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Abstract

We do a start-to-finish calculation of the stochastic gravitational wave background to be ex-

pected from cosmic strings. We start from a population of string loops taken from simulations,

smooth these by Lorentzian convolution as a model of gravitational back reaction, calculate the

average spectrum of gravitational waves emitted by the string population at any given time, and

propagate it through a standard model cosmology to find the stochastic background today. Except

for modeling back reaction as smoothing, we take into account all known effects, including changes

in the number of cosmological relativistic degrees of freedom at early times and the possibility that

some energy is in rare bursts that we might never have observed.

∗ josejuan.blanco@ehu.es
† kdo@cosmos.phy.tufts.edu

1



I. INTRODUCTION

Our universe may contain a network of cosmic strings, which could be either flux tubes

arising from a symmetry-breaking transition at high energies or the fundamental strings

of superstring theory (or one-dimensional D-branes) stretched out to astrophysical lengths

[1–3]. The best way to discover such a network, if it exists, is to observe the stochastic

background of gravitational waves emitted by cosmic string loops. Non-observation of such

a background in pulsar timing arrays currently gives the strongest bounds on the energy

scale of a possible cosmic string network.

In usual models, cosmic strings do not have ends. Thus they exist as a “network” of

infinite strings and closed loops. Intersections between strings lead to reconnections, and

when a string intersects itself, it produces a loop. Loops then oscillate relativistically and

decay by the emission of gravitational waves. If the string energy per unit length is µ, the

gravitational power emitted is ΓGµ, where Γ is a number of order 50 depending on the shape

of the string, and G is Newton’s constant. We work in units where c = 1.

In both the matter and the radiation era, the flow of energy from long strings into loops

and thence into gravitational waves maintains the network in a scaling regime, where all

linear measures, such as the average distance between strings, stay at a fixed multiple of the

horizon distance (or the age of the universe). Scaling allows us to extrapolate over many

orders of magnitude between what can be studied in a simulation and the universe today.

To connect observations or observational limits to the properties of possible cosmic

strings, we need to accurately compute the spectrum of gravitational waves to be expected

from a cosmic string network of a given energy scale. The steps in this process are as follows.

1. First we simulate the network of cosmic strings to find the rate of production of loops

of various sizes from the long string network, and we extract a representative sample

of loop shapes from the simulation.

2. This gives the distribution of loop shapes at the time the loops are formed, but grav-

itational back reaction modifies these shapes. Since we do not yet have a code for

calculating these changes in shape, we use a toy model of smoothing to estimate them.

3. We then compute the gravitational spectrum and total power Γ for each loop.

2



4. Using Γ, which also gives the evaporation rate, we integrate the production and evapo-

ration processes over cosmological time to determine the distribution of loops existing

at each redshift z.

5. We integrate the spectrum of individual loops over the loop distribution at each z to

find the overall emission spectrum.

6. Then we integrate the emission spectrum over cosmological time to get the present-day

background.

Items 1, 2, and 4 have already been done in Refs. [4–6]. The purpose of this paper is

to complete the program with items 3, 5, and 6. We include all known effects except that

we use a smoothing model rather than computing directly the effects of gravitational back

reaction on loop shapes. A companion paper compares the results with current observations

[7].

It is traditional in papers such as this to consider “small loop” models in which the

predominant size of loops at production is ΓGµ times the production time, so loops last for

only about one Hubble time. In our opinion, there is no reason to consider such models

any more. They were inspired by early simulations [8, 9] that found loops at the resolution

scale, but recent simulations [4, 10–14], with much greater reach, found loop production at

scales related to the horizon size at the time of production.

In this work we consider local cosmic strings (those which do not have any long-range

forces or couplings to massless particles other than the graviton) that do not have ver-

tices where 3 or more strings join. This includes Abelian-Higgs strings and fundamental

superstrings, but not axion strings, non-Abelian gauge strings, or (p, q) superstrings.

We model these strings using the Nambu approximation of a linelike relativistic string, as

in Refs. [4, 8–15]. This is an extremely good approximation even in the Abelian-Higgs case.

The present-day ratio of loop size or curvature scale, ΓGµt0, to the string thickness, about
√

µ/~, is Γ(Gµ)(3/2)t0/tPlanck ∼ 1044. Thus on any possible scale relevant to field theory

dynamics, strings are straight to fantastically good approximation, and their motion should

be given by the Nambu-Goto equations of motion. Indeed this was shown to be the case

in simulations of individual Abelian-Higgs strings when the curvature scale was larger than

the thickness [16–18].
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Many calculations of gravitational waves from cosmic strings have been done before.

Ref. [19] made the first estimate of the background from strings, using a simple scaling

distribution of horizon size loops radiating in the fundamental mode, and Ref. [20] used

a similar analysis to generate a bound based on pulsar timing. Ref. [21] calculated the

background using all modes in the spectrum of simple loops. Refs. [22–24] derived bounds

based using the “small loop” models suggested by simulations at the time, and Refs. [23, 24]

included the changes in the number of relativistic degrees of freedom. Refs. [25–27] intro-

duced the possibility of low intercommutation probability appropriate to cosmic superstrings

and compared the results with the capabilities of modern interferometric gravitational wave

detectors. Refs. [28–32] explored a wide range of different scenarios of loop sizes, power

spectrum, and intercommutation probability, and investigated the implications for several

current and projected observatories. In [6] we used the number density distribution of loops

from the latest numerical simulations, in the approximation that all radiated power is due

to cusps. In the present paper we will use not only the number density but the shapes of

loops found in simulations.

Refs. [33–36] analyzed bursts coming from cosmic string cusps and their potential ob-

servability.

The remainder of this paper is structured as follows. In the next section we calculate

the gravitational wave background in terms of the expansion history of the universe, the

distribution of loops at each epoch, and the power spectrum of gravitational waves emitted

from a typical loop. We discuss these three components in turn in Secs. III, IV, and V.

Sec. VI gives our results, and we conclude in Sec. VII.

Some technical matters are deferred to appendices. Appendix A gives the details of the

calculation of the radiated power from a cusp. Appendix B discusses how many harmonics

need to be computed to find the spectrum in any given direction. Appendix C discusses

summing contributions from the discrete modes emitted by loops, and Appendix D considers

whether the fact that some power is in very rare bursts requires a modification of the

stochastic background calculation.
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II. STOCHASTIC GRAVITATIONAL WAVE BACKGROUND

We will compute the stochastic background of gravitational waves presently existing as the

fraction of the critical density given by the energy of gravitational waves in unit logarithmic

interval of frequency,1

Ωgw(ln f) =
8πG

3H2
0

fρgw(t0, f) , (2)

where ρgw is the energy density in gravitational waves per unit frequency. Since gravitational

waves persist from very early times, the energy in a comoving region is just the redshifted

total energy deposited there,

ρgw(t0, f) =

∫ t0

0

dt

(1 + z(t))4
Pgw(t, f

′)
∂f ′

∂f
, (3)

where Pgw(t, f
′) is the total gravitational wave power of all loops existing at time t into unit

range of emitted frequencies. The emitted frequency that becomes frequency f today is just

f ′ = (1 + z)f , so we find

ρgw(t0, f) =

∫ t0

0

dt

(1 + z(t))3
Pgw (t, (1 + z)f) . (4)

Consider one loop of length l existing at time t. It emits gravitational waves at a set of

discrete frequencies. Radiation in harmonic n is emitted at frequency f ′ = 2n/l, and there

is a discrete power spectrum Pn, giving the power in each harmonic, in units of Gµ2. Each

loop has its own spectrum, but we will use the loops we get from simulations to produce an

average spectrum and then treat all loops as emitting with that spectrum.

