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Supernovae in our universe are potential sources of Gravitational Waves (GW) that could be
detected in a network of GW detectors like LIGO and Virgo. Core-collapse supernovae are rare,
but the associated gravitational radiation is likely to carry profuse information about the underlying
processes driving the supernovae. Calculations based on analytic models predict GW energies within
the detection range of the Advanced LIGO detectors, out to tens of Mpc for certain types of signals
e.g. coalescing binary neutron stars. For supernovae however,the corresponding distances are much
less. Thus, methods that can improve the sensitivity of searches for GW signals from supernovae
are desirable, especially in the advanced detector era. Several methods have been proposed based on
various likelihood-based regulators that work on data from a network of detectors to detect burst-
like signals (as is the case for signals from supernovae) from potential GW sources. To address
this problem, we have developed an analysis pipeline based on a method of noise reduction known
as the Harmonic Regeneration Noise Reduction (HRNR) algorithm. To demonstrate the method,
sixteen supernova waveforms from the Murphy et al. 2009 catalog have been used in presence of
LIGO science data. A comparative analysis is presented to show detection statistics for a standard
network analysis as commonly used in GW pipelines and the same by implementing the new method
in conjunction with the network. The result shows significant improvement in detection statistics.

I. INTRODUCTION

Supernovae (SN) in our universe are potential sources
of Gravitational Waves (GW) [1–3] that could be de-
tected in a network of GW detectors. Several GW detec-
tors are in operation, e.g., like LIGO [4], Virgo [16], and
GEO600 [17]. Core-collapse supernovae are rare, but the
associated gravitational radiation is likely to carry pro-
fuse information about the underlying processes driving
the supernovae. Calculations based on analytic models
predict GW energies within the detection range of the
Advanced LIGO [25] detectors, out to tens of kpc.

Analysis of the GW signal of the post-bounce evolu-
tion of core-collapse supernovae using relativistic, two-
dimensional explosion models have been calculated [30] .
The waveforms show the accelerated mass motions asso-
ciated with the characteristic evolutionary stages, which
were also seen in previous studies [29, 31]. The basic
model is that a quasi-periodic modulation by prompt
post-shock convection is followed by a phase of rela-
tive quiescence. Following this, the amplitudes grow
again due to violent hydrodynamical activity caused by
convection and the standing accretion shock instability.
Finally, a high-frequency, low-amplitude variation from
proto-neutron star convection below the neutrinosphere
appears superimposed on the low-frequency trend asso-
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ciated with the aspherical expansion of the SN shock af-
ter the onset of the explosion. The GW frequency from
neutrino driven core collapse supernovae is expected to
evolve from approximately100 Hz to about 1000 Hz.

Since the signals from these sources are weak, methods
that can improve the sensitivity of searches for GW sig-
nals from SN are desirable, especially in the advanced de-
tector era. Several methods have been proposed [26–28]
based on various likelihood-based regulators that work
on data from a network of detectors to detect burst-
like signals (as is the case for signals from supernovae)
from potential GW sources. To address this problem,
we have developed and implemented a new technique of
noise reduction in the supernova search pipeline based on
Harmonic Regeneration Noise Reduction (HRNR) algo-
rithm [32, 34–36]. The method is based on a multi-stage,
high accuracy spectral estimation to effectively achieve
higher signal to noise ratio (snr).

The paper is organized as follows. Section II to V de-
scribes the algorithm development in detail. Section VI
describes the analysis pipeline where sixteen supernova
waveforms from the Murphy et al. 2009 catalog [29] have
been used in presence of LIGO science data. A compara-
tive analysis is presented to show detection statistics for
a standard network analysis as commonly used in GW
pipelines and the same by implementing the new method
in conjunction with the network. Section VII discusses
the results and section VIII summarizes the conclusion.

II. REVIEW OF PREVIOUS STUDY

Logue et. al. [5] have used the Supernova Model Ex-
traction Extractor (SMEE) algorithm to infer physical
information from core-collapse supernovae. SMEE is a
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Bayesian approach where simulated supernovae signals
are decomposed into principal components and a Nested
Sampling algorithm [6, 7] to classify the injected signal
as to belonging to a particular model in given super-
novae catalogs [8]. The study uses simulated Advanced
LIGO noise and a single detector to demonstrate that
the method successfully distinguishes magnetorotational
explosions in the Milky Way galaxy (distance ≤ 10 kpc)
and the neutrino driven explosions (distance ≤ 2 kpc).
Moreover, the method is able to accurately differenti-
ate between rotating accretion-induced model for white
dwarves and rotating iron core-collapse up to several kpc.
While the study is one of the first systematic attempt
to infer core-collapse physics from the SMEE detection
and classification algorithm, it uses some simplifying as-
sumptions e.g. Gaussian noise, linear polarization and
optimally oriented GW emission.

