 2.97. This raises a possibility that the large N theory of rank-5 tensors with sextic
potential has an IR fixed point which is free of perturbative instabilities for 2.97 < d < 3.
This theory may be studied using renormalized perturbation theory in d = 3− ε.



1 Introduction and Summary

A remarkable feature of some theories with tensor degrees of freedom of rank 3 and higher is

that they possess large N limits dominated by the so-called melonic Feynman diagrams. This

was discovered and proven for a variety of theories where the different indices of a tensor are

not equivalent, but rather transform under different O(N) or U(N) symmetry groups [1–8].

Recent evidence has also emerged [9,10] that, even for the symmetric traceless tensor theories

which have only O(N) symmetry and are similar to the tensor models introduced in the

90s [11–13], the melonic dominance continues to apply.

One of the reasons for the renewed interest in the large N theories with tensor degrees of

freedom is their connection [14,15] with the SYK-like quantum mechanical models of fermions

with disordered couplings [16–23].1 In the large N limit these models have a conformally

invariant sector, but also have the special operators whose correlators are not fixed by the

conformal invariance.

It is of obvious interest to extend the SYK and tensor models to dimensions higher than

d = 1. Such extensions were considered in [15,26–29]. Some of our work in this paper will be

following the observation that, in a theory of a rank-3 bosonic tensor field one may introduce

quartic interactions with O(N)3 symmetry [15]. Although the action is typically unbounded

from below, such a QFT is perturbatively renormalizable in d = 4, so it may be studied

using the 4− ε expansion [30,31].

In this paper we further explore the 4 − ε expansion and compare it with the large N

Schwinger-Dyson equations, finding perfect agreement. We present results on the large N

scaling dimensions of two-particle operators of arbitrary spin as a function of d, found using

the Schwinger-Dyson equations. A salient feature of the large N spectrum of this theory in

d < 4 is that the lowest scalar operator has a complex dimension of the form d
2

+ iα(d).2

We confirm this using the 4− ε expansion in section 3. In that calculation it is necessary to

include the mixing of the basic “tetrahedron” interaction term,

Ot(x) = φa1b1c1φa1b2c2φa2b1c2φa2b2c1 , (1.1)

with two additional O(N)3 invariant terms: the so-called pillow and double-sum invariants

(3.2). The coefficients of these additional terms turn out to be complex at the “melonic”

large N IR fixed point; as a result, the scaling dimension of the leading operator φabcφabc is

1 Recent work on the operator spectra and the thermal phase transitions [24, 25] points also to some
differences between the tensor and SYK models.

2However, the scaling dimension of the lowest scalar operator is real for 4 < d < 4.155.
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complex. A similar phenomenon for the O(N)2 symmetric theory of a matrix φab is discussed

in the Appendix. In that case it is necessary to include the O(N)2 invariant double-trace

operator (φabφab)2 whose coefficient is complex at the IR fixed point; as a result, the scaling

dimension of operator φabφab is complex.

We also extend our results to rank q− 1 tensors with φq interactions. In each dimension

d it is found that the two-particle mode with complex scaling dimension disappears for q

greater than some critical value qcrit (for example, in d = 2, qcrit ≈ 64.3 [29]). We study the

spectrum of bilinear operators in the large N bosonic theory with q = 6 in 3− ε dimensions

and point out that it is free of the problem with the complex dimension of φ2 for ε < 0.03.

Thus, this theory is a candidate for a stable large N CFT, albeit in a non-integer dimension.

However, an obvious danger, which we have not investigated, is that the coupling constants

for some of the O(N)5 invariant sextic operators may be complex in d = 3− ε.
A more promising direction towards finding melonic CFTs in d ≥ 2 is to explore the

supersymmetric versions of tensor or SYK-like models [15,29] and a successful construction

of such theory in d = 2 was achieved recently [29]. We hope to consider supersymmetric

theories in the future.