To find Pgw(t, f
′), we sum over the contributions coming from all n. For each n there is

a specific length of loop, l = 2n/f ′, that gives frequency f ′ in that harmonic. Let n(l, t) be

the number density per unit length interval of loops of length l existing at time t. Then

Pgw(t, f
′) = Gµ2

∞
∑

n=1

n(l, t)
dl

df ′
Pn = Gµ2

∞
∑

n=1

2n

f ′2
n(l, t)Pn . (5)

Thus we can write

ρgw(t, f) = Gµ2
∞
∑

n=1

CnPn , (6)

1 The same background can be expressed as its power spectral density,

Sh(f) =
3H2

0

2π2f3
Ωgw(ln f) , (1)

or as its characteristic strain hc =
√

fSh(f). Pulsar timing arrays use these quantities directly, but

interferometers adjust them by averaging interferometer sensitivity over polarization and arrival direction,

reducing Sh by 5 and hc by
√
5 over the values given here. For a clear explanation of various measures of

the background see Ref. [37]. 5



with

Cn(f) =

∫ t0

0

dt

(1 + z)5
2n

f 2
n(l, t) . (7)

We can now change the integration variable using

dt = − dz

H(z)(1 + z)
(8)

to get

Cn(f) =
2n

f 2

∫ ∞

0

dz

H(z)(1 + z)6
n

(

2n

(1 + z)f
, t(z)

)

(9)

Equations (6,9) give the stochastic background in terms of the cosmology (H(z), t(z)), the

loop density n(l, t), and the radiation power spectrum of each loop, Pn. In the following, we

will discuss these effects in turn.

III. COSMOLOGY

The cosmological dependence in Eq. (9) is in H(z) in the denominator and t(z) appearing

as an argument to the loop distribution n(l, t). We will consider a flat radiation+matter+Λ

cosmology, with

H(z) = H0

√

ΩΛ + (1 + z)3Ωm +G(z)(1 + z)4Ωr , (10)

where the function

G(z) =
T (z)4g∗(z)

T 4
0 (1 + z)4g∗,0

(11)

corrects for the change in the number of relativistic degrees of freedom at early times. Here

T (z) is the temperature at redshift z, g∗(z) the effective number of relativistic degrees of

freedom then, and T0 and g∗,0 these quantities today.

Neutrinos today are presumably nonrelativistic and should technically be included in Ωm

and not Ωr. But the value of Ωr is important only at early times when neutrinos were

relativistic. So we define Ωr here to be the value it would have with massless neutrinos of

temperature (because neutrino decoupling takes place before electron-positron annihilation)

(4/11)1/3 times the present cosmic microwave background temperature.

The age of the universe at redshift z is the integral of Eq. (8),

t(z) =

∫ ∞

z

dz′

H(z′)(1 + z′)
, (12)
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where we will use [38]

ΩΛ = 0.69 , (13a)

Ωm = 0.31 , (13b)

and we can compute

Ωr =
32πGσg∗,0T

4
0

3H2
0

, (14)

where σ is the Stefan-Boltzmann constant, and g∗,0 ≈ 3.36 is the effective number of rela-

tivistic degrees of freedom with photons and massless neutrinos. With T0 = 2.2725K and

writing H0 = 100h km/s/Mpc as usual, we find

h2Ωr = 4.15× 10−5 . (15)

When necessary we will use the value h = 0.68 [38].

IV. LOOP DENSITY

A. Uniform radiation era

Reference [6] gives an analytic approximation to the number density of loops in the

radiation era,

nr(l, t) =
0.18

t3/2 (l + ΓGµt)5/2
(16)

for l < 0.1t. The loop density at any given time is an integral over the previous loop

production. In the radiation era, the integrand is sharply peaked and so it is quite accurate

to treat the loop production as a δ-function in loop size whose position and amplitude are

chosen to match simulation results, leading to Eq. (16). For details see Ref. [6].

Equation (16) applies when the universe has been in the radiation era (without changes

in the degrees of freedom) for a long time. Accordingly it exhibits scaling behavior in which

nr(l, t) = t−4
n(x) , (17)

where x = l/t and n(x) is the number of loops per unit x in volume t3,

n(x) =
0.18

(x+ ΓGµ)5/2
. (18)
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In this case, there is a simple result. Deep in the radiation era, and ignoring changes in

the degrees of freedom,

H(z) = (1 + z)2Hr , (19)

t(z) =
1

2(1 + z)2Hr
, (20)

where

Hr = H0

√

Ωr (21)

is the contribution from radiation to the Hubble constant today.

Putting Eq. (19) into Eq. (9) gives

Cn(f) =
2n

f 2

∫

dz

(1 + z)8Hr
n

(

2n

(1 + z)f
, t(z)

)

. (22)

We use Eq. (17) to change from n(l, t) to n(x), with t given by Eq. (20), to get

Cn(f) =
32H3

r

f 2

∫

dz n(x) . (23)

Then we change the variable of integration from z to

x =
l

t
=

8n(1 + z)Hr

f
, (24)

giving

Cn(f) =
8H2

r

f

∫

dx n(x) . (25)

From Eq. (25), we see that Cn has no dependence on n, so the stochastic background

depends only on

Γ =

∞
∑

n=1

Pn , (26)

that Cn depends only on the total loop number density2 in volume t3,
∫ ∞

0

dx n(x) = 0.12(ΓGµ)−3/2 , (27)

and finally that Cn(f) ∼ 1/f , so the power per unit logarithmic interval of frequency,

Ωgw(ln f), is constant.

Using Eqs. (2,6,25,26,27), we find

Ωgw(ln f) = 8.0Ωr

√

Gµ

Γ
, (28)

2 This agrees with Eq. (21) of Ref. [6], which gives the number in volume d3
h
= 8t3
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and Eq. (15) gives

h2Ωgw(ln f) = 3.3× 10−4

√

Gµ

Γ
= 4.7× 10−5

√

Gµ , (29)

with Γ = 50.

The high-frequency background comes almost entirely from deep in the radiation era, so

one might expect a plateau in Ωgw(ln f) given by Eq. (29). However, we will see below that

changes in the number of degrees of freedom introduce a few smooth steps on this plateau

region of the spectrum.

B. Changes in the number of degrees of freedom

At early times, the expansion rate of the universe changes because of the annihilation

of relativistic species, which injects additional energy into the universe and reduces its rate

of cooling. These changes are incorporated into the function G(z) of Eq. (11). We handle

them as follows.

