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ABSTRACT

We study one loop quantum gravitational corrections to the long range
force induced by the exchange of a massless scalar between two massive
scalars. The various diagrams contributing to the flat space S-matrix are
evaluated in a general covariant gauge and we show that dependence on the
gauge parameters cancels at a point considerably before forming the full S-
matrix, which is unobservable in cosmology. It is possible to interpret our
computation as a solution to the effective field equations — which could
be done even in cosmology — but taking account of quantum gravitational
corrections from the source and from the observer.
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1 Introduction

Primordial inflation produces a vast ensemble of long wave length gravitons,
which is what causes the tensor power spectrum [1]. It is inconceivable
that these gravitons simply exist, without interacting, at some level, with
themselves and other particles. If such an ensemble were present today no
one doubts that it would change the way particles propagate, or that it might
affect the long range forces carried by virtual particles. Indeed, the effect of
gravitational radiation on the propagation of photons is the basis for using
pulsar timing to detect gravitational radiation [2, 3].

Although the actual geometry of inflation must show evolution, for many
purposes one can employ the simpler, de Sitter geometry as a reasonable
approximation. The effects of inflationary gravitons on a particle’s kine-
matics, and on the force it carries, are studied in the same way. One first
computes the one graviton loop correction to the particle’s 1PI (one-particle-
irreducible) 2-point function. Then one uses this result to quantum-correct
the linearized effective field equation for the particle. Many effects have been
studied in this way over the course of the past decade:

e Inflationary gravitons induce a progressive excitation of massless and
light fermions which eventually becomes nonperturbatively strong [4,
5, 6, 7] due to the spin-spin coupling [8];

e Inflationary gravitons have little effect on massless, minimally coupled
scalars [9, 10] owing to the absence of such a coupling;

e Inflationary gravitons secularly excite photons as they do fermions [11,
12, 13, 14], and they also induce secular modifications of electrodynamic
forces [15];

e Inflationary gravitons secularly excite other gravitons [16, 17]; and

e Inflationary gravitons secularly excite conformally coupled scalars ow-
ing to the conformal coupling [18, 19, 20].

The physics behind these results seems plausible enough: inflationary
gravitons scatter particles and force carriers, with the net deviation growing
as the particle or force carrier propagates further. However, the reality of
these effects is thrown into question by the notorious gauge issue. The gravi-
ton propagator depends upon an arbitrary gauge choice, which certainly af-
fects full 1PI functions on flat space background. On the other hand, certain



parts of the flat 1PI N-point functions are gauge independent because sums
of products of them combine to form the gauge independent S-matrix. So it
seemed possible that the leading secular dependence on de Sitter background
might be independent of the gauge [21].

Computations on de Sitter background are so terribly difficult that al-
most all work has been done in a single, particularly simple gauge [22, 23].
However, a determined effort at length produced a result for the graviton cor-
rection to the vacuum polarization [13] in a one-parameter family of de Sit-
ter invariant gauges [24]. When this was used to quantum-correct Maxwell’s
equation the result was that dynamical photons suffer a progressive excita-
tion which is independent of the gauge parameter [14]. The excitation has
the same sign and time dependence as for the simple gauge [12], but the nu-
merical coefficient is not quite the same. Hence it seems that even the leading
secular effects of inflationary gravitons are somewhat gauge dependent.

On flat space background this sort of issue would be resolved by reference
to the S-matrix, which is gauge independent. Unfortunately, that option
is not available for inflationary cosmology. A synthetic S-matrix has been
shown to exist for massive fields on de Sitter [25], but causality precludes an
inflationary observer from making the global measurements it requires.

Another alternative would be to devise gauge invariant operators to quan-
tify changes in particle kinematics and force laws, then compute the expec-
tation values of these operators. One major disadvantage of this technique
is that there are no local invariants in gravity, so any observables would be
nonlocal composite operators. That vastly complicates renormalization. It
is just possible to persevere through such a computation [26], but it seems
worth looking for a simpler technique. It would be particularly nice to devise
some way of modifying the effective field equations.

A promising approach is the one developed by Donoghue [27, 28|, who
noted that the leading quantum gravitational corrections to long range forces
derive from a very special sort of nonanalytic correction to loop amplitudes.
This is typically implemented by computing scattering amplitudes in Fourier
momentum space, extracting the important contribution to the S-matrix, and
then inferring corrections to the potential by inverse scattering. For example,
this is how the first complete one loop computations were made of quantum
gravitational corrections to the Newtonian potential [29, 30]. However, we
suspect that the essential part of the technique can be separated from the
full S-matrix, and phrased instead as a way of correcting the effective field
equations — in position space — to include quantum gravitational correla-



tions with the source which disturbs the effective field and the observer who
measures it.