2 Bosonic 3-Tensor Model

In this section we consider the bosonic 3-tensor model with the O(N)3 symmetric action [15]

S =

∫
ddx
(1

2
∂µφ

abc∂µφabc +
1

4
gφa1b1c1φa1b2c2φa2b1c2φa2b2c1

)
, (2.1)

where each index runs from 1 to N . At the free UV fixed point the quartic interaction term

has dimension 2d − 4. For d < 4 it is relevant and the large N theory may flow to an IR

fixed point. However, the fact that the interaction term is not positive definite may cause

problems with unitarity. Also, for d < 2 the dimension of the interaction term lies below

the unitarity bound. Nevertheless, we will see that the large N Schwinger-Dyson equations

have formal solutions corresponding to the IR fixed point.

At large N in the IR limit the two-point function is a solution of the Schwinger-Dyson

equation [15,32]

G−1(x) = −λ2G(x)3 , (2.2)
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where λ2 = g2N3. Using the Fourier transformation∫
ddx

eikx

(x2)α
=
πd/2Γ(d/2− α)

22α−dΓ(α)

1

(k2)
d
2
−α

(2.3)

we find the solution to the equation (2.2)

G(x) =
Cφ
λ1/2

1

(x2)
d
4

,

Cφ =

(
−

Γ(3d
4

)

πdΓ(−d
4
)

)1/4

. (2.4)

2.1 Spectrum of two-particle operators

The O(N)3 invariant two-particle operators of spin zero have the form φabc(∂µ∂
µ)nφabc, where

n = 0, 1, 2, . . .. At the quantum level these operators mix with each other, although this

mixing rapidly decreases as n increases, and the eigenvalues approach 2n+ d
2
.

Let us denote the conformal three-point function of a general spin zero operator Oh with

two scalar fields φabc by

v(x1, x2, x3) = 〈Oh(x1)φabc(x2)φabc(x3)〉 =
COφφ

(x2
12x

2
13)

h
2 (x2

23)
1
2

(d/2−h)
, (2.5)

where h and ∆φ = d/4 are the scaling dimensions.

In the large N limit one can write the Schwinger-Dyson equation for the three-point

function [23]

v(x0, x1, x2) =

∫
ddx3d

dx4K(x1, x2, x3, x4)v(x0, x3, x4) , (2.6)

where the kernel is given by the formula

K(x1, x2;x3, x4) = 3λ2G(x13)G(x24)G(x34)2 . (2.7)

This equation determines the possible values of scaling dimension h of the operator Oh. Now

using the general conformal integral [33]∫
ddx0

1

(x2
01)α1(x2

02)α2(x2
03)α3

=
Ld(α1, α2)

(x2
12)

d
2
−α3(x2

13)
d
2
−α2(x2

23)
d
2
−α1

, (2.8)
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where α1 + α2 + α3 = d and

Ld(α1, α2) = π
d
2

Γ(d
2
− α1)Γ(d

2
− α2)Γ(d

2
− α3)

Γ(α1)Γ(α2)Γ(α3)
(2.9)

one can find that [15]∫
ddx3d

dx4K(x1, x2, x3, x4)v(x0, x3, x4) = g(h)v(x0, x1, x2) ,

g(h) = 3(Cφ)4Ld

(d
4
,
h

2

)
Ld

(d− h
2

,
d

4

)
= −

3Γ
(

3d
4

)
Γ
(
d
4
− h

2

)
Γ
(
h
2
− d

4

)
Γ
(
−d

4

)
Γ
(

3d
4
− h

2

)
Γ
(
d
4

+ h
2

) . (2.10)

The dimensions of the spin zero operators in large N limit are determined by g(h) = 1. In

d = 4− ε this equation has solutions

h0 = 2± i
√

6ε− 1

2
ε+O(ε3/2), h1 = 4 + ε− 15ε2

4
+O(ε3),

hn = 2(n+ 1)− ε

2
+

3ε2

2n2(n2 − 1)
+O(ε3), for n > 1 . (2.11)

Since the quartic field theory with action (2.1) becomes weakly interacting as ε → 0, the

leading terms in these scaling dimensions agree with the classical dimensions of the spin-zero

operators φabc(∂µ∂
µ)nφabc. In particular, the operator corresponding to h0 is φabcφabc, and

in section 3 we reproduce the result (2.11) for h0 using standard perturbation theory. This

provides a perturbative check of the solution of the Schwinger-Dyson equation, as well as of

the identification of the operator whose dimension is complex.

