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Abstract

We study the thermal diffusivity DT in models of metals without quasiparticle excitations

(‘strange metals’). The many-body quantum chaos and transport properties of such metals can

be efficiently described by a holographic representation in a gravitational theory in an emergent

curved spacetime with an additional spatial dimension. We find that at generic infra-red fixed

points DT is always related to parameters characterizing many-body quantum chaos: the butterfly

velocity vB , and Lyapunov time τL through DT ∼ v2BτL. The relationship holds independently of

the charge density, periodic potential strength or magnetic field at the fixed point. The generality

of this result follows from the observation that the thermal conductivity of strange metals depends

only on the metric near the horizon of a black hole in the emergent spacetime, and is otherwise

insensitive to the profile of any matter fields.

1



I. INTRODUCTION

Modern quantum materials, and in particular the high temperature superconductors,

commonly display phases with metallic conduction of charge and heat, but without quasi-

particle excitations to enable transport: these are the ‘strange metals’. A deeper under-

standing of strange metals is an important goal of quantum condensed matter physics, as it

is surely a pre-requisite for predicting the high critical temperature of the superconductivity

which emerges out of the strange metal as the temperature is lowered.

Theories of strange metals have used several different approaches. Fermions at a non-zero

density possess a Fermi surface of quasiparticle excitations, and a strange metal state can be

obtained by destroying the quasiparticles via a coupling to a critical bosonic order parameter

or an emergent gauge field [1]. However such theories flow to strong coupling, making it

difficult to develop a physical understanding of transport. In the holographic approach,

extrapolations from dualities emerging from string theory lead to a mapping of strange

metal dynamics to a gravitational theory in an emergent curved spacetime with an extra

spatial dimension [2, 3]. Many choices for the gravitational theories have been explored,

enabling the description of different classes of strange metal states. Finally, the Sachdev-

Ye-Kitaev (SYK) models [4–9] employ a large N limit to obtain solvable models of strange

metal transport in the presence of disorder which self-averages. The SYK models have been

closely connected to the holographic approaches [5, 8, 10–14], and this has considerably

advanced our understanding of both approaches. In particular, there is a mapping from the

entropy of a SYK strange metal to the Bekenstein-Hawking entropy of black holes in the

holographic emergent spacetime [6, 8, 10].

In a separate development, remarkable connections have been pointed out between the

dynamics of black holes and the nature of quantum chaos in many-body quantum systems

[15]. An out-of-time-order correlator (OTOC) defines two chaos parameters, the butterfly

velocity vB that describes the speed at which chaos propagates, and τL the Lyapunov time,

which controls the rate at which chaotic effects grow. The OTOC characterizes chaos in

a quantum many-body system, and is also connected to shock waves near the black hole

horizon in the holographic dual. A precise lower-bound was established [16] for the Lyapunov

time τL ≥ ~/(2πkBT ), where T is the absolute temperature. This bound is saturated in

holographic theories with Einstein gravity, and in SYK models [5, 17]. More generally, we

expect states of quantum matter without quasiparticle excitations to have τL ∼ ~/(kBT ),

while more conventional states with quasiparticles will take longer to reach chaos with

τL ∼ 1/T a with a > 1 [18–22].

These advances raise the question of whether the chaos properties of black holes and

many body systems are connected to transport. In particular, it was proposed in [23, 24]
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that the thermoelectric diffusivities D obeys

D ∼ v2BτL. (1)

This connection provides an appealing route to characterise the transport properties of

strange metal states without quasiparticle excitations. In a normal metal, the Fermi veloc-

ity and quasiparticle mean free time are the scales relevant for transport. The relation (1)

suggests that the butterfly velocity and the Lyapunov time are the appropriate generalisa-

tions of these for systems without quasiparticles. Further, the lower bound on τL appears

analogous to Mott-Ioffe-Regel bounds in quasiparticle transport [25, 26].

The original evidence in Ref. [23] for this proposal came from studying the charge diffu-

sivity of systems with particle/hole symmetry, in which charge and energy diffuse indepen-

dently. However, in the absence of this symmetry (e.g. in a finite density state), the diffusive

processes are coupled [26] and it is not clear which elements of the diffusivity matrix, if any,

should be related to the chaos parameters τL and vB. In particular, the full diffusion matrix

can be sensitive to short-distance physics in the form of the momentum relaxation timescale

and the thermodynamic charge susceptibility, making relations of the form (1) less likely.

In this paper we identify a universal piece of the diffusivity matrix that we can generically

relate to the chaos exponents at infra-red fixed points. This is provided by the thermal

diffusivity DT

DT ≡ κ

cρ
, (2)

where κ is the open circuit thermal conductivity and cρ = T (∂s/∂T )ρ is the thermodynamic

specific heat at fixed density, ρ. For a generic finite density system, this is not an eigenvalue of

the diffusivity matrix but can be interpreted as the diffusivity of temperature perturbations

when charge perturbations are static. However, as we justify in Appendix A, in all our fixed

points we find that the Einstein relations simplify at low temperatures and the thermal

diffusivity (2) also corresponds to an eigenvalue of the thermoelectric diffusivity matrix.1

This thermal diffusivity DT provides a natural candidate to relate to many body chaos.

