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From Path Integrals to the Wheeler-DeWitt Equation: Time Evolution in Spacetimes

With a Spatial Boundary

Justin C. Feng1 and Richard A. Matzner1

1Department of Physics, University of Texas at Austin

We reexamine the relationship between the path integral and canonical formulation of quantum
General Relativity. In particular, we present a formal derivation of the Wheeler-DeWitt equation
from the path integral for quantum General Relativity by way of boundary variations. One feature
of this approach is that it does not require an explicit 3+1 splitting of spacetime in the bulk. For
spacetimes with spatial boundary, we show that the dependence of the transition amplitudes on
spatial boundary conditions is determined by a Wheeler-DeWitt equation for the spatial boundary
surface. We find that variations in the induced metric at the spatial boundary can be used to
describe time evolution–time evolution in quantum General Relativity is therefore governed by
boundary conditions on the gravitational field at the spatial boundary. We then briefly describe a
formalism for computing the dependence of transition amplitudes on spatial boundary conditions.
Finally, we argue that for nonsmooth boundaries, meaningful transition amplitudes must depend
on boundary conditions at the joint surfaces.

I. INTRODUCTION

In this paper, we present a formal derivation of the Wheeler-DeWitt equation from the path integral for quantum
General Relativity, and extend our formalism to describe the dependence of path integral transition amplitudes on
spatial boundary conditions. The reader may be aware of existing derivations of the Wheeler-DeWitt equation in
the literature that use the path integral as a starting point [1–4] (there is also an old paper [5] that argues that the
path integral for quantum General Relativity satisfies the Wheeler-DeWitt equation). We also note that the matter
of spatial boundary conditions has been addressed before [6] in the form of a boundary Schrödinger equation. The
formalism we present in this paper, however, has a feature that is not present in the existing derivations; in particular,
it does not require a 3+1 splitting of spacetime in the bulk.1 The absence of this requirement is particularly useful
for studying spacetimes with spatial boundaries, and allows us to establish the dependence of transition amplitudes
on spatial boundary conditions. In particular, we find that time evolution for such transition amplitudes corresponds
to variations of the induced 3-metric at the timelike spatial boundary. While the general idea that spatial boundary
conditions establish time evolution in quantum gravity may be found in the existing literature,2 the results we present
formalize this idea and elucidate the relationship between time evolution and spatial boundaries. Furthermore, our
results demonstrate that the boundary Schrödinger equation in [6] is in fact kinematical; the dependence of the
transition amplitudes on spatial boundary conditions is determined by a boundary Hamiltonian constraint on the
path integral transition amplitudes–the “Wheeler-DeWitt” equation for timelike spatial boundaries.

The derivation we present in this paper is based on the Weiss variational principle [12, 13]. In the Weiss variation, the
boundaries of the action integral are not held fixed–we include displacements of the boundaries/endpoints. Though
the Weiss variation is rarely referred to as such in the literature, the Weiss variation itself is a well-known result
and should be recognizable to readers familiar with the derivation of Noether currents from the action. This paper
is organized as follows: we begin by briefly describing the Weiss variation in mechanics and its application to the
gravitational action; a more detailed discussion may be found in [14]. We also review the concept of superspace, which
will be used to motivate an operator-path integral correspondence. We then review the derivation of the Schrödinger
equation from the quantum mechanical path integral and discuss correspondence rules between path integrals and
operators. Afterwards, we present our derivation of the Wheeler-DeWitt equation for spacetimes without spatial
boundary. Finally, we extend our derivation to include transition amplitudes for spacetimes with spatial boundary,
and discuss the matter of time evolution for such transition amplitudes.

1 Our formalism is conceptually similar to that of the general boundary formulation of quantum field theory[7, 8] in that we construct
transition amplitudes for compact regions of spacetime with connected boundary.

2 See for instance the following papers on the general boundary formalism: [8, 9]. This idea is discussed in [10] and worked out for Loop
Quantum Gravity (our approach differs in that we work exclusively in the 3-metric representation, and that our starting point is the
path integral formalism, rather than the canonical formalism). Also, Smolin [11] points out that the problem of time is avoided in
asymptotically flat spacetimes.
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II. THE WEISS VARIATION

We summarize the Weiss variational principle in mechanics [12, 13, 15], and briefly discuss its application to the
gravitational action. A detailed discussion of the Weiss variation and its application to the gravitational action may
be found in [14] (also see references contained therein).

A. Mechanics

Consider a mechanical system with N degrees of freedom qi ∈ Q, with Q being a manifold called the configuration
space manifold. The system is described by the following action:

S[q] :=

∫ t2

t1

L(q, q̇, t) dt (2.1)

where the degree of freedom index i is suppressed in the argument of the Lagrangian, which is assumed to be
nondegenerate in q̇i. In the Weiss variation, we include temporal displacements of the endpoints of the following
form:

t′1 = t1 + λ τ1

t′2 = t2 + λ τ2
(2.2)

where λ is an infinitesimal parameter. We perform the following variations for qi(t):

q′
i
(t) = qi(t) + λ ηi(t) (2.3)

where ηi(t) are functions of t that define the variations. The first-order (in λ) variation of (2.1) takes the following
form:

δS := S[q′]− S[q] = ε

∫ t2

t1

(

∂L

∂qi
− d

dt

(

∂L

∂q̇i

))

ηi(t) dt+

(

∂L

∂q̇i
λ ηi(t) + L∆t

)
∣

∣

∣

∣

t2

t1

(2.4)

where ∆t|t1 := λ τ1 and ∆t|t2 := λ τ2. It is convenient to define the total change in the endpoint values for qi:

∆qi1 := q′
i
(t′1)− qi(t1) = λ(ηi(t1) + τ1 q̇

i(t1)) +O(λ2)

∆qi2 := q′
i
(t′2)− qi(t2) = λ(ηi(t2) + τ2 q̇

i(t2)) +O(λ2)
(2.5)

and also the following quantities:

pi :=
∂L

∂q̇i
(2.6)

H := pi q̇
i − L (2.7)

which the reader may recognize as the conjugate momentum and Hamiltonian. From the above definitions, it is not
difficult to rewrite (2.4) in the following form:

δS = λ

∫ t2

t1

(

∂L

∂qi
− d

dt

(

∂L

∂q̇i

))

ηi(t) dt+
(

pi ∆q
i −H ∆t

)

∣

∣

∣

∣

t2

t1

(2.8)

The above expression for δS is the Weiss variation of the action. The Weiss variational principle demands that
physical paths be described by functions qi(t) for which δS consists exclusively of endpoint/boundary terms, which
is equivalent to the statement that the integral over t in (2.8) vanishes; it follows that the Weiss variational principle
implies the Euler-Lagrange equations.
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B. Gravitational Action Without Spatial Boundary

We assume a 4-dimensional spacetime manifold M, and use the MTW [16] signature (−,+,+,+) for the metric
tensor gµν . Greek indices refer to coordinates on the spacetime manifold M and its subsets, which we denote as U or
W; U will be used to indicate a spacetime region without spatial boundary, and later on, W will be used to denote a
spacetime region with spatial boundary. Coordinates on M, U, and W will be denoted xµ with x0 = t being the time
coordinate. Lowercase Latin indices refer either to mechanical degrees of freedom or coordinates on hypersurfaces–the
distinction should be apparent from the context. Capital Latin indices from the beginning of the alphabet will refer
to two-dimensional surfaces in M.
For simplicity, we first consider a globally hyperbolic spacetime without spatial boundary; in particular, we require

that M be a Lorentzian manifold with the topology R×Σ where t ∈ R is a time coordinate, and Σ is a 3-dimensional
manifold without boundary. We then consider a subset U ⊂ M with boundary surfaces ΣI and ΣF , which need not
be surfaces of constant t. We require that the surfaces ΣI and ΣF be spacelike, with a positive-definite induced metric
γij . The gravitational action over U may then be written as:

SGR[g
µν ] =

1

2κ

∫

U

R
√

|g| d4x+
1

κ

∫

∂U

K ε
√

|γ| d3y (2.9)

where xµ denote coordinates on the spacetime manifold M, R is the Ricci curvature scalar of U, K is the mean
curvature of the boundary surface ∂U = ΣI ∪ΣF and we have defined γ := det(γij) (with γij) and ε := nµ nµ = ±1,
where nµ is the unit normal vector to ∂U (here ε = −1). The quantity κ = 8πG, where G is Newton’s gravitational
constant.
The Weiss variation includes boundary displacements. To characterize boundary displacements, we begin by placing

coordinates yi on the boundary ∂U. The boundary may be parametrically defined by functions xµ(y), which specify
the position of the boundary ∂U in M. The induced metric γij on the boundary may then be written as:

γij =
∂xµ

∂yi
∂xν

∂yj
gµν (2.10)

and it is well-known that the induced metric takes the form γµν = gµν − ε nµ nν in the bulk coordinate basis.
Displacements of the boundary in the manifold M may be characterized by adding to xµ(y) a function δxµ(y), so
that the displaced boundary may be parametrically defined by the functions:

x′µ(y) = xµ(y) + δxµ(y) (2.11)

The presence of the boundary term (called the Gibbons-Hawking-York boundary term) in the gravitational action
SGR[g

µν ] complicates the derivation of the Weiss variation of SGR[g
µν ]. One may obtain the variation of the boundary

term by recognizing that the boundary term is the first variation of area formula; the variation of the boundary term
is then given by the second variation of area formula. We shall not reproduce the derivation here; we refer the reader
to [14] for the full details of the derivation (a partial justification for (2.12) is given in the appendix). The Weiss
variation of the gravitational action takes the form:

δSGR =
1

2κ

∫

U

Gµν δg
µν
√

|g| d4x+
ε

2κ

∫

∂U

(

pij ∆γ
ij +

[

nµ

(

3R− ε(K2 −Kij K
ij)
)

− 2Dαp
αβ γµβ

]

δxµ
)

√

|γ| d3y
(2.12)

where Gµν := Rµν − 1
2 Rgµν is the Einstein tensor, 3R and Kij are the respective Ricci scalar and extrinsic curvature

tensor for the boundary ∂U, and Dµ denotes the covariant derivative on a hypersurface–in this case, Dµ is the
covariant derivative on ∂U. We define the following quantity in the basis of the bulk coordinates xµ and the basis of
the boundary coordinates yi:

pµν := Kµν −K γµν

pij :=
∂xµ

∂yi
∂xν

∂yj
(Kµν −K γµν)

(2.13)

where Kµν is the extrinsic curvature tensor in the bulk coordinate basis (for Kµν and K = gµν Kµν , we use the
sign convention found in [17, 18]). These two expressions for the tensor pµν are equivalent because the tensor pµν is
tangent to the boundary surfaces, or that pµνn

µ = pνµn
µ = 0. For later use, we define the quantity:

Pµν :=
ε

2κ
pµν

√

|γ|

Pij :=
ε

2κ
pij
√

|γ|
(2.14)
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The quantity ∆γij is the total change in the induced metric at the boundary surface, in the same way that ∆qi is the
total change in the variable qi at the endpoints (cf. (2.5)).
We stress that despite the appearance of a hypersurface Ricci scalar 3R and the extrinsic curvature tensor Kij , the