Gossan et. al. [9] have discussed detection of GW from
CCSN using a network of detectors. The method used
is called the X-Pipeline [13], a coherent network analysis
pipeline that searches for excess power in time-frequency
space. The study shows that neutrino-driven CCSN can
be detected up to 5.5 kpc, while rapidly rotating CCSN
can be detected all the way up to 50 kpc (Large Magel-
lanic Cloud.) Extreme GW emission models [14, 15] are
detectable out to 0.77Mpc.

In a 2016 study, Powell et. al. [10] demonstrated for
the first time that SMEE can determine explosion mech-
anism up to galactic distances in prfesence of real non-
Gaussian and non-stationary noise. The authors inferred
that GW signals from neutrino-driven convection have a
smaller amplitude than those from rapidly-rotating core
collapse. Model selection is enhanced by a careful selec-
tion of the number of principal components that consid-
ers the relative complexity of the dierent explosion mod-
els.

Hayama et. al. [11] have studied three diemnsional
hydrodynamical simulation models for detection, recon-
struction, and source localization of the gravitational-
wave (GW) signals using a coherent network of detectors
(RIDGE pipeline) that included the network of LIGO
Hanford, LIGO Livingston, VIRGO and Kagra [12]. The
output of their pipeline could recover several important
hydrodynamics features in the original waveforms. The
authors identified the excess in the spectrograms to the
features of the collapse process. Not only were the ro-
tating core collapse, bounce, and subsequent ringdown of
the proto-neutron star seen, but also formation of magne-
tohydrodynamics jets and nonaxisymmetric instabilities
in the vicinity of the proto-neutron star could be recog-
nized. The horizon distance was up to 18 kpc for the
most rapidly rotating 3D model in this work. Following
the rotating core bounce, the dominant source of the GW
emission shifts to the nonaxisymmetric instabilities. The
horizon distances extended up to 40 kpc when seen from
the spin axis.

III. METHOD

Noise reduction can be viewed as an estimation prob-
lem, where an unknown signal is to be estimated in the
presence of noise, where only the noisy observation is
available. We achieve noise reduction by exploiting the
spectral diversity between the signal and the noise, along
with the high degree of the nonstationarity of the sig-
nal. Consequently, it is natural to perform enhancement
in the frequency domain. We closely follow the develop-
ment in [32]. The method comprises replacing the input
data to the pipeline with the noise-reduced data.

We assume that the data segments used in the analysis
satisfy assumptions of wide-sense stationarity (WSS) [18,
19].

Let us first establish some basic definitions.
In general, a WSS process x(t) is a weak form of sta-

tionary process in which the first and the second mo-
ments dont vary significantly with respect to time. In
other words the mean is constant, i.e.

E[x(t)] = E(x(t+ τ)),∀τ. (1)

Here E[x(t)] denotes the expectation value.
The correlation function depends only on the difference

between two time instances, i.e.

E[x(t1)x(t2)] = E(t1, t2) = E(t1 + τ, t2 + τ)

= E(t1 − t2, 0),∀τ, t1, t2
(2)

We will now write the Discrete Fourier Transform
(DFT) coefficients as X(p, k). Thus, |X(p, k)| is the
amplitude spectrum. Here, k is the frequency bin in-
dex and p is the time frame (or segment) index. The
variance of the signals DFT coefficients is given by
σ2
XX(p, k) = E(|X(p, k)|2). The periodogram is de-

fined as 1
K |X(p, k)|2, where K is the length of each time

frame. The power spectral density (psd) is defined as
PXX(p, k) = 1

KE(|X(p, k)|2), for K →∞.
The basic problem can be stated as follows. We assume

an additive noise model.

xp(t) = sp(t) + np(t) (3)

where x(t) is the data stream, s(t) is the signal, em-
bedded in noise n(t). Here t denotes the discrete time
index of the segement p.

Because of the linearity of the fourier transform, the
noise model is expressed in the frequency domain as

X(p, k) = S(p, k) +N(p, k). (4)

Here X(p, k), S(p, k) and N(p, k) are DFT coefficients
obtained at frequency index k and time frame p for noisy
data, signal and noise respectively. It is reasonable to
assume that S and N are independent. Therefore, the
correlation between them is zero, i.e.

E[S(p, k)N(p, k)] = 0, ∀k, p. (5)
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Thus, the relation between the corresponding psd’s is
given by

PXX(p, k) = PSS(p, k) + PNN (p, k). (6)

Our aim is to find an estimator S̃(p, k) of the signal
from the noisy observed data X((p, k) such that expec-
tation value of distortion between the true signal and its
estimate based on spectral noisy features is minimized.
In other words, the estimate S̃(p, k) of the signal is a
function (denoted by F ) of all three quantities - signal
psd, noise psd and the observed data,

Ŝ(p, k) = F(PNN (p, k), PSS(p, k), x(p, k)). (7)

This is further developed in more explicit details later
in this section through equations [12-15].

Since we do not have a unique spectral estimate (the
noise floor being nonstationary), we begin by estimating
the snr from the noisy data.

An estimate of S(p, k) is then obtained by applying a
spectral gain Γ(p, k) to each short-time spectral compo-
nent X(p, k).