For non-zero density states, the open-circuit thermal conductivity is finite in the translation-

ally invariant limit, and so is not sensitive to irrelevant deformations that relax momentum

[27]. Moreover, the relevant thermodynamic susceptibility in this Einstein relation is the

specific heat, a quantity that (unlike the charge susceptibility) can be extracted from the

infra-red theory. This intuition is reinforced by work on SYK/AdS2 models [7, 8, 28–30] and

critical Fermi surfaces [20] for which connections between the thermal diffusivity and chaos

have recently been observed.

1 In an isotropic magnetic field, κ should be replaced with the magneto-thermal conductivity in equation

(24) below.
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Here we will establish that the relationship DT ∼ v2BτL is a generic low temperature

property of homogeneous holographic lattice models [31–34] that flow to infra-red fixed

points. Our conclusions are robust, and are based on the simple observation that the dc

conductivity formulae for these theories imply that κ can be expressed solely in terms of the

metric near the horizon. For instance, for a 2+1 dimensional boundary theory we find that

it can always be written as

κ =
4πf ′(r0)

f ′′(r0)
, (3)

where f(r) is the emblackening factor of the black hole metric and r0 the horizon radius.

This formula holds regardless of the lattice strength, charge density or magnetic field of the

boundary theory. In other words, all the dependence of κ on these quantities is encoded in

their effects on the infra-red geometry.

This property is the key to establishing our connection between the thermal diffusivity

DT and the chaos parameters, which are themselves determined from the metric near the

horizon. In particular for theories that flow to infra-red scaling geometries we demonstrate

that this leads to

DT =
z

2z − 2
v2BτL, (4)

where z is the dynamical critical exponent of the infra red fixed point. We emphasise that

both DT and vB are typically highly non-trivial functions of the charge density, temperature,

lattice strength and magnetic field. However since all that dependence is captured by the

metric near the horizon, we find that they are always related by (4) near the fixed point.

Note that an exception to this general result is provided by fixed points with z = 1, for

which our expression (4) diverges. We will discuss this special case further in section III.

II. THERMAL CONDUCTIVITY IN HOLOGRAPHIC METALS

We begin by deriving a new expression for the dc thermal conductivity κ in holographic

models of strange metals. Specifically, we consider a general family of holographic Q-lattice

models that allow us to study the effects of momentum relaxation whilst retaining a homo-

geneous bulk metric [31–40]. We will demonstrate that κ in these theories depends only on

the metric near the horizon: it does not directly depend on the profiles of the matter fields

in the black hole solution. This will allow us to establish a relationship near infra red fixed

points between the thermal diffusivity DT and the chaos parameters that is independent of

the charge density, magnetic field, or lattice strength.

We consider the following Q-lattice action, which consists of Einstein-Maxwell-Dilaton
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gravity coupled to ‘axion’ fields χi that are used to break translational symmetry

S =

∫

dd+2x
√
−g

(

R− 1

2
(∂ϕ)2 − V (ϕ)− 1

2
W (ϕ) (∂χi)

2 − 1

4
Z(ϕ)F 2

)

, (5)

where i = 1, . . . , d runs over the spatial dimensions of the boundary theory. This action

admits homogeneous and isotropic solutions of the form

ds2d+2 = −f(r) dt2 +
dr2

f(r)
+ h(r)dx2

i ,

A = a(r)dt, χi = kxi, ϕ = ϕ(r), (6)

where we will assume f(r0) = 0 corresponds to a black hole horizon with temperature

4πT = f ′(r0).

The bulk Maxwell field is dual to a conserved U(1) current on the boundary. Integrating

the Maxwell equation gives

a′(r) =
1

Z(ϕ(r))h(r)d/2
ρ, (7)

with ρ the field theory charge density. The axion fields (with k 6= 0) break translational

symmetry of the boundary QFT and leads to momentum relaxation. This results in a finite

dc thermoelectric conductivity matrix, whose elements are determined by the solution at

the black hole horizon [31, 41–45]

σ = h(r0)
d/2−1Z(ϕ(r0)) +

4πρ2

k2W (ϕ(r0))s
,

α =
4πρ

k2W (ϕ(r0))
,

κ̄ =
4πsT

k2W (ϕ(r0))
, (8)

where s = 4πh(r0)
d/2 is the entropy density.

These dc conductivities are sensitive to both the metric and the profile and couplings

of the matter fields. However the key observation of this paper is that κ, the thermal

conductivity in the absence of electrical current flow, depends only on the background metric.

Naively, κ depends on the matter fields through

κ ≡ κ̄− Tα2

σ
=

4πsTZ(ϕ(r0))h(r0)
d−1

ρ2 + k2W (ϕ(r0))Z(ϕ(r0))h(r0)d−1
. (9)

But this dependence can be removed by using the equations of motion for the background

geometry. In particular, the Einstein equations imply

h2−d/2(f ′hd/2−1)′ − k2W − hZa′2 − fh′′ − d− 2

2
fh−1h′2 = 0. (10)
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By evaluating this on the black hole horizon, we can simplify the expression for the thermal

conductivity to

κ = 4π
f ′hd−2

(f ′hd/2−1)′

∣

∣

∣

∣

r0

, (11)

which explicitly depends only on the metric. Note that the reason this is possible is that the

only way the matter fields appear in the thermal conductivity (9) is through components of

the stress tensor, and hence we are always able to eliminate them in favour of the geometry

using the Einstein equations. This should be contrasted with the behaviour of the electrical

conductivity, which explicitly depends on the matter fields in a way that cannot be re-

expressed in terms of the metric.

