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One of the striking features of QED is that charged particles create a coherent

cloud of photons. The resultant coherent state vectors of photons generate a non-

trivial representation of the localized algebra of observables that do not support a

representation of the Lorentz group: Lorentz symmetry is spontaneously broken.

We show in particular that Lorentz boost generators diverge in this representation,

a result shown also in [1] (See also [2]). Localization of observables, for example in

the Rindler wedge, uses Poincaré invariance in an essential way [3]. Hence in the

presence of charged fields, the photon observables cannot be localized in the Rindler

wedge.

These observations may have a bearing on the black hole information loss paradox,

as the physics in the exterior of the black hole has points of resemblance to that in

the Rindler wedge.
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I. INTRODUCTION

In Mikowski space, the vacuum state is known to become thermal or KMS for massive

neutral fields restricted to a Rindler wedge. These fields are associated with uniformly accel-

erated particles. If the acceleration is in the 1-direction, the thermal or modular Hamiltonian

is the boost K1 in the 1-direction. We argue that if the fields are charged, for the photons,

K1 diverges and in fact all components Ki of K diverge. The reason is that the photon

vacuum becomes dressed with an infrared cloud and breaks Lorentz invariance. Photon

observables cannot thus be localized in the wedge in the presence of charged fields.

The work of [1] also shows a similar divergence of boosts (See also [2]). But the emphasis

in that paper is on the breakdown of Lorentz invariance and not on localization problems

as in this paper. Also the in state vector considered here is different from the state vector

considered there for showing this divergence.

A consequence of this result is that the standard Tomita-Takesaki theory for the “sym-

plectic” localization of observables [3] in a Lorentz covariant manner breaks down for charged

fields.

These results may have a bearing on the information loss paradox for black holes.

Elsewhere [4] we have argued that equations of motion of electromagnetic fields generated

by charged particles cannot be localized in the Rindler wedge because the charged particle

itself is not localized.

II. THE RINDLER WEDGE FOR NEUTRAL FIELDS

The standard Rindler wedge W1 in Minkowski space M4 is the submanifold

W1 = {x = (x0, x1, x2, x3) ∈M4 : x
1 ≥ |x0|} (1)

Its causal complement is the opposite wedge W ′
1 (prime denoting causal complement),

W ′
1 = {x ∈M4 : −x1 ≥ |x0|}. (2)

For neutral free fields, there is a rigorous theory of localization in such wedges (and their

intersections. See [3] and references therein.). It associates algebras of local observables AW

and AW ′ of W and W ′, respectively, compatibly with Poincaré covariance and causality.

Thus this theory incorporates covariance and causality.
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This theory of localization, called “modular localization”, is based in particular on the

representation of the Poincaré group on the quantum fields. The construction of AW1
for

example uses the boost generator K1.

If there are charged fields and their photons, then because of infrared effects, Lorentz

group is spontaneously broken [5]. In particular, we shall see that K1 diverges. The impli-

cations is that localizations in W and W ′ break down.

From another point of view [4], we have argued that equations of motion of charged field

cannot be localized in W . We suspect that these results have implications for the black hole

information paradox.

III. ON MODULAR LOCALIZATION

In non-relativistic quantum physics, given the spatial regions O1 and O2 at a fixed time

with O1 ∩ O2 = ∅, we have projection operators P1 and P2 such that P1P2 = 0. Hence it

is enough to set ψ1 = P1χ, ψ2 = P2χ
′ for generic wave functions χ, χ′ to see that there are

wave functions ψ1 and ψ2 localized in O1 and O2 which are orthogonal, 〈ψ2|ψ1〉 = 0. Such

a localization is known as “Born localization”.

Let us next turn to relativistic quantum field theory and assume for the rest of this section

that there are no infrared effects. Let us also denote by W the standard Rindler wedge (1),

and by W ′ its causal complement (2).

As discussed by many authors [3], in relativistic physics, we cannot localize states. We can

only localize algebras of observables in the “symplectic” or “modular” sense. That means

the following in the present context: we can associate algebras of observables AW and AW ′

to W and W ′ which are compatible with causality, that is, if ψW and ψW ′ are elements of

AW and AW ′, then [ψW , ψW ′] = 0. This association is also compatible with covariance as we

presently discuss.

Thus in modular localization theory, we have a family of spacetime regions Oi to which

one assigns the algebras of observables AOi
. The regions Oi are obtained from W and W ′

by transforming them by the elements of the Poincaré group P+ = {g} consisting of the

connected Poincaré group and CPT and then by taking all their intersections. The algebras

of observables AOi
are such that we have

1. covariance: we have a representation g → U(g) of the Poincaré group P+ such that if
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g · O is the Poincaré transform of O, then Ag·O = U(g)AOU(g)
−1;

2. causality : the algebra AO′ is the commutant A′
O of AO;

3. isotony : if O1 ⊂ O2, then AO1
⊆ AO2

(We will not discuss isotony further)

For our purposes in this paper, it is enough to consider AW and AW ′. Let us first

consider AW and a free massive real scalar field ϕ. Let {fW} be a collection of smooth real

test functions supported on W . Then the transformation

JW : (x0, x1, x2, x3) → (−x0,−x1, x2, x3) (3)

transforms {fW} to the test functions {fW ′} = {JWfW} supported in W ′. In quantum

theory JW becomes

U(JW ) ≡ JW = CPT× π-rotation around 1-axis. (4)

The algebra AW is generated by

ϕ(fW ) ≡

∫

d4x fW (x)ϕ(x), (5)

or rather the unitaries eiϕ(fW ), while AW ′ is generated by

JWe
iϕ(fW )J−1

W = e−iϕ(JW fW ), (6)

so that covariance is satisfied.