The most widely accepted definition of the snr [46] in
the GW literature is given by

snr = [4

∫ ∞
0

df
|s̃(f)|2

(N(f))
]
1
2 . (8)

Here, N(f) is the one-sided psd of the noise and s̃(f)
is the fourier transform of GW time domain data s(t).

In keeping with the general definition of the snr, which
is the ratio of the signal power to the noise power, at this
point, for convenience in further derivation, two parame-
ters are introduced: the a posteriori snr and the a priori
snr, respectively defined by

snrpost(p, k) =
|X(p, k)|2

PNN (p, k)
(9)

and

snrpriori(p, k) =
PSS(p, k)

PNN (p, k)
. (10)

We also define the instantaneous snr as follows.

snrins(p, k) =
|X(p, k)|2 − PNN (p, k)

PNN (p, k)

= snrpost(p, k)− 1.

(11)

snrins(p, k) is taken as a measured estimate of the local
a priori snr in a spectral subtraction approach [21]. We
would like to note that the a priori and a posteriori are
not used in a Bayesian sense, but rather to denote the
previous and subsequent data segments in the analysis.

In reality, PNN (p, k) and PSS(p, k) are both unknown
and need to be estimated. PNN (p, k) can be estimated by

the classical minimum statistics methods [22, 34]. This
method provides a good estimate of psd even in presence
of nonstationarity of noise. The method involves tracking
spectral minima in each frequency band and minimiza-
tion of a mean square estimation error (MMSE) in each
time step. Specifically, if we describe χ1, χ2, χ3, . . . , χn as
the minima in the frequency bands, we can make an es-
timate of PNN (p, k) in the following way. Let P ′NN (p, k)
represent such an estimator of PNN (p, k). The error in
the above estimate is

ε(X) = PNN (p, k)− P ′NN (p, k). (12)

Since ε is a random variable, E{|ε|2} represents the mean
square error. Under the MMSE, the best estimator for
PNN (p, k) is given by the conditional mean

P ′NN (p, k) = E[PNN (p, k)|χ]. (13)

This leads to an optimal unbiased smoothed estimate of
the spectral density.

After this, the spectral gain is expressed as follows.

Γ(p, k) = f(ŝnrpriori(p, k), ŝnrpost(p, k)). (14)

The function f is chosen in this case to be a Wiener
filter [45] described below. The signal estimate can then
be obtained as follows.

Ŝ(p, k) = Γ(p, k)X(p, k) (15)

A. Wiener filter

The Wiener filter is based on the MMSE between the
estimated signal and the true signal. The basic assump-
tion here is that the sp and np are jointly WSS with
known covariance functions Rs(p), Rn(p) and Rsn(p).
The aim of the process is to estimate sp as a function
of x by finding the linear MMSE estimate of sp based on
xp.

Let us consider a finite impulse response (FIR [37])
filter of length N + 1.

ŝp =

p∑
m=p−N

hp−mxm =

N∑
j=0

hjxp−j . (16)

The coefficients hj need to be calculated such that the
MMSE is achieved.

In order to acheive this, let us first determine the op-
timal condition equation (i.e. the expanded error equa-
tion).

ε = E


(

+∞∑
k=−∞

h[k]x[n− k]− s[k]

)2
 . (17)

The value that minimizes ε can the be obtained by
setting ∂ε

∂h[m] = 0 for all values of m except when h[m] =

0.
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∂ε

∂h[m]
= E

[(
2
∑
k

h[k]x[n− k]− s[k]

)
s[n−m]

]
= 0.

(18)

Denoting 2
∑
k h[k]x[n−k]− s[k] = e, the above equa-

tion indicates that

Res[m] = E [e[n]s[n−m]] = 0 ∀m. (19)

Thus, the error is orthogonal or uncorrelated to all
data used to form the optimal estimate. It may be noted
here that

Res[m] = E {[e[n]s[n−m]]} (20)

= E {[(x̂[n]− x[n])s[n−m]]}
= Rx̂s[m]−Rxs[m] .

In other words, the orthogonality principle can also be
stated as

Rx̂s[m] = Rxs[m]. (21)

To find the actual values of h[n], the following relation
is used.

Rx̂s[m] = h[m] ∗Rss[m] = Rxs[m]. (22)

An equivalent way to state this is∑
k

h[k]Rss[m− k] = Rxs[m]. (23)

The above equation is a set if linear equations that
needs to be solved for the values of h[n]. For a filter of
length N+1, there are N+1 equations of N+1 values of
h[n]. In matrix form, these equations can be written as Rss[0] Rss[1] . . . Rss[N ]
Rss[1] . . . . . . . . .
. . . . . . . . . Rss[1]

Rss[N ] . . . Rss[1] Rss[0]


 h0
. . .
. . .
hN

 =

 Rxs(0)
. . .
. . .