III. THERMAL DIFFUSIVITY AND CHAOS AT FIXED POINTS

Now that we have established our formula (11) for the thermal conductivity, it is possible

to show that that near generic infra-red fixed points the thermal diffusivity DT = κ/cρ will

be universally related to the chaos parameters. The key point is that (11) tells us that κ

is determined solely by the geometry near the infra-red horizon. Near an infra-red fixed

point the entropy density will typically be a power law in temperature. In this case it

can also be extracted from the horizon as cρ = T (∂s/∂T )ρ ∼ 4πh(r0)
d/2, with a constant

of proportionality dependent upon the scaling exponents characterising the infra red fixed

point. In such cases, it is therefore possible to express DT entirely in terms of the near-

horizon geometry.

Similarly, the chaos parameters are also infra-red quantities whose leading small temper-

ature behaviour is determined by the fixed point geometry. Specifically, the chaos parame-

ters of any holographic geometry can be extracted from studying a shock-wave propagating

on the black hole horizon [15, 23, 46, 47]. The Lyapunov time (the inverse of the Lya-

punov exponent) is universally given by the temperature of the black hole solution through

τL = (2πT )−1. The butterfly velocity is model dependent, and can be expressed in terms of

the metric near the horizon as

v2B =
4πT

dh′(r0)
. (12)

We therefore conclude that in the infra-red (low temperature) limit the thermal diffusivity

and butterfly velocity are related by

DT ∼ f ′hd/2−1

(f ′hd/2−1)′
h′

h

∣

∣

∣

∣

r0

v2BτL. (13)

As we will show shortly, the power law form of the metric functions f and h near an infra-red

fixed point means that the coefficient relating DT and v2BτL in (13) is just a pure number
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that is independent of all energy scales in the theory (such as the charge density or lattice

strength at the fixed point).

A. Generic fixed points

More concretely, we can consider solutions (6) that are asymptotically AdS and that flow

to Lifshitz and/or hyperscaling-violating geometries in the infra-red. These solutions can be

obtained using our action (5) by choosing exponential profiles for the potentials

V (ϕ) = −V0e
δϕ W (ϕ) = W0e

λϕ Z(ϕ) = Z2
0e

γϕ, (14)

which support solutions of the form [31, 32, 48–51]

f(r) = L−2
t ru1

(

1− r∆0
r∆

)

, h(r) = L−2
x r2v1 , ϕ(r) = ϕ1logr, a(r) = A0r

a1 , χi = kxi,

(15)

where ∆ = dv1 + u1 − 1. The space of solutions can be parameterised using a dynamic

critical exponent, z, and a hyper scaling violating exponent, θ [48, 52–54]. These are related

to the power laws in the metric by

u1 =
2z − 2θ/d

z − 2θ/d
, 2v1 =

2− 2θ/d

z − 2θ/d
ϕ2
1 =

c

(z − 2θ/d)2
(16)

with c = (d−θ)(2z−2−2θ/d), and (z, θ) are determined by the exponents in the potentials

(14). There are four different classes of solution, characterized by whether the charge density

or lattice fields are irrelevant or marginal deformations of the infra-red geometry [32]. When

at least one of these deformations is marginal, Lorentz symmetry is broken in the infra-red

and so we have z 6= 1. We will assume this is the case for the remainder of this subsection.

For a suitable choice of the parameters Lt and Lx then these Lifshitz/hyperscaling-

violating metrics solve the equations of motion of (5). The expressions for these parameters

take a rather complicated form [32], and together with the horizon radius r0 they encode

the dependence of the geometry on the dilaton potentials, as well as the values of the charge

density and lattice fields. However the full details of these solutions are not necessary for

our purposes. Indeed the key point is that whilst the parameters Lt, Lx, r0 will determine

the absolute value of the diffusion constant, they do not affect its relationship to vB and τL.

To see that this is the case, we can extract the thermal conductivity of our solutions using

the formula (11) and the fixed point geometry (15) as

κ =
(z − 2θ/d)

2z − 2
4πr0h(r0)

d/2−1. (17)
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For these solutions the entropy density scales as s ∼ T (d−θ)/z and so we can extract the

specific heat as

cρ =
d− θ

z
4πh(r0)

d/2 (18)

The thermal diffusivity is then

DT =
z(z − 2θ/d)

(d− θ)(2z − 2)
L2
xr

1−2v1
0 . (19)

Likewise we can extract the butterfly velocity from (12) as

v2BτL =
z − 2θ/d

d− θ
L2
xr

1−2v1
0 , (20)

from which we see that the relationship

DT =
z

2z − 2
v2BτL, (21)

holds independently of any of the details of the bulk solution. As claimed the coefficient of

proportionality is simply a pure number, determined only by the dynamical critical exponent

of the fixed point. It is curious that the infra-red exponent θ does not enter in the prefactor

(even for the η 6= 0 geometries of [55]), and it would be interesting to attain a better

understanding of why this is the case.

It was shown in [24] that the relationship (21) held for particle-hole symmetric lattice

solutions that flowed to Lifshitz/hyperscaling-violating fixed points in d = 2. In fact, we

have demonstrated that this result is far more widely applicable. In particular the same

relationship holds in finite density solutions, and is completely independent of the marginal

deformations describing the charge density and lattice fields at the fixed point. We will

shortly see that it continues to hold even in the presence of a magnetic field.

