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We consider gedanken experiments to destroy an extremal or nearly extremal Kerr-Newman black
hole by causing it to absorb matter with sufficient charge and/or angular momentum as compared
with energy that it cannot remain a black hole. It was previously shown by one of us that such
gedanken experiments cannot succeed for test particle matter entering an extremal Kerr-Newman
black hole. We generalize this result here to arbitrary matter entering an extremal Kerr-Newman
black hole, provided only that the non-electromagnetic contribution to the stress-energy tensor of the
matter satisfies the null energy condition. We then analyze the gedanken experiments proposed by
Hubeny and others to over-charge and/or over-spin an initially slightly non-extremal Kerr-Newman
black hole. Analysis of such gedanken experiments requires that we calculate all effects on the final
mass of the black hole that are second-order in the charge and angular momentum carried into the
black hole, including all self-force effects. We obtain a general formula for the full second order
correction to mass, δ2M , which allows us to prove that no gedanken experiments of the generalized
Hubeny type can ever succeed in over-charging and/or over-spinning a Kerr-Newman black hole,
provided only that the non-electromagnetic stress-energy tensor satisfies the null energy condition.
Our analysis is based upon Lagrangian methods, and our formula for the second-order correction
to mass is obtained by generalizing the canonical energy analysis of Hollands and Wald to the
Einstein-Maxwell case. Remarkably, we obtain our formula for δ2M without having to explicitly
compute self-force or finite size effects. Indeed, in an appendix, we show explicitly that our formula
incorporates both the self-force and finite size effects for the special case of a charged body slowly
lowered into an uncharged black hole.

I. INTRODUCTION

The Kerr-Newman family of metrics are the unique
stationary, asymptotically flat black hole solutions of the
Einstein-Maxwell equations in 4 spacetime dimensions.
The Kerr-Newman metrics comprise a 3-parameter fam-
ily of solutions parameterized by mass M , charge Q, and
angular momentum J = Ma. However, these solutions
describe black holes only for a limited region of this pa-
rameter space, characterized by the inequality

M2 ≥ (J/M)2 +Q2. (1)

When this inequality is not satisfied, the spacetime con-
tains a naked singularity, i.e., the singularity is visible
from infinity.

The above facts give rise to a possible means of test-
ing the weak cosmic censorship conjecture [1], [2], which
states that all singularities arising from gravitational col-
lapse must be hidden within black holes, so that no phys-
ical process can give rise to a naked singularity. Suppose
that we start with a Kerr-Newman black hole satisfying
(1). Now throw/drop matter into the black hole carrying
energy E, angular momentum, `, and charge q, so that
the final state will have mass M + E, angular momen-
tum J + `, and charge Q+ q. Then if ` and/or q can be
made sufficiently large compared with E, the inequality
(1) will be violated, resulting in a contradiction with the
final state being a black hole.

The most obvious case to consider for an attempt to
destroy a black hole in this manner would be to start with
an extremal black hole, satisfying M2 = (J/M)2 + Q2,
and to throw in particle matter. This case was analyzed
in 1974 by one of us in paper I of this series [3]. It was
shown in paper I that no violations of (1) can occur by
throwing particle matter into an extremal Kerr-Newman
black hole. The nature of this result is well illustrated
by considering the special case of attempting to “over-
charge” an extremal Reissner-Nordstrom (Q = M) black
hole. Let ξa denote the horizon Killing field, which, for a
Reissner-Nordstrom black hole, coincides with the static
Killing field (∂/∂t)a. A test particle with mass m and
charge q in this spacetime has energy given by

E = (mua + qAa)ξa , (2)

where ua is the four-velocity of the particle and Aa is the
vector potential of the black hole’s electromagnetic field.

Since ξa is null on the horizon, the first term −muaξa
is non-negative on the horizon, although it can be made
arbitrarily small. Thus, the energy of a particle that
crosses the horizon is bounded below by the electromag-
netic potential energy term

E ≥ qΦH , (3)

where ΦH = (−Aaξa)|H is the electromagnetic poten-
tial evaluated on the horizon. However, ΦH = 1 for an
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extremal Reissner-Nordstrom black hole, so any particle
that enters the black hole must satisfy

E ≥ q . (4)

Consequently, we have M + E ≥ Q+ q, so (1) holds. In
other words, any particle with sufficiently large charge q
as compared with E to produce a violation of (1) for the
final state would be repelled by the electric field of the
black hole and thus cannot enter it. As shown in paper
I [3], similar results hold for attempting to over-charge
and/or over-spin a general extremal Kerr-Newman black
hole using particle matter.

Nevertheless, in 1999 Hubeny [4] proposed that viola-
tions of (1) might still occur if one suitably added matter
to a slightly non-extremal black hole. To see this, con-
sider a slightly non-extremal Reissner-Nordstrom black
hole. It is useful to introduce the dimensionless parame-
ter

ε =

√
M2 −Q2

M
, (5)

so that ε→ 0 in the extremal limit. For ε� 1, we have

ΦH = Q/r+ ≈ 1− ε, (6)

where r+ = M +
√
M2 −Q2 is the horizon radius. In

place of (4) we now obtain

E ≥ q(1− ε) . (7)

Consequently, for this lower bound for E, we have

(M + E)− (Q+ q) ≈ −εq +
Mε2

2
. (8)

Thus, it might appear that we can obtain a violation of
(1) by taking q > εM/2 (but still keeping q � Q).

The main difficulty with Hubeny’s argument is that
for q ∼ εM , the violation of (1) given by (8) is of order
εq ∼ q2/M . Consequently, to determine if one truly can
obtain a violation of (1), the quantities appearing in (8)
must all be calculated consistently to the appropriate or-
der. Specifically, the energy, E, of the matter must be
calculated to order q2. However, formula (2) applies only
to “test matter” and is valid only to linear order in q; it
does not take into account the contributions of electro-
magnetic self-energy (which require consideration of bod-
ies of finite size) or the energy contributed by self-force
effects, both of which enter at order q2. In particular,
it is possible that self-force effects could contribute to a
repulsion of the body from the black hole, requiring that
the body be given additional energy at order q2 in order
to enter the black hole.

Similar potential violations of (1) have been found for
Reissner-Nordström black holes absorbing angular mo-
mentum [5], Kerr black holes absorbing charge or angu-
lar momentum [6–8], and for generic Kerr-Newman black
holes [9, 10]. However, just as in Hubeny’s argument,

in order to determine whether these potential violations
actually occur, one needs to calculate all contributions
to energy that are quadratic order in the relevant pa-
rameters of the particle. This would appear to require
a complete analysis of self-force effects as well as finite
size effects and any other effects that might enter at this
order.

Unfortunately, the analytic computation of electro-
magnetic and gravitational self-force effects on the mo-
tion of bodies near a Kerr-Newman black hole is well be-
yond present capabilities. Thus, the main results that
have been obtained thus far have come from numeri-
cal simulations. Numerical work has indicated that the
self-force on particles falling into black holes may suf-
fice to prevent Hubeny-type violations from occurring
in the specific cases of over-charging a nearly extremal
Reissner-Nordström black hole [11] and over-spinning a
nearly extremal Kerr black hole [12–15]. However, even
for these special cases, no general analysis has been given
of the second order corrections to energy. As such, there
is no general proof that the cosmic censorship inequality
(1) holds at quadratic order for processes involving mat-
ter that falls into nearly extremal Kerr-Newman black
holes.

The main purpose of this paper is to give a com-
plete analysis—valid to second order—of the contribu-
tions to the mass of a black hole for arbitrary mat-
ter that enters a black hole. At linear order, we de-
rive a general expression—first obtained in [16]—that
expresses δM in terms of the flux of charge and angu-
lar momentum carried into the black hole together with
the non-electromagnetic energy flux. Assuming only that
the non-electromagnetic contribution to the stress energy
tensor satisfies the null energy condition, we will prove
that for arbitrary processes involving matter falling into
an exactly extremal Kerr-Newman black hole, no viola-
tion of (1) can occur at linear order in the perturbation.
This result, which was previously obtained for charged
scalar matter in [17] and generalized in [18], generalizes
the results derived for particle matter in paper I [3] to
completely general matter.

We then consider the possible Hubeny-type violations
that might occur for slightly non-extremal black holes.
Our general formula for δM shows that the linear order
process obeys a generalization of (7), thus allowing the
possibility of a violation of (1) but requiring an analysis of
the second order effects on energy. We will perform this
analysis by expressing the second order change in mass,
δ2M , of the black hole in terms of the canonical energy
of the first order perturbation. We will then make the
additional assumption that the non-extremal black hole
is stable under linear perturbations, so that the first or-
der perturbation decays to a stationary final state. This
will allow us to evaluate the canonical energy in terms
of a positive flux contribution through the horizon and a
contribution from the final stationary perturbation. The
resulting formula gives rise to an inequality on δ2M , and
we will see that this inequality is just what is needed to



3

prove that no violations of the Hubeny type can ever oc-
cur. Remarkably, we are able to derive this inequality—
which automatically takes account of all self-force and
finite size effects—without having to explicitly calculate
these effects themselves. We will show by explicit calcula-
tion in the Appendix that for the special case of lowering
a charged body into an uncharged black hole, our general
formula corresponds precisely to taking these effects into
account.