Rxs(N)


In a compact form, h is given by

h = R−1s Rxs. (24)

These are the Yule-Walker equations [23]. It is noted
that Rx ≥ 0. The matrix on the left is a Toeplitz matrix,
i.e.constant along the diagonals. They can be solved by
Levinson-Durbin [24] methods that are standard appli-
cations in software packages like the Matlab [43].

The MMSE can now be computed as follows [20]:

E[(ŝp − sp)2] = Rss[0]− hTRxs. (25)

B. How to find Γ(p, k) : Relation between local a
priori and local a posteriori snr

In order to obtain the mathematical form of the esti-
mate of Γ(p, k), we introduce the relation between the
a priori and a posteriori snr by following an approach
developed in [33].

Assuming the model given in equation [3], the ampli-
tude of the noisy signal is given by,

|X(p, k)| = (|S(p, k)|2 + |N(p, k)|2 (26)

+ 2|S(p, k)||N(p, k)|cosβ(p, k))
1
2

where β(p, k) is the phase angle between S(p, k) and
N(p, k). Assuming that we now have some knowledge
of the signal and noise from equation [13] and [15], let us
define a local a priori and a poteriori snr as follows.

snrlocalpost (p, k) =
|X(p, k)|2

|N(p, k)|2
(27)

and

snrlocalpriori(p, k) =
|S(p, k)|2

|N(p, k)|2
(28)

Using equation [26] in equation [27], we get

snrlocalpost (p, k) = 1 + snrlocalpriori(p, k) (29)

+ 2
√
snrlocalpriori(p, k)× cosβ(p, k)

For Wiener filter, snrpost(p, k) is assumed to be equal to
1 + snrpriori(p, k). This implies that the phase difference
is constant, or, β(p, k) = π/2 or, the signal and the noise
add in quadrature. This is also already seen in section
II.

IV. INFORMATION FROM THE PREVIOUS
TIME FRAME: THE DECISION DIRECTED

APPROACH

A. Principle
One of the most commonly used methods to obtain an es-
timator is known as the ’decision directed’ (DD) [35, 36]
approach. The DD estimator combines the estimated
amplitude of the previous time frame and the noisy am-
plitude of the current frame under analysis into one esti-
mator of the signal spectrum. Using the noise psd, the a
priori and a posteriori snrs are computed as follows.

ŝnrpost(p, k) =
|X(p, k)|2

PNN (p, k)
(30)

and

ŝnr
DD
priori(p, k) = ε

|S̃(p− 1, k)|2

PNN (p, k)
(31)

+ (1− ε)P [ŝnrpost(p, k)− 1]
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where S̃(p − 1, k) stands for estimated signal spectrum
at the previous frame and P [ŝnrpost(p, k)− 1] is the half
wave rectification (HWR). The HWR in this case im-
plies that the maximum relative to zero, is taken into
account.P [.] or the HWR has the following properties.

P [x′] = x′ if x′ ≥ 0

P [x′] = 0 otherwise.
(32)

This is made to ensure that the result is not negative.
ε is chosen to be 0.98. The above estimate is the DD
estimate [36]. The estimator is obtined by combining
equations [14] and [15].The main idea here is that the
signal amplitude is estimated from the (p − 1)th frame
instead of the amplitude itself in the pth frame. It is so

named because ŝnr
DD
priori(p, k) is updated on the basis of

the previous signal amplitude estimate.
With the spectral gain being chosen as the Wiener fil-

ter [45], we have

ΓDD(p, k) =
ŝnr

DD
priori(p, k)

1 + ŝnr
DD
priori(p, k)

(33)

Derivation of equation 32 is given in detail in [36].

1. Consequences

Two observations are important here: (i) when the in-
stantaneous snr is >> 0, snrpriori(p, k) corresponds to a
frame delayed version of the instantaneous snr; (ii) when
the instantaneous snr is < 0 or = 0, snrpriori(p, k) cor-
responds to a highly smoothed and delayed version of
instantaneous snr. These two effects are observed from
equation [11]. This means that the variance of the a
priori snr is reduced compared to the instantaneous snr.
The direct effect of this phenomenon is the reduction of
underlying noise to effectively enhance the signal [35]

However, it may be noted that the delay inherent to
the DD algorithm can be a drawback especially in the
beginning and end of the signal. Furthermore, this delay
introduces a bias in gain estimation which limits noise
reduction performance.

To explain this effect more, let us consider that a signal
appears in frame p. Thus, a priori snr is zero in frame
(p− 1). In the current frame, we have

ŝnr
DD
priori(p, k) = (1− ε)P [ŝnrpost(p, k)− 1)]. (34)

Thus, from equation [10], the estimated a priori snr
is the attenuated version of the instantaneous snr, the
attenuation factor being (1−ε). If the phase factor β(p, k)
in equation [31] is π

2 ,

ŝnr
local
priori(p, k) = [ŝnrpost(p, k)−1] = ŝnr

local
ins (p, k). (35)

In the case that the signal ends in a frame, the a priori
snr may be overestimated. In this case, the second term

in equation [31] is zero, leading the estimate to have a
non-zero value determined by the first term. However, a
null value is desired. Thus the signal spectrum may be
overestimated.