It is worth contrasting the robustness of this connection between the thermal diffusivity

and chaos with attempts to generalise the initial charge diffusion results of [23]. Whilst it was

possible to relate the charge diffusion constant of certain particle-hole symmetric theories to

chaos, there does not appear to be a simple relationship in a general finite density setting

[8, 28, 56–58]. The thermal diffusivity however can always be expressed in terms of the

geometry, and so changing the matter field profiles does not affect our result (21).

B. Fixed points with z = 1

Whilst the above argument is valid at generic fixed points, there are a couple of special

cases that require a more careful treatment. The first is that we assumed that either the

charge density or lattice fields were marginal, so that our fixed point had z 6= 1. For
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theories where both the charge density and lattice fields are irrelevant deformations it is also

possible to construct geometries with z = 1, for which our result (21) is ill-defined. This is

because (f ′hd/2−1)′|r0 vanishes at these fixed points. In this case, the leading low temperature

behaviour of κ is then determined by the leading irrelevant deformations around the fixed

point. In contrast to this, the chaos parameters are still set by the fixed point geometry, and

hence there will no longer be a simple connection to DT . Indeed since DT is now controlled

by an irrelevant deformation, it will be parametrically larger than v2BτL.
2

C. AdS2 ×Rd fixed points

A second special case is provided by geometries that flow towards AdS2×Rd fixed points

in the infra-red. Such geometries can be supported either by the lattice fields or the charge

density, and arise if the potentials in (5) allow for solutions with a constant scalar ϕ(r) =

ϕ0. In this case, κ remains finite at the fixed point. However for these geometries the

spatial metric is just a constant (i.e. v1 = 0) and so neither the specific heat nor the chaos

parameters can be extracted from the fixed point solution.

In order to calculate the diffusivity, it is therefore necessary to include the leading irrele-

vant deformations of the geometry. This analysis was performed in [28] where it was found

that both vB and cρ are determined by the same irrelevant deformation of AdS2 ×Rd. As a

result it was possible to show that they are always related by

DT = Ev2BτL, (22)

with a coefficient 1/2 < E ≤ 1 that depends only on the dimension of the leading irrelevant

mode. In particular when the leading deformation is a dilatonic mode one finds E = 1,

which matches the relationship seen in extended SYK models [7, 8].

IV. DIFFUSION IN A MAGNETIC FIELD

We will now generalise the result (21) to include systems in which time reversal symmetry

is broken by an external magnetic field B. We note that the holographic approach cannot

describe Landau quantization in a magnetic field, and so we assume that B is not so large

that such effects are important [60, 61].

We consider the simplest case of 2+1-dimensions in which isotropy is preserved. Each

element of the thermoelectric conductivity matrix is therefore now a spatial matrix that

2 This was previously found for incoherent charge diffusion in translationally invariant theories [59].
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can be decomposed into longitudinal and Hall components e.g. σ̂ij = σLδij + σHǫij . The

appropriate magneto-hydrodynamic theory of transport is described in Appendix A.

In this hydrodynamic theory we find that it is only the longitudinal components of the

thermoelectric conductivities that enter in the Einstein relations that define the diffusiv-

ity matrix (the Hall conductivities necessarily drop out of these equations on symmetry

grounds). The generalisation of the diffusivity (2) for theories with a magnetic field is

therefore

DT =
κ̃L

cρ
, (23)

where cρ = T (∂s/∂T )ρ,B is the specific heat at fixed charge and magnetic field, and the

relevant dc thermal conductivity κ̃L is

κ̃L ≡ κ̄L − Tα2
L

σL
. (24)

Note that κ̃L is not simply the longitudinal component of the thermal conductivity matrix

κ̂ = ˆ̄κ− T α̂σ̂−1α̂, but rather is defined by (A16).

To study this diffusivity in our holographic Q-lattice models, we first need to generalize

our metric ansatz to allow dyonic solutions

ds24 = −f(r) dt2 +
dr2

f(r)
+ h(r)(dx2 + dy2),

A = a(r) dt +Bxdy, χ1 = kx, χ2 = ky, ϕ = ϕ(r). (25)

For these solutions, it is still possible to obtain analytic expressions that relate the mag-

netothermoelectric transport coefficients to the geometry and matter fields on the horizon

[62–66]. The full expressions now take a rather complicated form, however the final result

for the thermal conductivity κ̃L simplifies to give

κ̃L =
4πsTZ(ϕ(r0))h(r0)

ρ2 +B2Z(ϕ(r0))2 + k2W (ϕ(r0))Z(ϕ(r0))h(r0)
. (26)

Using the bulk equations of motion

hf ′′ − k2W − hZa′2 − ZB2h−1 − fh′′ = 0. (27)

we find that this can be expressed solely in terms of the background geometry

κ̃L =
4πf ′(r0)

f ′′(r0)
, (28)

in exactly the same form as before. Once again the way in which B affects the thermal

conductivity is entirely captured by its backreaction on the metric through (28). Since the

thermal diffusivity takes precisely the same form, then it is clear that our analysis of infra-red
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fixed points in Section III will immediately extend to geometries with an external magnetic

field.