The fact that h0 is complex means that the critical point is unstable.3 From the AdS5−ε

side the relation between mass and scaling dimension

h =
d

2
±
√
d2

4
+m2 (2.12)

gives

m2 = −4− 4ε+ 11ε2 +O(ε3) , (2.13)

which is slightly below the Breitenlohner-Freedman [35] bound m2 > −d2/4.

3There are other indications that the melonic large N limit of bosonic tensor models is unstable [29,34].
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More generally, for d < 4 the first solution of g(h) = 1 has the form

h0 =
d

2
± iα(d) , (2.14)

where α(d) is real. This is in agreement with (2.12) for m2 < −d2/4. On the other hand, for

4 < d < 4.155, h0 is real and the large N theory is free of this instability, at least formally.

However, Cφ from (2.4) is complex for d > 4, which may signal non-unitarity of the theory.

2.2 Spectrum of higher-spin operators

Consider a higher-spin operator Js(x) = zµ1 . . . zµsJµ1...µs , where we introduced an auxiliary

null vector zµ, satisfying

z2 = zµzνδµν = 0 . (2.15)

The three-point function 〈Jsφabcφabc〉 is completely fixed by conformal invariance

〈Js(x1)φabc(x2)φabc(x3)〉 = Cs00

(
z·x12
x212
− z·x13

x213

)s
(x2

12)
τs
2 (x2

23)∆φ− τs2 (x2
31)

τs
2

, (2.16)

where ∆φ = d/4 and τs = ∆Js − s and ∆Js = 2∆φ + s + γs. If we set the Js momentum to

zero or equivalently, integrate over the position of Js we get

vs(x2, x3) =

∫
ddx1〈Js(x1)φabc(x2)φabc(x3)〉 = Cs00

(z · x23)s

(x2
23)

τs
2

+s− d
2

+∆φ

. (2.17)

In the large N limit one can again write the Schwinger-Dyson equation for the three-point

function

vs(x1, x2) =

∫
ddx3d

dx4K(x1, x2, x3, x4)vs(x3, x4) . (2.18)

To perform the integral in the r.h.s of (2.18) we use the well-known integral∫
ddx

(z · x)s

x2α(x− y)2β
= Ld,s(α, β)

(z · y)s

(y2)α+β−d/2 ,

Ld,s(α, β) = πd/2
Γ
(
d
2
− α + s

)
Γ
(
d
2
− β

)
Γ
(
α + β − d

2

)
Γ(α)Γ(β)Γ(d+ s− α− β)

. (2.19)
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Using (2.19) we find∫
ddx3d

dx4K(x1, x2, x3, x4)vs(x3, x4) = g(τs, s)vs(x1, x2) ,

g(τs, s) = 3(Cφ)4Ld,s

(d
4

+ s+
τs
2
,
d

4

)
Ld,s

(
s+

τs
2
,
d

4

)
= −

3Γ
(

3d
4

)
Γ(d−2τs

4
)Γ(4s+2τs−d

4
)

Γ
(
−d

4

)
Γ(3d−2τs

4
)Γ(d+4s+2τs

4
)

(2.20)

and to find the spectrum we have to solve the equation g(τs, s) = 1. Note that for any d,

there is a solution with s = 2 and τs = d − 2. This corresponds to the conserved stress

tensor, consistently with the conformal invariance.

For general fixed spin s, the dimensions should approach, at large n

∆Js = 2∆φ + s+ 2n, n = 0, 1, 2, . . . , (2.21)

where n is interpreted as the number of contracted derivatives. Alternatively, one can also

study the behavior for large spin s, and fixed n (say n = 0), where the dimensions should

approach ∆Js ≈ 2∆φ + s + c/sτmin , where τmin is the lowest twist (excluding the identity)

appearing in the OPE expansion of the φ 4-point function [36–38].

For n = 0 we have in d = 4− ε

τs = d− 2 +
(s− 2)(s+ 3)

2s(s+ 1)
ε+ . . . . (2.22)

Note that the correction to d − 2 vanishes for s = 2, as it should since the stress tensor

is conserved. The fact that this correction for s 6= 2 is ∼ ε also makes sense, because for

nearly conserved currents the anomalous dimension starts at ∼ g2 on general grounds (like

γφ). The spin dependence in the above result is the expected one for an almost conserved

current near d = 4, see e.g. [39,40].