To examine this possibility we have chosen to work on flat space back-
ground, with the object of computing the one graviton loop correction to the
long range potential induced by a massless scalar. In section 2 we make the
computation in the manner described above: calculating the scalar self-mass,
then using it to quantum correct the effective field equation. By making
the computation in the 2-parameter family of Poincaré invariant gauges we
demonstrate that the result is highly gauge dependent. In section 3 we re-
view an intriguing comment of the subject made by one of the great men of
quantum gravity. In section 4 we abstract Donoghue’s technique to position
space, and show how it can be viewed as correcting the effective field equa-
tion. We explicitly demonstrate that the gauge dependence cancels when all
the corrections are included. Section 5 summarizes what we have shown and
discusses the implications for cosmology.

In addition to the obvious debt we owe to Donoghue, it should be noted
that section 4 closely follows Bjerrum-Bohr’s computation of the quantum
gravitational correction to the Coulomb potential in SQED (scalar quantum
electrodynamics) [31]. The relevant diagram topologies are the same once
one replaces his photon lines with our massless scalar lines. Also, we merely
translated to position space the three Fourier momentum integrals he used
to extract the leading infrared contributions.

2 What We Wanted

In this section we discuss a simple, flat space analog of the sort of com-
putations we have been doing of how inflationary gravitons change particle
kinematics and force laws. The quantity we have chosen to correct is the
long range force exerted by a massless scalar. We begin by reviewing the
Feynman rules for the most general Poncaré invariant gauge. Then the one
graviton loop contribution to the scalar self-mass is computed in dimen-
sional regularization and fully renormalized. Finally, we use this result to
quantum-correct the scalar field equation, and we solve for the response to a
static point source.



2.1 Feynman Rules

The Lagrangian of gravity plus a massless, minimally coupled scalar is,
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We are perturbing around flat space with the usual definitions of the graviton

field h,, and the loop counting parameter x2,

guV(I) = Nuw + /{huu(l') R /‘€2 = 167G . (2)

By convention graviton indices are raised and lowered using the Lorentz
metric, W = n**n"h,e, h = n*h,,,. The expansions we require are,

1
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When using dimensional regularization on flat space background the order
2 interactions are not necessary for the sorts of diagrams we require.

To facilitate dimensional regularization we work in D-dimensional space-
time. Because temporal Fourier transforms are problematic in cosmology, we
make this calculation in position space. The massless scalar propagator is,
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The scalar propagator obeys an equation of great significance for us,
PiA(z; ') = i6" (z—2') . (5)

We fix the gauge by adding to the Lagrangian the most general Poincaré
invariant gauge fixing term,
1 . . b
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The resulting graviton propagator can be expressed in terms of the mass-

less scalar propagator using the transverse projection operator 11, = 1, —
0,0, /0% as [32],
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Here and henceforth parenthesized indices are symmetrized. The factors of
0,0, /0% acting on the massless scalar propagator iA(z;2") can be written as
[33],
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2.2  One Loop Self-Mass

The scalar self-mass —iM?(x;2’) is the 1PI (1-particle irreducible) scalar
2-point function. The primitive one graviton loop correction to it is,
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After performing the tensor contractions and making use of the identities,
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we reach an expression in terms of the square of scalar propagator (4),
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The gauge dependence resides in the multiplicative factor,
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Expression (13) can be renormalized by extracting another d’Alembertian
and then adding zero in the form of the equation (5) for iA(x;z’) [34, 35],
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The second term of (17) can be absorbed with a local (higher derivative)
counterterm, which gives the renormalized result,
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The gauge dependent constant Cy(a, b) is obtained by setting D = 4 in (14),

ol D) =Gl b4 = Z(b?zi(;);l) B Z(b_(i)_(g;l)a 9

—iMy, (w;2") = K*Co(a, b) x (18)

2.3 Effective Field Equation

The scalar self-mass is used to quantum correct its kinetic operator,
P(a) — P6(x) — [d'a M2, (z;0)o(a) (20)

We employ the Schwinger-Keldysh formalism [36, 37, 38, 39, 40] to obtain
real and causal effective field equations. There are many good reviews on this
subject[41, 42, 43| so we merely apply the well-known rules for converting an
in-out result such as (18) into its Schwinger-Keldysh analog [44],
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Here At =t —t' and Ar = || — 7.