In particular, Lifshitz and/or hyperscaling-violating fixed point solutions with a magnetic

field have previously been constructed in [67–69]. The only difference to our previous discus-

sion is that, in addition to the charge and lattice fields, it is now possible for the magnetic

field to be a marginal deformation of the fixed point.3 In this case, the parameters Lt and Lx

will also depend on the magnetic field. However, as we have seen, whilst these parameters

affect the absolute value of the diffusion constant, they do not change the relationship to the

chaos exponents. We therefore have that the relationship (21) still holds in these solutions,

and is independent of the values of the magnetic field, lattice fields or charge density at the

fixed point. Similarly the analysis of [28] straightforwardly extends to dyonic AdS2 × Rd

solutions and we have that the relationship (22) also applies for these geometries.

V. DISCUSSION

In this paper we have studied thermal transport in a general family of homogeneous

holographic models of strange metals. We obtained a new expression (11) for the thermal

conductivity of these theories that depended only on the metric near the horizon. This

allowed us to show that for generic infra-red fixed points the thermal diffusivity DT =

κ/cρ is related to the chaos exponents through DT ∼ v2BτL. The coefficient is completely

independent of the charge density, lattice strength and magnetic field at the fixed point.

Indeed the only exception we found was fixed points with z = 1, for which the thermal

conductivity (13) is ill-defined in the fixed point geometry and hence is sensitive to irrelevant

deformations.

The remarkable robustness of this result is reminiscent of how the universality of the ratio

of the shear viscosity to the entropy density, η/s, arises in holographic theories [70, 71]. In

both cases, there is a transport coefficient which depends only on the infra-red metric and not

explicitly on the matter fields. When expressed in terms of an appropriate thermodynamic

quantity, one then finds very simple expressions for these transport coefficients. Unlike the

universality of η/s, our result applies only at low temperatures near infra-red fixed points.

However, in other ways our result is more general. In particular, it does not rely on the

state being translationally invariant and we demonstrate in Appendix B that it continues

to hold in anisotropic theories. Both of these are situations in which the original η/s result

can be badly violated [37, 72–78]. Additionally, we show in Appendix C that our expression

3 In addition to the solutions discussed in [67–69], we also find that when θ = 4 it is possible to construct

solutions where the charge density, magnetic field and axions are all marginal deformations.
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(3) also holds for DBI Q-lattice solutions, and so our conclusions are not dependent on the

choice of Maxwell action for the gauge field.

We noted that for finite density theories the Einstein relation (2) for our thermal diffu-

sivity does not a priori correspond to an eigenvalue of the thermoelectric diffusivity matrix.

However for the holographic models we have studied in this paper, DT is equal to one of

the eigenvalues of the diffusion matrix near the infra-red fixed point (see Appendix A). We

expect that the connection between chaos and an eigenvalue of the diffusivity matrix in an

‘incoherent’ limit found in [28, 56–58] can also be understood as consequences of a simple

equation for κ, as we have outlined.

In future work it would be very interesting to determine to what extent our results can be

generalised to yet more complicated systems. Two of the most promising avenues to pursue

are to investigate inhomogeneous solutions [79, 80] and higher derivative theories of gravity

[81]. Inhomogeneous holographic theories and SYK chains have been studied in [82, 83],

and the relation between a ‘disorder-averaged’ diffusivity and butterfly velocity found to

depend on the profile of inhomogeneities. However it would be interesting to understand

if a relationship like (1) still holds in terms of a local diffusivity and butterfly velocity. A

natural starting point for this would be to determine if and how our observation that the

thermal conductivity can be expressed in terms of the metric generalises to inhomogeneous

cases.

Finally, as we mentioned in our introduction, similar connections between the thermal

diffusivity and chaos have also been observed in non-holographic models. For instance

critical Fermi surface models and extended SYK models both have a thermal diffusivity

that is given by v2BτL, up to an order one coefficient [7, 8, 20, 28–30] (see [21, 22, 84, 85]

for related work in other systems). Note although the coefficient in (21) is very simple, this

expression is not expected to be universal across all quantum field theories with the same

dynamical critical exponent. In particular the models studied in [20] have z = 3/2 but with

a diffusivity DT = 0.42v2BτL. Nevertheless, the essential point is that, as in our holographic

examples, the coefficient relating the diffusivity to the chaos exponents is independent of

the UV parameters of the system. It would be fascinating to develop a more complete

understanding of why this is the case, and to see if these ideas can be applied to experimental

systems [25] such as underdoped YBCO whose thermal diffusivity was recently reported in

[86].
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Appendix A: Diffusive Processes in a Metal

In a strongly interacting system with momentum relaxation (i.e. one without translational

symmetry) the only long-lived modes are long wavelength fluctuations in the charge δρ and

energy density δε. There is a very simple effective theory for the dynamics of these modes

[26] – on long distances and timescales they are just described by a pair of coupled diffusion

equations for these conserved charges.

To obtain these equations, then it is convenient to first change variables and study per-

turbations of heat δs rather than energy using

Tδs ≡ δε− µδρ. (A1)

The effective theory is then given by the conservation equations

∂tδρ+∇ · j = 0, ∂tδs+
1

T
∇ · jQ = 0, (A2)

together with the constitutive relations

j = −σ (∇µ−E)− α∇T, jQ = −αT (∇µ− E)− κ̄∇T, (A3)

where j and jQ are the charge and heat currents, σ, α and κ̄ are the DC thermoelectric

conductivities, and E is an external electric field. Note that this is qualitatively different

to the effective theory of translationally invariant theories, for which there is an additional

long-lived mode corresponding to long wavelength perturbations of the momentum density

that must also be included.