Weiss variation of the gravitational action (2.12) makes no reference to a 3+1 split in the bulk manifold U; in another
paper [14], we show that equation (2.12) may indeed be derived without performing a 3+1 split in the bulk manifold
U. As stated before, the hypersurfaces ΣI and ΣF that form the boundary ∂U need not be surfaces of constant t. As
a result, the Ricci scalar 3R and the extrinsic curvature tensor Kij are properties of the boundary surfaces ΣI and
ΣF , and do not necessarily correspond to the surfaces of constant time coordinate t in the bulk manifold U.
We note that if the vacuum Einstein Field equations Gµν = 0 are satisfied, then the vacuum Hamiltonian and

momentum constraints take the form:

2Gµν n
µ nν = −ε(3R− ε(K2 −Kij K

ij)) = 0 (2.15)

γµβ Gµν n
ν = Dαp

αβ = 0 ⇒ γikDkpij = 0 (2.16)

The above constraints in turn suggest that the term proportional to δxµ in the variation δSGR (2.12) vanishes. This
result suggests that the Hamiltonian and the canonical energy-momentum “tensor” for General Relativity vanish on
vacuum solutions of the Einstein field equations [14].
Without loss of generality, we may choose the boundary displacement δxµ(y) to be proportional to the unit normal

vector nµ:

δxµ(y) = nµ ∆τ(y) (2.17)

This is because the portion of δxµ(y) tangent to the hypersurface corresponds to infinitesimal diffeomorphisms on
the boundary surface ∂U. We interpret the quantity ∆τ(y) as the amount (measured in proper time) by which the
boundary ∂U is displaced in the normal direction. The variation (2.12) simplifies to:

δSGR =
1

2κ

∫

U

(

Rµν − 1

2
R gµν

)

δgµν
√

|g| d4x+

∫

∂U

(

Pij ∆γ
ij − Hgf ∆τ

)

d3y (2.18)

where we make use of the expression γµβ n
µ = 0, and we define the “gauge fixed” Hamiltonian density:

Hgf (Pij , γ
ij) := − 1

2κ

[

3R− ε (K2 −Kij K
ij)

]

√

|γ| (2.19)

where Kij and K depend on Pij via the following expressions:

Kij =
2 κ ε√
γ

(

Pij −
1

2
γij γ

kl Pkl

)

K = − κ ε√
γ
Pij γ

ij (2.20)

which can be easily obtained from (2.14). Finally, we integrate (2.19) to obtain the gravitational Hamiltonian:

HGR[Pij , γ
ij ] =

∫

U

Hgf (Pij , γ
ij) d3y = − 1

2κ

∫

U

[

3R− ε (K2 −Kij K
ij)

]

√

|γ| d3y (2.21)

C. Superspace: Rewriting the Gravitational Hamiltonian

We now take the opportunity to briefly motivate and review the concept of superspace,3 the space of Riemannian
3-geometries [19–22] (also see [23] and references therein). The concept of superspace will be useful for us because it
provides a formalism for General Relativity that resembles particle mechanics. We begin by using (2.20) to rewrite
(2.19) as:

Hgf (Pij , γ
ij) = − ε

2κ
Pij G

ijkl Pkl −
1

2κ
3R
√

|γ| (2.22)

3 Not to be confused with the coordinate space of a supermanifold (usually discussed in the context of supersymmetry), which is also
called “superspace.” Recall that supermanifolds possess both commuting (bosonic) and anticommuting (fermionic/Grassmann-valued)
coordinates. To avoid confusion, we propose referring to the coordinate space of a supermanifold as Grassmann superspace, and S (Σ)
as Riemannian superspace when a distinction is needed (we shall not do this outside this footnote).



5

where we define the following:

Gijkl :=
2 κ2
√

|γ|
(

γik γjl + γil γjk − γij γkl
)

Gijkl :=

√

|γ|
8 κ2

(γik γjl + γil γjk − 2 γij γkl) ,

(2.23)

The tensor Gijkl is constructed to satisfy the following property:

GijabG
abkl =

1

2

(

δki δ
l
j + δli δ

k
j

)

(2.24)

We may then construct a “supermetric” from the expression Gijkl :
4

Gij:kl(y, y
′) :=

1

2

(

Gijkl(y) δ
3(y′ − y) +Gijkl(y

′) δ3(y − y′)
)

(2.25)

The supermetric Gij:kl(y, y
′) may be regarded as a metric on the space of Riemannian inverse 3-metric fields γij(y)

and γij ′(y), which we call iRiem(Σ). In particular, Gij:kl(y, y
′) defines an inner product for tangent vectors γ̇ij(y)

of iRiem(Σ). Now consider two inverse 3-metrics γij(y) and γ̃ij(y) that are related by coordinate transformations;
we observe γij(y) and γ̃ij(y) correspond to distinct points in iRiem(Σ). A more physically relevant concept is that
of superspace, which is the space of coordinate-independent Riemannian 3-geometries (as opposed to coordinate-
dependent inverse 3-metrics). Given a manifold Σ, one may define superspace S (Σ) by the formal construction:

S (Σ) =
iRiem(Σ)

Diff(Σ)
, (2.26)

in which we mod out iRiem(Σ) by the space of diffeomorphisms (denoted Diff(Σ)) on Σ.
While superspace S (Σ) is a more physically relevant concept than iRiem(Σ), the difficulty with using S (Σ)

rather than iRiem(Σ) lies in the fact that S (Σ) is not a manifold. In particular, it has been pointed out that the
dimensionality of S (Σ) can change at points corresponding to geometries that possess a high degree of symmetry
[21, 22]. It was (nonrigorously) argued in [22] that one may nevertheless extend S (Σ) to obtain a manifold which
is referred to as extended superspace Sex(Σ). It is beyond the scope of this article to review this matter any further
(we refer the reader to [21], [22], [24] and [23] for further discussion); for our purposes, it suffices to assume that there
exists a manifold Sex(Σ) which contains S (Σ) as a subset and admits a surjection (a map that is onto) from Sex(Σ)
to S (Σ).
Since Σ is assumed to be compact, we may require that Sex(Σ) has countable (though infinite) dimension. This

requirement is motivated by the observation that functions defined on certain compact manifolds, the n-torus Tn and
the n-sphere Sn for instance, admit a complete countable basis for functions defined on them (the respective discrete
Fourier basis and n-spherical harmonic basis), so that the function spaces on Tn and Sn have countable dimension.
If the manifold Σ has boundary, we impose the appropriate boundary conditions to ensure that the function spaces
have countable dimension. If Sex(Σ) has countable dimension, then given coordinates ξa on Sex(Σ), and a map
γij(y, ξ) : Sex(Σ) → iRiem(Σ), we may formally write the supermetric G ij:kl(y, y′) in the coordinate basis on Sex(Σ)
in the following manner:

Gab :=

∫

Σ

(
∫

Σ

∂γij(y, ξ)

∂ξa
∂γkl(y′, ξ)

∂ξb
Gij:kl(y, y

′) d3y

)

d3y′ (2.27)

Note that since Sex(Σ) is infinite dimensional (again, we assume that the dimension is countably infinite), there is
no upper bound on the values of the indices a, b ∈ N (N being the set of natural numbers).
Given the superspace metric Gab, we may regard Sex(Σ) to be an infinite-dimensional pseudo-Riemannian mani-

fold,5 and since Sex(Σ) is of countable dimension, the standard formulas of Riemannian geometry apply to quantities
defined on Sex(Σ). We may, for instance, define an inverse superspace metric G ab that satisfies the following condition:

∞
∑

t=1

G
at

Gtb = δab (2.28)

4 The supermetric defined above differs from the DeWitt supermetric [19, 22] by a factor of |γ|/4; this is due to our convention that we
use the inverse 3-metric γij , rather than the metric γij , as coordinates on superspace (we interpret γij = γij(y, γkl(y)).).

5 That Sex(Σ) is a pseudo-Riemannian manifold can be seen by noting that for the special case γij = δij , the independent components
of Gijkl have five positive roots and one negative root [19].
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and the connection coefficients:

Γc

ab
:=

1

2

∞
∑

t=1

G
ct

(

∂Gtb

∂ξa
+
∂Gat

∂ξb
− ∂Gab

∂ξt

)

(2.29)

From which we may construct covariant derivatives on Sex(Σ).
These definitions, combined with (2.22), permit a rewriting of the gravitational Hamiltonian HGR in the following

form:

HGR(Pa, ξ
a) = − ε

2κ

(

∞
∑

a=1

∞
∑

b=1

G
ab Pa Pb

)

+Φ(ξ) (2.30)

where:

Φ(ξ) := − 1

2κ

∫

Σ

3R
√

|γ| d3y (2.31)

with γij = γij(y, ξ) and
3R = 3R(y, ξ). The integral over yi in the second term ensures that Φ(ξ) is strictly a function

of the superspace coordinate ξa.
We note that the Hamiltonian HGR (2.30) resembles the Hamiltonian of particle mechanics on a Riemannian

manifold. A typical Hamiltonian for such a system takes the following form:

H(p, q) =
1

2m
gij pi pj + V (q) (2.32)

where gij is a Riemannian metric on the configuration space Q, and V (q) is the potential. A comparison of the
Hamiltonian HGR (2.30) with the particle Hamiltonian (2.32) suggests that the first term containing the conjugate
momenta is a kinetic term:

1

2m
gij pi pj ↔ 1

2κ

(

∞
∑

a=1

∞
∑

b=1

G
ab Pa Pb

)

(2.33)

and that the function Φ(ξ) is a potential. Of course, the idea that General Relativity can be recast as a problem of
particle motion in an infinite-dimensional manifold is not new [22, 25].6 However, the formalism developed in this
section will be useful for motivating a correspondence between path integral and operator expressions in quantum
General Relativity, which we will present in later sections.

D. Gravitational Action With Spatial Boundary

We now consider the case where we consider spacetime regions W with spatial boundary; in particular, we require
W to have a boundary ∂W as described in figure 1. The boundary ∂W consists of three regions, ΣI , B and ΣF ,
and is nonsmooth on the two-dimensional surfaces SI and SF . We require the surfaces ΣI and ΣF to be spacelike,
meaning that they admit a positive definite induced metric γij with signature (+,+,+). On the other hand, we
require that the surface B be timelike, meaning that the induced metric qab on B has a signature (−,+,+).
This time, the gravitational action takes the form:

SGR,B[g
µν ] =

1

2κ

∫

W

R
√

|g| d4x− 1

κ

∫

ΣF

K
√

|h| d3y + 1

κ

∫

B

K
√

|q| d3y − 1

κ

∫

ΣI

K
√

|h| d3y + SC (2.34)

where underlined quantities are defined on the boundary surfaceB. For nonsmooth boundaries with spacelike junction
surfaces SI and SF , we must include the term SC , which is often referred to as the corner term [26–29] (also see
[30–34]):

SC :=
1

κ

∫

SI

ηI
√

|σ| d2z + 1

κ

∫

SF

ηF
√

|σ| d2z (2.35)

6 In fact, [22] goes further; the Hamiltonian constraint was used to show that solutions of Einstein’s field equations can (with appropriate
gauge conditions) be interpreted as geodesics in superspace.
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FIG. 1. An illustration of a cylindrical boundary for a spacetime region W, with boundary ∂W = ΣI ∪B ∪ ΣF . The vertical
direction is timelike, so that ΣI and ΣF are spacelike surfaces of codimension one, and B is a timelike surface of codimension
one. The surfaces SI and SF are surfaces of codimension two (assumed to have exclusively spacelike tangent vectors) that form
boundaries between ΣI , B and ΣF . The unit normal vectors (shown in red) are defined to be outward pointing; nI = [nµ

I ] is
the unit normal to ΣI , nB = [nµ

B
] is the unit normal to B, and nF = [nµ

F ] is the unit normal to ΣF . See section IID.

where the rapidity angles ηI and ηF are formed from the inner product between the unit normal vectors at the junction
surfaces SI and SF :

ηI := arcsinh (〈nI , nB〉|SI
)

ηF := arcsinh (〈nF , nB〉|SF
)

(2.36)

We may ignore this term if the inverse metric tensor gµν is held fixed at the junction surfaces SI and SF , and the
boundary displacements δxµ(y) vanish in a neighborhood of the junction surfaces SI and SF . In other words, we
require that 〈nI , nB〉|SI

and 〈nF , nB〉|SF
are held fixed and that δxµ|SI

= 0, δxµ|SF
= 0, δgµν |SI

= 0 and δgµν |SF
= 0.