The equation which gives the effective scalar response to a static point
source of unit strength is,

PPo(w) — [d' Mio(w; a)ola) = 8°(F) (22)
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Because the four factors of the d‘Alermbertian in expression (21) could be
considered as acting on either the primed or the un-primed coordinate, we
can partially integrate one of them and extract the other three from the
integration,

8?¢(x) + % /d4a:’{ 10 0(a!) = 0%(7) = a?(—ﬁ) . (23)

where the curly bracketed terms of equations (21) and (23) are the same.
Relation (23) is easy to recast as a perturbative solution for ¢(x),

$x) = — 471W - (’102(;‘7’38 /_t Et’ [m[u?(m?—r?)]—ﬂ +O(KY), (24)
_ _4;{1 yfed) O(f#)} | (25)

Relation (25) purports to be the one loop quantum gravitational correc-
tion to the long range massless scalar potential induced by a static point
source. Much of the result makes good sense. There should be a quantum
gravitational correction to this potential because the tree order result dis-
torts virtual gravitons in the vicinity of the source. The factional correction
of k?/r? is dictated by dimensional analysis and the single loop counting pa-
rameter. However, the overall factor of Cy(a,b) is completely unacceptable.
By varying the parameters a and b in expression (19) we see that Cy(a,b)
can be made to range from —oo to +oo!

3 DeWitt’s Lost Theorem

This is not a new problem. As discussed in the Introduction, it is usually
resolved by appealing to the S-matrix. However, in 1981 Bryce DeWitt made
this intriguing statement about choosing different gauge fixing terms for the
quantum correction ¥ to the action in the background field formalism [45]:

The functional form of ¥ is not independent of the choice of these
terms. However, the solutions of the effective field equation

or 08 0X
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can be shown to be the same for all choices.!16:20



None of the references DeWitt cited! provides an explicit proof of this state-
ment but we believe he was referring to how one uses asymptotic scattering
data to parameterize solutions to the effective field equations.

The background field effective action is gauge invariant, but dependent
upon the gauge which was used to compute quantum corrections to the classi-
cal action. When solving the resulting effective field equations for the metric,
and other gauge fields, one must of course fix the gauge to get a definite so-
lution, and the solution will depend in the usual way on that gauge choice.
However, DeWitt was discussing the functional dependence upon the quan-
tum gauge fixing term.

To simplify the argument we work in the context of a scalar field ¢(z)
whose renormalized effective action is I'[¢]. Just being a solution of the
effective field equation does not eliminate gauge dependence. The key to
getting a gauge independent result is to correctly normalize the linearized
solution and then use perturbation theory to expand this into a full solution
of the effective field equation. If the plane wave mode function for wave vector
k is u(t, k), and the full (gauge dependent) field strength renormalization is
7, the correct linearized solution is,

3 L x o
alaalo) = [ f R by + COD @)
Here the complex parameters a(k) and a*(k) characterize which of the in-
finitely many possible linearized solutions is desired.

The effective field equation can be written in terms of a “scattering cur-

rent” which is only nonzero at some early time t;, and some late time

[48]a
Toolo, a’)(@) = o1(2) (91— T )6 (t—tow) — 1(2) (D1 — T )5 (t—tim) . (27)

The role of J, is to inject linearized solutions in the asymptotic past and
remove them in the asymptotic future. Applying perturbation theory to the
full effective field equation allows one to develop (26) into a full solution,

O[]
dp(z)

n order, his references are '° a proceedings article by ‘t Hooft [46], 6 another pro-
ceedings article by DeWitt [47], and 2° the comment, The S-matriz (built out of the tree
amplitudes of T') is also choice independent. The comment indicates that DeWitt distin-
guished between solutions and the effective action evaluated at a general solution, which
is a generating functional for the S-matrix.

= —Jlo,a’](z) = gla,a’](z) = prla,a")(@) + O(}) - (28)




It is certainly true that evaluating the effective action at this solution gives
a generating functional for the S-matrix, which is independent of the gauge
used to compute quantum corrections to I'. DeWitt seems to be claiming
that the solutions themselves are also independent of this gauge choice.