Since [ϕ(x), ϕ(y)] = 0 if x and y are spacelike separated, causality is also fulfilled.

There is thus a consistent assignment of AW and AW ′: it is covariant and causal.

Let us ignore the transverse coordinates x2 and x3 in test functions and study this local-

ization further. Since, with K1 ≡ KW ,

eitKW : (x0, x1) → (x0 cosh t− x1 sinh t,−x0 sinh t+ x1 cosh t), (7)

we have as t ↑ iπ,

e−πKW : (x0, x1) → (−x0,−x1). (8)

In quantum theory, JW is represented by an anti-unitary operator JW and

e−πKW −→ U(e−πKW ) = ∆
1/2
W . (9)



5

Set

SW ≡ JW∆
1/2
W . (10)

We remark that the continuation of t to iπ requires a positive energy representation U .

See [3].

The effect of JW is compensated by e−πKW , so that JWe
−πKW acts as identity on (x0, x1).

Hence since ϕ∗
W = ϕW (ϕW being a real field) and fW = fW ,

SWϕ(fW )S−1
W = ϕ(fW ). (11)

We consider only free fields. Then since ϕ(x) is linear in creation and annihilation oper-

ators, so is ϕ(fW ) and

ϕ(fW )|0〉 (12)

is a one-particle subspace.

Now, by (3) and (7),

JWe
itKW = eitKWJW , (13)

so that since JW is anti-unitary,

JW∆
1/2
W = ∆

−1/2
W JW (14)

and so

S2
W = 1. (15)

Further, by the Lorentz invariance of the vacuum,

JW |0〉, ∆
1/2
W |0〉, SW |0〉 are all = |0〉. (16)

Thus if H is the one-particle Hilbert space of Fock space, ϕ(fW )|0〉 is a “real” subspace

ReHW of H:

SWϕ(fW )|0〉 = ϕ(fW )|0〉. (17)

It is real since SW being anti-linear, iϕ(fW )|0〉 does not belong to this subspace ReHW .

We can informally write

ReHW =
1+ SW

2
H. (18)

From ReHW we can construct AW as Brunetti et al. (cf. [3]). discuss.

Summary
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In the above we started by assuming that we have a free scalar field and arrived at SW

and therefrom at ReHW . Since ReHW also determines AW , we now have an approach to

localization where we start from the one-particle representation ρ of the Poincaré group P+

on a complex Hilbert space H. That supplies us with SW and hence ReHW (18). From this

we recover AW , the algebra of local observables in the wedge W .

This approach is more intrinsic as it starts just from Wigner’s representation theory of

the Poincaré group. It can also be applied to the case where the covariance group is the

conformal group [6]. It makes it clear that for localization in W compatibly with Poincaré

covariance and causality, we need the existence of JW and ∆
1/2
W = U

(

e−πKW

)

.

IV. ON THE INFRARED EFFECT

We next consider a charged free massive scalar field ϕ of charge q. In this case, the Fock

space states get dressed by an infrared factor which breaks Lorentz invariance.

Let

|0〉γ|p〉 (19)

denote the state vector when photon is in the ground state and the free charged particle has

momentum p. When the interaction is switched on, (19) leads to an in state, namely

|in〉 ≡ Ω |0〉γ|p〉, (20)

where the calculation of the dressing factor Ω is indicated below.

Since we are interested in very soft photons, we can ignore back reactions and treat the

charged particle as moving with momentum p. Then the current of the charged particle is

Jµ(x) = q

∫

dτ δ(4)(x− z(τ))
dzµ

dτ
, (21)

zµ(τ) =
pµ

m
τ. (22)

The interaction term is thus
∫

d3x Aµ(x)J
µ(x), (23)

where Aµ is the electromagnetic potential. This leads to

Ω = exp

(

−iq

∫ 0

−∞

dx0
pµ

m
Aµ

( p

m
x0
)

)

, (24)
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upto factors unimportant for us. This Ω was worked out in [7].

We will work in the radiation gauge A0 = ∂iA
i = 0 and in the interaction representation.