Without loss of generality, we may choose the boundary displacement δxµ to take the following form:

δxµ|ΣI
= nµ ∆τi(y) for y ∈ ΣI

δxµ|B = nµ ∆r(y) for y ∈ B

δxµ|ΣF
= nµ ∆τf (y) for y ∈ ΣF

(2.37)

The Weiss variation of the action is (we stress that I and F are labels–they are not indices to be summed over):

δSGR,B =
1

2κ

∫

W

Gµν δg
µν
√

|g| d4x+

∫

ΣI

(

P I
ij ∆h

ij
I − HI ∆τI

)

d3y +

∫

B

(

P ab ∆q
ab − HB ∆s

)

d3y

+

∫

ΣF

(

PF
ij ∆hijF − HF ∆τF

)

d3y

(2.38)

where we define the momentum densities:

P I
ij := − 1

2κ
(Kij −K hIij)

√

|hI |

P ab :=
1

2κ
(Kab −K qab)

√

|q|

PF
ij := − 1

2κ
(Kij −K hFij)

√

|hF |

(2.39)
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and the Hamiltonian densities:

HI :=
1

2κ
P I
ij G

ijkl P I
kl −

1

2κ
3R
√

|hI |

HB := − 1

2κ
P abG

abcd P cd −
1

2κ
3R
√

|q|

HF :=
1

2κ
P I
ij G

ijkl P I
kl −

1

2κ
3R
√

|hF |

(2.40)

where HI is defined over ΣI and HF is defined over ΣF , and the quantities Gijkl and Gabcd are given by:

Gijkl :=
2 κ2√
h

(

hik hjl + hil hjk − hij hkl
)

Gabcd :=
2 κ2√
q

(

qac qbd + qad qbc − qab qcd
)

(2.41)

Note that for vacuum solutions of the Einstein field equations, the right hand side of all three equations in (2.40)
vanish. We also note that the inverse 3-metric qab defines an extended superspace that is different than Sex(Σ) defined
earlier, since qab defines a pseudo-Riemannian 3-geometry, rather than a Riemannian 3-geometry. We shall denote
the extended superspace for pseudo-Riemannian 3-geometries on a 3-manifold Σ by S ex(Σ). Underlined quantities
will either refer to quantities defined on S ex(Σ) or quantities defined on a pseudo-Riemannian 3-manifold.

III. FROM THE PATH INTEGRAL TO THE SCHRÖDINGER EQUATION

A. Variation of the Transition Amplitude

We now show that wave functions constructed from Feynman path integrals formally satisfy the Schrödinger equa-
tion [35].7 We begin by considering the position-basis transition amplitude:

〈qi2, t2|qi1, t1〉 = K(qi2, t2; q
i
1, t1) (3.1)

where |qi, t〉 is the position-basis state vector and the function K(qi2, t2; q
i
1, t1) is given by the following path integral

expression (we shall henceforth refer to the function K(qi2, t2; q
i
1, t1) as the transition amplitude):

K(qi2, t2; q
i
1, t1) =

∫

Dq e(i/~) S[q] (3.2)

where the action functional S[q] (2.1) is implicitly a function of the endpoint values qi1, t1, q
i
2 and t2, and

∫

Dq
represents a measure8 on the space of functions qi(t) subject to the Dirichlet boundary conditions qi(t1) = qi1 and
qi(t2) = qi2; in particular, we hold the function qi(t) fixed to the values qi1 and qi2 at the respective times t1 and t2.
We do not provide a rigorous definition9 for the measure; to proceed, we only need the property that the measure is
invariant under shifts in the function qi(t) of the form qi ′(t) = qi(t) + δqi(t). Under this shift, we require that the
measure satisfies:

∫

Dq′ F [q′] =

∫

Dq F [q + δq] (3.3)

for some functional F [q]. The property (3.3) is motivated by the analogous property for the usual single-variable
integral for shifts x′ = x+ δx in the integration variable x:

∫

∞

−∞

f(x′) dx′ =

∫

∞

−∞

f(x+ δx) dx (3.4)

7 Our derivation at first follows closely the one found in the lecture notes [36], but we extend it to include a discussion of the operator-path
integral correspondence.

8 We absorb normalization factors into the definition of the measure.
9 For a rigorous treatment of path integrals, we refer the reader to the formalism of Cartier and DeWitt-Morette: [37, 38].
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We now consider what happens when we vary the function qi(t) while holding the endpoint values qi1, t1, q
i
2 and t2

fixed. We may use (3.3) to write the following:
∫

Dq′ e(i/~) S[q′] =

∫

Dq e(i/~) S[q+δq] (3.5)

We may perform a relabeling of the integration variable qi ′ → qi to write:
∫

Dq′ e(i/~) S[q′] =

∫

Dq e(i/~) S[q] (3.6)

Equations (3.5) and (3.6) may be used to obtain the following:
∫

Dq e(i/~) S[q+δq] =

∫

Dqi e(i/~) S[q] ⇒ i

~

∫

Dq δ0S e
(i/~) S[q] = 0 (3.7)

where the subscript 0 in the variation of the action δ0S indicates that the endpoint values qi1, t1, q
i
2 and t2 are held

fixed. Note that since δqi(t) is independent of qi(t), we may pull it out of the path integral. The demand that equation
(3.7) must hold for all δqi(t) implies:

∫

Dq

(

∂L

∂qi
− d

dt

(

∂L

∂q̇i

))

e(i/~) S[q] = 0 (3.8)

We now consider what happens when the endpoints are displaced; in particular, we change the values of qi1, t1,
qi2 and t2. Equation (3.6) is no longer valid, since the displacement of the endpoints prevent us from performing a
change in the integration variable. The change in the transition amplitude is given by the following difference in path
integrals:

δK =

∫

Dq e(i/~) S
′[q+δq] −

∫

Dq e(i/~) S[q] (3.9)

Since the measure itself is invariant under displacements of the endpoints (the displacements in t1 and t2 may be
absorbed into a redefinition of t), the change in the amplitude is given by the change in the integrand. In particular,
the change in the amplitude is given by the change in the action:

δK =
i

~

∫

Dq δS e(i/~) S[q] (3.10)

Recalling the Weiss variational principle, we begin by performing the following infinitesimal transformation on the
paths (recall (2.3) and (2.2)):

qi ′(t) = qi(t) + δqi(t)

t′1 = t1 +∆t1

t′2 = t2 +∆t2

(3.11)

Where δqi(t) = ε ηi(t), and we assume ∆t1 ∝ ε and ∆t2 ∝ ε. If the action contains no more than first-order time
derivatives in qi (and a Legendre transformation can be performed), then to first order in ε, the change in the action
is given by the Weiss variation of the action (2.8):

δS =

∫ t2

t1

(

∂L

∂qi
− d

dt

(

∂L

∂q̇i

))

δqi dt+
(

pi ∆q
i −H ∆t

)

∣

∣

∣

∣

t2

t1

(3.12)

where pi = ∂L/∂q̇i H is the Hamiltonian, and:

∆qi1 := qi ′(t′1)− qi(t1) = ε(ηi(t1) + q̇i(t1)) +O(ε2)

∆qi2 := qi ′(t′2)− qi(t2) = ε(ηi(t2) + q̇i(t2)) +O(ε2)
(3.13)

Using (3.8), the change in the amplitude is given by:

δK =
i

~

∫

Dqi
(

pi ∆q
i −H ∆t

)

∣

∣

∣

∣

t2

t1

e(i/~) S[q] (3.14)
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Now consider what happens when we hold qi1 and t1 fixed, so that ∆qA1 = 0 and ∆t1 = 0. We may write the above
(3.14) as the following:

δK|(qi
1
,t1)→fixed =

i

~

(
∫

Dq pi,2 e
(i/~) S[q]

)

∆qi2

− i

~

(
∫

Dq H |t2 e(i/~) S[q]

)

∆t2

(3.15)

where we introduce the notation: pi,1 = pi|t1 and pi,2 = pi,2. Given an initial state function ψ(qi1) (equivalent to the
state vector |qi, t1〉), where ψ(·) is some normalizable complex function, we may define the wavefunction Ψ(qi2, t2) in
terms of the transition amplitude in the following way:

Ψ(qi2, t2) :=

∫

K(qi2, t2; q
i
1, t1)ψ(q

i
1) dq

i
1 (3.16)

To simplify the analysis, we consider the case where the initial state ψ(qi1) is sharply peaked around some value for
qi; we may recover the general results by integrating the results over all values of qi (in particular, for some path
integral expression PI = PI(qi2, t2; q

i
1, t1) we perform the integral

∫

PI ψ(qi1) dq
i
1).

One may infer from equation (3.15) the following expression for differential of Ψ(qi2, t2):

dΨ =
i

~

(
∫

Dq pi,2 e
(i/~) S[q]

)

dqi2 −
i

~

(
∫

Dq H |t2 e(i/~) S[q]

)

dt2 (3.17)

which in turn yields the following expressions for the derivatives of the wavefunction:

i

~

∫

Dq H |t2 e(i/~) S[q] = −∂Ψ
∂t2

(3.18)

i

~

∫

Dq pi,2 e
(i/~) S[q] =

∂Ψ

∂qA2
(3.19)

Equation (3.19) motivates the following definition for the momentum operator for wavefunctions Ψ(q2, t2) written in
the position basis:

p̂i,2 := −i ~ ∂

∂qi2
(3.20)

We may motivate the Schrödinger equation from (3.18), but to obtain an unambiguous expression for the Schrödinger
equation, we must first establish an operator-path integral correspondence. In particular, we must construct an
operator corresponding to the path integral:

∫

Dq (pi1 ...pin q
j1 ...qjm)|t2 e(i/~) S[q] (3.21)

This is often referred to as the problem of operator ordering. In the next section, we shall explore this further. If the
Hamiltonian H |t2 can be expressed as a polynomial function of pi,2 and qi2, the path integral (3.18) consists of terms
of the form (3.21). If one can establish a correspondence rule for operators and path integrals of the form (3.21), one

may construct a Hamiltonian operator Ĥ |t2 = Ĥ(p̂i, q̂
i)|t2 ; equation (3.18) may be rewritten as:

i ~
∂Ψ

∂t2
= Ĥ(p̂i, q̂

i)|t2 Ψ (3.22)

which is, of course, the time-dependent Schrödinger equation.