We do not consider changes to the scaling properties of the string network, but assume

that it always traces the current rate of expansion. But we do take into account the fact that

the important loops at any given time are relics of earlier times when G(z) was different.

First consider a universe which spends a long time in a radiation era with G(z) = G1.

Instead of Eqs. (19,20), we have

H(z) = (1 + z)2Hr

√

G1 (30)

and

t(z) =
1

2(1 + z)2Hr

√
G1

. (31)

The loop density is still given by Eq. (16), with t from Eq. (31),

nr(l, t) =
0.18 · 23/2(H2

rG1)
3/4(1 + z)3

(l + ΓGµt)5/2
(32)

and

l =
2n

(1 + z)f
. (33)

We will use Eq. (32) even in the case where G(z) is changing, although this is not entirely

accurate. Taking into account more effects would lead to an even smoother dependence of

Ωgw on f .
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Once loops of a certain size are no longer being produced in significant numbers, their

density merely dilutes, going as (1+z)3, and the loops become shorter by gravitational back

reaction. Both these processes are included in Eq. (32), so Eq. (32) holds for in any later

era, with G1 always being the G(z) at the time at which the loop was produced.

Of course not all loops of the same size were produced at the same time, but the loop

production function is peaked in a fairly narrow range of loop size to production time ratio

around 0.1 [6], so we will make this approximation to compute G1. Suppose a loop with

length l at time t was produced at time t1. Then its length at production was l+ΓGµ(t− t1)

and its ratio of length to production time was

x1 =
l + ΓGµ(t− t1)

t1
. (34)

Setting x1 = 0.1 and using the approximation ΓGµ ≪ x1, we find

t1 ≈ 10(l + ΓGµt) . (35)

and then

G1 = G(z(t1)) . (36)

We compute G(z) using a code for g∗(z) written by Masaki Yamada, which includes the

contributions from all the particles in the Standard Model. The result is to introduce small

steps in the G(z) function, noticeable especially around electron-positron annihilation and

the QCD phase transition.

Putting Eq. (32) in Eq. (9) gives

Cn(f) =
0.18 · 25/2H3/2

r n

f 2

∫

dz
G1(l, t)

3/4

H(z)(1 + z)3 (l + ΓGµt)5/2
, (37)

where z is the redshift at which the gravitational wave is emitted, t = t(z) is the age of

the universe at redshift z, given by Eq. (20) in the radiation era after electron-positron

annihilation, l is given by by Eq. (33), and G1(l, t) is computed using Eqs. (35,36).

C. Matter era

In the matter era, there are two kinds of loops. For Gµ compatible with observational

bounds, the most important loops were formed in the radiation era. Their density is given
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by Eq. (32), which already includes dilution as the universe expands and loss of length due to

gravitational radiation. We thus use Eq. (37) in all eras, with H(z) and t(z) as appropriate.

With t in the matter era and Gµ around current limits, we can set G1 = 1, although

we do not make this approximation in our numerical calculations. The largest loops formed

at the time of electron-positron annihilation have size about 0.1tep. For them to survive

until matter-radiation equality at teq requires ΓGµteq < 0.1tep and thus ΓGµ < 0.1tep/teq ≈
6× 10−13, or Gµ <∼ 10−14.

There are also loops formed in the matter era. Analysis of simulations [6] gives the density

of such loops in a scaling regime,

nm(l, t) =
0.27− 0.45(l/t)0.31

t2 (l + ΓGµt)2
(38)

for l < 0.18t. Loop production in the matter era is not so strongly peaked as in the radiation

era. Equation (38) is the result of a two-parameter analytic fit to the loop production seen

in simulations. For details see Ref. [6]

Using Eq. (38) in Eqs. (6,9) gives the stochastic background arising from these loops.

We give the result in Sec. VI, but it is negligible compared to the background from relic

loops from the radiation era. The basic reason is that for the dominant loop size l ∼ ΓGµt,

Eq. (16) is larger than Eq. (38) by factor (ΓGµ)−1/2. For Gµ < 2 × 10−11, this is at least

2× 105.

We did not study loops formed during the matter to radiation transition. But these also

have little consequence. In fact, even loops formed near the end of the radiation era make

little contribution. From Eqs. (31,35) and taking t0H0 ≈ 1, G1 = 1, and using Eq. (15), we

find the dominant loops today were produced at redshift about

0.16Ω−1/4
r (ΓGµ)−1/2 ≈ 16(ΓGµ)−1/2 > 5× 105 (39)

for Gµ < 2 × 10−11. This is far larger than the redshift of matter-radiation equality, about

3000.
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V. SPECTRUM OF A LOOP

A. Population of loops

The last ingredient is Pn, the average gravitational spectrum radiated from a loop. We

compute this separately for loops formed in the matter era and those formed in the radiation

era. In each case, we use a sample of loops found in simulations. (See Ref. [4] for a discussion

of simulation techniques.). We used 1060 loops in the radiation era and 812 in the matter

era.

These simulation loops, however, are not representative of loops existing at any given

time, because those loops have lost a significant fraction of their energy due to gravitational

wave emission and thus have had their shapes modified by back reaction. For the present

paper, we model this effect by smoothing the loops by convolving them with a Lorentzian

[5], even though we know [39, 40] that this model is not entirely correct. We consider the

last three smoothing steps, corresponding to loss of 1/8, 1/4, and 1/2 of the initial loop

length. In the next section we give some separate results for these three steps, but for the

final result we used only the last step. Including the others would not make any noticeable

difference.

Convolution yields a set of smooth loops whose radiation power Pn we would like to

compute. We should not model these loops in a piecewise linear form, as we do for loops in

our simulations. A piecewise linear loop would have kinks between the pieces, and at suffi-

ciently high frequencies these fictitious kinks could make a big difference to the gravitational

radiation power.

Instead, we represent the strings as smooth functions given by their Fourier transforms.

We keep the Fourier amplitudes for some finite number Nf (up to 4096) of frequencies.

To compute the gravitational radiation spectrum of such loops, we must understand their

motion, which we now discuss.

B. Loop motion and cusps

The expansion of the universe is very important for the evolution of the string network

and later for the propagation of gravitational waves. But the loops we will study are always

much smaller than the Hubble distance, and so their evolution takes place essentially in flat
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space.

The general solution for the motion of a Nambu-Goto string in flat spacetime can be

written

Xµ(t, σ) =
1

2
[Xµ

−(σ−) +Xµ
+(σ+)] , (40)

where σ± = t ± σ, are the lightcone coordinates on the string worldsheet built from the

timelike coordinate t and the spacelike parameter σ. We will work in the gauge where the

4-vector functions Xµ
± have X0

± = σ±, and the spatial part obeys the constraints |X′
−(σ−)| =

|X′
+(σ+)| = 1, where, as usual, the prime denotes a derivative of the function with respect to

its argument. The two functionsX± specify the motion of the loop. It is these functions that

we smooth to emulate gravitational back reaction effects, and it is these smooth functions

that we represent by their Fourier coefficients.