Our analysis differs from most previous analyses—
including that of paper I [3]—in the following three key
respects: (1) We consider completely general matter
rather than particle matter. Of course, “particle matter”
makes sense in general relativity only when considered
to be a limiting case of general matter as described in
[19] and [20], so the general results derived in this paper
also automatically hold for physically realizable particle
matter. (2) Rather than analyzing the motion of bod-
ies to determine what trajectories will or will not enter
the black hole, we simply restrict consideration to the
case where all matter that is initially present enters the
black hole, and we compute the second order variation of
the mass for this case. This allows us to derive the de-
sired inequality without having to calculate the motion
of bodies. (3) Most importantly, we obtain an exact ex-
pression for the full second order effects on the mass of a
black hole. This allows us to obtain the above-mentioned
inequality on δ2M .

In section II, we obtain the general variational for-
mulas that we will need, including the generalization of
the notion of canonical energy introduced in [21] for vac-
uum perturbations of vacuum black holes to the Einstein-
Maxwell case. The gedanken experiments to destroy an
extremal black hole are analyzed in section III. We con-
sider a perturbation of the black hole involving matter
with charge and angular momentum such that the black
hole is initially unperturbed in a neighborhood of the
horizon and such that all of the matter eventually falls
into the black hole. We obtain a general expression for
δM that was first derived in [16]. We show that this
expression yields an inequality that is sufficient to show
that no violations can occur at linear order for extremal
black holes, as previously found in [18]. This general-
izes the results of paper I to completely general mat-
ter whose non-electromagnetic stress-energy satisfies the
null energy condition. The Hubeny-type gedanken ex-
periments to destroy a slightly non-extremal black hole
are considered in section IV. We consider a process that
is optimal at first order so that the first order pertur-
bation saturates our lower bound on δM . We obtain
an expression for δ2M involving the canonical energy of
the first order perturbation. Assuming that the first or-
der perturbation of the non-extremal black hole becomes
stationary at late times (i.e., that the non-extremal black
hole is linearly stable), we obtain a lower bound on δ2M
that is sufficient to prove that no violations of (1) can
occur. A simple pictorial representation of our results is
presented in section V. The relationship between our re-

sults and the electromagnetic self-force and self-energy is
detailed in the Appendix for the case of a charged body
lowered into an uncharged black hole.

Our metric signature, curvature, and abstract index
conventions follow [22]. In many instances, we will sup-
press the indices on differential forms, in which case they
will be denoted with boldface letters.

II. VARIATIONAL IDENTITIES AND
CANONICAL ENERGY FOR

EINSTEIN-MAXWELL THEORY

In this section, we generalize the canonical energy re-
sults obtained in [21] for vacuum perturbations of vac-
uum black holes to the Einstein-Maxwell case. It would
be most natural to treat the electromagnetic field Aa as a
connection on a principal U(1)-bundle and use the frame-
work developed by Prabhu [23] for doing the Lagrangian
analysis in the principal bundle. However, since this
would require the introduction of considerable machin-
ery and formalism, we will bypass this here and simply
treat Aa as the one-form that one obtains on spacetime
by making a choice of gauge. This leads to some awk-
wardness in that we will work—as is conventional—in
a gauge such that, in the background black hole space-
time, Aa is stationary, £ξAa = 0, and Aa → 0 at infin-
ity, so the “horizon potential” ΦH = −ξaAa|H is non-
vanishing, where ξa is the horizon Killing field and H
denotes the future event horizon. Since ξa = 0 on the bi-
furcation surface, this implies that, in our gauge, Aa can-
not be smooth at the bifurcation surface as a one-form
on spacetime, which might be thought to cause difficul-
ties. In fact, no such difficulties occur, as can be seen
by performing the analysis in the principal bundle in the
framework of Prabhu [23]. Namely, the connection, Aa,
is smooth as a one-form in the bundle and this is consis-
tent with the non-vanishing of ΦH because the lift of ξa

to the bundle has non-vanishing vertical part. Neverthe-
less, to keep our discussion simple, we will perform our
analysis on spacetime and ignore the non-smoothness of
the background Aa, relying on the fact that the analysis
could have been performed in the principal bundle, where
all fields are smooth.

Although our interest is in 4-dimensional Kerr-
Newman black holes in Einstein-Maxwell theory, we will
consider general diffeomorphism covariant theories in n-
dimensional spacetimes in subsections II A and II B. In
II A, we review the derivation of a fundamental varia-
tional identity for theories derived from a diffeomorphism
covariant Lagrangian. We define canonical energy in II B.
The Einstein-Maxwell case in 4 spacetime dimensions is
explicitly considered in II C. Gauge invariance issues are
treated in II D.
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A. The Linear Variational Identity

The Lagrangian for a diffeomorphism-covariant theory
on an n-dimensional spacetime is given by an n-form L
on spacetime, which is a local function of the metric, gab,
its curvature, and symmetrized covariant derivatives of
the curvature, and which may also depend on other ten-
sor fields, ψ, and their symmetrized covariant derivatives.
We refer to the full field configuration as φ = (gab, ψ). We
vary the Lagrangian by considering a one-parameter fam-
ily of field configurations, φ(λ), and taking derivatives of
L with respect to λ. Throughout this paper, the notation
“δ” will be used to denote derivatives evaluated at λ = 0,
e.g.,

δL =
dL

dλ

∣∣∣∣
λ=0

, δ2L =
d2L

dλ2

∣∣∣∣
λ=0

, δφ =
dφ

dλ

∣∣∣∣
λ=0

. (9)

The first-order variation of the Lagrangian can be writ-
ten as

dL

dλ
= E(φ) · dφ

dλ
+ dθ

(
φ,
dφ

dλ

)
, (10)

where E is locally constructed from the fields φ and their
derivatives, while θ is locally constructed from φ, dφ/dλ,
and their derivatives; θ corresponds to the “boundary
term” one would obtain by putting the variation of L un-
der an integral sign and integrating by parts to remove all
spacetime derivatives from dφ/dλ. The Euler-Lagrange
equations of motion of the theory are simply

E(φ) = 0 . (11)

The symplectic current (n − 1)-form ω is defined in
terms of a second variation of θ. For a two-parameter
family of field configurations φ(λ1, λ2), we define

ω

(
φ;

∂φ

∂λ1
,
∂φ

∂λ2

)
=

∂

∂λ1
θ

(
φ,

∂φ

∂λ2

)
− ∂

∂λ2
θ

(
φ,

∂φ

∂λ1

)
.

(12)
The symplectic current depends on the background field
configuration φ, as well as on the perturbations ∂φ/∂λ1

and ∂φ/∂λ2. If both of these perturbations satisfy the
linearized equations of motion ∂

∂λ1
E(φ) = ∂

∂λ2
E(φ) = 0,

then it follows from equation (10) that

dω = 0, (13)

i.e., the symplectic current is conserved.
The Noether current associated with an arbitrary vec-

tor field Xa is defined as

JX(φ) = θ(φ; LXφ)− ιXL(φ) , (14)

where ιXL denotes contraction of Xa into the first index
of the differential form L. A simple calculation [24] shows
that the first variation of JX can be written as

dJX

dλ
= −ιX

(
E(φ) · dφ

dλ

)
+ ω

(
φ;
dφ

dλ
,LXφ

)
+d

[
ιXθ

(
φ,
dφ

dλ

)]
. (15)

On the other hand, it was shown in [25] that the Noether
current can be written in the form

JX = CX + dQX , (16)

where QX is called the Noether charge and CX ≡ XaCa

are the constraints of the theory, so that Ca = 0 when the
equations of motion are satisfied. In particular, dJ = 0
when the equations of motion are satisfied, as can be
shown directly from the definition (14) of J .

By differentiating1 equation (16) with respect to λ and
comparing it to equation (15), we obtain the fundamental
identity

d

[
dQX

dλ
− ιXθ

(
φ,
dφ

dλ

)]
= ω

(
φ;
dφ

dλ
,LXφ

)
− dCX

dλ

−ιX
(
E(φ) · dφ

dλ

)
. (17)

This identity forms the basis for all calculations con-
ducted in the remainder of this paper.