We are not sure this claim is true, but the physics of how it would work
seems clear enough. The point is that simply solving the effective field equa-
tion with a classical source — as we did in section 2.3 — is not enough. Some
physical source must cause any disturbance in the effective field, and some
physical observer must measure this disturbance. The source and observer
both interact with quantum gravity and these interactions must be included
to produce a gauge independent result. Once this dependence is included
one can solve a modified effective field equation in a way that makes sense
even in cosmology.

4 Including the Observer & the Source

In this section we add a source and observer in the form of a massive scalar
1) which couples minimally to gravity and to ¢,

£y = T 000,00/ 0,000/ =G — & (mP+A0)V g

(20)
From the scattering of two 1)’s one can extract a gauge independent measure
of the one loop quantum gravitational correction to the ¢ potential. To do
this we find the order x2\? contribution to the amputated 4-1 vertex function.
Although many diagrams contribute, the analysis can be simplified by ex-
ploiting Donoghue’s crucial insight that only very special, nonanalytic terms
modify the long range potential (25) [27, 28]. This essentially eliminates
the massive scalar propagator. Our analysis closely follows Bjerrum-Bohr’s
computation of quantum gravitational corrections to the Coulomb potential
[31]. We begin by working out how the self-mass (13) contributes. Next the
graviton correlation between the two vertices is computed, and we see that
it can be regarded as simply changing the gauge-dependent constant Cy(a, b)
in expression (25). Then each of the remaining diagrams is subjected to a
similar analysis, and the gauge independence of the final result is manifest
by the cancellation of all dependence on the parameters a and b.




Figure 1: The left diagram shows how the self-mass contributes to the am-
putated 4-1 vertex function. The diagram on the right shows how graviton
correlations between the two vertices contribute. Solid lines represent the
massless scalar, wavy lines represent the graviton, and dashed lines stand for
the massive scalar. These graphs have the same topology as Bjerrum-Bohr’s
Diagrams 8 and 4, respectively [31].

The massive scalar propagator obeys,
mP—2 K%_l(mAx)

(2m)% (mAz)T!

(30)
We do not need it to compute the contribution to the amputated 4-point
function from the primitive scalar self-mass (13). This is the leftmost diagram
of Figure 1, which has the same topology as Bjerrum-Bohr’s Diagram 8 [31].
For our model (29) we can partially integrate the factors of 9% in expression
(13) to eliminate the outer propagators,

(O —m?)il, (7;0) =i (z—2) = A, (1;0) =

—WV(z;2') = (—i)) /dDz A (2 2) X (—i)) /dDz’ A ) —iM? (2 ) (31)
= k*M\2Cy(a, b, D)/dDz %A (x; z)/dDZ' OZiA(2'; ') x [ZA(Z? Z/)} i , (32)
= —k2X2Cy(a,b, D) x [iA(z; ")), (33)

where Cy(a,b, D) is given in (14) and the contribution to the renormalised
self-mass is characterised by Cy(a,b) = Cy(a,b,4) in (19).

4.1 Correlations between the Vertices

The simplest extra contribution to the amputated 4-point function is the
rightmost of the diagrams on Figure 1, which has the same topology as
Bjerrum-Bohr’s Diagram 4 [31]. This diagram represents quantum gravita-

tional correlations between the source and observer vertices,

KA KA
—iVi(z;2') = —%n“” xi{wApo} (x;2") x —%np" xiA(x;x') , (34)
2(D-1) a 2
242 . /

N {— } x[ia@; ). (35
: (D—Q)(b—2)2+(b—2)2 {Z (x xr )} ( )
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Comparing expressions (33) and (35) reveals that we can think of —iVj(z; 2’)
as a sort of contribution to the self-mass,

—iM} (x;x) = —K2C(a,b, D) x &' [iA(w;a')] (36)
where the gauge-dependent factor is,

2(D—-1) a
(D—2)b—2)  (b—2)? °

Because (36) takes the same form as (13), with the replacement of Cy(a, b, D)
by Ci(a,b, D), we just add Cy(a,b) and C(a,b) in expression (25).

(a—3)
(b—2)

Ci(a,b, D) = — C1(a,b) = (37)

4.2 Vertex-Source and Vertex-Observer Correlations

Y

/

?3

/

Figure 2: These diagrams show correlations between the source (primed)
or observer (unprimed) and the opposite vertex. Solid lines represent the
massless scalar, wavy lines represent the graviton, and dashed lines represent
the massive scalar. These graphs have the same topology as Bjerrum-Bohr’s
Diagram 3 [31].