In d = 2 the equation determining the dimensions becomes elementary and reads

3

(1− τs)(2s+ τs − 1)
= 1 (2.23)

with solutions

τs = 1− s±
√
s2 − 3 . (2.24)

Surprisingly, this gives only one solution with h > d/2 for each spin, rather than the infinite
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number of solutions which are present in d > 2 (already in d = 2 + ε there are towers of real

solutions). For s = 0 in d = 2 the solution (2.24) is complex

h ≈ 1 + 1.5235i . (2.25)

In d = 2 + ε there is also a tower of real solutions:4

τs = 2n+
d

2
+

3

3 + 4n(n+ s)
ε+O(ε2) . (2.26)

In d = 1 the primary two-particle operators have the form φabc∂2n
t φ

abc, where n =

0, 1, 2, . . .. The graphical solution of the eigenvalue equation is shown in figure 1. The

equation has a symmetry under h→ 1−h. The first real solution greater than 1/2 is the ex-

act solution h = 2. It correspond to the n = 1 operator, which through the use of equations

of motion is proportional to the potential φa1b1c1φa1b2c2φa2b1c2φa2b2c1 . The first eigenvalue is

complex, h0 = 1
2

+ 1.525i. Since it is of the form 1
2

+ is, it is a normalizable mode which

needs to be integrated over, similarly to the h = 2 mode.

y=g(h)

y=1

h=2 h=4.26 h=6.34 h=8.38

2 4 6 8 10
h

-2

-1

1

2

3

g(h)

Figure 1: The graphical solution of the eigenvalue equation g(h) = 1 in d = 1. This method
works for finding the real solutions only; it misses the complex solution h0 = 1

2
+ 1.525i.

4In the ε→ 0 limit it appears to give additional states in d = 2 which are missed by the degenerate d = 2
equation (2.23).
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3 Complex Large N Fixed Point in d = 4− ε

In this section we study the renormalizable theory in 4− ε dimensions with a 3-tensor degree

of freedom and O(N)3 symmetric quartic interactions:

S =

∫
ddx
(1

2
∂µφ

abc∂µφabc +
1

4

(
g1Ot(x) + g2Op(x) + g3Ods(x)

))
, (3.1)

where g1, g2, g3 are the bare couplings which correspond to the three possible invariant quartic

interaction terms. The perturbative renormalizability of the theory requires that, in addition

to the “tetrahedron” interaction term (1.1), we introduce the “pillow” and “double-sum”

terms

Op(x) =
1

3

(
φa1b1c1φa1b1c2φa2b2c2φa2b2c1 + φa1b1c1φa2b1c1φa2b2c2φa1b2c2 + φa1b1c1φa1b2c1φa2b1c2φa2b2c2

)
,

Ods(x) = φa1b1c1φa1b1c1φa2b2c2φa2b2c2 . (3.2)

To find the beta functions we use a well-known result [41] for a general φ4-model with the

interaction term V = 1
4
gijklφ

iφjφkφl. In our case we can write interaction as

V =
1

4
gκ1κ2κ3κ4φ

κ1φκ2φκ4φκ4 , (3.3)

where κi = (aibici) is a set of three indices and gκ1κ2κ3κ4 is a sum of three structures

gκ1κ2κ3κ4 = g1T
t
κ1κ2κ3κ4

+ g2T
p
κ1κ2κ3κ4

+ g3T
ds
κ1κ2κ3κ4

. (3.4)

Each structure is a sum of a product of Kronecker-delta terms, which after contraction with

φκ1φκ2φκ4φκ4 reproduce (1.1) and (3.2). For example

T tκ1κ2κ3κ4 =
1

4!