Now, assume that φ(λ) is globally hyperbolic with
Cauchy surface Σ. Evaluating (17) at λ = 0 and inte-
grating the resulting equation over Σ, we obtain∫
∂Σ

[δQX − ιXθ (φ, δφ)] =

∫
Σ

ω (φ; δφ,LXφ)−
∫

Σ

δCX

−
∫

Σ

ιX (E(φ) · δφ) . (18)

A Hamiltonian hX associated with a vector field Xa is
a functional of φ such that if and only if φ satisfies the
equations of motion, then under all variations δφ we have

δhX =

∫
Σ

ω (φ; δφ,LXφ) . (19)

If the spacetime is asymptotically flat and there is no
“interior boundary” to Σ, then a Hamiltonian, hX , con-
jugate to Xa must satisfy

δhX =

∫
∞

[δQX − ιXθ (φ, δφ)] +

∫
Σ

δCX , (20)

where “
∫
∞” denotes the limit to spatial infinity of inte-

gration over a suitable family of spacelike (n−2)-spheres.
This motivates the following definition2 of the ADM con-
served quantity HX conjugate to an asymptotic symme-
try Xa for asymptotically flat solutions: HX (if it exists)
is the quantity such that, for all one-parameter families
of solutions, we have

δHX =

∫
∞

[δQX − ιXθ (φ, δφ)] . (21)

1 Note that we take Xa to be λ-independent.
2 We assume here that the matter fields fall off at infinity rapidly

enough so as not to contribute to the surface integral on the right
side of (21). Otherwise, these matter fields may make contribu-
tions of the form “potential times varied charge” that would need
to be subtracted to obtain the conventional definition of ADM
conserved quantities.
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Finally, let us restrict consideration to the case where
(i) φ0 = φ(λ = 0) is a globally hyperbolic, asymptotically
flat solution of the equations of motion, E = 0, and (ii)
φ0 possesses a Killing field ξa that is also a symmetry of
the matter fields ψ, so that Lξφ0 = 0. Then (18) yields∫

∂Σ

[δQξ − ιξθ (φ, δφ)] = −
∫

Σ

δCξ . (22)

The case of greatest interest for us is where φ0 repre-
sents the exterior of a stationary black hole, and ξa is
the horizon Killing field

ξa = ta + ΩHϕ
a , (23)

where ta is the timelike Killing field of φ0, ϕa is the axial
Killing field of φ0, and ΩH is the angular velocity of the
horizon. The contribution to the boundary integral from
infinity is then just∫

∞
[δQξ − ιξθ (φ, δφ)] = δHξ = δM − ΩHδJ, (24)

where M is the ADM mass and J is the ADM angular
momentum. If the spacetime represents the exterior of
a black hole, then there will be a contribution from the
“internal boundary” as well. We will evaluate this inter-
nal boundary contribution for Einstein-Maxwell theory
in subsection C below.

B. Second Order Variations and Canonical Energy

Let us now continue to restrict consideration to the
case where φ0 = φ(λ = 0) is a globally hyperbolic solu-
tion of the equations of motion that possesses a Killing
field ξa that is also a symmetry of the matter fields ψ, so
that Lξφ0 = 0. Again, we do not require that the pertur-
bation δφ = (dφ/dλ)|λ=0 satisfy the linearized equations
of motion. Let Σ be a Cauchy surface. We define the
canonical energy of the perturbation δφ on Σ by

EΣ(φ0; δφ) ≡
∫

Σ

ω (φ; δφ,Lξδφ) . (25)

We can obtain an extremely useful expression for
canonical energy by differentiating (17) with respect to
λ and evaluating the resulting expression at λ = 0. We
obtain

d
[
δ2Qξ − ιξδθ (φ, δφ)

]
= ω (φ; δφ,Lξδφ)− δ2Cξ

−ιξ (δE · δφ) , (26)

Here, the meaning of the “δ’s” in the expression δθ(φ, δφ)
is that both derivatives in this term are to be evaluated
simultaneously, i.e.,

δθ(φ, δφ) ≡
[
d

dλ
θ

(
φ,
dφ

dλ

)]∣∣∣∣
λ=0

. (27)

Integrating (26) over Σ, we obtain

EΣ(φ; δφ) =

∫
∂Σ

[
δ2Qξ − ιξδθ (φ, δφ)

]
+

∫
Σ

δ2Cξ

+

∫
Σ

ιξ (δE · δφ) . (28)

The case we are most interested in here is one where φ0

corresponds to a stationary black hole, ξa is the horizon
Killing field,3 and Σ is a Cauchy surface for the exterior
of the black hole. In that case, it follows from (21) that
the contribution to the the boundary term in (28) from
infinity is∫

∞

[
δ2Qξ − ιξδθ (φ, δφ)

]
= δ2M − ΩHδ

2J . (29)

We will evaluate the interior boundary term at the end
of the next subsection.

C. Einstein-Maxwell Theory

We now consider Einstein-Maxwell theory in 4 space-
time dimensions and provide explicit expressions for
many of the quantities appearing in the previous sub-
sections. The Einstein-Maxwell Lagrangian is given by

L =
1

16π
(R− F abFab)ε, (30)

where ε is the volume element associated with the met-
ric. For this Lagrangian, the field configuration consists
of the metric and the vector potential, φ = (gab, Aa).
As explained in the introductory paragraph to this sec-
tion, we will treat Aa as a one-form on spacetime. The
symplectic potential, Noether charge, equations of mo-
tion, and constraints for this Lagrangian were computed
in [16]. The symplectic potential can be written as

θabc

(
φ,
dφ

dλ

)
= θGRabc + θEMabc , (31)

where

θGRabc

(
φ,
dφ

dλ

)
=

1

16π
εdabcg

degfg

×
(
∇g

dgef
dλ
−∇e

dgfg
dλ

)
(32)

θEMabc

(
φ,
dφ

dλ

)
= − 1

4π
εdabcF

de dAe
dλ

. (33)

The Noether charge is given by

(QX)ab = (QGRX )ab + (QEMX )ab, (34)

3 Note that in [21], the canonical energy was defined with respect
to the asymptotically timelike Killing field ta rather than the
horizon Killing field ξa. These quantities are equal to each other
for axisymmetric perturbations, as considered in [21].
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where

(QGRX )ab = − 1

16π
εabcd∇cXd, (35)

(QEMX )ab = − 1

8π
εabcdF

cdAeX
e. (36)

The equations of motion and constraints are given by

E(φ) · dφ
dλ

= −ε
[

1

2
T ab

dgab
dλ

+ ja
dAa
dλ

]
, (37)

Cbcda = εebcd [Ta
e +Aaj

e] . (38)

Here we have written Tab ≡ Gab − 8πTEMab —so that Tab
corresponds to the non-electromagnetic part of the stress-
energy tensor, and ja = (1/4π)∇bF ab—so that ja corre-
sponds to the electromagnetic charge-current. Note that
in the absence of sources, when both Tab and ja are zero,
the constraints (38) vanish and the Euler-Lagrange equa-
tions of motion (37) are satisfied.

The symplectic current for the Einstein-Maxwell the-
ory can be written in the form

ωabc

(
φ;

∂φ

∂λ1
,
∂φ

∂λ2

)
= ωGRabc + ωEMabc , (39)

where, from equation (31), we have

ωGRabc =
1

16π
εdabcw

d, (40)

ωEMabc =
1

4π

[
∂

∂λ2
(εdabcF

de)
∂Ae
∂λ1

− ∂

∂λ1
(εdabcF

de)
∂Ae
∂λ2

]
, (41)

where, in (40), we have

wa = P abcdef
(
∂gbc
∂λ2
∇d

∂gef
∂λ1

− ∂gbc
∂λ1
∇d

∂gef
∂λ2

)
, (42)

with

P abcdef = gaegfbgcd − 1

2
gadgbegfc − 1

2
gabgcdgef

−1

2
gbcgaegfd +

1

2
gbcgadgef . (43)

We now restrict attention to the case where φ0 =
φ(λ = 0) is a stationary black hole solution to the
Einstein-Maxwell equations (i.e., T ab = ja = 0 at λ = 0)
with horizon Killing field ξa, and we let Σ be a Cauchy
surface for the exterior region. In fact, by the black hole
uniqueness theorems [22], φ0 must be a Kerr-Newman
solution, but we need not make use of this fact here.

We work in a gauge where LξAa(λ = 0) = 0 and
Aa(λ = 0) → 0 at infinity. As already discussed in the
first paragraph of this section, in this gauge, Aa(λ = 0)
will, in general, be singular at the horizon, but this does
not cause any difficulties. Furthermore, the variations
δAa and δ2Aa may be assumed to be smooth (as can be
justified by working in the principal bundle framework of
Prabhu [23]).

By definition, for a non-extremal black hole the horizon
will be of bifurcate type, and Σ will terminate at the
bifurcation surface B. For a non-extremal black hole, we
now evaluate the boundary contribution to (22) arising
from B. Since ξa = 0 on B, we have∫

B

[
δQGR

ξ − ιξθGR(φ, δφ)
]

=

∫
B

δQGR
ξ =

κ

8π
δAB ,

(44)
where AB is the area of B and κ is the surface gravity
of the event horizon. To evaluate the electromagnetic
contribution to the boundary term4 at B, we note that
by (33), θEM is smooth at B (since δAa is smooth), so
ιξθ

EM = 0. However, by (36), we have

δQEM
ξ = − 1

8π

[
ξeAeδ(εabcdF

cd) + ξe(δAe)εabcdF
cd)
]
.