For a closed loop in the rest frame, X± are periodic, X±(σ±) = X±(σ± + l), and thus

∫ l

0

X′
±(σ±)dσ± = 0 . (41)

Thus X′
+ and X′

− each trace out a loop on the “Kibble-Turok” unit sphere [41–43], and the

center of gravity of the loop is at the center of the sphere. Generically these two paths will

cross, so there are usually points where

X′
+(σ

c
+) = X′

−(σ
c
−) . (42)

Thus at tc = (σc
++σc

−)/2, σc = (σc
+−σc

−)/2, the string velocity (formally) reaches the speed

of light,
∣

∣

∣

∣

dX

dt

∣

∣

∣

∣

= 1 , (43)

and the string doubles back on itself,

dX

dσ
= 0 , (44)

so such a point is called a cusp.3

The existence of cusps leads to difficulties in computing the gravitational radiation spec-

trum from a loop. When there is a cusp, the spectrum falls only as n−4/3 [21], where n is the

harmonic number of the radiation. Thus the integrated power falls only as n−1/3. This slow

3 Note that cusps are not artifacts of Nambu-Goto dynamics. In fact they are formed in field theory cosmic

strings, as we showed [16] in the Abelian-Higgs model.
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decrease makes it impractical to accurate compute the total power by simply computing

numerically up to some maximum n. Instead we compute the power from cusps analytically

(See Appendix A), and use this computation for high frequencies in directions near cusps.

Cosmic strings may also have kinks: places where there is a discontinuous change in X′.

These lead to a spectrum which falls as n−5/3 [43]. However, in the present analysis, kinks are

smoothed out by convolution, so that we do not have to consider them in our computations.

A better analysis of kink evolution [39] show that kinks are opened out rather than being

rounded off. In future work we will compute the actual back reaction numerically, but at

the moment we are restricted to modeling it as a smoothing process.

C. Radiation power

Computation of the radiation power spectrum, Pn, for each of our loops proceeds as

follows. First we find cusps, the places where the paths of X′
+ and X′

− cross on the unit

sphere. We do this by generating by fast Fourier transform (FFT) at least 10Nf samples of

each function and looking for crossings between the great-circle paths connecting adjacent

samples. When we find such a crossing, we narrow it down using the Fourier transform

representations of X±.

Then we integrate the gravitational radiation power over solid angle by dividing the

sphere of emission directions into triangles. We start with an icosahedron projected onto

the sphere and then repeatedly divide each triangle into 4 smaller triangles by inserting a

point at the center of each edge [44]. If we perform the division process Nsplit times, the

total number of triangles is 20× 4Nsplit. We used Nsplit = 5.

We now see how close each triangle comes to the direction (i.e., the X′
+ = X′

−) of any

cusp. If there is a cusp inside the triangle or within a threshold angle, taken as 0.1, we

compute the emission using the cusp emission procedure described Sec. VE below. If not,

we compute the radiation using the generic expression for the power given in Sec. VD in

the direction of the center of the triangle (given by the normalized average of the 3 corner

directions) and multiply by the area of the triangle on the unit sphere.
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D. Radiation in a generic direction

To compute the radiation power in a given direction Ω̂, we follow Refs. [45–47]. The

goal of this section is the same as that of Ref. [46], but here we benefit from much larger

simulations enabled by 25 years of improvement in computer power, and we deal with

smoothed loops rather than those taken directly from simulations.

The angular power density emitted in harmonic n is

dPn

dΩ
=

Gµ2l2

2π
ω2
n(|A+|2 + |A×|2) = 8πGµ2n2(|A+|2 + |A×|2) , (45)

where l is the length of the loop, ω = 4πn/l and A+ and A× are the amplitudes of the two

gravitational wave polarizations. If we construct a coordinate system whose z axis is in the

Ω̂ direction, they are given by

A+ = I−x I
+
x − I−y I

+
y , (46a)

A× = I−y I
+
x + I−x I

+
y , (46b)

where

I±(n)(Ω̂) =
1

l

∫ l

0

dσ± X′
±(σ±)e

(2πin/l)(σ±−Xz(σ±)) . (47)

From Eqs. (46) we find

|A+|2 = |I−x |2|I+x |2 + |I−y |2|I+y |2 − 2Re(I−x I
−∗
y I+x I

+∗
y ) , (48)

|A×|2 = |I−y |2|I+x |2 + |I−x |2|I+y |2 + 2Re(I−∗
x I−y I

+
x I

+∗
y ) , (49)

where asterisk means complex conjugation. Thus

|A+|2 + |A×|2 = |I−⊥ |2|I+⊥ |2 + 4 Im(I−x I
−∗
y ) Im(I+x I

+∗
y ) , (50)

where |I±⊥ |2 = |I±x |2 + |I±y |2. We can write

Im(I±x I
±∗
y ) = (II × IR)z , (51)

where the subscripts I and R mean the imaginary and real parts of the vector. This shows

that the result is independent of the choice of the coordinate system in the perpendicular

plane.

We would now like to compute I
±(n)
⊥ in directions far from any cusp, for specific X±

given in terms of their Fourier transforms. To do this quickly, we would like to use FFT
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to compute all necessary n at once. However, Eq. (47) does not have the form of a Fourier

transform, because the exponent is not simply 2πinσ±/l. But we can approximate it as a

nonuniform discrete Fourier transform as follows.

First take N positions σj = jL/N , j = 0 . . .N − 1. To compute I+x , for example, we

generate X ′
x(σj) and φj = (σj −X+

z (σj))/l at these N positions. This can be done by FFT

using the Fourier components of X+
x . We then have

I+(n)
x (Ω̂) =

1

N

N−1
∑

j=0

X ′+
x (σj)e

2πinφj . (52)

This is a non-uniform Fourier transform problem, which can be solved in O(N lnN) time.

We use the method of Potts, Steidl, and Tasche [48]. The choice of how many n to compute

is discussed in Appendix B.

E. Radiation in a cusp direction

In the case where the triangle is close to the direction of the cusp, the situation is

more difficult. In any given direction the gravitational power from the cusp decreases with

frequency only as ω−2/3, so the power per logarithmic interval of ω increases as ω1/3. This

continues until the radiation is cut off at some maximum frequency proportional to θ−3,

where θ is the angle between the cusp direction and the direction of observation. The

angular area over which a given frequency ω is important is proportional to θ2 ∼ ω−2/3, so

the radiation from a cusp, integrated over solid angle, declines as ω−4/3 and the contribution

per logarithmic interval goes as ω−1/3.

This long tail makes it difficult to compute the radiation accurately using the techniques

above. First, we would need huge numbers of harmonics near the cusp, and second, the

high-frequency radiation varies rapidly over small distances within the triangle. To solve

this problem, we calculate the high-frequency cusp radiation analytically using a simple

model of the cusp, and then integrate numerically over the triangular region.

Because this model does not work well for low frequencies, we compute those using

Eqs. (45-47) even in the direction of the cusps. Because of aliasing, FFT techniques do

not give accurate answers even at low frequencies, unless all frequencies with significant

power are included. So we compute the integral in Eq. (47) directly. The decision of which
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FIG. 1. Spatial distribution of the gravitational radiation from a smooth loop. We show the

Mollweide projection of the radiation density on a sphere surrounding the loop. The brighter

regions represent the high radiation density in the direction of the cusps.

frequencies are done by which technique is made by using the cusp technique whenever the

frequency would have significant variation over the range of directions in the triangle.