V. OVERCOMING THE OVERESTIMATION
PROBLEM: TWO STEP NOISE REDUCTION

TECHNIQUE USING INFORMATION FROM A
LATER FRAME

In order to avoid some of the problems faced in the
estimation of the a priori snr, a two step noise reduction
(TSNR) technique has been developed. The DD algo-
rithm introduces a frame delay when ε is ∼ 1. As a
result of this, the spectral gain matches the values in the
pth and the (p − 1)th frame. We now adopt a two step
approach by applying the DD algorithm to the (p+ 1)th

frame too. In this approach, we first calculate spectral
gain as given by equation [33]. In the next step, this gain
is used to calculate the a priori snr in the (p+1)th frame.
The gain factor is given by

ŝnr
TSNR
priori (p, k) = ŝnr

DD
priori(p+ 1, k). (36)

Hence,

ŝnr
TSNR
priori (p, k) =

|ΓDD(p, k)X(p, k)|2

PNN (p, k)
. (37)

It is possible to write this step by putting the weight
factor in equation [31] equal to 1. Finally, the spectral
gain is calculated as follows.

ΓTSNR(p, k) =
ŝnr

TSNR
priori (p, k)

1 + ŝnr
TSNR
priori (p, k)

(38)

and hence the enhanced signal estimate is

Ŝ(p, k) = ΓTSNR(p, k)X(p, k). (39)

As before, we have taken the chosen spectral gain to be
the Wiener filter [45].

To summarize, the TSNR algorithm improves the noise
reduction performance since the gain matches to the cur-
rent frame whatever the snr.

To understand the improvement more clearly, the fol-
lowing is observed: (i) when the instantaneous snr is
>> 0, snrTSNRpriori (p, k) corresponds to the instantaneous
snr without any delay as was found in the DD approach.
Further, as the ŝnrins(p, k) increases or decreases (corre-
sponding to onset and offset of the signal), the response
of the snrTSNRpriori (p, k) is also instantaneous, unlike the
DD estimator; (ii) when the instantaneous snr is < 0 or
= 0, snrTSNRpriori (p, k) is reduced more compared to the DD
estimator.
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A. Theoretical justification of the TSNR

If no signal is present in the (p− 1)th frame,

Ŝ(p− 1, k) = 0. (40)

At the pth frame, the DD approach gives the estimation
for a priori snr as

ŝnr
DD
priori(p, k) = (1− ε)P (ŝnrpost(p, k)− 1). (41)

When refining the a priori snr in the TSNR technique,
according to equation [31],

ŝnr
TSNR
priori (p, k) = [

(1− ε)P (ŝnrpost(p, k)− 1)

1 + (1− ε)P (ŝnrpost(p, k)− 1)

]2
× snrpost(p, k).

(42)

By comparing equations [41 and 42] to search for the
intersection of the curves defined by these equations, we
find that

ŝnrpost(p, k) >

1

2ε

[
1 + 2ε+

√
1 + 3ε

1− ε

]
(43)

It is evident from the above equation that the TSNR
method delivers a greater signal power than the DD al-
gorithm. Consequently, if a signal component appears
abruptly at frame p , thus increasing the a posteriori
snr, the estimated a priori snr tends to the a posteriori
snr suppressing the bias introduced by the DD approach.
This bias decreases when the a posteriori snr increases.
However, if signal is absent at frame p too, keeping the
a posteriori snr to a low level, the estimated a priori snr
becomes lower than for the DD approach further limiting
the noise.

Looking at the other extreme case, where a priori snr
is higher in (p−1)th frame than in the pth frame (i.e. the
signal decays rapidly), the following approximation can
be done.

ŝnr
DD
priori(p, k) ∼ εŝnrins(p− 1, k) (44)

The spectral gain is then approximated as follows.

ΓDD(p, k) =
εŝnrins(p− 1, k)

1 + εŝnrins(p− 1, k)
(45)

Moreover, it is reasonable to assume that ŝnrins(p −
1, k) 1 and is much greater than 1 and ε ∼ 1, equation
[39] becomes

ΓDD(p, k) ∼ 1. (46)

Inducting this approximation in [31] leads to

ŝnr
TSNR
priori (p, k) ∼ ŝnrpost(p, k),

∼ ŝnrins(p, k).
(47)

The TSNR method leads to suppresion of a priori snr
overestimation.

VI. HARMONIC REGENERATION NOISE
REDUCTION

The output signal from the previous step may still suf-
fer some distortion due to estimation errors that may be
present. It is very difficult to obtain a 100 % reliable
spectral estimate and hence some errors are expected to
remain. Most of the distortion happend due to loss of
some harmonics. The Harmonic Regeneration Noise Re-
duction (HRNR) consists of applying a nonlinear func-
tion to the time signal enhanced in the process described
in the previous section. The restored signal is given by

srectified(t) = Φ(s̃(t)), (48)

where Φ is the nonlinear function.The maximum value
relative to zero (i.e. HWR) has been used in this case.