The remaining diagrams involve three or four distinct points. We shall
reserve z* and y* for the in-coming and out-going observer, respectively, with
" and y'* for the in-coming and out-going source. This section concerns the
four diagrams of Figure 2, which have the same topology as Bjerrum-Bohr’s

11



Diagram 3 [31]. For us these diagrams represent correlations between the
source or observer and the more distant vertex. Correlations with the nearer
vertex are cancelled by field strength renormalization and do not contribute
to the long range potential (25).

The full contribution from these diagrams is,

—iVa(zyy;a'sy') = (—iN)iA(x; 2) (—ik) [—5585+ :

9z
2

(5y~8y+m2)}iAm(x; )

xi[WApa} (y; ') x (—%HAUPU) x 6P (2’ —y') + (3 permutations) , (38)

7

where “(3 permutations)” indicates the other 3 diagrams of Figure 2. Here
and henceforth an over-lined derivative indicates that it acts on the external
state. For example, 55 means that the derivative acts on the out-going
observer wave function.

Performing all the contractions and acting all the derivatives in expression
(38) is quite tedious. It is also unnecessary if one only wants terms that can
contribute to the long range potential (25), which are equivalent to the form,

2

—iVa(wiy:a'sy') — —KNCala, b, D)x[in(w;a')] <67 (2)0" (x'~y/) . (39)
For the purpose of identifying those terms which contribute to the long range
potential one can make the simplification,

0 (z—y)
2m?
Relation (40) is the position-space version of Bjerrum-Bohr’s equation (B4),
with a classical general relativistic contribution dropped [31]. This relation
was originally derived by Donoghue [27, 28]. When it is used, along with

A (23 y)iA (2 )i (y; ) —> [iA ()] (40)

the the propagator equations and the fact that 53 —m? = 0, the result is
surprising,

Cg(a, b) = CQ(CL, b, 4) =0. (41)

Some details of the derivation of (41) are quite technical and are therefore
given in the Appendix.

4.3 Vertex-Force Carrier Correlations

The massless scalar whose exchange carries the force between source and ob-
server also interacts with gravity, so we must include quantum gravitational

12
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Figure 3: These diagrams show correlations between one of the vertices and
the massless scalar force carrier. Solid lines represent the massless scalar,
wavy lines represent the graviton, and dashed lines stand for the massive
scalar. These graphs have the same topology as Bjerrum-Bohr’s Diagram 7
[31].

correlations between it and the vertices. The relevant graphs are shown in
Figure 3, and they have the same topology as Bjerrum-Bohr’s Diagram 7
[31]. The contribution they make to the amputated 4-1) vertex function is,

V(s 'sy) = 87 =) ) [0 (SR )il B (5 2)
po
XiA(x; z)(—ik [ %p? +77 % 34@'A(z;:B')(—z')\)—l—(permutation). (42)
The structure in expression (42) is simple enough that we can explain its

reduction in detail. One key point is to evaluate the scalar derivatives on the
second line,

iA(z; 2 [ %pﬁg n;m 0 ﬁz}iA(z;x')

- O s i ey

0iA(z;2")
0z%

(43)

A second key point is the expressing the contracted graviton propagator in
terms of the massless scalar propagator,

» Anpo
i) = { e

2(D=2)a—Db+2]| ~  (D=2)(w—2)p(x=2)s || \(
(D—2)(h—2) lnpa (1—2)? ]} A(z; z) (44)

Contracting (44) into (43) can be expressed as a derivative of the square of
iA(x; 2),

ﬁ””i[uuﬁ }(:): 2) xiA(; 2 [ 979+ n;m 62-3Z}ZA(2;$') = [%
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+2<D—2>[<g_—§)>;-m+21] . <§:3;“ ia: 9] x 225D 45)
_ l_(lb)_‘;)JD ‘22;‘_‘22)(217 ‘1)] ><770508 iA(: z)fxa%m(z ') (46)

Of course the next step is to partially integrate on z and use the propagator

identity,
a 9 - oD /
—nP 50 @zA(z ') = —id”(z—1) . (47)
The same reductions apply to the other diagram and the final result takes
the form,

V(s s y) = K2 NCala, b, D)x[iA(:2')] %87 (w—y)6" (@) . (48)

where the gauge dependent multiplicative factor is,

D—1 D—2)a —2(D—1 3 2(a—3
ey, 0) - (D) MDD BDN) gy 3 2ad)
(49)

4.4 Source-Observer Correlations

Both the source and the observer interact with quantum gravity so we must
include graviton correlations between them. The four graphs which con-
tribute to the long range potential are shown in Figure 4. (Correlations from
source to source or observer to observer do not affect long range potential.)
The exact contribution for these diagrams is,

—iVa(z;y; 25 y') = (—iN)%iA (@5 ) (—i )[—558§+%W(5y'8y+m2)}iﬁm(y;x)
X | Do | (43 ') (i) | =, 05+ %(a Oy +m?) il (v 2')+ (3 P's). (50)

Here “(3 P’s)” stands for the other three diagrams of Figure 4, which are
simple permutations of the expression shown. We also recall that an over-
lined derivative indicates it acting on the appropriate external state wave
function.