(45)
Again, the second term vanishes at B on account of the
smoothness of δAa and the vanishing of ξa. However, the
quantity

ΦH ≡ − [ξeAe(λ)] |H (46)

is, in general, nonvanishing at B. Since ΦH must be
constant on the horizon at λ = 0 [26] (see theorem 1
of [23] for a general proof for Yang-Mills fields), we find
that the electromagnetic contribution to the boundary
term at B is∫

B

[
δQEM

ξ − ιξθEM (φ, δφ)
]

=
1

8π
ΦH

∫
B

δ(εabcdF
cd)

= ΦHδQB , (47)

where QB is the electric charge flux integral over B.
The ingredients are now in place to write out (22) ex-

plicitly for a non-extremal black hole. We previously
evaluated the boundary term from infinity in (24), and, in
the previous paragraph, we have evaluated the boundary
term from B. Using (38) and the fact that Tab = ja = 0
in the background spacetime (since φ0 is a solution), we
see that the remaining term δCξ takes the form

δCbcdaξ
a = εebcd [δTa

e +Aaδj
e] ξa (48)

Thus, we see that (22) takes the explicit form

4 We assume that Aata and Aaϕa fall off as 1/r and Fab falls off
as 1/r2 at infinity, so there is no electromagnetic contribution to

the boundary term at infinity.
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δM − ΩHδJ −
κ

8π
δAB − ΦHδQB = −

∫
Σ

εebcd [δTa
e +Aaδj

e] ξa. (49)

For source free perturbations, δTab = δja = 0, this yields
the usual first law of black hole mechanics of Einstein-
Maxwell theory.

It should be emphasized that (49) holds only for non-
extremal black holes. In this paper, we will be con-
cerned with both non-extremal and extremal black holes.
However, it is clear from the derivation that (49) (with
δAB = δQB = 0) also holds for extremal black holes
in the special case where Σ is not a Cauchy surface
but rather an asymptotically flat hypersurface with one
boundary at spatial infinity and the other boundary on
the horizon at an early time such that the perturbation
vanishes in a neighborhood of this internal boundary. In
this case, there clearly will be no boundary contribution
from the internal boundary of Σ. We will use (49) in this
form for extremal black holes in section III.

The canonical energy may also be split into gravita-

tional and electromagnetic contributions

EΣ(φ; δφ) = EGRΣ + EEMΣ . (50)

Explicit formulas for these parts can be obtained from the
definition (25), substituting from (40) and (41). These
formulas are quite complicated and will not be written
out explicitly here. Fortunately, we will need to evaluate
the canonical energy integral only over (a portion of)
the horizon (where its form simplifies considerably) and
for stationary perturbations (where it can be evaluated
straightforwardly).

We may now explicitly evaluate the terms appearing in
(28) for Einstein-Maxwell theory, in exact parallel with
our above evaluation of the terms appearing in (22). For
a non-extremal black hole, we obtain5

δ2M − ΩHδ
2J − ΦHδ

2QB −
κ

8π
δ2AB = EΣ(φ; δφ)−

∫
Σ

ιξ(δE(φ) · δφ)−
∫

Σ

δ2Cξ. (51)

Again, this equation (with δ2AB = δ2QB = 0) will hold
for an extremal black hole if we restrict consideration to
the case where both the first and second order pertur-
bations vanish in a neighborhood of the horizon at the
internal boundary of Σ. In section IV, we will evalu-
ate the right side of (51) in the context relevant to our
calculations.

D. Gauge Invariance of Canonical Energy

In this subsection, we show that the canonical energy
is gauge invariant when evaluated on linearized solutions
to the Einstein-Maxwell equations, subject to the restric-
tions of Proposition 1 below. It should be noted that the
symplectic form (i.e., the integral of ω(φ, δ1φ, δ2φ) over a
Cauchy surface) is not gauge invariant, either in the sense
of the Maxwell gauge transformations δAa 7→ δAa+∇aχ
or the infinitesimal diffeomorphisms δφ 7→ δφ+ LXφ, on
account of boundary terms arising from the horizon.

For the purposes of analyzing gauge invariance, it is
convenient to view the canonical energy as a bilinear form
on the space of perturbations to a black hole background
given by

EΣ(φ; δ1φ, δ2φ) ≡
∫

Σ

ω(φ; δ1φ,Lξδ2φ). (52)

The canonical energy will be gauge invariant if and only
if it vanishes whenever δ1φ or δ2φ is a pure gauge trans-
formation.

If δ1φ and δ2φ are solutions, then, as shown in [21], EΣ
is symmetric. Namely, by the antisymmetry and bilin-
earity of the symplectic current, we have

EΣ(φ; δ1φ, δ2φ)− EΣ(φ; δ2φ, δ1φ) =

∫
Σ

Lξω(φ; δ1φ, δ2φ).

(53)
Applying the Lie derivative identity Lξω = ιξdω+d(ιξω)
and applying Stokes’ theorem to the second term yields

EΣ(φ; δ1φ, δ2φ)− EΣ(φ; δ2φ, δ1φ) =

∫
Σ

ιξdω(φ; δ1φ, δ2φ) +

∫
∞
ιξω(φ; δ1φ, δ2φ)−

∫
B

ιξω(φ; δ1φ, δ2φ). (54)

5 It should be noted that since we take ξa to be fixed, the quantities
ΩH and κ do not vary. This means that if we perturb toward
another another stationary black with different values of ΩH or

κ, then ξa cannot be the horizon Killing field of the perturbed
black hole. See [21] for further discussion.
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The first term vanishes for solutions6 by (13). The
boundary term at infinity vanishes under the assump-
tion that δ1φ and δ2φ are asymptotically flat perturba-
tions with appropriate falloff conditions and the bound-
ary term at the bifurcation surface vanishes since ξa van-
ishes on B, thus establishing that EΣ is symmetric. This
is convenient because it implies that to show gauge in-
variance of EΣ, we need only show that EΣ vanishes when
δ2φ is pure gauge in (52).

First let us consider a pure Maxwell gauge transforma-
tion given by δgab = 0, δAa = ∇aχ for some smooth func-
tion χ. In analogy with (14), which defined the Noether
current associated with a local diffeomorphism, we may
define the Noether current associated with a Maxwell
gauge transformation by

J χ = θ(φ,∇aχ). (55)

Just as in (16), this Noether current can also be written
in terms of a constraint and a charge as

J χ = C[χ] + dQ[χ]. (56)

A simple calculation shows that for the Einstein-Maxwell
theory, the constraint and Noether charge are given by

(C[χ])abc = εdabcχj
d, (57)

(Q[χ])ab = − 1

8π
εcdabχF

cd. (58)

A calculation similar to that used to obtain (18) yields
the identity∫

∂Σ

δQ[χ] =

∫
Σ

ω(φ; δφ,∇aχ)−
∫

Σ

δC, (59)

i.e.,

WΣ(φ; δφ,∇aχ) =

∫
∞
δQ[χ]−

∫
B

δQ[χ] +

∫
Σ

δC, (60)

where WΣ(φ; δ1φ, δ2φ) ≡
∫

Σ
ω(φ; δ1φ, δ2φ) is the sym-

plectic form. The constraint term vanishes under the
assumption that δφ satisfies the linearized equations of
motion, so, using (58), we obtain,

WΣ(φ; δφ,∇aχ) = − 1

8π

∫
∞
χδ(εcdabF

cd)

+
1

8π

∫
B

χδ(εcdabF
cd). (61)

6 The perturbations considered in sections III and IV do not sat-
isfy the linearized equations of motion, since they have sources
in the form of charged matter that is added to the black hole.
However, the quantity

∫
Σ
ιξdω still vanishes for the particular

surface Σ chosen in those sections (cf. figures 1 and 2), and so
the gauge invariance established in this subsection still holds for
that particular case.

This expression is nonvanishing for generic perturbations
and gauge transformations, since χ may be non vanishing
at infinity and at B. Thus, the symplectic form is not
invariant under Maxwell gauge transformations. How-
ever, the gauge invariance of the canonical energy for
Maxwell gauge transformation can be seen by replacing
χ by Lξχ = ξa∇aχ in (61). The resulting expression
vanishes, since ξa∇aχ goes to zero at infinity and van-
ishes at B. Thus, the Einstein-Maxwell canonical energy
is indeed invariant under Maxwell gauge transformations,
as we desired to show.

W now analyze the gauge dependence of the canoni-
cal energy under smooth infinitesimal diffeomorphisms,
δφ = LXφ, for which Xa is an asymptotic symmetry.
The canonical energy of an infinitesimal diffeomorphism
is given by

EΣ(φ; δφ,LXφ) = WΣ(φ; δφ,LξLXφ)

= WΣ(φ; δφ,LY φ), (62)

where Y a = [ξ,X]a and we have used the fact that Lξφ =
0 at λ = 0. From (18) and (21), we have

EΣ(φ; δφ,LXφ) = WΣ(φ; δφ,LY φ)

= δHY −
∫
B

[δQY − ιY θ (φ, δφ)] , (63)

where we have used the assumptions that φ(λ = 0) and
δφ satisfy the equations of motion and the linearized
equations of motion, respectively.

It is easily seen that the right side of (63) cannot vanish
unless some restrictions are placed on the allowed pertur-
bations at the horizon and at infinity. These conditions
are purely gauge conditions on the perturbations that
do not restrict the physical perturbations we consider.
First, following [21], we impose the gauge condition that
the perturbed expansion of the horizon generators van-
ishes,

δΘ|H = 0 . (64)

As shown in [21], this condition may always be imposed
for non-extremal black holes. The infinitesimal diffeo-
morphisms Xa that preserve this condition are the ones
that are tangent to the future horizon. This implies that
Y a = LξX

a is normal to the horizon at B.
Second, we impose the condition

kaδAa|H = 0 , (65)

where ka denotes an affinely parametrized tangent to the
generators of the horizon. This condition always can
be imposed by a Maxwell gauge transformation δAa →
δA′

a = δAa −∇aχ with χ satisfying ka∇aχ = kaδAa on
H.