It is important to note that the Srectified(t) are cre-
ated at the same positions as the original signal, thus no
distortions are produced. Moreover, it contains a useful
information that leads to a further refinement in the a
priori snr estimate as follows.

ŝnr
HRNR
priori (p, k) =

1

PNN (p, k)
× (∆(p, k)|s̃(p, k)|2

+(1−∆(p, k))|srectified(p, k)|2).

(49)

The ∆(p, k) is a mixing parameter.

0 ≤ ∆(p, k) ≤ 1. (50)

Mixing is important at this stage because the non-
linear function Φ is able to restore the harmonics lost
due to spectral estimation error. ∆ should meet the fol-
lowing conditions: When S̃(p, k) provided by the TSNR
method is reliable, ∆ is equal to 1; if the estimate is not
a reliable one, ∆(p, k) = 0. A standard value, e.g. 0.5,
can also be used in some cases. We will use

∆(p, k) = ΓTSNR(p, k), (51)

to meet the required conditions.
The refined a priori snr from equation [43] is now used

to calculate the new spectral gain with preservation of all
features of the original signal. As before, we have chosen
the spectral gain to be the Wiener filter. Thus,

ΓHRNR(p, k) =
ŝnr

HRNR
priori (p, k)

1 + ŝnr
HRNR
priori (p, k)

. (52)
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At the final stage, the desired signal spectrum is given
by,

S̃(p, k) = ΓHRNR(p, k)X(p, k) (53)

This method is illustrated in detail in the 2006 study
by Plapous et. al. [32].

A. Theoretical explanation of HRNR

As stated in the previous section, we choose the non-
linear function Φ as follows.

srectified(t) = Max[ŝ(t), 0] = ŝ(t)× ρ(ŝ(t)), (54)

where ρ is defined as

ρ(g) = 1 if g > 0

ρ(g) = 0 if g < 0.
(55)

In other words, we have chosen the HWR. ρ(g) defines
an elementary repetitive waveform. It is reasonable to
assume that, over a short time period, the signal is qua-
sistationary. The fourier transform (FT) of ρ(g) is given
by,

ρ̃(ŝ(t)) =
1

T

∞∑
n=−∞

Q(
n

T
)δ(ν − n

T
), (56)

where δ is the Dirac delta function and ν denotes the
frequency. Q( nT ) is the FT of the underlying elementary
waveform at discrete frequency n

T . Using [56], the FT of
srectified(t) is given by,

S̃rectified(t) = FT (ŝ(t))× e−iθ

T

×
∞∑

n=−∞
Q(

n

T
)δ(ν − n

T
).

(57)

θ is the phase angle at the origin. In summary, the spec-
trum of the rectified signal is the convolution between
the signal enhanced by the TSNR and a harmonic comb
with the same frequency as the signal. Moreover, ρ̃(s̃(t))
rapidly decreases as |n| increases, ensuring that regen-
eration takes place only using information from its near
neighbors.

VII. ANALYSIS

A. Data used

Sixteen supernova waveforms from the Murphy et al.
2009 catalog [29] have been used in presence of LIGO
fourth science run (S4 [38]) data for demonstration of re-
sults from the search algorithm. The catalog describes

the GW signals from neutrino driven core collapse su-
pernovae. The waveforms used in the study are shown in
figure 1 and figure 2.

The analysis pipeline is shown in figure 3.
Sets of test data, each 60 seconds long, from the main

GW channel (DARM ERR) from two Hanford detectors
(4 km arm-length H1 and 2 km arm-length H2) and the
Livingston detector (4 km arm-length L1) are used for
demonstration of results. Data streams have been in-
jected with the signal waveforms. The signals are intro-
duced in the data streams starting at 20 seconds after
start. After this, data conditioning is applied to the data
containing the signal. The data conditioning consists of
the following steps. (i) Extraction of raw GW channel
data with SN signals injected; let this time series be
noted by T0; (ii) Whitening T0 [40] and dynamically re-
moving [41, 42] the narrowband noise present in T0; The
resulting time series is denoted by T ′0; (iii) Filtering T ′0
with a bandwidth of 50 Hz and 2048 Hz; The resulting
time series is denoted by filtT ′

0
; (iv) Re-sampling filtT ′

0

to represent the appropriate band- width.
The conditioned data sets are then applied to the input

of the TSNR+HRNR denoising stage. The denoised out-
put from the TSNR+HRNR module is then used as the
input to a network analysis based on regularized maxi-
mum likelihood [26–28, 39].