The reduction of these diagrams proceeds according to the same methods
as before. In addition to the propagator equations and the simplification (40)

14
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Figure 4: These diagrams show correlations between the source (primed) and
the observer (unprimed). Solid lines represent the massless scalar, wavy lines
represent the graviton, and dashed lines represent the massive scalar. These
graphs have the same topology as Bjerrum-Bohr’s Diagram 2 [31].

the long range potential (25) is not affected by the following simplifications,
m?(Da+0y)* (Da+0y )13 2 VilA (5 4 )il (5 9)i A (2 ) |

— —[iA(ws2)] 0P (w—y)6” (' ') , (51)
m?(Da+0y)* (a+0y ) I3y )i (3 2 )il (5 9)i A (2 ) |

— il @5 )] $P (@ —y)s (@' —y) . (52)
Relations (51) and (52) are position-space versions of Bjerrum-Bohr’s equa-
tions (B8) and (B9), respectively, with some classical general relativistic con-
tributions neglected [31]. Both relations were originally derived by Donoghue
and Torma [49].

Because —iVy(x;y; 2';y’) is ultraviolet finite we can take D = 4. The final
result for the part relevant to the long range potential (25) takes the form,

—iVa(z;y; 2'5y') — —R*A*C(a, b) [Z’A(x;w')]2><5D(I—y)5D($'—y') - (53)
The gauge-dependent multiplicative factor is,

17 3 1(a=3)
Cilab) = =3~ Tpap

(54)
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4.5 Force Carrier Correlations with Source & Observer
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’—m
1
1
1

Figure 5: These diagrams show correlations between the source (primed)
or observer (unprimed) and the massless scalar force carrier. Solid lines
represent the massless scalar, wavy lines represent the graviton, and dashed

lines represent the massive scalar. These graphs have the same topology as
Bjerrum-Bohr’s Diagram 6 [31].

Because the source, observer, and the massless scalar which carries the
force between them, all interact with gravity we must include quantum grav-
itational correlations between them. The relevant Feynman diagrams are
shown in Figure 5. Their full contribution to the amputated 4-1 vertex
function is,

—iVi(x;y; 2’5 y) = KEN2SP (2 1)) {—5“8”4—7]—/“/(5@,-8y+m2)}iAm(y; x)/dDz
xi[“,,ApU] (y; 2) xiA(z; 2 [ %pﬁ ﬁz]iA(z;x')—l—(?) P's). (55)

As before, the symbol “(3 P’s)” refers to the three other diagrams shown in
Figure 5. Also as before, the over-lined derivative d, acts on the out-going
observer’s external wave function.

The reduction of (55) follows previous reductions:

e The derivatives with respect to y on the first line of (55) are treated the
same way as those of expression (38). They are first expressed as m?
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b—2 | (b—2)2
0 | 1|48 4
1 0 | 0| 0 | +1
2 0 | 0] 0 0
3 0 | 0 | +3] -2
e
51 =2 | 43| -3 | 43

Total|| +3 0 0 0

Table 1: The gauge dependent factors C;(a,b) for each contribution, where
the index ¢ (i = 1,...,5) refers to the diagrams shown in Figure 1.

plus a sum of distinct kinetic operators, then acted on the propagators.
Finally, the simplification (40) is invoked.

e The derivatives with respect to z on the second line of (55) are treated
the same way as those of expression (42). We first act them on the two
massless scalar propagators, then the derivative of iA(x; z) is combined
with the factor of iA(z;z) in the graviton propagator to give a total
derivative, which is partially integrated onto iA(z;z") to produce a
delta function that eliminates the integration over z.