We now evaluate the terms appearing on the right side
of (63), where Y a = LξX

a. First, we evaluate the contri-
bution to the boundary term at B arising from the sym-
plectic potential. We split the symplectic potential into
a gravitational and an electromagnetic part as in (31).
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As shown in [21], the gravitational part of the symplectic
potential contribution yields∫

B

ιY θ
GR(φ, δφ) = − 1

8π

∫
B

fδΘε, (66)

where we have written Y a = fka on B with ka normal to
the horizon, since Y a is normal to the horizon at B. This
term vanishes as a consequence of our gauge condition
(64).

As for the electromagnetic part of the symplectic po-
tential, we have∫

B

ιXθ
EM (φ, δφ) = − 1

4π

∫
B

εdcabY
cF deδAe. (67)

However, the assumption that the background spacetime
is stationary restricts the form of F de, since the flux of
electromagnetic stress-energy

TEMab =
1

4π

[
FacFb

c − 1

4
gabF

cdFcd

]
(68)

through the horizon must vanish. For this flux to vanish,
we must have TEMab kakb = 0 on the horizon. The dom-
inant energy condition (which is automatically satisfied
by the electromagnetic field) then implies that TEMab ka

must be proportional to kb. This implies that on H ,
F ab must take the form

F ab = v[akb] + wab, (69)

where wab is purely tangential to the horizon. From this,
and from the assumption that Xa is tangent to the hori-
zon generators on B, we find that the electromagnetic
part of the symplectic potential can be written as∫

B

ιY θ
EM (φ, δφ) = − 1

8π

∫
B

εdcabY
cvdkeδAe , (70)

where we have used the fact that the pullback to H of
εabcd contracted into any vector tangent to H vanishes.
The right side of (70) vanishes on account of our gauge
condition (65).

Next, we consider the term δHY in (63). Since Xa is
an asymptotic symmetry and ξa = ta+ΩHϕ

a for a Kerr-
Newman background, Y a is a linear combination of an
asymptotic space translation and an asymptotic rotation
in a direction orthogonal to the black hole’s axis of ro-
tation. So long as we restrict ourselves to perturbations
with vanishing ADM linear momenta, δPi = 0, and van-
ishing ADM angular momentum in directions orthogonal
to the axis of rotation, we have δHY = 0 for all suit-
able choices of infinitesimal diffeomorphism Xa. These
conditions do not restrict the physical perturbation.

We are left with

EΣ(φ; δφ,LXφ) = −
∫
B

δQY . (71)

We split QY into gravitational and electromagnetic parts
as in (34). It was shown in Appendix A of [21] that since

Y a is normal to the horizon, the pullback to B of δQGR
Y

is given by

δQGR
Y = − 1

16π
(δεabcd)∇cY d . (72)

The right side will be nonvanishing if and only if the
quantity

U ≡ ncd∇cY d (73)

is nonvanishing on B in the background spacetime, where
nab = n[ab] is the binormal to B. We substitute Y a =

LξX
a = ξb∇bXa−Xb∇bξa in this equation and expand

using the Leibniz rule to get

U = ncd
[
ξb∇c∇bXd + (∇cξb)∇bXd

−Xb∇c∇bξd − (∇cXb)∇bξd
]
. (74)

The first term vanishes since ξa vanishes on B. Since
ξa is a Killing field, we have ∇a∇bξc = Rcbadξ

d = 0 on
B, so the third term also vanishes on B. Finally, using
the fact that ∇aξb ∝ nab on B, the second and fourth
terms can be seen to cancel. Thus, U = 0 on B and the
contribution from δQGR

Y vanishes.

Remark In [21], the vanishing of the contribution from
δQGR

Y was obtained by imposing the gauge condition
δεab = (δA/A)εab on the area element on B together
with the restriction δA = 0 on the perturbation. The
above calculation shows that it was not necessary to im-
pose either this gauge condition or this restriction. In
particular, the hypothesis that δA = 0 may be dropped
from Proposition 3 of [21].

Finally, we evaluate the contribution from δQEM
Y . We

obtain ∫
B

δQEM
Y = −

∫
B

1

8π
δ(εabcdF

cd)AeY
e. (75)

However, a diffeomorphism Xa will preserve our gauge
condition (65) only if ξaLXAa = 0 on the horizon7,
which implies that AaY

a vanishes at B. Thus, the con-
tribution from δQEM

Y also vanishes.
We summarize the results of this subsection in the fol-

lowing proposition:
Proposition 1: Consider the subspace of perturbations,
δφ, that (i) satisfy the linearized equations of motion,
δE(φ) = 0, (ii) satisfy the gauge conditions (64) and
(65) at the horizon, and (iii) have vanishing ADM lin-
ear momenta, δPi = 0, and vanishing components of
ADM angular momenta in directions orthogonal to the

7 Rather than restricting Xa so as to preserve the gauge condition
(65), it would be more sensible to require that any Xa that vi-
olates (65) be accompanied by a Maxwell gauge transformation
that restores (65). One would then get a nonvanishing contribu-
tion from (75) that would then be canceled by the contribution
from the Maxwell gauge transformation.
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axis of rotation of the unperturbed black hole. Then
the Einstein-Maxwell canonical energy EΣ(φ; δ1φ, δ2φ) on
this subspace is invariant under all infinitesimal diffeo-
morphisms δφ = LXφ and Maxwell gauge transforma-
tions δAa = ∇aχ (where it is understood that these
transformations must preserve conditions (ii) and (iii)).

III. GEDANKEN EXPERIMENTS TO
DESTROY AN EXTREMAL BLACK HOLE

Consider an extremal Kerr-Newman black hole,

M2 = (J/M)2 +Q2 . (76)

We wish to see if we can cause the inequality (1) to
be violated by throwing/dropping charged and/or ro-
tating matter into the black hole. Specifically, (1) will
be violated—and a contradiction with cosmic censorship
obtained—if we can perturb the black hole so that

2MδM < 2(J/M)(MδJ − JδM)/M2 + 2QδQ . (77)

Writing a = J/M , we see that a violation will occur if
the perturbation satisfies

δM <
a

M2 + a2
δJ +

QM

M2 + a2
δQ . (78)

To analyze whether it is possible to produce such a
perturbation, let Σ0 be an asymptotically flat hypersur-
face that terminates on the future horizon and extends
to spatial infinity. We consider a perturbation δφ whose

FIG. 1. Charged matter, occupying the shaded region, falls
through the event horizon of an extremal black hole. The
perturbed initial data on Σ0 vanishes in a neighborhood of
the horizon.

initial data on Σ0 for the fields δgab and δAa vanishes
in a neighborhood of Σ0 ∩ H, as shown in Fig. 1. We
assume that the matter sources δTab and δja are nonva-
nishing only in a compact region of Σ0, as shown. Physi-
cally, this corresponds to considering a perturbation that
is induced by bringing matter in from infinity in such a

way that the disturbance to the black hole at very early
advanced times is negligibly small. If we evolve the per-
turbation, in general, some of the matter will go into the
black hole and some will go out to infinity or remain in
orbit around the black hole. The matter that does not
fall into the black hole is of no interest to us. There-
fore, we can greatly simplify our analysis by restricting
to the case where all of the matter goes into the black
hole. Note that this also saves us the trouble of analyzing
the motion of bodies outside of the black hole; we do not
care about the details of how the matter managed to get
into the black hole as long as it does get in.

Thus, we wish to consider a one-parameter family
where δTab and δja are nonvanishing only in a region
like the shaded region of Fig. 1. Let Σ be a hypersurface
like that shown in Fig. 1 with the following characteris-
tics: (a) It starts on the future event horizon in a region
where the perturbation vanishes. (b) It continues up the
future horizon until past the region where the matter
sources are nonvanishing. (c) It then becomes spacelike
and continues out towards infinity in an asymptotically
flat manner. Let H denote the horizon portion of Σ, and
let Σ1 denote the spacelike portion (see Fig. 1) so that

Σ = H ∪ Σ1 . (79)

We now use (49) (with δAB = δQB = 0) for this choice of
Σ. The integrand on the right side of (49) is nonvanishing
only on H. Thus, we obtain,

δM − ΩHδJ = −
∫
H
εebcdξaδT

ae −
∫
H
ξaA

aδ(εebcdj
e) .