B. Detection statistics

It is known that the detector response to GW signal is
a linear combination of the unknown polarization wave-
forms h+(t) and h×(t) arriving from a direction with po-
lar angle θ0 and azimuthal angle φ0 in an earth-centered,
ecliptic reference frame [39]

The network analysis performed is based on using a
regulator (Tikhonov regularization [27]) to address the
ill-posed problem of a network of gravitational wave de-
tectors as first shown in [26, 49]. The output of the net-
work algorithm for a given sky location θ0 and azimuthal
angle φ0 , is the value of the likelihood of the data max-
imized over all possible h+(t) and h×(t) waveforms. A
skymap [26, 27, 39] is said to be constructed with the
maximum likelihood values obtained as a function of θ0
and azimuthal angle φ0. The detection statistic is con-
structed from the skymap as follows.

Rrad = [(
maxθ0,φ0

S(θ0, φ0)

maxθ0,φ0S0(θ0, φ0)
− 1)2 (58)

+ (Rmm ×
minθ0,φ0

S0(θ0, φ0)

maxθ0,φ0
S0(θ0, φ0)

− 1)2]
1
2 ,

where Rmm is given by

Rmm =
maxθ0,φ0S(θ0, φ0)

minθ0,φ0
S(θ0, φ0)

, (59)

and S0 is the expectation value of S when no signal is
present in the data. Rrad is known as the radial statistics.
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FIG. 1: The figure shows 8 supernovae waveforms used in the study from Murphy et. al. 2009 catalog [29] with progenitor
masses 12 and 15.

It denotes the radial distance of the observed values in the
(Rmm,maxθ0,φ0

S(θ0, φ0) plane from the mean location in
absence of the signal. The larger the radial distance, the
higher is the detection probability.

VIII. RESULTS

Figures 4 and 5 show the analysis results for one of
the catalog waveforms (grw 12 2; progenitor mass 12,
electron neutrino luminosity 2.2 ) injected into the data
stream with a scale factor of 30, i.e. the original signal
was multiplied by a factor of 30. Figure 4 shows the
signal injected into the detector noise. For reference, a
scale factor of 30 corresponds to the snr threshold below
which the signal is not discerned in the network analy-
sis radial distance statistics without the application of
the TSNR+HRNR denoising module. Figure 5 top row
shows the spectrograms of the signal+noise data after
being conditioned without the TSNR+HRNR denoising
effect (left panel) and the same with the inclusion of the
TSNR+HRNR denoising (right panel.) It is clear even
visually that the TSNR+HRNR denoising effectively has
enhanced the snr of the embedded signal. The bottom

row shows the radial statistics (as given in equation [59])
for the analysis performed without the proposed denois-
ing (left panel) and with the TSNR+HRNR denoising
(right panel.) In the first case, the max value of Rrad
is around 0.4, while in the second case, it is about 5.5,
an improvement of a factor of 14. It may be noted that
the noise scatter is much less in the second case than
the first one. This significant reduction of the range of
variability of the detection statistics for the noise events
wih respect to the injected signals is important. In the
left panel, a reduction of the detection statistics by 30%
makes the GW less significant than a noise event. In the
right panel, even a reduction by a factor of 5 leaves the
GW as the loudest event. This is important because re-
cent GW detection schemes in LIGO strongly rely on the
loudest event in the data.

Figures 6-9 show the core of analysis results. These
plots correspond to the 16 Murphys waveforms that have
been analyzed. The progenitor masses varied from 12
to 40 with various luminosity values between 1.8 and
13.0. The x-axis represents distance in kpc and the y-
axis reprsents the detection snr defined from equation
[59]. The detection snr is equal to the average value of
the radial distance Rrad subtracted from the maximum
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FIG. 2: The figure shows 8 supernovae waveforms used in the study from Murphy et. al. 2009 catalog [29] with progenitor
masses 20 and 40.

value of the same that corresponds to the event detected.
The lower curve (in blue) is the operating characeristic
for the original pipeline without the implementation of
the proposed TSNR+HRNR denoising module. The up-
per curve (in red) represents the same with the incorpo-
ration of the TSNR+HRNR denoising. As can be seen,
for all the 16 waveforms, the detection snr is higher across
the distances for the combined HRNR+TSNR pipeline.
It must be noted that at this stage, the actual values of
the distances are not of any physical significance because
we have used data from S4 just for demonstration of the
method’s efficiency.

A companion paper has been prepared with results
from more recent science runs. More extensive test-
ing has been performed with sine-gaussian, Murphy,
long-bar, rotating core collapse (Dimmermeier [47])
waveforms by integrating this method to existing coher-
ent wave burst (cWB)-based [28, 44] supernova search
pipeline. More supernova signals will be incorporated in
the study. Receiver operating characteristics (ROC) will
be generated for a comparative performance analysis. It
will indeed be interesting to note if the improvement in
detection statistics noted in this study also remains per-
sistent in the future studies as the advanced LIGO [25]

comes into operation.

IX. CONCLUSION

The result shows improvement in detection statistics
(as defined and described in detail in section VI B) by
a factor of up to 10 even for very weak snr. The im-
provement in the detection statistics grows steadily with
increasing signal strengths. HRNR works robustly even
with non-stationary, non-gaussian noise. A major advan-
tage of the proposed method is that it is a stand-alone
MATLAB [43] code module that can be easily plugged
in to existing search pipelines without having to make
alterations. HRNR contains adjustable parameters that
can in principle improve the results even more.