In the absence of an external field one then finds a pair of coupled diffusion equations

∂t

(

δρ

δs

)

= D · ∇2

(

δρ

δs

)

, (A4)

where the diffusivity matrix D is given by the matrix product of the thermoelectric conduc-

tivity matrix Σ and the inverse of the thermodynamic susceptibility matrix χs

D = Σ · χ−1
s =

(

σ α

α κ̄/T

)

·
(

χ ξ

ξ cµ/T

)−1

, (A5)
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with

χ =

(

∂ρ

∂µ

)

T

, ξ =

(

∂s

∂µ

)

T

, cµ = T

(

∂s

∂T

)

µ

. (A6)

These diffusion equations can be decoupled using eigenmodes of D, that describe linear

combinations of these perturbations that diffuse independently. The two thermoelectric

diffusivities, D+, D− ( the eigenvalues of D ) now satisfy [26]

D+ +D− =
κ

cρ
+

σ

χ
+

Tσ

cρ

(

α

σ
−
(

∂s

∂ρ

)

T

)2

,

D+D− =
κ

cρ

σ

χ
,

(A7)

where κ is the open circuit dc thermal conductivity

κ ≡ − jQ
∇T

∣

∣

∣

j=0
= κ̄− Tα2

σ
, (A8)

and cρ is the heat capacity at constant density

cρ = T

(

∂s

∂T

)

ρ

= cµ −
Tξ2

χ
. (A9)

The thermal diffusivity DT = κ/cρ we have calculated in this paper is then only equivalent

to an eigenvalue of the diffusion matrix when the thermoelectric cross terms in (A7) can be

neglected. This will certainly be the case provided

χ−1 ≫ T

cρ

(

α

σ
−
(

∂s

∂ρ

)

T

)2

(A10)

If this condition is satisfied then the σ/χ term dominates over the mixing terms in (A7) and

hence we will have that the two eigenmodes are simply given by Dc = σ/χ and DT = κ/cρ.

We will shortly demonstrate that this condition is always satisfied in the infra-red limit of

the fixed points we studied in section III. In the low temperature limit of these models, κ/cρ

then indeed coincides with an eigenvalue of the diffusivity matrix.

Note that in general this κ/cρ piece of the diffusivity matrix can be directly extracted by

turning on an external electric field that enforces the condition that the charge density is

static i.e. ∂tδρ = 0. From equation (A3), this can be achieved with the choice

E = ∇µ+
α

σ
∇T. (A11)

With this constraint satisfied, the diffusion equations then reduce to the condition that

temperature fluctuations δT ≡ (∂T/∂s)ρ δs+ (∂T/∂ρ)s δρ, obey the diffusion equation

∂tδT = DT∇2δT, DT =
κ

cρ
. (A12)
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1. Diffusion in a Magnetic Field

For 2+1 dimensional theories, it is straightforward to extend our discussion of diffu-

sion to systems with an external magnetic field. The conservation laws (A2) remain valid,

but we must modify our constitutive relations to include the off-diagonal elements of the

conductivity tensors

ji = −σ̂ij (∇jµ−Ej)− α̂ij∇jT, jQi
= −α̂ijT (∇jµ−Ej)− ˆ̄κij∇jT, (A13)

where i, j run over the two spatial directions. The thermoelectric conductivities in (A13)

are now matrices that (for isotropic theories) can be decomposed into longitudinal and Hall

components e.g. σ̂ij = σLδij + σHǫij .

In the absence of the electric field, one now finds that the fluctuations are described by

the diffusion matrix

D = Σ · χ−1
s =

(

σL αL

αL κ̄L/T

)

·
(

χ ξ

ξ cµ/T

)−1

, (A14)

where the magnetic field should be held fixed when taking thermodynamic derivatives. Note

that the Hall conductivities completely drop out of the diffusivity matrix. The diffusion

equations therefore take the same form as without the magnetic field, provided one replaces

the usual thermoelectric conductivities σ, α, κ̄ with their longitudinal components σL, αL,

κ̄L.

In particular the eigenvalues of D now satisfy

D+ +D− =
κ̃L

cρ
+

σL

χ
+

Tσ

cρ

(

αL

σL
−
(

∂s

∂ρ

)

T

)2

,

D+D− =
κ̃L

cρ

σL

χ
,

(A15)

where the ‘longitudinal’ thermal conductivity in these expressions

κ̃L = − jQx

∇xT

∣

∣

∣

∣

∇yT,jx=0,Ey=0

= κ̄L − Tα2
L

σL
, (A16)

is the generalization of κ that appears in the diffusion equations. As we noted in the

main text, this is distinct from first computing the open-circuit thermal conductivity κ̂ =

ˆ̄κ− T α̂σ̂−1α̂ and then taking the longitudinal part.