(80)
Since ΦH = −ξaAa is constant on H, we may pull it out
of the integral. The integral

∫
H δ(εebcdj

e) is just the to-
tal flux of electromagnetic charge through the horizon,
δQflux. Since all of the charge added to the spacetime
falls through the horizon, this flux is just equal to the
total perturbed charge of the black hole, δQflux = δQ.
Combining these observations yields the following for-
mula relating the perturbed parameters of the black hole
spacetime:

δM − ΩHδJ − ΦHδQ = −
∫
H
εebcdξaδT

ae . (81)

This result was first derived in [16]. On the horizon, we
may write

εebcd = −4k[eε̃bcd], (82)

where ka is the future-directed normal to the horizon and
ε̃bcd is the corresponding volume element on the horizon.
The right side of (81) can be written as

−
∫
H
εebcdξaδT

ae =

∫
H
ε̃bcdδT

aeξake. (83)

Since ξa ∝ ka, the right side is non-negative pro-
vided only that the non-electromagnetic stress energy



11

tensor δTab satisfies the null energy condition, so that
δTabk

akb ≥ 0. Thus, (81) yields the inequality

δM − ΩHδJ − ΦHδQ ≥ 0 , (84)

which holds for all perturbations of an extremal Kerr-
Newman black hole resulting from charged-matter enter-
ing the black hole.

For a general (not necessarily extremal) Kerr-Newman
black hole, we have

ΩH =
a

r2
+ + a2

(85)

and

ΦH =
Qr+

r2
+ + a2

, (86)

where r+ is the horizon radius

r+ = M +
√
M2 − (J/M)2 −Q2. (87)

For an extremal black hole, we have r+ = M , so (84)
yields

δM ≥ a

M2 + a2
δJ +

QM

M2 + a2
δQ . (88)

Thus, (78) cannot be satisfied, and an extremal black
hole cannot be destroyed by dropping/throwing matter
into it. This generalizes the results of paper I [3] to arbi-
trary matter, provided only that the non-electromagnetic
contribution to the stress-energy tensor satisfies the null
energy condition. This argument that (81) implies that
one cannot over-charge or over-spin an extremal black
hole was previously given in [18].

IV. GEDANKEN EXPERIMENTS TO DESTROY
A SLIGHTLY NON-EXTREMAL BLACK HOLE

In the spirit of Hubeny [4], let us now repeat the
gedanken experiment of the previous section starting
with a slightly non-extremal Kerr-Newman black hole.
The relevant spacetime diagram for this case is shown in
Fig. 2, where the only significant difference is that Σ0 and
Σ are now taken to terminate at the bifurcation surface,
B. This does not affect the analysis of the first order per-
turbation given in the previous section, since the pertur-
bation is assumed to vanish on the horizon at sufficiently
early advanced times. Since we will need to calculate sec-
ond order effects in this section, we further assume that
the second order perturbation also vanishes in a neigh-
borhood of B, and that all of the matter sources go into
the black hole at second order, so that δ2Tab = δ2ja = 0
on Σ1.

FIG. 2. A spacetime diagram showing charged matter falling
into a black hole as in Fig. 1, but now shown for a non-
extremal black hole. The surface Σ0 is taken to pass through
the bifurcation surface.

An exact repetition of the analysis of the previous sec-
tion yields

δM = ΩHδJ + ΦHδQ−
∫
H
εebcdξaδT

ae

≥ ΩHδJ + ΦHδQ

=
a

r2
+ + a2

δJ +
Qr+

r2
+ + a2

δQ . (89)

As already noted in the Introduction for the special case
of a nearly extremal Reissner-Nordstrom black hole, this
equation admits the possibility of violating (1). However,
as discussed in the Introduction, in order to determine
whether violations of (1) really occur, it is necessary to
calculate the second order corrections, δ2M , to the mass
of the black hole.

In order to proceed further with our analysis of the sec-
ond order corrections to mass, we will make the following
additional assumption:

Additional Assumption: The (slightly) non-extremal,
unperturbed Kerr-Newman black hole we are considering
is linearly stable to perturbations, i.e., any source-free8

solution to the linearized Einstein-Maxwell equations ap-
proaches a perturbation towards another Kerr-Newman
black hole at sufficiently late times.

It should be emphasized that this linear stability as-
sumption is entirely compatible with having an insta-
bility associated with over-charging or over-spinning the
black hole, i.e., we are not assuming what we wish to
show. Since we are considering a non-extremal black
hole (i.e., M2 > (J/M)2 + Q2), a finite perturbation is

8 Our perturbations are, in general, not source-free. However, we
will only need to apply this assumption on the late-time surface
Σ1 sketched in Fig. 2, long after all sources have fallen into the
black hole.
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required to over-charge or over-spin it. A linear pertur-
bation of a non-extremal black hole always can be scaled
down so as to not violate (1). Thus, the presence of a
linear instability of a non-extremal black hole would rep-
resent an instability that is independent of over-charging
or over-spinning. If a non-extremal black hole were lin-
early unstable, there would be no need to attempt to
over-charge or over-spin it in order to destroy it.

In view of this assumption, we may choose Σ in Fig.
2 so the horizon portion, H, extends to sufficiently late
times that it enters the late time stationary era of the
perturbation. We may then take Σ1 so that it extends
far9 from the black hole while remaining in the station-
ary region. The quantities δ2M and δ2J arising in the
boundary term (91) on Σ will then have the interpreta-
tion of being the second order corrections to the mass
and angular momentum of the perturbed black hole10.

We now consider our gedanken experiment to destroy
the slightly non-extremal black hole. We assume that
our first order perturbation has been done optimally (see
(89)), so that

δM = ΩHδJ + ΦHδQ =
a

r2
+ + a2

δJ +
Qr+

r2
+ + a2

δQ . (90)

As can be seen from (89), this requires vanishing non-
electromagnetic energy flux through the horizon, i.e.,
δTabk

akb = 0, as should be (nearly) achievable if the
matter is lowered (nearly) to the horizon or is (nearly) at
a turning point of its orbit just before entering the black
hole.

The second order change in mass is given by (51) with
δ2QB = δ2AB = 0 (since the second order perturbation
has been assumed to vanish in a neighborhood of B). We
have

δ2M−ΩHδ
2J = EΣ(φ; δφ)−

∫
H
ιξ(δE(φ) ·δφ)−

∫
H
δ2Cξ .

(91)
Here, the integrals in the last two terms extend only over
H rather than over all of Σ = H ∪ Σ1 because δE and
δ2Cξ vanish on Σ1 by the assumption that there are no
sources outside the black hole at late times.

We now evaluate the last two terms appearing on the
right side of (91). From (37), we have

(ιξ (δE(φ) · δφ))abc = −ξdεdabc
[

1

2
δT efδgef + δjeδAe

]
.

(92)

9 If we wish to take Σ1 to extend infinitely far from the black
hole, we would have to take it to null infinity rather than spatial
infinity.

10 Note that since mass and angular momentum cannot be radiated
away at linear order, we did not need to be careful in our speci-
fication of Σ1 in our first order analysis in order for δM and δJ
to represent the perturbed mass and angular momentum of the
final black hole.

Since ξa is tangent to the horizon, the pullback to H
of this term vanishes, so it does not contribute to (91).
From (38), we have(

δ2Cξ

)
abc

= δ2
(
εeabcTd

eξd
)

+ δ2
(
εeabcAdj

eξd
)
. (93)

Using our gauge condition ξaδAa = 0 on H (see (65) and
the discussion of subsection II D), we see that on H, the
second term is

δ2
(
εeabcAdj

eξd
)

= −ΦHδ
2 (εeabcj

e) , (94)

and therefore

δ2

[∫
H
ξaA

aεebcdj
e

]
= −ΦHδ

2Qflux = −ΦHδ
2Q, (95)

where δ2Q is the second-order change in charge of the
black hole. On the other hand, using our assumption
that the first order process was done optimally and thus
there was vanishing non-electromagnetic stress-energy
flux through the horizon at first order, we have

δ2
(
εeabcTd

eξd
)

= εeabcξ
dδ2Td

e. (96)

Putting this together, we obtain

δ2M − ΩHδ
2J − ΦHδ

2Q = EΣ(φ; δφ)−
∫
H
ξaεebcdδ

2Ta
e .

(97)
The last term in this equation is positive provided that
the non-electromagnetic stress-energy tensor satisfies the
null energy condition.

It remains to compute the canonical energy EΣ(φ; δφ).
Since Σ = H ∪ Σ1, we have

EΣ(φ; δφ) =

∫
H
ω(φ, δφ,Lξδφ) +

∫
Σ1

ω(φ, δφ,Lξδφ) .

(98)
Let us calculate first calculate the horizon contribution.
We have ∫

H
ω =

∫
H
ωGR +

∫
H
ωEM , (99)

where the gravitational and electromagnetic parts, ωGR

and ωEM , are given, respectively, by (40) and (41) above.
The integral overH of the gravitational part of the canon-
ical energy density was computed in [21], and is given by∫

H
ωGR(g; δg,Lξδg) =

1

4π

∫
H

(ξa∇au)δσbcδσ
bcε

+
1

16π

∫
S

(ξa∇au)δgbcδσbcε(100)

where δσab denotes the perturbed shear of the horizon
generators, u is an affine parameter along the future hori-
zon, and S = H ∩ Σ1 is the 2-surface formed by the in-
tersection of H and Σ1. By our additional assumption
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above, the perturbation is physically stationary at S, so δσab = 0 on S. Thus, we obtain∫
H
ωGR(φ; δφ,Lξδφ) =

1

4π

∫
H

(ξa∇au)δσbcδσ
bcε ≥ 0 .