B. A Path Integral-Operator Correspondence Rule

We now motivate a correspondence rule for path integral expressions and their operator counterparts. We begin
by establishing an operator expression for factors of qi that appear in the path integral. Since qi2 is evaluated at the
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endpoint, we may trivially write:
∫

Dq qi2 e
(i/~) S[q] = qi2

∫

Dq e(i/~) S[q] = qi2 Ψ

∫

Dq qi12 ...q
in
2 e(i/~) S[q] =

(

qi12 ...q
in
2

)

∫

Dq e(i/~) S[q] =
(

qi12 ...q
in
2

)

Ψ

(3.23)

Which motivates the following definition for the operator q̂i2:

q̂i2 Ψ = qi2 Ψ

q̂i12 ...q̂
in
2 Ψ =

(

qi12 ...q
in
2

)

Ψ
(3.24)

The definition (3.24) for the operator q̂i2 may be used to establish an operator expression for the following path
integral:

∫

Dq (pi q
j)|t2 e(i/~) S[q] (3.25)

Naively, the above expression may be identified with the operation (p̂i q̂
j)|t2 Ψ or (q̂j p̂i)|t2 Ψ. The reader familiar

with quantum mechanics will be fully aware of the fact that these two operations are inequivalent, since the operators
p̂i|t2 and q̂i2 do not commute. Indeed, we obtain the explicit expressions (δji being the Kronecker delta):

(p̂i q̂
j)|t2 Ψ = −i ~ ∂

∂qi2
(qj2 Ψ) = −i ~

(

δji Ψ+ qj2
∂Ψ

∂qi2

)

(q̂j p̂i)|t2 Ψ = −i ~ qi2
∂Ψ

∂qi2

(3.26)

which yield the commutation relation when combined:

([p̂i, q̂
j ])|t2 = (p̂i q̂

j − q̂j p̂i)|t2 = −i ~ δji (3.27)

We now establish the operator expression corresponding to (3.25). To do this, we expand the second line of (3.26)
in the following manner:

(q̂j p̂i)|t2 Ψ = −i ~ qj2
∂Ψ

∂qi2
= qj2

∫

Dq pi,2 e
(i/~) S[q] =

∫

Dq qj2 pi,2 e
(i/~) S[q]

=

∫

Dq (qj pi)|t2 e(i/~) S[q] =

∫

Dq (pi q
j)|t2 e(i/~) S[q]

(3.28)

where the last equality follows from the expression10 qj pi = pi q
j . The computation (3.28) demonstrates that the path

integral expression in (3.25) corresponds to the operator ordering (q̂B p̂i)|t2 Ψ, in which the momentum operator p̂i,2
appears to the right11 of the position operator. The correspondence suggested by (3.28) applies only to wavefunctions
Ψ(q2, t2) in the position basis; the correspondence rule for path integrals of the form (3.25) is basis-dependent.
One may expect that, given the definition (3.20) for the momentum operator p̂i, one has the following correspondence

rule:

(i/~)
n
∫

Dq (pi1 ...pin)|t2 e(i/~) S[q] ≈ (i/~)
n
(p̂i1 ...p̂in)|t2 Ψ =

∂nΨ

∂qi12 ...∂q
in
2

(3.29)

The difficulty with this correspondence rule (3.29) is that it is not compatible with coordinate transformations on
the configuration space Q. In particular, we expect Ψ and the Schrödinger equation to transform as scalars under
coordinate transformations on Q, but this is not in general true for a Schrödinger equation constructed using the
correspondence rule (3.29). To see this, consider the following expression:

(i/~)
n
∫

Dq (T i1...in pi1 ...pin)|t2 e(i/~) S[q] ≈
(

T i1...in |t2
) ∂nΨ

∂qi12 ...∂q
in
2

(3.30)

10 We assume that qi and pi are c-number valued; the present analysis excludes Grassmann-valued degrees of freedom.
11 By this, we mean that the momentum operator p̂i,2 is applied to Ψ first.
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where T i1...in = T i1...in(q) is a tensor on the configuration space manifold Q. Since the conjugate momenta pi
transform as cotangent vectors, the integrand on the left hand side of (3.30) transforms as a scalar (the action S[q]
is assumed to be invariant under coordinate transformations). For n > 1, the right hand side of (3.29) does not
transform as a scalar under coordinate transformations on Q.
The problems with establishing a correspondence rule may be attributed to ambiguities in the definition of the

measure. Suppose that, for a given definition of the measure
∫

Dq, one obtains the correspondence rule (3.29). Since
the integrand of (3.29) transforms as a scalar, any non-scalar transformation law must come from the transformation
of the measure

∫

Dq. Thus, any non-tensorial transformation law for the left hand side of (3.29) must come from the
measure. Though we do not propose a definition for the measure, we require that the measure satisfy the property that
the left hand side of (3.30) transforms as a scalar. This suggests that the measure yields the following correspondence
rule:

∫

Dq (pi1 ...pin)|t2 e(i/~) S[q] = (−i ~)n(∇i1 ...∇in)|t2 Ψ
∫

Dq (pi1 ...pin q
j1 ...qjm)|t2 e(i/~) S[q] = (q̂j1 ...q̂jm ∇i1 ...∇in)|t2 Ψ

(3.31)

where ∇i|t2 is a connection (covariant derivative) on the configuration space manifold Q, constructed from the partial
derivatives ∂/∂qi2 (with qi2 ∈ Q) and connection coefficients Γi

jk; for a second rank tensor T i
j , it takes the form:

∇iT
j
k |t2 =

∂T i
j

∂qi2
+ Γj

il T
l
k − Γl

ik T
j
l

(3.32)

The connection coefficients Γi
jk are assumed to be functions of qi2, and are defined to satisfy the following transfor-

mation rule:

Γ′i
jk =

(

∂q′i

∂qa
∂qb

∂q′j
∂qc

∂q′k

)

Γa
bc −

∂qb

∂q′j
∂qa

∂q′k

(

∂2q′i

∂qb ∂qa

)

(3.33)

For a particle on a Riemannian manifold, it is natural to choose Γi
jk to be the Christoffel symbols.

We stress that the correspondence rule (3.31) for factors of the momenta is a property that we require of the measure,
rather than a derived result. An important question that should be addressed is whether one can explicitly construct
a time-sliced path integral that yields the correspondence rule (3.31). For our purposes, the full correspondence rule
(3.31) is not necessary, as we only need a correspondence rule for the following expression:

∫

Dq (gij pi pj)|t2 e
i
~
S[q] = −~2gij∇i∇jΨ = −~2

1√
g

∂

∂qi2

(

√
g gij

∂Ψ

∂qj2

)

(3.34)

This is, of course, the well-known Laplace-Beltrami ordering rule [19, 39, 40]. From the coordinate-invariant time-
sliced definitions of the path integral presented in [41] (also see [39]), one may infer that the following time-sliced
measure yields the Laplace-Beltrami correspondence:

∫

Dq (·) := lim
n→∞

n−1
∏

k=2

∫

Q

dNqτk
√

|M | exp
(

i ~

6

∫

Rdt

)

(·) (3.35)

where we use the replacement q̇iτk → (qiτk −qiτk−1
)/∆t in the argument of the right hand side. Though we note that the

Laplace-Beltrami ordering (3.34) follows from our correspondence rule (3.31), it is not yet clear to us that the time-
sliced measure (3.35) yields the correspondence rule (3.31). We will not investigate the compatibility of the measure
(3.35) and the correspondence rule (3.31) and leave it for future work–this question is beyond the scope of this article,
as the Laplace-Beltrami ordering is sufficient for our purposes. In the next section, we use a Laplace-Beltrami type
ordering for the Wheeler-DeWitt equation by demanding that transition amplitudes be invariant under coordinate
transformations on superspace.

IV. THE WHEELER-DEWITT EQUATION

Again, we consider a spacetime M that has no spatial boundary, so that it has the topology R×Σ3 where Σ3 is a
three-dimensional manifold without boundary. We begin with the gravitational action SGR, (2.9), which we rewrite
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here:

SGR[g
µν ] := SEH [gµν ] + SGHY =

1

2κ

∫

U

R
√

|g| d4x+
1

κ

∫

∂U

K ε
√

|γ| d3y (4.1)

Where U has no spatial boundary (or, that ∂U = ΣI ∪ ΣF , where ΣI and ΣF are spacelike hypersurfaces without
boundary). The most straightforward approach to the quantization of the gravitational field is to simply write down
the following path integral12 (first written down in [44]):

KJγijF ; γijI K =

∫

D [gαβ ] e
i
~
SGR[gαβ ] (4.2)

where the brackets J K indicate a functional of functions defined over the boundary surface ∂U, and
∫

D [gαβ ] denotes

a functional integral over all functions gαβ(x) up to those that differ by a diffeomorphism. We require the integration
measure

∫

D [gαβ ] be invariant under the shift (field redefinition) gµν → gµν + δgµν ,13, and we also require that the

measure be defined so that the resulting amplitude KJγijF ; γijI K is independent of coordinate transformations on ΣI

and ΣF . The path integral (4.2) formally defines an unnormalized transition amplitude between a spacetime with an

initial inverse 3-metric γijI := γij |ΣI
for the initial hypersurface ΣI and a final inverse 3-metric γijF := γij |ΣF

for the
hypersurface ΣF .
In this section we attempt to derive a Schrödinger equation from the transition amplitude (4.2), but we instead

find that the transition amplitude must lie in the kernel of the formal Hamiltonian operator; the transition amplitude
is independent of the time parameters tI and tF . This is known as the problem of time, and though it is primarily
discussed in the context of the canonical formulation of quantum General Relativity, we shall show in the next section
that it is also present in the path integral formulation.