Using the mode expansion of Ai,

Ai(x) =

∫

dµ(k)
[

ai(k)e
−ik·x + a†i (k)e

ik·x
]

, (25)

dµ(k) =
d3k

(2π)3/22k0
, (26)

[

ai(k), a
†
j(k

′)
]

= (2π)3/2 2k0

(

δij − k̂ik̂j

)

δ3(k− k′), (27)

(with the rest of the commutators vanishing), we find

Ω = exp

(

q

∫

dµ(k)
(

ai(k) ω̂
i(k)+ − a†i(k) ω̂

i(k)−
)

)

, (28)

ω̂i(k)± = lim
ε↓0

pi − p · k̂ k̂i
k · p+ iε

. (29)

But since k · p > 0 (k is light-like with k0 > 0 and p is time-like with p0 > 0), the iε can be

dropped and we find dropping ± on ω̂i(k)±, that

Ω = exp

(

q

∫

dµ(k)
(

ai(k)− a†i(k)
)

ω̂i(k)

)

. (30)

Now,

∂0Ai(x) = −i

∫

dµ(k) k0

[

ai(k)e
−ik·x − a†i (k)e

ik·x
]

= Electric field Ei. (31)

We will return to this equation a little later.

Interpretation of (24)

Equation (24) is the exponential of the Dirac-Wilson line integral, but in the time-like

direction. Thus,

Ω = exp

(

−iq

∫ 0

−∞

dzµAµ(z)

)

, (32)

where zµ is given in (22) with τ = x0, the time coordinate.

Under the gauge transformation

Aµ 7→ Aµ + ∂µΛ, (33)

Ω 7→ Ω e−iqΛ(0) e+iqΛ(−∞). (34)

This shows that Ω is created by a charge q starting at time −∞ and propagating to the

origin at time 0.
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V. THE BOOST IN THE INFRARED SECTOR

Let Ki be the Lorentz boosts in the Fock space. For the electromagnetic field, they are

Ki =
1

2

∫

d3x xi
[

E(x)2 +B(x)2
]

, (35)

Bi = εijkFjk, (36)

where Fjk = ∂jAk − ∂kAj and Ei is the electric field conjugate to Ai:

[Ai(x, t), Ej(y, t)] = i δTij(x− y), (37)

where δT is the transverse δ-function,

δTij(x− y) =

(

δij −
∂xi
∂xj

∂2
x

)

δ3(x− y). (38)

Then,

ΩKiΩ
† (39)

acts on the in state vector.

The electric and magnetic fields Ei and Bi are shifted by the transformation (39). The

shift of Ei is

δEi =

[

q

∫

dµ(k′)
(

aj(k
′)− aj(k

′)†
)

ω̂j(k′), i

∫

dµ(k)k
(

ai(k)
†eik·x − ai(k

′)e−ik·x
)

]

= iq

∫

dµ(k) k ω̂i(k)
(

eik·x − e−ik·x
)

≡ ωi(x)− ωi(−x). (40)

A simple scaling argument shows that

ωi(λx) ∼
λ→∞

O

(

1

λ2

)

, (41)

or

ωi(x) ∼
x→∞

O

(

1

x2

)

. (42)

Since
1

p · k
=

1

p0k0 − p · k
(43)
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is not even in k, we do not expect the O(1/x2) term to cancel (40). With that assumption,

we find the following term in Ki to diverge logarithmically:

∫

d3x xi δ ~E(x)
2. (44)

After a cut-off, this term is positive.

If

ΩBiΩ
−1 = Bi + δBi, (45)

there is a similar contribution
1

2

∫

d3xxiδ ~B(x)2 (46)

from the ~B2-term. As it is also non-negative, it cannot cancel (44).

In [1], the divergence of Ki is shown for vectors obtained by replacing omega by another

(“vertex”) operator . Also that paper focuses on the breakdown of Lorentz invariance and

not localization.

There is a physical interpretation of the above result. A Lorentz boost Λ transforms the

photonic cloud of momentum p into the photonic cloud with momentum Λp. A consequence

of this transformation law is that states of the coherent photon cloud do not belong to the

domain of the infinitesimal generators of Lorentz boosts K. The divergence found in the

above calculation is also a proof of that behavior. An alternative argument can be obtained

as follows. The expectation value of K in the photon cloud in particle mechanics is given

by the sum of the contributions of each individual photon of the cloud. But that sum has

the same degree of infrared divergence as

〈N〉 =

∫

dµ(k) nk, (47)

nk being the number of photons in the cloud with momentum k. This is in agreement with

the previous result. Notice that on the contrary the same coherent quantum state of the

photon cloud belongs to the domain of the QED Hamiltonian. Indeed, once we renormalize

the vacuum energy, the remaining energy is just the sum of the individual energies of each

photon of the cloud

E =

∫

dµ(k)k0nk <∞, (48)

which is finite.

This concludes our argument that modular localization fails for charged fields.
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There is of course a general argument [5] that Lorentz invariance breaks down for charged

sectors of QED. That is enough to affirm the failure of standard localization arguments for

charged particles. The merit of this paper is perhaps the fact that it is explicit.

VI. REMARKS

It has been argued elsewhere [7] that non-abelian gauge theories, including QCD, breaks

Lorentz invariance in sectors transforming non-trivially by the gauge group. Accordingly,

standard localization arguments also fail in these sectors.

There is a striking resemblance between the Unruh effect and the physics of black holes.

So we expect that our comments in this paper, which argue for the failure of localization

arguments under generic conditions, have a bearing on the black hole information paradox.
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