(101)
We may interpret this horizon flux contribution from
ωGR as representing the total flux of gravitational wave
energy into the black hole.

Next, we calculate the horizon flux contribution from
ωEM . From (41), we have

(ωEM )abc(φ; δφ,Lξφ) =
1

4π
εdabc

[
δAeLξδF

de − δF deLξδAe
]

+
1

4π

[
(Lξδεdabc)F

deδAe − (δεdabc)F
deLξδAe

]
. (102)

The last two terms on the right side of this equation
involve the background electromagnetic field strength
F ab. However, by (69) together with our gauge condi-
tion ξaδAa = 0 on H, it can be seen that the last two
terms in (102) vanish. The first term in (102) can be
written as

εdabcδAeLξδF
de = Lξ

[
εdabcδAeδF

de
]
−εdabcδF deLξδAe .

(103)
When pulled back to H, εdabcδAeδF

de is a 3-form η, on
a 3-dimensional surface, so when pulled back to H, we
have

Lξη = ιξdη + d (ιξη) = d (ιξη) , (104)

where the pullback of ιξdη vanishes since ξa is tangent to
H. Thus, the integral over H of the first term on the right
side of (103) will merely contribute a boundary term at
S = H ∩ Σ1. However, since the perturbation is assumed
to be stationary at S, the electromagnetic energy flux
must vanish there, so δFab must be of the form (69). Us-
ing this fact together with our gauge condition ξaδAa = 0
on H, it can be seen that this boundary term vanishes.
Finally, the second term on the right side of (103) com-
bines with the second term of (102). This term can be
further simplified by noting that

LξδA = ιξdδA+ d (ιξδA) . (105)

Under our gauge condition ξaδAa|H = 0, the second term
of (105) is normal to the horizon, and hence proportional
to the horizon normal ka. By the antisymmetry of δFab,
δF abkb is orthogonal to ka and hence tangent to the hori-
zon. As this term only appears in (102) when contracted
into the volume element on the horizon, it makes no con-
tribution to the canonical energy integral. Putting ev-
erything together, we find that∫

H
ωEM (φ; δφ,Lξδφ) = − 1

2π

∫
H
εdabcξ

eδF dfδFef .

(106)
The right side of this equation is nonnegative and can
be interpreted as the total flux of electromagnetic energy
into the black hole.

All that remains now is to calculate the contribution
to canonical energy from Σ1

EΣ1
(φ; δφ) =

∫
Σ1

ω(φ, δφ,Lξδφ) . (107)

Since we have assumed that the perturbation is station-
ary on Σ1, it might be thought that Lξδφ = 0 on Σ1

and thus this contribution to the canonical energy van-
ishes. However, this is not the case because our condi-
tions δξa = 0 as well as our gauge condition ξaδAa = 0
on H preclude our writing the perturbation in a gauge
where Lξδgab = 0 and LξδAa = 0; see [21] for further
discussion. Nevertheless, we can calculate EΣ1

(φ; δφ) as
follows. First, since, by assumption, δφ is equal to a per-
turbation δφKN to another Kerr-Newman black hole on
Σ1, we obviously may replace δφ by δφKN (written in
our gauge) on the right side of (107)

EΣ1
(φ; δφ) = EΣ1

(φ; δφKN ) =

∫
Σ1

ω(φ, δφKN ,Lξδφ
KN ) .

(108)
However, as can be seen from our analysis above, δφKN

has no flux of canonical energy throughH, i.e., there is no
flux of gravitational or electromagnetic energy through
the horizon for a Kerr-Newman perturbation. Thus, we
may replace Σ1 by Σ in (108). Finally, we may evalu-
ate EΣ(φ; δφKN ) using (51). Consider the one-parameter
family, φKN (α), where each field configuration in the
family is a Kerr-Newman black hole with parameters
given by

MKN (α) = M + αδM, (109)

QKN (α) = Q+ αδQ, (110)

JKN (α) = J + αδJ, (111)

where δM, δQ, and δJ are chosen to agree with the cor-
responding values for our first-order perturbation φ(λ).
Then, for this family, we have δ2M = δ2J = δ2QB = 0,
as well as δE = δ2Cξ = 0. Thus, we obtain

EΣ(φ; δφKN ) = − κ

8π
δ2AKNB . (112)



14

where δ2AKNB denotes the second order change in the area
of the horizon for the one-parameter family (109)-(111).

This quantity can be evaluated by taking two variations
of the area formula AB = 4π(r2

+ + (J/M)2), and is given
explicitly as follows:

δ2AKNB = − 8π
M8ε3

[
(δM)2

(
J4 + (2 + ε2)J2M4 −M8(1 + ε)(−1 + ε+ 2ε2)

)
+(δQ)2

(
M6Q2 +M8(1 + ε)ε2

)
+ (δJ)2

(
J2M2 +M6ε2

)
+δMδJ

(
−2J3M − 2JM5(1 + ε2)

)
+ δJδQ

(
2JM4Q

)
+δMδQ

(
−2J2M3Q+ 2M7Q(−1 + ε2)

)]
. (113)

Here we have introduced the parameter

ε = r+/M − 1 =

√
M2 −Q2 − (J/M)2

M
(114)

(thereby generalizing (5) to the case where the black hole
is rotating as well as charged) in order that we can keep
better track of the extremal limit, ε → 0. However, we
have not assumed that ε is small in (113).

We have now computed all of the terms appearing in
(91). Using the positivity of the gravitational, electro-
magnetic, and non-electromagnetic stress-energy fluxes
through the horizon, we have thereby derived the follow-
ing inequality involving the second order change of the

mass of the black hole

δ2M − ΩHδ
2J − ΦHδ

2Q ≥ − κ

8π
δ2AKNB . (115)

The surface gravity of a Kerr-Newman black hole is given
by

κ =
M3

M4(1 + ε)2 + J2
ε. (116)

Expanding the right side of (115) to lowest order in ε, we
obtain

δ2M − ΩHδ
2J − ΦHδ

2Q ≥ M

(M4 + J2)2

[
M4(δJ)2 + (M6 + J2Q2 +M2J2)(δQ)2 − 2JM2QδJδQ

]
+O(ε), (117)

where we have used δM = ΩHδJ + ΦHδQ (see (90)) to
eliminate δM from the expression.

We now show that this inequality is precisely what is
needed to show that gedanken experiments of the Hubeny
type can never succeed in over-charging or over-spinning

the black hole. Consider a one-parameter family, φ(λ), of
the type we have been considering, where φ(0) is a nearly
extremal Kerr-Newman black hole, ε� 1. Define

f(λ) = M(λ)2 −Q(λ)2 − J(λ)2/M(λ)2 (118)

Then, to second order in λ, we have

f(λ) =

(
M2 −Q2 − J2

M2

)
+ 2λ

(
M4 + J2

M3
δM − J

M2
δJ −QδQ

)
+λ2

[(
J2 +M4

M3

)
δ2M − J

M2
δ2J −Qδ2Q+

4J

M3
δJδM

− 1

M2
(δJ)2 +

(
M4 − 3J2

M4

)
(δM)2 − (δQ)2

]
. (119)

We wish to know if, for small, λ, we can make f < 0. If we
took into account only effects linear in λ, the inequality

(89) would constrain f by

f(λ) ≥M2ε2 +
2

M4 + J2

(
(J2 −M4)QδQ− 2JM2δJ

)
λε

+O(λ2, ε3, ε2λ) . (120)
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If the O(λ2) term and the higher order terms are ne-
glected, then it is easy to see that it is possible to make
f(λ) < 0, suggesting that the black hole could be over-
charged or over-spun. However, when our calculation of
the O(λ2) term given by inequality (117) is taken into
account, we have shown that for an optimal first-order
process with δM = ΩHδJ + ΦHδQ, we have

f(λ) ≥M2ε2 +
2

M4 + J2

(
(J2 −M4)QδQ− 2JM2δJ

)
λε

+
1

M2(M4 + J2)2
((J2 −M4)QδQ− 2JM2δJ)2λ2

+O(λ3, ε3, ε2λ, ελ2), (121)

This expression can be rewritten as a perfect square,

f(λ) ≥
(

(J2 −M4)QδQ− 2JM2δJ

M(M4 + J2)
λ+Mε

)2

+O(λ3, . . .). (122)

Thus, f ≥ 0, and no violations of (1) can occur.

V. DISCUSSION

The Kerr-Newman parameter space (M,Q, a = J/M)
is shown in Fig. 3. In this parameter space, black holes
lie within the “future light cone” M > 0, M2−Q2−a2 ≥
0. Kerr-Newman solutions outside this cone correspond
to naked singularities. Extremal black holes live on the

FIG. 3. The parameter space of Kerr-Newman black holes.

boundary of the cone, M =
√
Q2 + a2. The gedanken

experiments to destroy an extremal black hole discussed
in section III correspond to analyzing whether, starting
at the boundary, one can perturb the spacetime so as
to move outside the cone. The gedanken experiments to
destroy a slightly non-extremal black hole discussed in
section IV correspond to analyzing whether one can move
out of the cone starting near (but not on) the boundary
of the cone.