(
δa1a2δb1b3δc1c4δb2b4δc2c3δa3a4 + sym(κ1, . . . , κ4)

)
, (3.5)
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where the last term means that we have to add all terms corresponding to permutations of

κ1, . . . , κ4. Using the explicit formulas in [41], we find the beta functions up to two loops

βt =− εg1 +
4

3(4π)2

(
3g1g2(N + 1) + 18g1g3 + 2g2

2

)
+

2

9(4π)4

(
9(N3 − 15N − 10)g3

1 − 36g2
1

(
(N2 + 4N + 13)g2 + 15Ng3

)
− 3g1

(
(N3 + 15N2 + 93N + 101)g2

2 + 12(5N2 + 17N + 17)g2g3 + 6(5N3 + 82)g2
3

)
− 4g2

2

(
(2N2 + 13N + 24)g2 + 72g3

))
, (3.6)

βp =− εg2 +
2

3(4π)2

(
9g2

1(N + 2) + 12g2g1(N + 2) + g2
2(N2 + 5N + 12) + 36g2g3

)
− 2

9(4π)4

(
108(N2 +N + 4)g3

1 + 9g2
1

(
(N3 + 12N2 + 99N + 98)g2 + 72(N + 2)g3

)
+ 36g1g2

(
(4N2 + 18N + 29)g2 + 3(13N + 16)g3

)
+ g2

(
(5N3 + 45N2 + 243N + 343)g2

2

+ 36(7N2 + 15N + 29)g2g3 + 18(5N3 + 82)g2
3

))
, (3.7)

and

βds =− εg3 +
2

3(4π)2

(
3g2

3

(
N3 + 8

)
+ 6g3g2

(
N2 +N + 1

)
+ g2

2(2N + 3) + 18g1g3N + 6g1g2

)
− 2

9(4π)4

(
54Ng3

1 + 9g2
1

(
4(N2 +N + 4)g2 + 5(N3 + 3N + 2)g3

)
+ 36g1

(
4(N + 1)g2

2 + (5N2 + 5N + 17)g2g3 + 33Ng2
3

)
+ 14(N2 + 3N + 5)g3

2

+ 3(5N3 + 15N2 + 93N + 97)g2
2g3 + 396(N2 +N + 1)g2g

2
3 + 54(3N3 + 14)g3

3

)
.

(3.8)

For the anomalous dimension we obtain

γφ =
1

6(4π)4

(
3g2

1(N3 + 3N + 2) + 6g2
3(N3 + 2) + 12g1

(
g2(N2 +N + 1) + 3g3N

)
+ 12g2g3(N2 +N + 1) + g2

2(N3 + 3N2 + 9N + 5)
)
. (3.9)

Now, using the large N scaling

g1 =
(4π)2g̃1

N3/2
, g2 =

(4π)2g̃2

N2
, g3 =

(4π)2g̃3

N3
, (3.10)
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where g̃i are held fixed, we find that the anomalous dimension

γφ =
g̃2

1

2
+O(1/N) (3.11)

and the beta functions

β̃t =− εg̃1 + 2g̃3
1 ,

β̃p =− εg̃2 +
(

6g̃2
1 +

2

3
g̃2

2

)
− 2g̃2

1 g̃2 ,

β̃ds =− εg̃3 +
(4

3
g̃2

2 + 4g̃2g̃3 + 2g̃2
3

)
− 2g̃2

1(4g̃2 + 5g̃3) . (3.12)

We note that β̃t depends only on the tetrahedron coupling g̃1, while the beta functions for

pillow and double-sum also contain g̃1. This is a feature of the large N limit. Similarly, in

the large N limit of the quartic matrix theory, the double-trace coupling does not affect the

beta function of the single-trace coupling (see the Appendix).

The large N critical point with a non-vanishing tetrahedron coupling is

g̃∗1 = (ε/2)1/2, g̃∗2 = ±3i(ε/2)1/2, g̃∗3 = ∓i(3±
√

3)(ε/2)1/2 . (3.13)

For the dimension of the O = φabcφabc operator at large N we find

∆O = d− 2 + 2(g̃∗2 + g̃∗3) = 2± i
√

6ε+O(ε) . (3.14)

This exactly coincides with the large N solution (2.11), providing a nice perturbative check

of the fact that the scaling dimension is complex. We note that the imaginary part originates

from the complex pillow and double-sum couplings.