A. Variation of the Path Integral

We now perform the variation of the path integral (4.2), assuming that the measure
∫

D [gαβ] is invariant under
the shift gµν → gµν + δgµν . The variation of the path integral may then be written in terms of the variation of the
action:

δK =
i

~

∫

D [gαβ ] δSGR e
i
~
SGR[gαβ ] (4.3)

Earlier, we presented the Weiss variation of the gravitational action (2.12):

δSGR =
1

2κ

∫

U

(

Rµν − 1

2
R gµν

)

δgµν
√

|g| d4x+
ε

2κ

∫

∂U

(

pµν ∆γµν

+
[

2Dαp
αβ γµβ + nµ

(

3R− ε(K2 −Kij K
ij)
)]

δxµ
)

√

|γ| d3y
(4.4)

where the boundary of U is given by the expression ∂U = ΣI ∪ΣF , and (cf. (2.13)):

pµν := (Kµν −K γµν) (4.5)

Note that the indices of pµν are tangent to the boundary ∂U. From the invariance of the path integral (4.3) under a
change in integration variable (recall equation (3.5)) and the invariance of the measure

∫

D [gαβ] under shifts of the
form gµν → gµν + δgµν , one may show the following:

∫

D [gαβ]

∫

U

(

Rµν − 1

2
R gµν

)

δgµν
√

|g| d4x e i
~
SGR[gαβ ] = 0

⇒
∫

U

(
∫

D [gαβ]

(

Rµν − 1

2
R gµν

)

√

|g| e i
~
SGR[gαβ ]

)

δgµν d4x = 0

⇒
∫

D [gαβ ]

(

Rµν − 1

2
R gµν

)

√

|g| e i
~
SGR[gαβ ] = 0

(4.6)

12 It is well-known that quantum General Relativity (as given by functional integrals of the form (4.2)) is perturbatively nonrenormalizable
(see [42] and [43] for an overview). The analysis we present is formally nonperturbative, so the question of perturbative renormalizability
will not enter into our analysis (one might imagine that in writing down the path integral (4.2), we are studying the low energy limit
of some effective field theory for gravity).

13 For the present analysis, we ignore the details of gauge-fixing for the measure
∫

D[gαβ ] or any other procedure for modding out
diffeomorphisms; we only assume that the shift δgµν is compatible with the procedure for gauge-fixing or modding out diffeomorphisms.
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The second line comes from the fact that the shift function δgµν can be chosen independently of the integration
variable gµν , and the last line can be inferred from the second line by requiring that the second line hold for all
choices of δgµν . The last line is the statement that in the absence of matter, the vacuum Einstein field equations are
satisfied within the path integral. The variation of the path integral thus becomes:

δK =
i

~

∫

D [gαβ ]

[
∫

∂U

(

Pµν ∆γµν − H
ν
µ nν δx

µ

)

d3y

]

e
i
~
SGR[gαβ ] (4.7)

where we have defined the following:

Pµν :=
ε

2κ
pµν

√

|γ| = ε

2κ
(Kµν −K γµν)

√

|γ| (4.8)

H
ν
µ := − ε

2κ

[

2 εDαp
αβ γµβ n

ν + δνµ
(

3R− ε(K2 −Kij K
ij)
)

]

√

|γ| (4.9)

We choose δxµ to take the form:

δxµ = nµ ∆t (4.10)

where ∆t is a constant. We then make use of the expressions pµν ∆γµν = pij ∆γ
ij and γµβ n

µ = 0 to obtain the
variation of the gravitational path integral:

δK =
i

~

∫

D [gαβ]

[
∫

∂U

(

Pij ∆γ
ij − Hgf ∆t

)

d3y

]

e
i
~
SGR[gαβ ] (4.11)

where Hgf is given by (2.19), which we rewrite here:

Hgf = − 1

2κ

[

3R+K2 −Kij K
ij

]

√

|γ| (4.12)

In the above expression, we have set ε = −1, appropriate for the case of spacelike boundary surfaces in General
Relativity.

B. The Wave Functional, Operators, and Commutators

We begin defining an initial state ψJγijI K for some value of tI . The wave functional may be formally14 defined as:

Ψ = ΨJγijK(t) :=

∫

D [γklI ]KJγij ; γklI K ψJγklI K (4.13)

where we substitute t in place of tF (the surface ΣF will be denoted Σt), and
∫

D [γklI ] denotes a functional integral over

the inverse 3-metric γijI on the surface ΣI (up to coordinate transformations on ΣI).
15 As before (in the derivation

of the quantum mechanical Schrödinger equation), we consider an initial state ΨJγijI K that is sharply peaked around

some particular function γijI to eliminate the functional integral
∫

D [γklI ] (to recover the general result, reintroduce

the functional integral
∫

D [γklI ]). To first order, infinitesimal changes in the wave functional Ψ will take the following
form:

δΨ =

∫

Σt

δΨ

δΣt
γij

∆γij d3y +
∂Ψ

∂t
∆t (4.14)

14 Since it depends on the formally defined measure
∫

D[γkl
I ], the right hand side of (4.13) is only defined in a formal sense. This is

essentially the problem of defining the inner product (see section 5.2.2 of [43], and also see [45] for a gauge-fixed definition of the inner
product measure). If superspace has countable dimension, it may be possible in the superspace representation to define an inner product
in the usual manner–this will be left for future investigation.

15 Since we have required that KJγij
F
; γij

I
K be independent of coordinate transformations on ΣI and ΣF , the wave functional ΨJγijK must

be independent of coordinate transformations on ΣF .
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where we use the notation δ/δΣϕ to denote the functional derivative with respect to a function ϕ(x) restricted to
a hypersurface Σ; for a hypersurface with the parameterization xµ(y) and the function ϕ̄(y) := ϕ|Σ = ϕ(x(y)), this
means:

δ

δΣϕ
:=

δ

δϕ̄
(4.15)

Upon comparing (4.15) with (4.11), we identify the following expressions:

δΨ

δΣt
γij

=
i

~

∫

D [gαβ]Pij |Σt
e

i
~
SGR[gαβ ] (4.16)

∂Ψ

∂t
= − i

~

∫

D [gαβ]

(
∫

Σt

Hgf d
3y

)

e
i
~
SGR[gαβ ] (4.17)

Equation (4.16) suggests that the momentum operator P̂ij satisfies:

P̂ijΨ := −i ~ δΨ

δΣt
γij

(4.18)

On the other hand, equation (4.17) suggests that we may formally define the quantum theory by constructing a

Hamiltonian operator ĤGR such that its action on Ψ is formally equivalent to the following path integral:

ĤGR Ψ =

∫

D [gαβ ]

(
∫

Σt

Hgf d
3y

)

e
i
~
SGR[gαβ ] (4.19)

Since the wave functional Ψ is a functional of quantities defined on Σt only, a valid Hamiltonian operator must be
defined in terms of operators at the surface Σt. Otherwise, the time-evolution may become nonlinear in the time
derivatives, and one is no longer doing quantum physics. To construct a Hamiltonian operator, we must first identify
the operators that can be defined for the wave functional Ψ. In general, an operator Ô acting on Ψ must have a path
integral expression of the form:

ÔΨ =

∫

D [gαβ ]O|Σt
ei SPal/~ (4.20)

where O|ΣtF
is some quantity defined on ΣtF . We have already identified the momentum operator P̂ij in equation

(4.18). We may define the inverse metric operator as follows (we explicitly write the arguments of Ψ for clarity16):

γ̂ij ΨJγijK(t) := γij |t ΨJγijK(t) =

∫

D [gαβ ] γij |t e
i
~
SGR[gαβ ] (4.21)

The second equality is justified by the fact that since γij is held fixed at Σt in the path integral, we can pull factors
of γij |t into the path integral, since γij |t is effectively constant with respect to the functional integral

∫

D [gαβ ].
Since the 3-metric γij and the volume element17

√
γ can in principle be obtained algebraically from γij , then we can

define a metric operator γ̂ij from γ̂ij , as well as the operators
√̂
γ and (1/

√̂
γ) in the following manner (we explicitly

write the arguments of Ψ for clarity):

γ̂ij ΨJγijK(t) := γij |t ΨJγijK(t)
√̂
γΨJγijK(t) :=

√
γ|t ΨJγijK(t)

(1/
√̂
γ)ΨJγijK(t) := (1/

√
γ)|t ΨJγijK(t)

(4.22)

Since the 3-d Ricci scalar (3)R depends only on the values of the metric at the surface ΣF , we may construct the
following operator for the Ricci scalar (we explicitly write the arguments of Ψ for clarity):

(3)R̂ΨJγijK(t) := (3)R|γij(t), t ΨJγijK(t) (4.23)

16 This is to indicate that the non-operator quantities that appear outside of the wavefunctional depend on the values of the quantities
that appear in the arguments of the wavefunctional.

17 We drop the absolute value symbols since we now assume ε = −1.
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To obtain commutation relations for the operators γ̂ij and P̂ij , we first examine the following expressions (cf.
(3.26)):

(P̂kl γ̂
ij)|t Ψ = −i ~ δ

δΣt
γkl

(γijF Ψ) = −i ~
(

δik δ
j
l δ(y − y′) Ψ + γij

δΨ

δΣt
γkl

)

(γ̂ij P̂kl)|t Ψ = −i ~ γij δΨ

δΣt
γkl

(4.24)

where we have made use of the following expression in the first line:

δ γij(y)

δΣt
γkl(y′)

= δik δ
j
l δ

3(y − y′) (4.25)

with δ(y − y′) being the Dirac delta function. We now write down the formal commutation relations:

[

γ̂ij(y), P̂kl(y
′)
]

= i ~ δik δ
j
l δ

3(y − y′) Î. (4.26)

C. The Hamiltonian Operator and the Wheeler-DeWitt Equation

We begin by generalizing the computation (3.28) to quantum General Relativity:

(γ̂ij P̂kl)|t Ψ = −i ~ γij δΨ

δΣt
γkl

= γij |Σt

∫

D [gαβ ]Pkl|Σt
e

i
~
SGR[gαβ ] =

∫

D [gαβ ] (γij Pkl)|Σt
e

i
~
SGR[gαβ ] (4.27)

The above expression demonstrates that quantities of the form (γij Pkl)|Σt
= (Pkl γ

ij)|Σt
that appear in the integrand

of path integrals will yield the operator ordering (γ̂ij P̂kl)|t.
For path integrals containing higher factors of the momenta Pij , it is instructive to recall our earlier discussion

of superspace S (Σ) and its manifold extension Sex(Σ). Recall that in terms of the coordinates ξa on extended
superspace Sex(Σ) (which we assume to be of countable dimension), the gravitational Hamiltonian HGR is the
Hamiltonian for a particle on an infinite-dimensional pseudo-Riemannian manifold. In the superspace representation,
we demand that the wavefunction Ψ(ξ) be invariant under coordinate transformations on Sex(Σ), which suggests the
following correspondence (cf. (3.34)):

∫

Dξ (G ab Pa Pb)|t2 e(i/~) S[q] = (−i ~)2(Ĝ ab∇a ∇b)|t2 Ψ (4.28)

This is the Laplace-Beltrami operator on the extended superspace Sex(Σ).
18 In the superspace representation, the

Hamiltonian operator HGR takes the following form (cf. Equation (2.30)):

ĤGR =
ε ~2

2κ

(

∞
∑

a=1

∞
∑

b=1

Ĝ
ab∇a ∇b

)

+ Φ̂ (4.29)

where Φ̂ is the operator counterpart to the potential Φ(ξ) in (2.31).
To obtain the standard representation, we construct a map19 ξaJγijK : iRiem(Σ) → Sex(Σ) and an inverse map20

γij(y, ξ) : Sex(Σ) → iRiem(Σ). We then make use of the chain rule:

δ

δγij
=

∞
∑

c=1

δξc

δγij
∂

∂ξc

∂

∂ξc
=

∫

Σ

d3y
∂γij(y, ξ)

∂ξc
δ

δγij

(4.30)

18 It should be mentioned that our approach differs from that suggested by DeWitt in [19], who proposes using a Laplace-Beltrami operator
on the 6-dimensional manifold coordinatized by the 3-metric components γij (as opposed to the inverse 3-metric functions γij(y)). Our
approach instead uses the Laplace-Beltrami operator on the infinite-dimensional extended superspace manifold Sex(Σ).