The details of the cusp procedure are given in Appendix A. We show in Fig. 1 an example

of the radiation density emitted by a typical loop. We see the enhancement of the radiation

density along the directions of the cusps.

VI. RESULTS

A. Total radiation power Γ of a loop

The simplest result that one can obtain is the total radiation power, integrated over

directions and frequencies. This has the form P = ΓGµ2, so the goal is to determine

the constant Γ. The slowest known radiator is the Allen-Casper-Ottewill (ACO) loop [49]

studied extensively by Anderson [50–52], with Γ ≈ 39.0025. There is no upper limit to Γ.

For example, the Γ of Burden [45] loops grows without bound as the angle between the
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FIG. 2. Histogram of Γ values for the loops in the radiation era at various stages of smoothing.

The results for the matter era are very similar.

planes of X+ and X− decreases. The power spectrum and the total power emitted from

these loops can be computed using the expressions found in [45]. We have used these simple

loop solutions as test beds for our numerical code. The results are in very good agreement

with the analytic calculations.

A histogram of Γ for loops taken from simulations with various degrees of smoothing is

shown in Fig. 2. Remarkably, for the great majority of loops, Γ ∼ 50. Since smoothing the

loop produces cusps that were not there before, one might think that smoother loops would

have higher radiation power. However, as shown in Fig. 3, the additional power emitted by

the cusp comes at the expense of non-cusp emission. Thus the presence of cusps moves the

power to higher frequencies but produces little change in the overall power.

Consequently it is a good approximation to use Γ = 50 always, and we do not need to

concern ourselves with the fact that different loops evaporate at different rates. We have

calculated the average value of Γ for a population of 1060 loops obtained in 3 radiation era

runs and obtained Γ̄r = 51.43.

In the matter era we consider 812 loops and the average total radiation power is Γ̄m =
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FIG. 3. Average power spectrum scaled by n4/3 of radiation era loops at three stages of smoothing.

The feature at n ≈ 107 is an artifact. See the end of Appendix B

53.55.

B. Power spectrum

The power spectrum of the loop is the set of discrete numbers Pn, n = 1 . . .∞. We

use this spectrum in Eq. (6) to compute ρgw(f) and so Ωgw(ln f). But of course we cannot

compute an infinite set of numbers. Instead we compute a finite number of Pn, with the n

chosen to give an accurate result in ρgw(f), taking account of our expectation that Pn will

drop as n−4/3. The details are given in Appendix C. We take a weighted average4 of the Pn

of the smoothed loops from the simulation to use in Eq. (6). The average Pn for loops in

the radiation and matter eras are shown in Fig. 4.

We note that even though the average power spectrum is very smooth, some of the loops

have quite different shapes, which leads to some variety in the power spectra as shown in

4 See Ref. [5] for a detailed description of the weighting procedure to compute the averages from our sample

of loops from the simulation.

19



 10

 11

 12

 13

 14

 15

 16

 17

 18

100 101 102 103 104 105 106 107 108 109

n4/
3  P

n

n

radiation
matter

FIG. 4. Average power spectrum scaled by n4/3 of radiation and matter era loops. We show here

only the power spectrum at the last step on the smoothing procedure. See the end of Appendix B

for a discussion of the artifact at n ≈ 107

Fig. 5. Of course this variation is amplified by the way we choose to represent the power

spectrum by n4/3Pn.

C. Stochastic Gravitational Wave Spectrum: Ωgw(ln f)

With the Pn, and the Cn from Eq. (9) using the loop densities computed in Sec. IV, we

compute Ωgw(ln f) for a range of frequencies f using Eqs. (2,6). The results are shown in

Fig. 6. This includes the contributions from the loops in all the eras, as described earlier in

the text.

The general form of the spectra can be understood as follows. Very low frequencies can

only be emitted by large loops, but large loops are suppressed by l−5/2, as in Eq. (16). There

is an extra power of f in Eq. (2), so at very low frequencies, Ωgw goes as f−3/2. At even

lower frequencies there is a cutoff because there are essentially no strings of size l > 0.1t at

time t, but this does not appear in Fig. 6.

At high frequencies, we are sensitive only to loops radiating in the radiation era. Ac-
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FIG. 5. Power spectra of a few individual loops in the radiation era, chosen to show the diversity

of possibilities. The great majority of loops have spectra similar to loop 1 here, but some are quite

different. Nevertheless, averaging over many loops gives the smooth spectra shown in Fig. 4.

cording to Eq. (29) this would give a plateau proportional to
√
Gµ. However, changes in

the number of relativistic degrees of freedom at early times turn the plateau into a series of

decreasing plateaus, which are smoothed into a decline with some wiggles.5 At intermediate

frequencies is there is a peak resulting from gravitational wave emission in the matter era.

Decreasing Gµ does not change the frequencies at which any given loop radiates, but the

overall power drops proportionately to Gµ. Simultaneously, the lower Gµ allows loops to

survive longer, so that at any given time there is now a new, larger population of older and

smaller loops, which radiate at higher frequencies. The net result is that the curve of Ωgw

moves downward proportionately to
√
Gµ and to the right as 1/(Gµ).

To model intercommutation probability p < 1 in the standard way one should move up

the graph for the desired Gµ by factor 1/p. However, we feel that more work is needed to

understand low-p string networks. While increasing the loop density by 1/p reproduces the

5 Note that adding new ingredients in the thermal history of the universe, such as new physics beyond the

Standard Model, could introduce new features in this spectrum. In principle, detecting this stochastic

background from strings could allow us to probe the thermal history of the universe, though in fact the

effect occurs only at very high frequencies
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FIG. 6. The stochastic gravitational wave spectrum for string tensions between Gµ = 10−8 and

10−14.

p = 1 average reconnection rate between unrelated strings, the production of loops requires a

long string to intersect with itself, and the chance of that is unaffected by the overall density.

So the evolution of a p < 1 network may be more complicated than a simple rescaling.

VII. CONCLUSION

We have computed the stochastic background of gravitational waves to be expected from

a network of local cosmic strings with Gµ ranging from 10−8 to 10−14. We used a ΛCDM

cosmology with string loops taken from simulations and smoothed by Lorentzian convolution

as a model of gravitational backreaction [5]. We analyzed strings in the radiation era, strings

from the radiation era radiating in the matter era, and strings produced in the matter

era (though these, and all strings in the recent Λ-dominated era, make no essentially no

contribution). We took account of changes in the number of relativistic degrees of freedom
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in the very early universe, which give an important reduction in the background at high

frequencies. We found (see Appendix D) that there is no need remove energy contained in

rare bursts from the observable stochastic background. The only missing ingredient is a real

calculation of gravitational backreaction, which the subject of work currently in progress.