It is worth mentioning here the work of Oppermann
et. al. [50]. In a study to reconstruct Gaussian sig-
nals from linear measurements with Gaussian noise with
uncertainties in the signal covariance, the authors have
formulated and applied a critical filter [51] in the context
of image reconstruction. The study makes a compari-



10

FIG. 3: The analysis pipeline starts with obtaining the raw data from three LIGO detectors (H1: Hanford 4k and L1: Livingstion
4k.) Supervovae signals are added to the data stream. The prepared data streams are now subjected to the data conditioning
step where data are bandpassed between 50 Hz and 2048 Hz and all narrowband noise in this range is suppressed. The
conditioned data now passes through the TSNR and HRNR module. The output from this module is supplied as the input
to the network analysis pipeline. The network analysis pipeline yields the detection statistics in accordance with equations 58
and 59.

FIG. 4: The waveform (grw 12 2 , left panel) is injected into the data stream (right panel) with a scale factor of 30. The x-axis
represents time in seconds and the y-axis is the amplitude.
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FIG. 5: The figure shows the the spectrograms of the signal (grw 12 2)+noise after being conditioned without the TSNR+HRNR
denoising effect (top left panel) and the same with the inclusion of the TSNR+HRNR denoising (top right panel.) The x-axis
represents time in seconds and the y-axis represents frequency in Hz. The bottom row of figures shows the radial statistics
(as given in equation [36]) for the analysis performed without the proposed denoising (left panel) and with the TSNR+HRNR
denoising (right panel.) The x-axis represents time in seconds and the y-axis represents the radial distance.

son of this method with that of the Wiener filter. If the
correct power spectrum is known and noise is homoge-
neous, the reconstruction is known to be optimal. In the
cases with inhomogeneous noise, the Wiener filter fails to
completely clean out the noise, as is expected. However,
if the noise is not estimated correctly, problems similar
to that see in the case of Wiener filter applications are
noticed. An amplifying effect appears in the estimated
power spectrum especially where the noise is underesti-
mated. In the present study, the effects of incorrect es-
timation of noise have been discussed in section V. The
reason a two-step approach has been adopted in this case
is to avoid some of the shortcomings associated with the
overestimation and underestimation of noise.

A more extensive testing with the sixth science
run (S6) data has been performed with five different
families of supernova waveforms by integrating this
method to existing coherent waveburst supernova search
pipeline. Receiver operating characteristics (ROC) and
Coherent event displays (CED) are being generated
for comparison. It will indeed be interesting to note

if the improvement in detection statistics noted in this
study also remains persistent in the future studies as the
advanced LIGO [25]. With the direct observation of the
first gravitational waves [48], this scenario presents an
exciting possibility.
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FIG. 6: The figure shows the radial statistics as a function of distance for four waveforms from the catalog. The x-axis
represents the distance in kpc. The y-axis represents the detection snr defined from equation [59]. The detection snr is equal
to the average value of the radial distance Rrad subtracted from the maximum value of the same that corresponds to the
event detected. The lower curve (in blue) is the operating characeristic for the original pipeline without the implementation
of the proposed TSNR+HRNR denoising module. The upper curve (in red) represents the same with the incorporation of the
TSNR+HRNR denoising.
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FIG. 7: The figure shows the radial statistics as a function of distance for four waveforms from the catalog. The x-axis
represents the distance in kpc. The y-axis represents the detection snr defined from equation [59]. The detection snr is equal
to the average value of the radial distance Rrad subtracted from the maximum value of the same that corresponds to the
event detected. The lower curve (in blue) is the operating characeristic for the original pipeline without the implementation
of the proposed TSNR+HRNR denoising module. The upper curve (in red) represents the same with the incorporation of the
TSNR+HRNR denoising.
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FIG. 8: The figure shows the radial statistics as a function of distance for four waveforms from the catalog. The x-axis
represents the distance in kpc. The y-axis represents the detection snr defined from equation [59]. The detection snr is equal
to the average value of the radial distance Rrad subtracted from the maximum value of the same that corresponds to the
event detected. The lower curve (in blue) is the operating characeristic for the original pipeline without the implementation
of the proposed TSNR+HRNR denoising module. The upper curve (in red) represents the same with the incorporation of the
TSNR+HRNR denoising.
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FIG. 9: The figure shows the radial statistics as a function of distance for four waveforms from the catalog. The x-axis
represents the distance in kpc. The y-axis represents the detection snr defined from equation [59]. The detection snr is equal
to the average value of the radial distance Rrad subtracted from the maximum value of the same that corresponds to the
event detected. The lower curve (in blue) is the operating characeristic for the original pipeline without the implementation
of the proposed TSNR+HRNR denoising module. The upper curve (in red) represents the same with the incorporation of the
TSNR+HRNR denoising.
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