19 We will later provide an example of how one might construct such a map.
20 A coordinate condition on γij(y) is needed in order to map an element of Sex(Σ) uniquely to an element of iRiem(Σ).
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to obtain the following expression for the action of ĤGR on the wavefunctional Ψ = ΨJγijK:

ĤGR Ψ =
1

2κ

∫

Σt

[

ε ~2Gijkl δ

δγij
δΨ

δγkl
+ ε ~2 C

mn(y, ξJγijK)
δΨ

δγmn
− 3R̂

ˆ√|γ|Ψ
]

d3y (4.31)

where any “unhatted” factors are multiplicative operators, and we define:

C
mn(y, ξJγijK) :=

∞
∑

a=1

∞
∑

b=1

∞
∑

c=1

G
ab

[
∫

Σt

(

∂γpq(z, ξ)

∂ξa
δξc

δγpq
∂2 γmn(y, ξ)

∂ξc ∂ξb

)

d3z − Γc

ab

∂γmn

∂ξc

]

(4.32)

where Γc

ab
is given by (2.29). The meaning of the second functional derivative (4.31) will be discussed in an upcoming

paper.
We now return to equation (4.17), which becomes (using (4.12)):

ĤGR Ψ =
1

2κ

∫

D [gαβ]

(
∫

Σt

[

Kij K
ij −K2 − 3R

]√
γ d3y

)

e
i
~
SGR[gαβ ] (4.33)

The Hamiltonian constraint forms part of the Einstein field equations, and with the choice α = 1 and βi = 0 (valid
on the boundary ∂U), we may write:

2R00 −R g00 = Kij K
ij −K2 − 3R (4.34)

If we recall the earlier result (4.6), namely that the vacuum Einstein field equations are satisfied within the path
integral:

∫

D [gαβ ]

(

Rµν − 1

2
R gµν

)

√

|g| e i
~
SGR[gαβ ] = 0 (4.35)

we find that (4.34) and (4.35) imply that the right-hand side of (4.33) must vanish, so that:

ĤGR Ψ = 0 ⇒ 1

2κ

∫

Σt

[

ε ~2Gijkl δ

δγij
δΨ

δγkl
+ ε ~2 C

mn(y, ξJγijK)
δΨ

δγmn
− 3R̂

ˆ√|γ|Ψ
]

d3y = 0 (4.36)

Since the Hamiltonian operator determines the time evolution (recall (4.17), this suggests that the wavefunctional Ψ
must be independent of the time parameter t:

∂Ψ

∂t
= 0 (4.37)

The time-independence of the wavefunctional presents both conceptual and technical difficulties. This is known as
the “problem of time” in the canonical formulation of quantum General Relativity. A full discussion of the conceptual
and technical aspects of the problem of time in the canonical theory (in particular for spacetimes without spatial
boundary) is beyond the scope of this paper–we refer the reader to the review articles [46] and also [43] for a brief
overview. Our results explicitly demonstrate that the problem of time also persists in the path integral approach to
quantum general relativity in the case of spacetimes without spatial boundary. Other derivations of the Wheeler-
DeWitt equation, for instance the derivation in [1], might also lead one to infer that the problem of time persists
in the path integral formulation, but we believe that our derivation is more explicit. In path integral approaches to
quantum gravity, the problem of time may actually be more severe, at least in the case of spacetimes without spatial
boundary; it has been pointed out ([43, 47]) that the gravitational path integral effectively contains an integral over
the time parameter via the functional integral over the lapse function of the metric (or in our case, the functional
integral over g00). We will later demonstrate that one can gain some degree of control over this issue in the case of
spacetimes with spatial boundary.
We stress that (4.36) is not what is usually referred to as the Wheeler-DeWitt equation; the Wheeler-DeWitt

equation ([20], [19]) is the local counterpart to (4.36), which one may infer from the 00 component of (4.35):

2κ Ĥgf Ψ = ε ~2Gijkl δ

δγij
δΨ

δγkl
+ ε ~2 C

mn(y, ξJγijK)
δΨ

δγmn
− 3R̂

ˆ√|γ|Ψ = 0 (4.38)

where Cmn(y, ξJγijK) is defined in equation (4.32). Again, the meaning of the second functional derivative in (4.38)
will be discussed in an upcoming paper. Note that this equation is local in yi, rather than a global one over the whole
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of Σt. This form of the Wheeler-DeWitt equation differs from the form presented by DeWitt in [19]; in particular,
DeWitt argues that one can ignore operator ordering issues by requiring that multiple functional derivatives δ/δγij

vanish when acting on the same spacetime point. It was later argued by Tsamis and Woodard that one can indeed
ignore operator ordering issues when employing dimensional regularization–see [48]. In such cases, we may drop the
term containing Cmn(y, ξJγijK).
Before proceeding, we note that the 0i component of (4.35) leads to the momentum constraint:

γikDk

(

2κ
√

|γ|
δΨ

δγij

)

= 0 (4.39)

which follows from (2.16). One may infer from the general Weiss variation (2.12) that this constraint corresponds to
the invariance of the wavefunctional ΨJγijK under coordinate transformations on Σt; in other words, the functional
ΨJγijK must be covariant. Earlier, we required that the measure D [gαβ] be defined so that the wavefunction has this
property, but if one were to seek functionals ΨJγijK that solve the Wheeler-DeWitt equation (4.38) in the absence of
a path integral definition, one should check that the solutions ΨJγijK also satisfy the constraint (4.39).

V. QUANTUM GENERAL RELATIVITY FOR SPACETIMES WITH SPATIAL BOUNDARY

A. The Functional Integral and its Variation

We now consider what happens when we consider path integrals for regions of spacetime W with spatial boundary,
as described by figure 1. In particular, we begin with a functional integral of the form (with SGR,B defined in (2.34)):

KJhijI ;h
ij
F ; q

abK =

∫

D [gαβ ] e
i
~
SGR,B[gαβ ] (5.1)

where hijI is the induced metric on ΣI , h
ij
F is the induced metric on ΣF , and q

ab is the induced metric on B. Here,

we view the path integral KJhijI ;h
ij
F ; q

abK as a transition amplitude for the gravitational field, subject to the spatial
boundary condition that the induced metric on B is given by qab. This viewpoint is essentially the same as that of
the general boundary formulation of quantum field theory [7, 49], in which the state of a quantum field is specified
on the (connected) boundary of a compact region of spacetime–as pointed out in [8, 9], this approach avoids the
problem of time, since time evolution is specified by the boundary conditions. In the remainder of this section, we
will demonstrate how the boundary conditions specify time evolution.
For any functional of the form KJhijI ;hijF ; q

abK, one may write the following:

δK =

∫

ΣI

δK
δhijI

∆hijI d3y +

∫

B

δK
δqab

∆qab d3y +

∫

ΣF

δK
δhijF

∆hijF d3y (5.2)

where ∆hijI , ∆q
ab and ∆hijF are variations of the respective functions hijI , q

ab and hijF . The methods outlined in the
preceding section may be used to obtain path integral expressions for the functional derivatives. To do so, we consider
boundary conditions {hijI ;h

ij
F ; q

ab} which admit solutions of the vacuum Einstein field equations. The variation of the

path integral KJhijI ;h
ij
F ; q

abK takes the form:

δK =
i

~

∫

D [gαβ ] (δSGR,B) e
i
~
SGR,B[gαβ ] (5.3)

As before, we require that the variations satisfy δxµ|SI
= 0, δxµ|SF

= 0, δgµν |SI
= 0 and δgµν |SF

= 0, and again, we
also require that 〈nI , nB〉|SI

and 〈nF , nB〉|SF
are held fixed under the variations so that the variation of the Hayward

term vanishes. From the arguments in the preceding section, we may infer that the Einstein field equations (rescaled

by a factor of the volume element
√

|g|) are satisfied inside the path integral, so that:

∫

D [gαβ ]

(

Rµν − 1

2
R gµν

)

√

|g| e i
~
SGR,B[gαβ ] = 0 (5.4)

It follows that the Hamiltonian and momentum constraints (which are formed from the Einstein field equations) are
satisfied inside the path integral. Particularly important are the Hamiltonian constraints, which take the following
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form (again, recall that an underline denotes quantities defined on B):

∫

D [gαβ ]HI e
i
~
SGR,B[gαβ ] = − 1

2κ

∫

D [gαβ ]

[

(

3R+ (K2 −Kij K
ij)
)
√
h

]

ΣI

e
i
~
SGR,B[gαβ ] = 0

∫

D [gαβ ]HB e
i
~
SGR,B[gαβ ] = − 1

2κ

∫

D [gαβ ]

[

(

3R− (K2 −Kab K
ab)
)√

q

]

B

e
i
~
SGR,B[gαβ ] = 0

∫

D [gαβ ]HF e
i
~
SGR,B[gαβ ] = − 1

2κ

∫

D [gαβ ]

[

(

3R+ (K2 −Kij K
ij)
)
√
h

]

ΣF

e
i
~
SGR,B[gαβ ] = 0

(5.5)

where the Hamiltonian densities HI , HB and HF are given in equation (2.40). Using (2.38), and the above constraints,
we find that the variation of the transition amplitude K takes the form (again, we stress that I and F are labels, not
indices to be summed over):

δK =
i

~

∫

D [gαβ ]

(
∫

ΣI

P I
ij ∆h

ij
I d3y +

∫

B

Pab ∆q
ab d3y +

∫

ΣF

PF
ij ∆hijF d3y

)

e
i
~
SGR,B[gαβ ] (5.6)

where (cf. (2.39)):

P I
ij := − 1

2κ
(Kij −K hIij)

√

hI

P ab :=
1

2κ
(Kab −K qab)

√

|q|

PF
ij := − 1

2κ
(Kij −K hFij)

√

hF

(5.7)

We now compare (5.6) with the general expression (5.2) for the variation δK to establish a relationship between the
following operators and their corresponding path integral expressions:

P̂ I
ij KJhijI ;h

ij
F ; q

abK = −i ~ δK
δhijI

=

∫

D [gαβ]P I
ij e

i
~
SGR,B[gαβ ]

P̂B

ab KJhijI ;h
ij
F ; q

abK = −i ~ δK
δqab

=

∫

D [gαβ]P ab e
i
~
SGR,B[gαβ ]

P̂F
ij KJhijI ;hijF ; q

abK = −i ~ δK
δhijF

=

∫

D [gαβ]PF
ij e

i
~
SGR,B[gαβ ]

(5.8)

We may define the following operators:

ĥijI KJhijI ;h
ij
F ; q

abK = hijI KJhijI ;h
ij
F ; q

abK

q̂ij KJhijI ;h
ij
F ; q

abK = qij KJhijI ;h
ij
F ; q

abK

ĥijF KJhijI ;h
ij
F ; q

abK = hijF KJhijI ;h
ij
F ; q

abK

(5.9)

Equations (5.5) then demand that the functional KJhijI ;h
ij
F ; q

abK must satisfy the following functional differential
equations, which we collectively call the extended Wheeler-DeWitt equations, since we extend the formalism to spatial
boundaries (for simplicity, we suppress the argument of KJhijI ;h

ij
F ; q

abK):