A companion paper [7] compares the results predicted here with limits from current

observations and discusses the prospects of detection in the future. The data shown in

Fig. 6, with the range Gµ extended down to 10−25, are available at

http://cosmos.phy.tufts.edu/cosmic-string-spectra/.
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Appendix A: Gravitational wave power from cusps

In this appendix we compute the gravitational radiation power due to the string near

a cusp in directions close to the direction in which the cusp is moving, X+ = X−. The

idea of the analysis is very similar to Refs.[33–36], but those analyses were interested in

the waveform for burst detection, whereas here we need the power spectrum to compute

the stochastic background. We also compute the power spectrum for cusps with specific

parameters rather than what is expected for a generic cusp.

To simplify the calculation, we will choose our coordinate system so that the z axis lies

in this direction (note that this is a different convention from that of Sec. V), and the y axis

lies perpendicular to both the cusp direction and the observation direction, which we can

thus write

Ω̂ = (sin θ, 0, cos θ) , (A1)

where θ is the angle between cusp and observation directions.

23



We put the point of the cusp at σ± = 0, and expand the string around that point,

X+(σ+) = σ+ẑ+
1

2
x′′
+σ

2
+ +

1

6
x′′′
+σ

3
+ (A2a)

and

X−(σ−) = σ−ẑ+
1

2
x′′
−σ

2
− +

1

6
x′′′
−σ

3
− , (A2b)

where we defined x′′
± = X′′

−(0) and x′′′
± = X′′′

−(0). The constraints of the equations of motion

require that

x±
z
′′
= 0 , (A3)

and

x±
z
′′′
= −|x′′

±|2 . (A4)

We ignore other components of x′′′, which contribute only at higher orders in θ, so Eqs. (A2)

become

X±(σ±) = σ±ẑ+
1

2
x′′
±σ

2
± − 1

6
|x′′

±|2σ3
±ẑ , (A5)

and Eq. (47) can be written

I± =
1

l

∫ l

0

X′
±e

(i/2)(ωσ±−k·X±)dσ± , (A6)

where ω is the frequency of the emitted radiation and k = ωΩ̂ is its wavevector.

To describe the polarization of the gravitational waves, we need two unit vectors lying in

the plane perpendicular to Ω̂. We choose

n̂1 = (cos θ, 0,− sin θ) , (A7)

n̂2 = ŷ . (A8)

We use Eqs. (45,50) and convert from discrete to continuous frequencies with ω = 4πn/l to

get the spectral power density

dP

dωdΩ
=

Gµ2l3ω2

8π2

[

|I+⊥ |2|I−⊥ |2 + 4 Im I−1 I
−∗
2 Im I+1 I

+∗
2

]

, (A9)

where I±i = I±(ni) = ni · I± and |I±⊥ |2 = |I±1 |2 + |I±2 |2.
Since we are interested in the radiation near the cusp, we expand ni and k in the small

parameter θ to get

k = ω
(

θ, 0, 1− θ2/2
)

(A10)

n̂1 =
(

1− θ2/2, 0,−θ
)

(A11)

n̂2 = (0, 1, 0) . (A12)
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Using Eqs. (A2),

I±(n̂) =
1

l

∫ l

0

(n̂z + σ±(x
′′
± · n̂))e(iω/4)(θ2σ±−(k·x′′

±
)σ2

±
+|x′′

±
|2σ3

±
/3) dσ± . (A13)

Using Eq. (A3), the second derivatives of the X± at the cusp can always be written

x′′
−(σ−) = (α− cosφ−)x̂+ (α− sinφ−)ŷ (A14)

and similarly,

x′′
+(σ+) = (α+ cosφ+)x̂+ (α+ sinφ+)ŷ , (A15)

giving

I±(n̂) =
1

l

∫ l

0

(Q±(n̂) + P±(n̂)σ±) e
i(A±σ±+B±σ2

±
+C±σ3

±) dσ± , (A16)

where

Q±(n̂1) = ẑ · n1 = −θ (A17)

P±(n̂1) = x′′
± · n1 = α± cosφ± (A18)

Q±(n̂2) = ẑ · n2 = 0 (A19)

P±(n̂2) = x′′
± · n2 = α± sinφ± (A20)

A± =
ωθ2

4
(A21)

B± = −ωθ

4
α± cos φ± (A22)

C± =
ω

12
α2
± , (A23)

and where we kept only the lowest order in θ in each term. The integral in Eq. (A16) can

be done in closed form, giving

I±1 = I±(n̂1) = e−iΦ±

[

2√
3

θ2

α±l
sin2 φ±

(

i cosφ±K2/3(ξ±)− | sinφ±|K1/3(ξ±)
)

]

(A24)

I±2 = I±(n̂2) = e−iΦ±

[

2√
3

θ2

α±l
sinφ±| sinφ±|

(

i| sinφ±|K2/3(ξ±) + cos φ±K1/3(ξ±)
)

]

,(A25)

where Φ± are some irrelevant phases,

ξ± =
1

6
ωθ3

| sin3 φ±|
α±

, (A26)

and K is the modified Bessel function. Thus

|I±1 |2 + |I±2 |2 =
4

3

θ4

α2
±l

2
sin4 φ±

(

K1/3(ξ±)
2 +K2

2/3(ξ±)
)

(A27)

Im I±1 I
±
2 =

4

3

θ4

α2
±l

2
sin4 φ± sign(sinφ±)K1/3(ξ±)K2/3(ξ±) . (A28)
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Putting these in Eq. (A9), we find

dP

dωdΩ
=

2Gµ2ω2θ8

9π2l

sin4 φ+ sin4 φ−

α2
+α

2
−

[

(

K2
1/3(ξ+) +K2

2/3(ξ+)
) (

K2
1/3(ξ−) +K2

2/3(ξ−)
)

(A29)

+4 sign(sinφ+ sinφ−)K1/3(ξ+)K2/3(ξ+)K1/3(ξ−)K2/3(ξ−)

]

.

Note that this expression gives the power emitted by the cusp per frequency and per solid

angle as a function of the the length of the loop and four parameters that describe the cusp,

namely (α±, φ±), which describe the crossing of the vectors X′
+ and X′

− on the Kibble-Turok

sphere and the relative angle with respect to the observation direction. Our code to compute

the power spectrum from individual loops in the simulation first looks at the possible cusps

in each loop and identifies these parameters. We can then integrate Eq. (A29) over solid

angle and over ranges of frequency to include in the gravitational radiation spectrum from

triangles that are near cusps.

We do not use it for low frequencies where the approximation of the set of discrete

harmonics by the continuous frequency ω would lead to significant inaccuracy.

Appendix B: The number of harmonics to compute

Except for directions near cusps, we find the power spectrum by computing I
(n)
± by fast

Fourier transform. This yields all harmonics up through some maximum nmax. In most

directions, the power falls quickly, and we only need to compute a few harmonics. But in

directions close to any X′
±, the corresponding I

(n)
± may fall very slowly. We estimate how

many harmonics we need to compute for any given direction as follows.