Now if we look for the dimension of the tetrahedron operator, then using the derivative

of the beta function, we find

∆tetra = d+ β′t(g
∗
1) = 4 + ε+O(ε2) , (3.15)

which coincides with the scaling dimension h1 of operator φabc∇2φabc found in (2.11).
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4 Generalization to Higher q

The construction of theories for a single rank 3 tensor field with the quartic interaction (2.1)

may be generalized to a single rank q− 1 tensor with the O(N)q−1 symmetric interaction of

order q. Since the indices of each O(N) group must be contracted pairwise, q has to be even.

The rank q−1 tensor theories have a large N limit with λ2 = g2N (q−1)(q−2)/2 held fixed, which

is dominated by the melonic diagrams (this follows from the method of “forgetting” all but

two colors in the graphs made out of q−1 strands by analogy with the derivation [5,8,14,15]

for q = 4). For example, for q = 6 the explicit form of the interaction of a real rank 5 tensor

is [15]

Vint =
g

6
φa1b1c1d1e1φa1b2c2d2e2φa2b2c3d3e1φa2b3c2d1e3φa3b3c1d3e2φa3b1c3d2e3 . (4.1)

Since every pair of fields have one index in common, this interaction may be represented by

a 5-simplex.

The two-point Schwinger-Dyson equation has the form

G−1(x) = −λ2G(x)q−1 . (4.2)

The general d solution to this equation is

G(x) =
Cφ
λ2/q

1

(x2)
d
q

,

Cφ =

(
−
π−dΓ(d

q
)Γ(d(q−1)

q
)

Γ(d(2−q)
2q

)Γ(d(q−2)
2q

)

)1/q

. (4.3)

In analogy to Section (2.1) one can find a spectrum of spin zero operators by solving

Schwinger-Dyson equation for the three-point function

v(x0, x1, x2) =

∫
ddx3d

dx4K(x1, x2, x3, x4)v(x0, x3, x4) , (4.4)

where the kernel is given by the formula

K(x1, x2;x3, x4) = (q − 1)λ2G(x13)G(x24)G(x34)q−2 . (4.5)
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Using the integral (2.8) and expression (4.3) we find

gq(h) = (q − 1)(Cφ)qLd

(d
q
,
h

2

)
Ld

(d− h
2

,
d

q

)
= −

(q − 1)Γ(d(q−2)
2q

)Γ(d(q−1)
q

)Γ(h
2
− d(q−2)

2q
)Γ(d

q
− h

2
)

Γ(d(2−q)
2q

)Γ(d
q
)Γ(h

2
+ d(q−2)

2q
)Γ(d(q−1)

q
− h

2
)

,

(4.6)

where Cφ is given in (4.3).

By solving gq(h) = 1 we find the spectrum of dimensions of spin zero two-particle oper-

ators. As we already noticed in (2.1), for q = 4 the lowest operator O = φ2 has complex

dimension, which signals an instability of the theory. However, for d greater than the critical

value dcr, there exists qcrit such that for q > qcrit the solutions of gq(h) = 1 are real, and the

two-particle operators do not cause instabilities. Taking the large q limit of (4.6) and setting

h = d/2, we observe that dcr is determined by

Γ(−dcr/4)2Γ(dcr/2)Γ(dcr + 1)

Γ(−dcr/2)Γ(3dcr/4)2
= −1 , (4.7)

and we find dcr ≈ 1.93427. Interestingly, qcrit diverges at dcr as qcrit ≈ 4.092
d−dcr . The plot for

qcrit as a function of d is shown in Figure 2.

In d = 2, the critical value of q is still large: qcrit ≈ 64.3 [29], but it drops to ≈ 5.9 in

d = 3. For d < dcr the lowest eigenvalue is complex for any q. In d = 1, in the large q limit

h0 =
1

2
+ i

√
7

2
+O(1/q) . (4.8)

4.1 Higher spin operators

Similarly to the case q = 4, we may generalize the discussion of q > 4 to the higher spin

operators. We find that 5

gq(τs, s) =(q − 1)(Cφ)qLd,s

(d
2
− d

q
+ s+

τs
2
,
d

q

)
Ld,s

(
s+

τs
2
,
d

q

)
=−

(q − 1)Γ(d(q−2)
2q

)Γ(d(q−1)
q

)Γ(d
q
− τs

2
)Γ(s+ τs

2
− d(q−2)

2q
)