2κ ĤI K = −~2Gijkl
I

δ

δhijI

δK
δhklI

− ~2 C
mn(y, ξJhijI K)

δK
δhmn

I

− 3R̂I
ˆ√
hI K = 0

2κ ĤBK = ~2Gabcd δ

δqab
δK
δqcd

+ ~2 C
ab(y, ξJqcdK)

δK
δqab

− 3R̂B

ˆ√|q| K = 0

2κ ĤF K = −~2Gijkl
F

δ

δhijF

δK
δhklF

− ~2 C
mn(y, ξJhijF K)

δK
δhmn

F

− 3R̂F
ˆ√
hF K = 0

(5.10)

where C
ab(y, ξJqcdK) is given by the formula (4.32) with all quantities replaced by underlined quantities, and γij re-

placed with qab. Equations (5.10) form the extended Wheeler-DeWitt equations for spacetimes with spatial boundary.
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To ensure that K = KJhijI ;h
ij
F ; q

abK is invariant under coordinate transformations on the surfaces ΣI , ΣF , and B, the
extended Wheeler-DeWitt equations must be supplemented by the momentum constraints:

hikI Dk

(

2κ√
hI

δK
δhijI

)

= 0

qacDc

(

2κ
√

|q|
δK
δqab

)

= 0

hikF Dk

(

2κ√
hF

δK
δhijF

)

= 0

(5.11)

The problem of finding the dependence of the transition amplitude K on hijI , h
ij
F , and q

ab amounts to solving these
functional differential equations.
It should be cautioned that equations (5.10) and (5.11) may not be sufficient to fully determine the transition

amplitude K. So far, we have ignored the dependence of the transition amplitude on the 2-surfaces SI and SF , in
particular the role of the rapidity angles ηI and ηF (defined in (2.36)). A simple example suggests that meaningful
transition amplitudes must also depend on the rapidity angles ηI and ηF . Consider the Schwarzschild solution in
Painlevé-Gullstrand coordinates [17, 50, 51]:

ds2 = −
(

1− 2GM

r

)

dT 2 + 2

√

2GM

r
dT dr + dr2 + r2(dθ2 + sin2θ dφ2) (5.12)

One may construct a boundary in the manner of Figure 1 from cylindrical hypersurfaces of constant r and (flat)

hypersurfaces of constant T that is isometrically embeddable in Minkowski spacetime; the induced metrics hijI , h
ij
F ,

and qab will be identical for Schwarzschild spacetime and Minkowski spacetime. Meaningful transition amplitudes
therefore cannot be solely dependent on hijI , h

ij
F , and qab. On the other hand, note that due to the cross-terms in

(5.12), the rapidity angles ηI and ηF (2.36) at the corners of the cylinder (the 2-surfaces SI and SF ) differ between
Schwarzschild spacetime and Minkowski spacetime. This suggests that meaningful transition amplitudes must depend
on the rapidity angles ηI and ηF at the 2-surfaces SI and SF (in addition to the induced metric on SI and SF ).
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To obtain the dependence of the transition amplitude K on the rapidity angles, one must also consider variations of
the corner terms SC in the gravitational action, and the variations due to displacements of the 2-surfaces SI and SF .
This will be left for future work.

B. Spatial Boundaries and Time Evolution

One obstacle to addressing the question of time in the case of spacetimes without spatial boundaries is the fact
that the path integral involves summing over all functional forms (up to diffeomorphisms) for the spacetime metric
gµν . Consider a timelike geodesic in U, defined by initial conditions (the initial position and 4-velocity) at a point
on ΣI . The proper time along the geodesic segment between the hypersurfaces ΣI and ΣF depends on the spacetime
metric gµν . The path integral over gµν therefore prevents one from unambiguously establishing a notion for the time
elapsed between ΣI and ΣF .
In spacetimes with spatial boundary, the aforementioned obstacle may be used to provide a resolution for the

problem of time. Recall that the spatial boundary conditions for the metric tensor gµν are provided by the induced
metric qab, which in turn specifies the geometry of the boundary surface B. Now consider a timelike geodesic on B

(a geodesic with respect to the boundary metric qab), defined by an initial 3-velocity and an initial starting point on
SI . The induced metric qab determines the elapsed proper time along the geodesic segment between the surfaces SI

to SF . The boundary metric qab therefore provides a measure of time elapsed between the hypersurfaces ΣI and ΣF .
This suggests the following view: time should not be treated as a local parameter, but as a property of the geometry of

the spatial boundary B.22

21 Upon closer analysis, one may note that while the surfaces of constant T are flat, they each contain the point r = 0, which corresponds
to the location of the Schwarzschild singularity. The question of whether a cylindrical boundary constructed from a surface of constant
T is admissible, and whether one must include an additional boundary surface formed from excising curvature singularities from the
manifold (which may require prior assumptions about the structure of singularities and topology of the manifold), are left for future
analysis.

22 One might recognize the relationship between this viewpoint and Mach’s principle (see [52] for a modern discussion of Mach’s principle
in GR), noting that the geometry of the spatial boundary B is determined by the spacetime geometry outside of the region W, which in
turn depends on the matter configuration outside of W. The definition of time as a property of the boundary geometry for B suggests
that time is fundamentally nonlocal quantity that depends on the spacetime geometry and matter configurations in distant regions.
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More explicitly, one may imagine describing time evolution as a displacement of the surface ΣF in the future time
direction, with a corresponding a “stretch” of the boundary B [53].23 One may note, however, that the displacement
of the surface ΣF by way of δxµ is a diffeomorphism and is mathematically indistinguishable from an infinitesimal
coordinate transformation. On the other hand, a “stretch” of the boundaryB in the timelike direction that corresponds
to an increase in the proper time of timelike geodesics cannot be represented as a change in coordinates.24 In fact,
we may ignore boundary displacements altogether and characterize the “stretch” in the boundary by changing the
components of the boundary metric qab.
To illustrate how the components of the boundary metric qab may be used to “stretch” the boundary in the timelike

direction, we consider a boundary B with coordinates (t, θ, φ), with the domain:

t1 < t < t2

0 < θ < π

0 < φ < 2π

(5.13)

We place a metric qab on B which admits the following line element:

ds2 = qab dy
a dyb = −α2 dt2 + r2

(

dθ2 + sin2 θ dφ2
)

(5.14)

The boundary metric qab corresponds to a particular set of boundary conditions on B. If α and r are constants, then
the proper time along a timelike geodesic on B defined by θ = constant and φ = constant is given by the expression
T = α (t2 − t1). The physical stretching of the boundary B in the timelike direction corresponds to an increase in
the value of α. Now one might note that changes in the value of α may also be interpreted as a rescaling of the the
time coordinate t, which in turn may be interpreted as a coordinate transformation. However, what distinguishes our
construction from a coordinate transformation is that the domain (5.13) of the coordinates on the manifold B is held
fixed–in particular, the coordinate values t1 < t < t2 that define the boundary B are held fixed. The only thing we
change is the component of the metric q00 = −α2.
To see how such a stretch in the boundary affects the action (and by extension the path integral KJhijI ;h

ij
F ; q

abK),
consider the 3-volume for B, which may be written as:

V (B) = 4 π

∫ t2

t1

α r2 dt = 4 π r2 T (5.15)

where again, T = α (t2 − t1) is the proper time of a geodesic defined by defined by θ = constant and φ = constant.
For the boundary metric in (5.14), the formula above establishes a relationship between the proper time of certain
observers on the boundary and the 3-volume V (B). Note that presence of the Gibbons-Hawking-York boundary
term in the gravitational action SGR,B ensures that even for vacuum solutions of the Einstein field equations, the
gravitational action SGR,B has a nonvanishing value. The Gibbons-Hawking-York boundary term for a spacetime
with the spatial boundary B with line element (5.14) will ultimately depend on α, since the 3-volume (in particular

the volume element for B) depends on α. The path integral KJhijI ;h
ij
F ; q

abK for the same spatial boundary B will in
turn depend on α as well; time evolution for spacetimes with spatial boundaries admitting a line element of the form
(5.14) corresponds to an increase in α.
For more general boundary geometries, we may consider a boundary metric qab written in a form adapted to the

foliation induced by the coordinate t. In particular, we construct the following line element on B:

ds2 = qab dy
a dyb = −(α2 + σAB β

A βB) dt2 + σAB β
A dzB dt+ σAB dz

A dzB (5.16)

where z1 = θ, z2 = φ, σAB is the induced metric on (2d) surfaces of constant t, and the quantities α and βA are in

general functions of t and zA. A reader familiar with the ADM formalism [16, 54] will recognize the above as the ADM
decomposition for the boundary line element ds2 = qab dy

a dyb. As before, a stretch in the boundary corresponds
to an increase in the value of boundary “lapse” function α. That an increase in α corresponds to a stretch in the
boundary can be seen in the following expression for the 3-volume of B:

V (B) =

∫

B

√

|q| d3y =

∫ t2

t1

∫ 2π

0

∫ π

0

α
√

| det(σAB)| dθ dφ dt (5.17)

23 Though the results and arguments presented in this section are technically equivalent to that of Brown and York in [53], we attempt to
elucidate them more clearly here.

24 To better see that displacements of the boundary are not sufficient to describe physical time evolution, consider the action SGR,B[gµν ]
evaluated on a vacuum solution (in which the Ricci scalar takes the value R = 0) with a cylindrical boundary as described in figure
1. Displace a portion of the boundary ΣF in the normal direction by a function δxµ(y) which vanishes on SF . At the same time,
perform an infinitesimal variation of the bulk metric tensor gµν under the condition that the boundary metric γij is held fixed when
the boundary is displaced; in other words, we perform a variation such that δxµ 6= 0 and ∆γij = 0. Equation (2.38) suggests that
the variation δSGR,B[gµν ] vanishes by virtue of the Hamiltonian constraint HI = 0 (where HI is defined in (2.40)) on the boundary.
Displacements of the boundary surface (in particular the tF surface ΣF ) has no effect on the value of the action SGR,B[gµν ], (but
stretching of the boundary surface B does).
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where we have made use of the expression
√

|q| = α
√

| det(σAB)|. From the above expression for the 3-volume V (B),
it is clear that an overall increase in the value of α will increase the 3-volume of the boundary B.
The notion that the lapse function α governs time evolution has been explored before in [53]; variations of the

action with respect to α were used to obtain the Brown-York Quasilocal energy. We may obtain the Brown-York
Quasilocal energy (up to a reference term) from the expression (2.38) for δSGR,B by first noting that the components
qab depend on α in the following way:

q00 = −α−2

q0A = α−2 βA

qAB = −α−2 βA βB + σAB

(5.18)

The Brown-York quasilocal energy25 1/κ
∫

S
n̄an̄b(Kab −K qab)

√

|σAB | d2z is given by the integral (over a spacelike
2-surface S ⊂ B) of the following functional derivative:

α
√

|q|
δSGR,B

δα
= 2

1

α2
√

|q|

(

δSGR,B

δq00
− 2

δSGR,B

δq0A
βA +

δSGR,B

δqAB
βA βB

)