Once again for fixed points with a magnetic field we find that the thermoelectric mixing

terms in (A15) are subleading at low temperatures. The eigenvalues of the diffusivity matrix

are therefore now given by σL/χ and κ̃L/cρ in the infra-red limit. To directly extract the

κ̃L/cρ component of the diffusivity matrix, we can again consider turning on an external
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electric field such that ∂tδρ = 0. Under the extra condition that this electric field has

vanishing curl, then the diffusion equations now reduce to

∂tδT = DT∇2δT, DT =
κ̃L

cρ
. (A17)

2. Thermoelectric mixing terms

We now wish to justify that in the low-temperature limit of our finite density fixed points

we always satisfy the condition (A10) and hence the thermal diffusivity DT = κ/cρ corre-

sponds to an eigenvalue of the diffusivity matrix. To see this we note that all the quantities

in the thermoelectric mixing terms are infra-red quantities whose leading temperature de-

pendence can be extracted from the near-horizon solution (15).

In particular if we assume the charge density is a marginal deformation then we can

extract cρ and (∂s/∂ρ)T by differentiating the entropy density at the fixed point. We then

have the scalings cρ ∼ (∂s/∂ρ)T ∼ T (d−θ)/z . Likewise, from the explicit formulae (8) for the

thermoelectric transport coefficients we deduce that α/σ ∼ T (d−θ)/z has the same scaling at

generic fixed points. The mixing terms in the Einstein relations are then proportional to

T

cρ

(

α

σ
−
(

∂s

∂ρ

)

T

)2

∼ T (z+d−θ)/z (A18)

which always vanishes in the infra-red limit. Similarly if the charge density is an irrelevant

deformation then these mixing terms will be even further suppressed at low temperatures.

In contrast, the low temperature behaviour of the charge susceptibility χ−1 is not con-

trolled solely by the IR fixed point, but receives contributions from all parts of the geometry.

In particular there will be a temperature independent piece coming from the UV region and

so we will have χ−1 ∼ T 0 in these geometries. As such (A10) is always satisfied at low

temperatures for theories that flow to one of these fixed points. Provided we work with

the longitudinal conductivities σL, αL then this scaling analysis goes through completely

unchanged for dyonic solutions with a magnetic field, and so the thermoelectric cross terms

can also be neglected at low temperatures in this case.4

Appendix B: Anisotropic Q-Lattice Models

In this appendix we will show that universal relations between the thermal diffusivities

and butterfly velocities also hold in anisotropic Q-lattice solutions. In order to be explicit, we

4 The mixing terms can also be neglected for AdS2 × Rd geometries due to the Kelvin formula α/σ =

(∂s/∂ρ)T satisfied by the thermoelectric conductivities [8, 28]. For dyonic AdS2 geometries we find

αL/σL = (∂s/∂ρ)T,B and so this generalises to theories with a magnetic field.
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will study theories with two spatial directions x and y. We therefore consider the following

generalisation of our Q-lattice action

S =

∫

d4x
√−g

(

R− 1

2
(∂ϕ)2 − V (ϕ)− 1

2
W1(ϕ) (∂χ1)

2 − 1

2
W2(ϕ) (∂χ2)

2 − 1

4
Z(ϕ)F 2

)

,

and are now interested in homogeneous but anisotropic solutions of the form

ds24 = −f(r) dt2 +
dr2

f(r)
+ h1(r)dx

2 + h2(r)dy
2,

A = a(r)dt, χ1 = k1x, χ2 = k2y, ϕ = ϕ(r). (B1)

The temperature of these black holes is given by 4πT = f ′(r0). The charge density is

ρ =
√
h1h2Za

′ and the entropy density is s = 4π
√
h1h2(r0).

For these theories we can now define two thermal diffusivities

Dxx =
κxx

cρ
; Dyy =

κyy

cρ
(B2)

corresponding to diffusion along the x and y directions respectively. The DC conductivities

of these geometries can again be related to the metric and matter fields at the black hole

horizon. In particular the open-circuit conductivity in the x direction is now given by

κxx ≡ κ̄xx −
Tα2

xx

σxx
=

4πsTZ(ϕ(r0))h2(r0)

ρ2 + k2
1W1(ϕ(r0))Z(ϕ(r0))h2(r0)

, (B3)

whilst the conductivity along the y direction follows from swapping the indices 1 and 2 in

this expression.

As we saw in the main text, the key to establishing a general connection between the

diffusion constant and chaos was to express this thermal conductivity entirely in terms of

the bulk geometry. Using the Einstein equations we find (B3) can be written as

κxx =
4πf ′h2h

−1
1

(f ′h
1/2
2 h

−1/2
1 )′

∣

∣

∣

∣

r0

, (B4)

and so the same is true for these anisotropic theories. It is then straightforward to evaluate

(B4) for geometries that flow to anisotropic power law solutions in the infra-red. These take

the form

f(r) = L−2
t ru1

(

1− r∆0
r∆

)

, h1(r) = L−2
x r2v1 , h2(r) = L−2

y r2v2 , (B5)

with ∆ = v1 + v2 + u1 − 1. The thermal conductivity of these solutions is just

κxx =
1

u1 − 2v1
4πLxL

−1
y r1+v2−v1

0 . (B6)

The Einstein relation Dxx = κxx/cρ then gives the thermal diffusivity

Dxx =
u1 − 1

(v1 + v2)(u1 − 2v1)
L2
xr0

1−2v1 , (B7)

whilst the diffusivity in the y direction is

Dyy =
u1 − 1

(v1 + v2)(u1 − 2v2)
L2
yr

1−2v2
0 . (B8)
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1. Butterfly Velocity in Anisotropic Theories