The final result takes the form,
—iV(z; g2 y) = —KN2Cs(a,b) x [iA(w;2')] %67 (2 )5 (o' —y') . (56)

The gauge dependent multiplicative factor is,

[\J[eN]

Cs(a,b) = =2+ 3o M Clnk)

1
2 b—2 2(-2)2" (57)
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4.6 Sum Total

No other diagrams contribute to the long range potential (25).2 As we have
seen, each diagram could be viewed as making a contribution to the self-mass
of the form,

—iM? (z;2') = —#Ci(a,b) x ' [iA (5 2')] (58)

Table 1 gives our results for the gauge-dependent multiplicative factors C;(a, b).
It is reassuring that all dependence on the gauge parameters a and b drops
out in the sum, 32, Cy(a, b) = +3.

The simplest gauge is obtained by setting a = b = 1. This was the choice
made by Donoghue [27, 28], and by Bjerrum-Bohr [31]. It is amusing to
note that the actual self-mass, —iMy(x; 2"), we computed in (13) to motivate
the problem, happens to vanish in that gauge. Of course our final result is
independent of a and b, as would be those of Donoghue and Bjerrum-Bohr
had they made their computations in a general gauge.

5 Discussion

The continual creation of horizon-scale gravitons during inflation tends to
engender secular corrections to particle kinematics [4, 5, 6, 7, 11, 12, 13, 14,
16, 17, 18, 19, 20| and to force laws [15]. It has even been proposed that
the self-gravitation between these gravitons induces a secular slowing of the
expansion rate as more and more of them come into causal contact [50, 51].
However, behind all of these effects lurks the gauge issue: the simplest way
to study what inflationary gravitons do is from solutions to the effective field
equations and those solutions depend upon how the graviton’s gauge freedom
is fixed. Some researchers dismiss gauge-dependent Green’s functions as
completely unphysical [52]. Others reflect that even gauge-dependent Green’s
functions must contain physical information because the flat space S-matrix
— which is gauge independent — is formed by taking sums of products of
them [53]. The question is how to separate the physical information from
the rest.

2In the SQED computation of Bjerrum-Bohr there was an additional contribution from
what he termed Diagram 5 [31]. However, this diagram happens to vanish for the massless
scalar process we consider.
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Our goal has been to develop an analog of the S-matrix which does not
involve the global integrations that preclude the S-matrix from being observ-
able in cosmology. We believe the gauge dependence of solutions to the usual
effective field equations derives from neglecting quantum gravitational cor-
relations with the source which disturbs the effective field and the observer
who measures the disturbance. Including these correlations leads to an im-
proved effective field equation which can be solved quasi-locally. As a test
of this idea we worked in the most general Poincaré invariant gauge (6) to
compute the one graviton loop correction to the long range force exerted by a
massless, minimally coupled scalar ¢. The conventional result (25) is highly
gauge dependent; by varying the two gauge parameters it can be made to go
from —oo to +oo! However, including a physical source and observer — in
the form of a massive scalar 1) — led to the complete cancellation of gauge
dependence which is evident in Table 1.

Our final result for the effective field equation takes the form,

o) ~ [d'a MEy(w:a)o(e!) = J(a) (59)
where the improved, gauge-independent scalar self-mass is,

3K20%

Mfiu(% 37/) = 12873

{H(At—Ar) [m (A=A - 1] } +O(k"), (60)

and we recall that At =t — ' and Ar = || — 2’||. We actually only con-
sidered J(t,Z) = 63(Z) but the equation is linear, so the passage to general
J(x) follows from superposition. Note that there is no dependence on the 1
mass m. It dropped out through using relations (40) and (51-52) to extract
the special nonanalytic part of the general amplitude which contributes to
the long range potential (25). Realizing that quantum gravitational correc-
tions to low energy physics derive solely from these special sorts of terms
was Donoghue’s great contribution [27, 28|; we have merely translated his
relations to position space. We should also comment that we were greatly
aided in recognizing the handful of relevant diagrams by the computation
Bjerrum-Bohr made of the quantum gravitational correction to the Coulomb
potential in SQED [29].

The point of this exercise was to use the flat space S-matrix to abstract
observables for cosmology. The essentials of how to study changes in kine-
matics and force laws seem clear enough now:
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e We want to correct the linearized effective field equation in position
space;

e We need to include quantum gravitational correlations with the source
which disturbs the effective field, and with the observer who measures
the disturbance; and

e Most details of the source and observer will drop out in the appropriate
infrared limit.

What is not yet apparent is the correct generalization of the relations (40) and
(51-52) which were used to extract the essential part of the full amplitude. In
flat space background the appropriate infrared limit is large distances. For
inflationary cosmology we suspect it is late times.