We consider the computation of I
+(n)
x and suppress all + subscripts and superscripts for

this section. We define

f(σ) = σ −Xz(σ) (B1)

g(σ) = X ′
x(σ) (B2)

h(σ) = f ′(σ) = 1−X ′
z(σ) (B3)

so that

I(n)x =
1

l

∫ l

0

dσ g(σ)ei̟nf(σ) , (B4)

with ̟n = 2πn/l. We can set the origin of coordinates so that x(0) = 0. Then as σ goes

from 0 to l, f(σ) also goes from 0 to l, and h(σ) ≥ 0 so f is nondecreasing.
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We can write Eq. (B4) as a Fourier transform [46], by changing variables from σ to f ,

getting

I(n)x =
1

l

∫ l

0

df s(f)ei̟nf , (B5)

where

s(f) =
g(σ(f))

h(σ(f))
, (B6)

and σ(f) is the inverse of f(σ).

We would like to bound Ix by bounding the derivatives of s(f). We integrate by parts m

times in Eq. (B5), finding

I(n)x =
im

l̟m
n

∫ l

0

df s(m)(x)ei̟nx , (B7)

where s(m) is the mth derivative of s. If we can bound the derivatives, |s(m)| < s
(m)
max, then

we will find |I(n)x | < Bm = s
(m)
max/̟m

n .

To differentiate s(f), we can take ds/df = (ds/dσ)/(df/dσ). The effect is to differentiate

with respect to σ and then divide by h. We thus have

s(m) =

(

h−1 d

dσ

)m
(

h−1g
)

. (B8)

One term found in s(m) is the one where we repeatedly differentiate the inverse power of h,

which thus grows by two units each step, giving

s(m) ⊇ (2m− 1)!!h′m

h−(2m+1)
g . (B9)

We conjecture that this is the dominant term. Considering it alone, we can derive a bound.

We need to know the largest value of Eq. (B9) anywhere on the string. Since we are not

concerning ourselves here with structure in g, we will merely observe that |g| < 1. Now

h = 1 − cos θ, where θ is the angle between x′ and the direction of observation. We expect

that |h′| = |X ′′
z | is not too large, because of smoothing. Also when h is small, X′′ is mostly

transverse to the observation direction. So write

s(m)(σ) ≈ (2m− 1)!!
r(σ)m

h(σ)
, (B10)

where

r(σ) =
|X ′′

z (σ)|
h(σ)2

. (B11)
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We’re interested in m ≫ 1, so Eq. (B10) has its maximum at the σ that maximizes r,

regardless of m. Let us call this point σmax and let rmax = r(σmax). Then

Bm = (2m− 1)!!
rmmax

h(σmax)̟m
n

. (B12)

Ignoring the extra power of h,

lnBm ≈ m(ln 2m− 1 + ln(rmax/̟n)) , (B13)

which is minimized at m = ̟n/(2rmax), at which point

Bm ≈ e−m = e−̟n/(2rmax) . (B14)

Thus I
(n)
x falls off as e−̟n/(2rmax). For a given string and a given Ω̂, we scan the string to

find rmax for I+ and I−. Using Eqs. (45,50) this gives us an exponentially declining bound

on dPn/dΩ and thus a value of nmax after which the power is insignificant.

When we do the calculation using this nmax, we check that indeed the computed dPn/dΩ

are small for the last few n. Thus the even if the conjecture above is not correct, we have

good reason to believe that we are not missing any power.

In certain cases, computational resources do not allow us to compute as many harmonics

as recommended above. In particular, some loops have “pseudocusps” [53, 54], places where

X′
+ and X′

− come close without crossing. Because such a point is not an actual cusp, it is

handled by direct computation, rather than our cusp code. But in observation directions

close to X′
+ and X′

−, h is very small and thus rmax large for both I+ and I−, so the power

remains high for many harmonics. We limit the computation to 107 harmonics, so we miss

n > 107 power coming from such regions. This leads to a fictitious drop in the computed

power spectrum at n = 107, as shown in Figs. 3 and 4. This is of much less significance

than it appears in the figures, because the actual power is multiplied by n−4/3 over what is

shown there.

Appendix C: Numerical summation of an infinite series

In this appendix we discuss the computation of an infinite sum,

∞
∑

n=1

An , (C1)
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such as appears in Eq. (6). Of course the An must decrease rapidly enough so that the sum

converges. We can evaluate only a finite number of An, and we must get from there to an

approximation for the infinite sum.

A great deal has been written on the subject of numerical integration, but much less on

numerical summation. Most of what there is involves the Euler-Maclaurin formula, which

enables one to convert a sum of discrete samples of a smooth function into an integral.

But here we do not have samples of a smooth function but rather a function defined only

at discrete values n. Thus we will develop a little of the needed techniques for numerical

summation by analogy with numerical integration.

A numerical integration method can be though of as a way of taking a finite number

of samples of the integrand, producing from those an approximation to the integrand, and

integrating that instead. For example, in the trapezoidal rule, the integrand is approximated

by linear interpolation between sampled points. We will use a similar technique here.

The standard procedure for integrals going to infinity (for example see Ref. [55]) is to

perform a change of variable to render the integration range finite. For example if one has
∫ ∞

1

dx f(x) , (C2)

one can let t = 1/x to get
∫ 1

0

dt f(1/t)/t2 . (C3)

If f(x) decreases at least as fast as 1/x2 [55], then f(t)/t2 will be bounded as t → 0.

In our case, An = CnPn. For very large n, the power Pn is dominated by cusp emission

and goes as n−4/3. The coefficients Cn decrease, so An decreases at least as n−4/3 but not

necessarily faster. If we had f(x) going as x−4/3 in Eq. (C2), we should change variables to

t = x−1/3, giving

3

∫ 1

0

dt f
(

t−3
)

/t4 , (C4)

where the integrand is bounded as t → 0.

We will now use Eq. (C4) as a guide to approximate Eq. (C1) using a finite number of n.

The discrete approximation to the integrand in Eq. (C4) is Sn = n4/3An, and it is this Sn

that we will interpolate between computed values. Furthermore the variable of interpolation,

analogous to t, should be n−1/3. Thus if we have computed Sn and Sm, we will find Sl for

l ∈ (m,n) by

Sl =
m−1/3 − l−1/3

m−1/3 − n−1/3
Sn +

l−1/3 − n−1/3

m−1/3 − n−1/3
Sm . (C5)
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The sum of terms from m through n− 1 is given by

n−1
∑

l=m

n−4/3Sl =
Sm − Sn

m−1/3 − n−1/3
[ζ(5/3, m)− ζ(5/3, n)] (C6)

−n−1/3Sm −m−1/3Sn

m−1/3 − n−1/3
[ζ(4/3, m)− ζ(4/3, n)] ,

where

ζ(s,m) =

∞
∑

k=0

(m+ k)−s (C7)

is the Hurwitz ζ function.

Suppose we have computed Sn for some set of nj , j = 1 . . .N . For simplicity, let us

require that nN = ∞. Of course A∞ = 0, but if Cn approaches a nonzero limit as n → ∞,

then S∞ is a constant that we can compute, and using it improves the approximation. This

occurs when we compute the total power Γ, where Cn = 1.