=
1

κ
n̄a n̄b (Kab −K qab) (5.19)

where [n̄a] := (1/α,−βA/α) are vectors tangent to B that have unit norm, and are normal to surfaces of constant
t. Following [53], one may obtain similar expressions for momentum-like and stress-like quantities by performing
variations with respect to βA and σAB.
Finally, the above expression for the variation may be used to obtain the change in the transition amplitude with

respect to changes in α:

α̂3 δK
δα

= −
(

P̂B

00 − β̂
A
P̂B

0A + β̂
A
β̂
B
P̂B

ab

)

KJhijI ;hijF ; q
abK (5.20)

where the operators α̂ and β̂
A

pick out the value of the quantities α = −|q00|−1/2 and β̂
A

= −q0A/q00 from the

inverse boundary metric qab:

α̂KJhijI ;h
ij
F ; q

abK = −|q00|−1/2 KJhijI ;h
ij
F ; q

abK

β̂
AKJhijI ;hijF ; q

abK = −q0A/q00 KJhijI ;h
ij
F ; q

abK
(5.21)

Equation (5.20) a form26 of the boundary “Schrödinger equation” in [6]. Though it is tempting to regard (5.20)

as the Schrödinger equation for the transition amplitude KJhijI ;hijF ; q
abK, it is in fact a kinematical expression as it

merely expresses one functional derivative of KJhijI ;h
ij
F ; q

abK in terms of other functional derivatives (more pointedly,
(5.20) is simply a statement of the chain rule for functional derivatives). Equation (5.20) therefore does not determine
the dynamics for the theory. The dependence of the transition amplitude on spatial boundary conditions comes
from the requirement that the transition amplitude KJhijI ;h

ij
F ; q

abK satisfies the extended Wheeler-DeWitt equations
(5.10), and the momentum constraints (5.11). The Wheeler-DeWitt equations (5.10) and the momentum constraints

(5.11), determine the functional dependence of the transition amplitudes KJhijI ;h
ij
F ; q

abK on hijI , h
ij
F and qab. Once the

solutions to (5.10) and (5.11) are found, equation (5.20) may then be used to extract the explicit time dependence

for the transition amplitude KJhijI ;h
ij
F ; q

abK.

C. The Dependence of Transition Amplitude on Spatial Boundary Conditions

We briefly describe how the formalism presented in this paper might be used to compute the dependence of transition
amplitudes on spatial boundary conditions. If the spatial boundary B has the cylindrical topology R̄×S2 (recall that
R̄ is a compact subset of the real line R), and the appropriate boundary conditions are imposed on SI and SF , one
may decompose the induced metric in the following manner:

qab(t, θ, φ) = qab0 (t, θ, φ) +
∑

lmn

(Am
ln sin(π n t/T ) +Bm

ln sin(π n t/T ))Y
m
l (θφ) (5.22)

25 We use the definition given in equation 4.3 of [53].
26 Our result (5.21) uses a slightly more general form of the Brown-York quasilocal energy than that of the boundary Schrödinger equation

in [6].
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where Am
ln and Bm

ln are constant coefficients, T is the length of the real line segment R̄, and qab0 (t, θ, φ) are the
components of inverse metric for the cylindrical line element:

ds2 = −dt2 + r2
(

dθ2 + sin2 θ dφ2
)

(5.23)

Since (5.22) is formed from a complete, orthogonal basis for functions on R̄ × S2, the coefficients Am
ln and Bm

ln may
be used to coordinatize27 the manifold S ex(B). This may be used to convert the spatial boundary Wheeler-DeWitt
equation (5.10) from a functional differential equation to an infinite number of PDEs on an infinite dimensional
manifold (note that the spatial boundary Wheeler-DeWitt equation is a local equation in the metric basis–it is a
function of y ∈ B). One may truncate the series (5.22) to obtain a finite number of PDEs on a finite dimensional
manifold; if these can be solved,28 one can obtain the dependence of the transition amplitudes on spatial boundary
conditions up to truncation errors. The remaining Wheeler-DeWitt equations (5.10) may be solved in a similar manner

to obtain the dependence of the transition amplitude on hijI and hijF .
A potentially tricky aspect of this procedure is to obtain the functional ξcJqabK, which is a map from the space of

3-metrics qab(y) to the coordinates ξc on S ex(B). The orthogonality of the basis functions, which we write as ec(y)
may be exploited to obtain the functionals ξcJqabK from the functions qab(y). Using the shorthand q̄(y) to represent
qab(y) (we suppress indices for simplicity), we may write q̄(y) = ξc ec(y). The functional ξcJq̄K may then be written
as (no sum over c):

ξcJq̄K =

∫

B
q̄(y) ec(y) d

3y
∫

B
ec(y) ec(y) d3y

(5.24)

This may be varied in order to obtain an expression for δξc/δqab in the chain rule formula (4.30). In turn, one may
use the chain rule (4.30) to rewrite the Wheeler-DeWitt equation on B (5.10) in terms of coordinates on superspace
S ex(B).29

VI. SUMMARY AND FUTURE WORK

We claim that when spatial boundaries are included, transition amplitudes in quantum General Relativity satisfy
the extended Wheeler-DeWitt equation (5.10) and the momentum constraint (5.11), which in turn determine the
dependence of the transition amplitude on the the components of the boundary metric qab, which constitute boundary
conditions for the metric tensor gµν at the spatial boundary B. We have argued that time evolution for transition
amplitudes corresponds to a “stretching” of the spatial boundary B in the timelike direction, which in turn may
be described by changes to the components of the boundary metric qab. In short, we find that spatial boundary
conditions determine time evolution in quantum General Relativity; our results formalize, validate, and sharpen the
general idea[8, 9] that time evolution is determined by boundary conditions for a connected boundary of a compact
spacetime.
As argued at the end of section VA, the formalism presented in this dissertation is not sufficient, even at a formal

level, to fully determine the transition amplitude K; further development of the formalism is needed. Critically
important is the dependence of K on the rapidity angles ηI and ηF and the induced metric at the 2-surfaces SI and
SF . To do this, one must obtain the variation of SGR,B when variations in the rapidity angles ηI and ηF , variations
in the induced metric on SI and SF , and the displacement of the surfaces SI and SF are included.
We have briefly described a way to convert the functional Wheeler-DeWitt equation to a set of PDEs on an infinite

dimensional manifold; one may truncate the function space in order to obtain PDEs on a finite dimensional manifold.
The next step is to write down the explicit expressions for the resulting PDEs explicitly, and to study their general
properties. This may be attempted for both the case of spatially compact 3-geometries without boundary and compact
regions of spacetime with spatial boundary.
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Appendix A: The Weiss Variation of the Gravitational Action

As stated earlier, the full justification for equation (2.12) is given in [14]. However, for the benefit of the reader,
we present a partial justification for (2.12) in this appendix, valid for spacelike boundary surfaces (ε = −1). In
particular, we discuss here how one might infer equation (2.12) from results in the literature (excluding [14]) and the
Weiss variation formula (2.8) for mechanical systems, which we rewrite here (setting δqi(t) = λ ηi(t)):

δS =

∫ t2

t1

(

∂L

∂qi
− d

dt

(

∂L

∂q̇i

))

δqi(t) dt+
(

pi ∆q
i −H ∆t

)

∣

∣

∣

∣

t2

t1

(A1)

We begin by recalling that for the gravitational action in (2.9), the quantity to be held fixed on the boundary ∂U
in Hamilton’s principle is the induced metric γij [55]. Equivalently, we may instead require that the inverse metric
γij be held fixed on the boundary in Hamilton’s principle. This suggests that a natural choice for the configuration
variables in gravity is the inverse induced metric γij(x). From [55], the variation of the gravitational action (2.9) is
(excluding boundary displacements):

δSGR =
1

2κ

∫

U

Gµν δg
µν
√

|g| d4x+
ε

2κ

∫

∂U

(Kij −K γij) δγ
ij
√

|γ| d3y (A2)

The reader should be aware that the definitions for Kij and K in [55] differ from the ones here by a sign. Also, the
boundary variation in [55] is expressed in terms of δγij ; we use the first order expression δγij = −γia γjb δγij to obtain
(A2). Equation (A2) suggests the following definition for the conjugate field momentum tensor:

pij := Kij −K γij (A3)

which is equivalent to the definition in (2.13).
It is well-known (see [17, 51]) that for spacetimes without spatial boundary, the Hamiltonian density for the gravi-

tational field may be written in the form H = αHgf + βi C
i, where α and βi are the respective lapse function and

shift vector of the ADM formalism [54], Hgf is gauge-fixed Hamiltonian density of (2.19), and C i is:

C
i := − 1

κ
Djp

ij
√

|γ| (A4)

Explicitly, the gravitational Hamiltonian on a boundaryless spacelike hypersurface Σt is [17, 51]:

Ht =
1

2κ

∫

Σt

[

α (Kij K
ij −K2 − 3R)− 2 βiDj(K

ij −K γij)
]
√

|γ| d3y (A5)

The basis vector ∂/∂t has components tµ = δµ0 , and may be decomposed in the following manner:

tµ = ε αnµ + βµ (A6)
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where α satisfies α = tµ nµ, and β
µ = γµν t

ν are the components of the shift vector in the bulk coordinate basis.30

Since βi = γij β
j , its bulk basis counterpart is γµνβ

ν = γµν t
ν . We may therefore rewrite the Hamiltonian (A5) in the

bulk basis:

Ht =
1

2κ

∫

Σt

[

nµ t
µ (Kij K

ij −K2 − 3R)− 2 γµν t
µDρ(K

νρ −K γνρ)
]
√

|γ| d3y (A7)

which we rewrite as:

Ht =
1

2κ

∫

Σt

[

nµ (Kij K
ij −K2 − 3R)− 2 γµβDαp

αβ
]

tµ
√

|γ| d3y (A8)

Given formulas (A1), (A2) and (A8), one may infer that for ∂U = Σt1 ∪ Σt2 (with Σt1 and Σt2 spacelike and
boundaryless), the Weiss variation takes the form:

δSGR =
1

2κ

∫

U

Gµν δg
µν
√

|g| d4x− 1

2κ

∫

∂U

pij ∆γ
ij
√

|γ| d3y + (Ht ∆t)|t2t1 (A9)

where ∆t (assumed to be infinitesimal and constant over the boundary) is the amount by which the boundary surface
is displaced in the coordinate t. We identify the displacement vector δxµ = tµ ∆t, and write:

δSGR =
1

2κ

∫

U

Gµν δg
µν
√

|g| d4x− 1

2κ

∫

∂U

(

pij ∆γ
ij +

[

nµ (Kij K
ij −K2 − 3R)− 2 γµβDαp

αβ
]

δxµ
)
√

|γ| d3y
(A10)

Since (A10) applies for any choice of time coordinate t with spacelike hypersurfaces, it can be used to describe general
boundary displacements, provided that the boundary surfaces are spacelike. Equation (A10) is therefore equivalent
to (2.12) for spacelike boundary surfaces (ε = −1). For timelike boundary surfaces, we refer the reader to [14].

30 A word of caution; while β0 = 0, the lowered component β0 6= 0. In fact, it is not too difficult to show that β0 is the norm of βi.
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