Within this cone, one can draw surfaces of constant
area for the Kerr-Newman black holes. One such surface
is shown in Fig. 4. It is important to note that the
surfaces of constant area meet the boundary tangentially.

FIG. 4. A surface of constant area for Kerr-Newman black
holes.

To linear order, the change in the parameters (M,Q, a)
resulting from dropping matter into a Kerr-Newman
black hole corresponds to a tangent vector in param-
eter space. Equation (89) shows precisely that for an
arbitrary Kerr-Newman black hole, to linear order, any
perturbation resulting from matter entering a black hole
cannot decrease the area of the black hole11. Thus, the
tangent to the surface of constant area provides a lower
bound to the slope of any tangent vector representing a
physically achievable perturbation. In particular, for an
extremal black hole, the best one can do is move tangen-
tially to the cone. Thus, as we found in section III, to
first order it is impossible to escape from the cone into
the naked singularity region of parameter space starting
at the boundary of the cone.

The Hubeny argument for possibly escaping from the
cone is illustrated in Fig. 5. For simplicity in the draw-
ing, we have set J = 0 and thus show only the parameter
space of Reissner-Nordstrom solutions. As is illustrated

11 This result was first obtained for particle matter by
Christodoulou [27].
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FIG. 5. The tangent to a curve of constant area for a slightly
non-extremal Reissner-Nordstrom black hole.

in this figure, except at the boundary, the tangent to the
curve of constant area has a slope strictly less than one.
Thus, a straight line tangent to such a curve will exit the
cone. This means that if the linear approximation were
valid for a finite perturbation, it would be possible to
add charged matter to a slightly non-extremal Reissner-
Nordstrom black hole so as to over-charge the black hole,
as originally argued by Hubeny.

However, our work shows that at second order, there
are corrections to the straight line, as illustrated in Fig.
6. Consider a one-parameter family of solutions corre-

FIG. 6. The quadratic approximation to the curve of final
state parameters obtained by adding charged matter to a
slightly non-extremal Reissner-Nordstrom black hole.

sponding to adding charged matter to the black hole. As
we have noted above, the curve representing the final
state parameters has a tangent whose slope is bounded
below by the tangent to the curve of constant area. In
addition, however, if its slope is the minimum possible,
we have proven in section IV that the second derivative
of the curve must be greater than the second derivative of
the curve of constant area. The quadratic approximation
to this curve thus coincides with the curve of constant
area and does not exit the cone. The linear approxima-
tion is simply not an adequate approximation. Second
order effects do not allow one to exit from the cone.

Finally, it is worth noting that there is a discontinu-
ity in our lower bound on δ2M in the extremal limit.
Consider, for simplicity, the case of adding charged mat-
ter with no angular momentum to a Reissner-Nordstrom
black hole, so J = δJ = δ2J = 0. Without loss of gener-
ality, we also may take δ2Q = 0. Then, for ε > 0, for an

optimal perturbation with δM = ΦHδQ, it follows from
(117) that

δ2M ≥ (δQ)2

M
+O(ε) . (123)

Thus, as ε→ 0, the right side approaches (δQ)2/M . Now
consider adding charged matter to an exactly extremal
black hole, ε = 0. As shown in section III, the opti-
mal perturbation satisfies δM = ΦHδQ = δQ, so opti-
mally, the perturbation moves one tangent to the cone.
However, the derivation of (117) does not apply to this
case—even if we assume that the linearized perturbation
becomes stationary at late times—because our evalua-
tion of EΣ1

is valid only for non-extremal black holes.
Nevertheless, if the perturbation decreases the charge of
the black hole (i.e., if δQ has sign opposite that of Q)
then one would expect that δ2M ≥ (δQ)2/M , so that,
optimally, at second order the area of the black hole will
remain constant. On the other hand, if δQ increases the
charge, then there is no reason why this bound need be
satisfied since the area of the black hole will increase in
any case. Our expectation is that

δ2M ≥ 0 , (124)

so that, optimally, the black hole will remain extremal at
second order. Indeed, the explicit example of adding a
charged shell of matter shows that the lower bound (124)
can, in fact, be achieved. Thus, there is a discontinuity
between (123) and (124) when ε→ 0. It would be inter-
esting to derive (124) from first principles and to see if it
is related to other discontinuous behavior as ε→ 0, such
as the Aretakis instability [28].
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Appendix: Self-Force Energy and Finite Size Effects

The second-order correction to the mass of a black hole
given by equation (117) gives a lower bound on the en-
ergy of any matter that enters a black hole that is valid to
quadratic order in the charge and angular momentum of
the body. Since particle-like matter in general relativity
must be described as a limiting case of general continuum
matter (see [19] and [20]), this formula applies to particle
matter as well. At second order, self-force effects con-
tribute to the energy of a particle. In addition, at second
order, a charged body will have an electromagnetic self-
energy that diverges when the size of the body is taken
to zero, so the size of the body must be finite. However,
the finite size of the body may prevent one from lowering
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the body all the way to the horizon. Our bound (115)
must implicitly take into account all of these effects. The
purpose of this Appendix is to show explicitly that this
is the case for the special case of a charged, particle-like
body that enters an uncharged, non-extremal Kerr black
hole along the black hole’s symmetry axis. The self-force
effects in this case were previously calculated by Leaute
and Linet [29], while self-energy and finite size effects in
this case were previously obtained by Hod [6].

It is particularly easy to evaluate our lower bound on
δ2M for the case of a charged body entering a Kerr black
hole along the symmetry axis, since Q = 0 and δJ =
δ2J = 0. An optimal process therefore has δM = 0 at
first order. Thus, (113) reduces to12

δ2AKNB = −8π

ε
(1 + ε)(δQ)2 (A.1)

Hence, (115) yields

δ2M ≥ − 1

8π
κδ2AKNB =

r+

r2
+ + a2

(δQ)2 (A.2)

where we have used the expression (116) for κ and have
used (114) to replace ε by r+. Since Q = 0, we have
r2
+ + a2 = 2Mr+, and so (A.2) may be written as

δ2M ≥ 1

2M
(δQ)2. (A.3)

Taking into account the Taylor coefficient of 1/2, this
means that any charged matter with no angular momen-
tum that enters an uncharged black hole must carry an
energy

E ≥ 1

4M
(δQ)2. (A.4)

into the black hole. This bound holds for any Kerr black
hole with a < M .

On the other hand, Leaute and Linet’s expression [29]
for the (proper, locally measured) self-force on a charged
particle on the symmetry axis of Kerr is repulsive and
has magnitude

f(r) =
Mr

(r2 + a2)2
(δQ)2. (A.5)

The force exerted at infinity when lowering the charged
body is reduced from this by the redshift factor (−gtt)1/2

(see, e.g., [30]). However, the infinitesimal proper dis-
tance traversed when lowering is given by dl = (grr)

1/2dr.
The factors (−gtt)1/2 and (grr)

1/2 cancel on the symme-
try axis of Kerr. Thus, we find that the work done at
infinity in overcoming the self-force when lowering the
charge from infinity to the horizon is

ESF =

∫ ∞

r+

f(r)dr =
M

2(r2
+ + a2)

(δQ)2 . (A.6)

12 Note that this is an exact expression, i.e., we have not assumed
that ε is small.

Note that ESF < Emin for a nonextremal black hole,
with Emin given by the right side of (A.4).

However, the self-force expression is only valid for a
small body that is roughly spherical in shape. For such
a body, there will be potentially important self-energy
and finite size effects, which can be calculated as follows.
For a charged spherical body of radius R and charge δQ,
the electromagnetic contribution to the rest mass of the
body is minimized for a thin shell and is given by

mEM =
1

2

(δQ)2

R
. (A.7)

If the body is dropped into the black hole from a proper
distance l from the horizon, its electromagnetic self-
energy will contribute an energy

Eself = mEMV (l) (A.8)

to the black hole, where V (l) is the redshift factor at the
dropping point. However, near the black hole, we have

V (l) = κl, (A.9)

where κ is the surface gravity of the black hole. Since we
must have l ≥ R, we obtain

Eself ≥
κ

2
(δQ)2. (A.10)

Substituting for κ from (116) and adding these two con-
tributions yields a minimal total added energy of

Eself + ESF =
(δQ)2

4M
, (A.11)

in exact agreement13 with (A.4). Thus, we see explicitly
in this example how our general bound (A.4) incorporates
both self-force effects and self-energy/finite size effects.

One could attempt to evade our bound by making
Eself smaller by choosing, instead of a small spherical
shell, a body that has radial extent much smaller than its
angular extent. Such a body could be lowered arbitrar-
ily close to the black hole without making its self-energy
arbitrarily large. However, choosing such a shape for
the body would result in other second-order corrections
to the energy (such as self-repulsion effects) that would
inevitably have to reproduce our bound (A.4). As an ex-
treme example of this, one can consider a thin spherical
shell of charge collapsing around a Schwarzchild black
hole, which experiences a large self-repulsion but for
which the (redshifted) electromagnetic self-energy can be
made exactly zero. Using the methods of Boulware [31],
it is straightforward to show that such a shell still adds
a minimal energy of (δQ)2/4M to the black hole. This
illustrates, again, that our bound automatically takes all
effects on energy into account.
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