Γ(d(2−q)
2q

)Γ(d
q
)Γ(d(q−1)

q
− τs

2
)Γ(s+ τs

2
+ d(q−2)

2q
)

. (4.9)

5For d = 2, this equation agrees with eq. (6.8) of [29] after the identifications h = s+ τ
2 , h̃ = τ

2 .
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UNSTABLE

q=64.3

q=5.895
q=4

2.0 2.5 3.0 3.5 4.0

10

20

30

40

50

60

70

d

q

Figure 2: Plot of qcrit as a function of d. The orange region corresponds to q > qcrit, where
∆φ2 is real and the theory is not obviously unstable. For integer dimensions we obtained
qcrit(2) ≈ 64.3, qcrit(3) ≈ 5.9 and qcrit(4) = 4.

As a check of this formula, we note that the equation gq(τs, s) = 1 for s = 2 has a solution

τs = d− 2 corresponding to the stress-energy tensor.

Similarly to the case q = 4, which degenerates for d = 2, we find a similar degeneration

of (4.9) for q = 8 and d = 4,

g(τs, s) =
315

(τs − 5)(τs − 3)(τs − 1)(2s+ τs − 3)(2s+ τs − 1)(2s+ τs + 1)
, (4.10)

and the equation g = 1 may be solved in terms of the square and cubic roots. The physically

relevant solution for τ has the large s expansion

τs = 1 +
315

64s3
+

315

64s5
+ . . . . (4.11)

More generally, we have checked numerically that, in the large s limit, τ → 2∆φ, where

∆φ = d/q. For example, for q = 6 and d = 2, we find

τ4 = 0.456 , τ6 = 0.547 , τ1000 ≈ 0.666 . (4.12)
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5 A Melonic φ6 Theory in 2.99 Dimensions

Using (4.6) for q = 6 we find that the spin zero spectrum is free of complex solutions in a

small region of dimension below 3. Working in d = 3− ε, we find that the scaling dimensions

are real for ε < 0.02819. Expansions of the first three solutions of the equation g6(h) = 1 are

h− = 1 +
29ε

3
+

400ε2

9
+

160

27

(
237 + 2π2

)
ε3 +O(ε4) ,

h+ = 2− 32ε

3
− 400ε2

9
− 160

27

(
237 + 2π2

)
ε3 +O(ε4) ,

h1 = 3 + 3ε− 220ε2

9
+

40

81

(
503 + 3π2

)
ε3 +O(ε4) , (5.1)

and the expansion coefficients grow rapidly. It appears that h− corresponds to operator

φabcdeφabcde, h+ to a quartic operator which mixes with it due to interactions, and h1 to

φabcde∂µ∂
µφabcde ∼ Vint.

As ε increases, h− approaches h+, and at εcrit ≈ 0.02819 they merge and go off to complex

plane (see Figure 3).

h+

h-

ϵcr

0.000 0.005 0.010 0.015 0.020 0.025
ϵ

1.0

1.2

1.4

1.6

1.8

2.0

h

Figure 3: Plot of the two lowest operator dimensions h− and h+ as a function of ε. As ε
increases, h− approaches h+, and at εcrit ≈ 0.02819 they merge and go off to complex plane.

The scaling dimension of operators φabcde(∂µ∂
µ)nφabcde with n > 1 are found to be

hn = 2n+ 1− ε

3
+

20

3(n− 1)n(4n2 − 1)
ε2 +

80
(
H2n−3 − 92n4−128n3+13n2+23n−45

12n(n−1)(4n2−1)

)
9n(n− 1) (4n2 − 1)

ε3 +O(ε4) ,

(5.2)

where Hn is the Harmonic number. For large n we get

hn = 2n+ 1− ε

3
+

5ε2

3n4
+

5ε3 (12 log (2neγ)− 23)

27n4
+O(ε4) . (5.3)
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This agrees with the fact that the dimension of operators φabcde(∂µ∂
µ)nφabcde should approach

2n+ d
3

for large n.

For operators of s > 0, we may use (4.9) to obtain for n = 0

h(s) =d− 2 + s+
8(s2 − 4)

3(4s2 − 1)
ε

− 20

3 (4s2 − 1)

(
ψ(s− 1

2
)− ψ(

3

2
)− 2(s− 2) (20s3 + 4s2 + 43s+ 5)

3 (4s2 − 1)2

)
ε2 +O(ε3) .