One crucial point which we have not addressed is what observables stand
for the primordial power spectra when one includes loop corrections. The
naive correlators cannot be right because they depend upon the infrared cut-
offs which must be introduced to define the scalar and graviton propagators
[54]. Nonlocal composite operator generalizations can be devised which avoid
this dependence [55, 56] but these generalizations introduce new ultraviolet
divergences and also disrupt the careful pattern by which loop corrections to
the naive correlators are slow roll suppressed [21].

Finally, we should comment on the other alternative for extracting cosmo-
logical observables: taking expectation values of gauge invariant operators.
A recent computation on de Sitter background shows how this can be done to
invariantly quantify the back-reaction on inflation [26]. To invariantly study
changes in particle kinematics, and the associated force laws, one might com-
pute 2-point functions at geodesically fixed separations, as Frob has recently
done for a massless scalar on flat space background [57]. Frob’s calculation
is interesting because the double logarithms he found would translate to cor-
rections to the potential of the form — = x ’j—; X In(pr). (The same thing
is bound to happen for the pure gravitational analog [58].) Of course the
S-matrix technique we have pursued lacks the factor of In(ur), so there is a
clear difference between two, completely gauge independent results. It is not
that one is right and the other wrong; they both represent correct answers
to different questions. There is simply no alternative to thinking hard about
how an effect is measured, and then correctly modelling that process.
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Appendix: Reduction of the diagrams in Fig. 2

In this Appendix we present some details of the evaluation of the 4-¢) ver-
tex (38). Upon partial integration of 0, derivatives, —iV5(z;y; 2';y') becomes,

. /A ,i)\2/{2 Dy AW /
—iVa(mysahy) = —5 07 (@' —y)iA(z;2) (61)

. {8@7 {(5585 - % 0O )i A (0597 | (0 x/)]

+m72iAm(x; Yyt LWAM} (y; x/)} + (3 perm’s) ,

where
npai{w/Apa}(y;f) = w:é”%iA(y;x') (62)
“ D AD-1) (O
+4[(b—2)2 o (D—2)(b—2) - (D—2)(b—2)2:| ag ZA(y7£(,’)
and

a 2(D-1)
(b—2)2  (D—2)(b—2)

77’“/77’)0@' [/WApa} (y§ ZL’I) =4

Jiswa). (6

When these are inserted in (61), and one acts the derivatives, one obtains,

. I i)‘ZHZ Dy 1t AW /
—iVa(zysaty) = —5—07 (0 —y)il(z; ) (64)

1 . ) ) . '
x {— b2 [%Smm(x; y) }iA(y; ') + 20718 (23 y) O (y; 2')
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—ﬂm 2iN, (23 9)iA(y;

D—-2

[ a Db—2 }
(

b—2)2  (D—2)(b—2)?
+200 10 (25 y) 041 A (y; ') — 2(0; —m?)il\y, (23 y) X iA(y; x')} }

')

02

Y

ZA(y, )

40131 A (3 ) X

+(3 perm’s) .

To reduce this expression further we shall need some identities. The first
useful identity is the Bjerrum-Bohr’s identity (40). The second one can be
obtained by noting that,

G (Y) 0y (1A (2 9)iA(y; 7)) = b (y)mil,, (5 y)iA(y; ')
= Gun(y) [m?iA (2 9)iA(y; 2') +i6” (v —y)iA(y; 2')
+ilg (3 )i6” (y =) + 2001 A (w; )N (y;2') |, (65)

where ¢p,(y) is the external leg field that satisfies, (92 — m?*)¢m(y) = 0.
From (65) one immediately obtains,

: . : ) _ CoNisD - eD - )
QaSZAm(xa y)a;yLZA(yv ZE'/) - _ZAm(xa y)z5 (y—llf/) — 0 (x_y)ZA(yv ZE'/)
— =0 (x—y)iA(y; 7)), (66)
where the last implication selects only the term which contributes to the long

range potential (25). Analogous (albeit more tedious) manipulations yield
the following identity,

Y y

oy
40801 A, (23 ) ==

5 “iN(y;2')  — 367 (x —y)iA(y; 2) . (67)

When these identities are employed in the vertex function (64), one sees that
both the square bracket multiplying the factor —1/(b — 2), and the square
bracket on the last two lines of (64), vanish in D = 4, implying that the
whole set of diagrams in Figure 2 contributes zero to (25), thus proving (41).
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