Now that we have these diffusivities, we can compare with the relevant butterfly velocities

along the x and y directions. These can be calculated by considering the equation for a shock

wave perturbation δguu on an anisotropic horizon [23, 87]

(hij(r0)∂i∂j −m2)δguu(tw, ~x) ∼ Ee
2π
β
twδ(~x), (B9)

where the right hand side describes the stress tensor of an in falling particle of boundary

energy density E that sources the shock-wave geometry. Here hij(r0) is the inverse-spatial

metric on the horizon and the effective mass is given by

m2 = πT

(

h2h
′

1 + h1h
′

2

h2h1

)
∣

∣

∣

∣

r0

. (B10)

This equation implies a Lyapunov time τL = (2πT )−1 and the anisotropic butterfly velocities

vx =
2πT√
h1m

∣

∣

∣

∣

r0

, vy =
2πT√
h2m

∣

∣

∣

∣

r0

. (B11)

For our power law geometries this just leads to

v2xτL =
1

v1 + v2
L2
xr

1−2v1
0 , v2yτL =

1

v1 + v2
L2
yr

1−2v2
0 . (B12)

And so we establish the relationships

Dxx = av2xτL, Dyy = bv2yτL, a =
u1 − 1

u1 − 2v1
, b =

u1 − 1

u1 − 2v2
. (B13)

At low temperatures we will therefore again have universal relations between these diffusiv-

ities and the chaos exponents. Indeed the essential point is that the anisotropic butterfly

velocities vx, vy precisely account for the different dependence on r0, Lx, Ly that appears in

the diffusivities (B7) and (B8). The only difference to the isotropic case is then that the

order one coefficients a, b can differ between the x and y directions if we have different power

laws in the metric (i.e. v1 6= v2).

Appendix C: DBI Q-Lattice Models

In this appendix we show that the simple expression (3) for κ in terms of the metric near

the horizon can apply in theories with more general matter actions. Specifically, we consider

replacing the Maxwell action for the U(1) gauge field with a DBI-like action

S =

∫

d4x
√
−g

(

R − 1

2
(∂ϕ)2 − V (ϕ)− 1

2
W (ϕ)(∂χi)

2 − Z1(ϕ)
√

− det(g + Z2(ϕ)F )

)

,
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and again look for solutions of the form (25). The charge density is given by

ρ = a′Z1Z
2
2

√

h2 +B2Z2
2

1− Z2
2a

′2
. (C1)

To compute the magneto-thermoelectric conductivities, we follow [43, 63] and study the

linearised fluctuation equations with the ansatz

δAx = (−E + ξa) t+ δax(r), δAy = δay(r),

δgxt = −ξtf(r) + h(r)δhxt(r), δgyt = h(r)δhyt(r),

δgrxi = h(r)δhrxi(r), δχi = δχi(r).

(C2)

where E and ξ are an electric field and temperature gradient in the x-direction. There

are two radially conserved quantities jx and jQx which we identify with the longitudinal

electrical and thermal currents

jx = − hZ1Z
2
2

√

(h2 +B2Z2
2 )
(

1− Z2
2a

′2
)

(f (δa′x +Bδhyr) + ha′δhxt) ,

jQx = f 2

(

h

f
δhxt

)′

− ajx.

(C3)

We can then impose ingoing boundary conditions at the horizon to obtain the longitudinal

conductivities

σL =
m2hW (ρ2 +B2Z2

1Z
4
2 +m2WZ2X)

h2m4W 2 +B2 (m4W 2Z2
2 +B2Z2

1Z
4
2 + ρ2 + 2m2WZ2X)

∣

∣

∣

∣

∣

r0

,

αL =
4πWh2m2ρ

h2m4W 2 +B2 (m4W 2Z2
2 +B2Z2

1Z
4
2 + ρ2 + 2m2WZ2X)

∣

∣

∣

∣

∣

r0

,

κ̄L =
16π2hT (h2m2W +B2Z2 (m

2WZ2 +X))

h2m4W 2 +B2 (m4W 2Z2
2 +B2Z2

1Z
4
2 + ρ2 + 2m2WZ2X)

∣

∣

∣

∣

∣

r0

,

(C4)

where X =
√

ρ2 + (h2 +B2Z2
2)Z

2
1Z

2
2 . Combining these, we find that

κ̃L =
16π2hZ2T

√

ρ2 + (h2 +B2Z2
2)Z

2
1Z

2
2

ρ2 +B2Z2
1Z

4
2 +m2WZ2

√

ρ2 + (h2 +B2Z2
2)Z

2
1Z

2
2

∣

∣

∣

∣

∣

r0

. (C5)

The Einstein equations for the DBI-like action imply that

hf ′′ −m2W − Z1Z
2
2

(

B2 + h2a′2
)

√

(h2 +B2Z2
2)
(

1− Z2
2a

′2
)

− fh′′ = 0. (C6)
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Evaluating this on the horizon gives an equation that can be used to simplify the expression

(C5) for κ̃L to

κ̃L = 4π
f ′(r0)

f ′′(r0)
. (C7)

The result that this thermal conductivity can be expressed solely in terms of the near-horizon

metric is therefore not special to the matter action we examined in the main text, but applies

also to this DBI case. We therefore expect the thermal diffusivity to be related to the chaos

parameters near infra-red fixed points of this theory. Some infra-red fixed points of the

theory were constructed in [88, 89].
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