(5.4)

The first term is the dimension of the operator in free field theory, while the additional terms

appear due to the φ6 interactions.

It would be interesting to reproduce the 3 − ε expansions found in this section using

perturbative calculations in the O(N)5 invariant renormalizable φ6 theory. This is technically

more complicated than the similar calculation we carried out in 4 − ε dimensions, because

there are several invariant φ6 terms. An obvious danger is that the coupling constants for

some of the sextic operators will be complex in d = 3− ε. We hope to return to these issues

in the future.

Acknowledgments

We thank S. Chester, V. Kirilin, F. Popov, D. Stanford and E. Witten for very useful

discussions. The work of SG was supported in part by the US NSF under Grant No. PHY-

1620542. The work of IRK and GT was supported in part by the US NSF under Grant

No. PHY-1620059. GT also acknowledges the support of a Myhrvold-Havranek Innovative

Thinking Fellowship.

A Appendix

In this appendix we consider renormalizable theory in 4− ε dimensions with a matrix degree

of freedom and O(N)2 symmetric quartic interactions:

S =

∫
ddx
(1

2
∂µφ

ab∂µφab +
1

4
g1Ost(x) +

1

4
g2Odt(x)

)
, (A.1)

where g1, g2 are the bare couplings which correspond to the two possible invariant quartic

interaction terms. The perturbative renormalizability of the theory requires that, in addition

15



to the single-trace term

Ost(x) = φabφcbφcdφad = TrφφTφφT , (A.2)

we introduce the double-trace term

Odt(x) = φabφabφcdφcd = TrφφTTrφφT . (A.3)

In analogy with the section 3 we find the beta functions using a well-known result [41] for a

general φ4-model with the interaction vertex V = 1
4
gijklφ

iφjφkφl. The beta functions up to

two loops are

βst =− εg1 +
g1(g1(N + 2) + 6g2)

4π2

− g1 (3g2
1(N(N + 6) + 17) + 4g1g2(22N + 29) + 2g2

2 (5N2 + 82))

128π4
,

βdt =− εg2 +
3g2

1 + 2g1g2(2N + 1) + g2
2 (N2 + 8)

8π2

− 6g3
1(2N + 3) + g2

1g2(5N(N + 2) + 87) + 44g1g
2
2(2N + 1) + 6g3

2 (3N2 + 14)

128π4
.

(A.4)

Now, using the large N scaling

g1 =
(4π)2g̃1

N
, g2 =

(4π)2g̃2

N2
, (A.5)

where g̃i are held fixed, we find the beta functions

β̃st =− εg̃1 + 4g̃2
1 − 6g̃3

1 ,

β̃dt =− εg̃2 +
(
6g̃2

1 + 2g̃2
2 + 8g̃1g̃2

)
− 2g̃2

1(12g̃1 + 5g̃2) . (A.6)

We note that β̃st depends only on the single-trace coupling g̃1, while the double-trace beta

function depends on both couplings. This is a familiar phenomenon for beta functions in

large N matrix theories [42]. Comparing with the beta functions (3.6–3.8) of the large N

3-tensor theory, we observe that the tetrahedron coupling in the tensor model is analogous

to the single-trace coupling in the matrix model, while the pillow and double-sum couplings

in the tensor model are analogous to the double-trace coupling in the matrix model.
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The large N critical point with a non-vanishing single-trace coupling is

g̃∗1 =
ε

4
+

3ε2

32
, g̃∗2 = −1

4

(
1± i

√
2
)
ε− 1

32

(
1∓ 2i

√
2
)
ε2 . (A.7)

For the dimension of the O = φabφab operator at large N we find

∆O = d− 2 + 4g̃∗1 + 2g̃∗2 = 2− 1

2

(
1± i

√
2
)
ε+O(ε2) . (A.8)

The imaginary part originates from the double-trace coupling. So, in spite of the positivity of

the interaction term Ost, this large N critical point is unstable due to an operator dimension

being complex. The form of the dimension, d
2

+ iα, corresponds to a field violating the

Breitenlohner-Freedman bound in the dual AdS space.
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