We can write

∞
∑

n=1

An =

∞
∑

n=1

n−4/3Sn =

N−1
∑

j=1

nj+1−1
∑

l=nj

l−4/3Sl ≈
N
∑

j=1

cjSnj
, (C8)

where cj is the sum of the coefficient of Sm in Eq. (C6) with m = nj, n = nj+1 and the

coefficient of Sn in Eq. (C6) with m = nj−1, n = nj ,

cj =
ζ(5/3, nj)− ζ(5/3, nj+1)− [ζ(4/3, nj)− ζ(4/3, nj+1)]n

−1/3
j+1

n
−1/3
j − n

−1/3
j+1

(C9)

−
ζ(5/3, nj−1)− ζ(5/3, nj)− [ζ(4/3, nj−1)− ζ(4/3, nj)]n

−1/3
j−1

n
−1/3
j−1 − n

−1/3
j

.

For j = 1, there is no contribution from the previous interval. For j = N , there is no

contribution from the next interval.

Equation (C5) still holds with n = ∞ and consequently n−1/3 = 0. Then Eq. (C9) holds

also. For cN−1, everything vanishes in the first line except the first terms in the numerator

and the denominator, while the second line is normal. For cN the first line is absent because

it is the last interval, and in the second line all terms involving nj vanish.

One might approximate an integral such as Eq. (C4) by evaluating the integrand at evenly

spaced t. By analogy, we can choose the nj so that the n
−1/3
j are evenly spaced, as much as

possible. We do this by picking a fiducial number N ′, in our case 1000, choosing ti = i/N ′

for i = 0 . . .N ′, and letting {nj} be the distinct integers, plus infinity, found by rounding

the t−3
i . The number of such modes is about 4(N ′/3)3/4. In our case N = 312.
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Appendix D: Handling of rare bursts

The above computation of Ωgw is the computation of its average value. If what we observe

is the total contribution due to many loops, then by the central limit theorem we should

expect a Gaussian background. But if the average is dominated by a few rare bursts, so rare

that we might not have seen any of them, then we should expect a smaller signal. Thus rare

bursts should be excluded from the background calculation [34].

Suppose an experiment runs for time T and reports the average signal at some typical

frequency f . If strong bursts occur less often than the duration of the experiment, then we

would probably not have seen even one, so their contribution should be excluded from our

estimate of the average power. So the question is whether any significant contribution to

Ωgw comes from strong bursts that typically do not occur within a time interval T . We will

see below that it does not.

One can also consider the status of bursts that occur with frequency greater than 1/T

but less than frequency f . This might matter for experiments such as LIGO and LISA, but

not for pulsar timing, where the typical frequency is about the inverse of the observation

time. Bursts with these intermediate rates contribute to the average power over the entire

interval T in the usual way, so if that is the observation with which we compare, they do

not need to be excluded. In fact, such bursts are likely to be detected by burst detection

pipelines, rather than being reported as part of the background. However, this makes the

effect more detectable, not less. So including intermediate-rate bursts makes no mistake in

detection through the average power, but neglects the possibility of detection of bursts as

bursts. That, however, is the subject of a different body of work, and here we will show that

there is no need to exclude burst with rates less than 1/T .

We will show that rare bursts are not important by analyzing a particular population of

bursts that are stronger than those that make significant contributions to the background

and nevertheless occur frequently in period T . There are two factors that lead to an energetic

burst: large loop length l, and recent emission, i.e., small redshift.

We are concerned with tightly beamed bursts emitted by cusps, which means with radia-

tion at frequencies high compared with the loop oscillation frequency 2/l. Thus the discrete

nature of the loop harmonics is not relevant, and we can consider a continuous form of the

power, P (y), with y = (1 + z)fl, where f is the observed frequency today. We define P (y)
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to be the power per unit y from the given loop, so the power per unit range of observed

frequency is P (y)dy/df = (1 + z)lP (y).

We now compute the dependence of the burst energy density on l and z. The period in

the emitting frame between burst emissions is proportional to l. Thus we multiply by l to

convert the power emitted into the energy permitted per burst. Then we divide by 1 + z

because the energy is decreased by redshifting. Thus the present-day energy of a burst per

unit range of observed frequency is proportional to l2P (y). Since P (y) ∝ y−4/3 [21], this

goes as l2/3(1 + z)−4/3.

Now we consider beaming. We define an approximate beaming angle θ by setting ξ± = 1

in Eq. (A26). Since α± ∼ 1/l, we find θ ∼ (lω)−1/3 ∼ y−1/3. Beaming thus enhances the

burst energy density by a factor of θ2 ∼ y2/3, giving in all l4/3(1 + z)−2/3.

In addition, the energy of the burst is diluted by the square of the proper distance to

the point of emission, which is proportional to z for z ≪ 1 and asymptotes to the horizon

distance for large z. Again, recent bursts are stronger.

Since recent bursts from large loops are the strongest, we will consider bursts coming

from strings of length around some specific l > ΓGµt0 at places with z < 1. Even these

large loops are dominated by radiation-era relics, so we can use Eq. (32), with G1 = 1,

z ≪ 1, and l > ΓGµt0,

nr(l, t0) ≈
0.5(H2

r )
3/4

l5/2
. (D1)

Using Eq. (15), we find the number of loops per logarithmic interval in l,

lnr(l, t0) ≈ 9.3× 109
(

l

yr

)−3/2

Gpc−3 . (D2)

The proper distance to z = 1 is about 3.3 Gpc [56], so the volume is 150Gpc3, and the

total number of loops

N(ln l) ≈ 1.4× 1012
(

l

yr

)−3/2

. (D3)

Almost all our smoothed loops have 2 cusps per oscillation, so each loop produces bursts at

rate 4/l. The fraction of bursts we can see is given by the fraction of solid angle occupied

by the beam, θ2/4, where, as before, θ ≈ (fl)−1/3. Thus the rate of bursts received from a

population of loops with lengths around l and z < 1 is

R = 1.4× 1012
(

l

yr

)−19/6

(f · yr)−2/3 yr = 1.4× 107
(

l

yr

)−19/6 (
f

Hz

)−2/3

yr . (D4)
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For pulsar timing, we take f = (5yr)−1 and consider loops around l = 1000yr. Then we

find about 4× 107 loops emitting 2× 105 bursts per year, of which we can see about 0.7%,

giving 1400 bursts per year. Even these large loops give frequent events which would be

seen as a Gaussian background.

We found [7] that Gµ < 2× 10−11, so ΓGµ < 10−9 and the dominant size of loops today,

ΓGµt0, is no more than 14yr. Thus the loops we just considered with l ∼ 1000yr contribute

a negligible fraction of the total background, and ignoring loops larger than these has no

effect.

Turning now to LISA, we choose f = 10−2 Hz and consider loops around l = 100yr, still

several times larger than ΓGµt0. Then Eq. (D4) gives R = 140/yr, so once again rare bursts

do not need to be excluded.

For LIGO, we choose f = 102 Hz and consider loops around l = 14yr, finding R = 150/yr.

Thus loops right at ΓGµt0 do not need to be excluded, but significantly larger ones might.

But this is very far from making a difference to the background seen by LIGO, which

comes almost entirely from emission during the radiation era. Even excluding all matter-era

emission would make little difference.
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