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Given the tension between the values of the Hubble parameter H0 inferred from the cosmic mi-
crowave background (CMB) and from supernovae, attention is turning to time delays of strongly
lensed quasars. Current time-delay measurements indicate a value of H0 closer to that from super-
novae, with errors on order of a few percent, and future measurements aim to bring the errors down
to the sub-percent level. Here we consider the uncertainties in the mass distribution in the outskirts
of the lens. We show that these can lead to errors in the inferred H0 on the order of a percent and,
once accounted for, would correct H0 upward (thus increasing slightly the tension with the CMB).
Weak gravitational lensing and simulations may help to reduce these uncertainties.

The Hubble tension may now well provide the great-
est challenge to the canonical cosmological model [1, 2].
The value of the Hubble parameter H0 obtained from
the cosmic microwave background (CMB), where H0 af-
fects the very precisely determined angular scale of the
acoustic peaks in the CMB power spectrum [3–5], is
HCMB

0 = 67.3 ± 1.0 km s−1 Mpc−1 [6], which tightens

to HCMB+gal
0 = 67.6 ± 0.6 km s−1 Mpc−1 when supple-

mented by galaxy-survey data [7–10].

The Hubble parameter can also be obtained by com-
paring the brightnesses and redshifts of standard candles
[11]. Recent supernova observations have determined the
value of the Hubble parameter to be HSNe

0 = 73.2 ± 1.7
km s−1 Mpc−1 [12], at roughly 3-σ tension with the
CMB-inferred value. Cosmological explanations of the
discrepancy are not easily come by; they typically in-
volve some modifications to the cosmic expansion history
that then introduces some other tension with the detailed
structure of the CMB power spectrum [12–14]. Another
possibility is that the discrepancy may arise from mea-
surement biases in one or both observables [15–17], and
so it is of paramount importance to obtain a third inde-
pendent probe of H0.

Attention is thus turning now to the value of H0 in-
ferred from time delays of strongly lensed quasars [18–21].
There has been tremendous recent progress in this en-
deavor, with the H0LiCOW program recently reporting
H lens

0 = 71.9+2.4
−3.0 km s−1 Mpc−1 [22] from three lensing

systems. Additional lenses are expected to reduce the
error bars on H0 even further [23].

In order to reach not only percent-level precision, but
also percent-level accuracy, the mass distribution of the
lens must be carefully modeled. For example, uncertain-
ties in the radial mass profile assumed for the lens have
been shown to induce errors of several percent in H0 [24–
26]; whereas microlensing of the quasar source can cause
comparable uncertainties [27]. Here, we focus specifically
on the mass distribution of the lens at large distances
from the lens center of mass. We show that uncertain-
ties in this large-distance mass distribution may lead to
uncertainties in H0 of a few percent. We also argue that
current modeling may be biasing the value of H0 down

(implying greater tension with the CMB).
The mass distribution of lens galaxies at large radii

remains, to a great extent, unknown. Galactic mass pro-
files must be truncated at no more than the ∼Mpc typ-
ical intergalactic spacing, and weak-lensing studies [28]
suggest the mass distributions of galaxies that resemble
typical strong lenses ought to be truncated at distances
. 500 kpc. The time delay depends on the total mass
projected along the line of sight [29], and so there may
be artificial contributions to the expected time delay if
the lens mass is not truncated. Although this effect was
too small to be of concern in prior work, it introduces, if
neglected, a O(1%) bias in the inferred Hubble parame-
ter and, if considered, still implies a residual uncertainty
of comparable magnitude.
We also consider a subtle issue about how cosmologi-

cal lenses are embedded in an FRW Universe. The usual
discussions of lensing surmise that the mass associated
with a lens is added to an otherwise homogeneous FRW
Universe, giving rise to a potential perturbation that falls
off as 1/r with distance r from the lens. In our Universe,
however, the mass associated with any given lens arises
from a local overdensity which is compensated elsewhere
with an underdensity. As a result, the potential perturba-
tion associated with any particular lens should fall off far
more rapidly than 1/r at large distances. We show that a
correct accounting of this effect biases the inferred Hub-
ble parameter downards, but only by (δH0/H0) ∼ 10−4.
We begin by reviewing the lensing formalism. Given

a mass density ρ(r) of the lens, the mass distribution
projected onto the lens plane at angular position θθθ is
obtained by integrating over the line-of-sight distance z,

Σ(θθθ) =

∫

dz ρ(DLθθθ, z), (1)

where DL is the angular-diameter distance to the
lens. We can divide Σ by the critical density Σcrit ≡
c2DS/(4πGDLDLS) to separate strong from weak lens-
ing, where DS and DLS are, respectively, the angular-
diameter distances to the source and between the lens
and the source, to obtain the convergence [30] κ(θθθ) =
Σ(θθθ)/Σcrit. The lensing potential is the projection of the
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gravitational potential φ, given by [31],

ψ(θθθ) =
2DLS

c2DLDS

∫

dz φ(DLθθθ, z), (2)

which is related to the convergence through ∇2
θψ = 2κ.

This potential yields a deflection angle ααα = ∇∇∇θψ, which
defines where images are formed through the lens equa-
tion,

βββ = θθθ −ααα(θθθ), (3)

where βββ is the impact parameter. The βββ in Eq. (3) is
unknown a priori, and is obtained by fitting to the ob-
served image positions θθθ, and the ααα(θθθ) is predicted by
the lens model (i.e., mass distribution). Signals from the
source will arrive as different images, at positions θθθi and
θθθj , with a time delay given by [32, 33]

∆tij =
D∆t

c

(

ααα2(θθθi)−ααα2(θθθj)

2
− [ψ(θθθi)− ψ(θθθj)]

)

, (4)

where we have defined the time-delay distance,

D∆t ≡ (1 + zL)
DLDS

DLS
∝ H−1

0 , (5)

and zL is the redshift of the lens. Given that D∆t is a
ratio of distances, it is inversely proportional to the Hub-
ble parameter H0 and only weakly dependent on other
cosmological parameters [23].
The usual procedure is to consider a parametrized fam-

ily of convergences κ(θθθ;ξξξ) with parameters ξξξ. These pa-
rameters are obtained by fitting to the observed image
positions {θθθi}. The Hubble parameter is then inferred
by comparing the time delay expected from Eq. (4) with
that observed.
One issue that arises, though, is the mass-sheet de-

generacy, in which the effect of a constant additional
surface-mass density on the observed image positions can
be compensated by a change in the impact parameter. If
the real convergence of the lens is κreal, but it is modeled
as

κmodel = (1− λ)κreal + λ, (6)

the observed image positions will be the same, granted
that the impact parameter is changed as βββmodel = (1 −
λ)βββreal. However, the expected time delay is changed to
∆tmodel

ij = (1 − λ)∆trealij , thus yielding a different value,

Hmodel
0 = (1− λ)Hreal

0 , (7)

for the Hubble parameter. The mass-sheet degeneracy
is not just a theoretical curiosity. It is expected that
the large-scale structure along the line of sight causes
light rays to focus and defocus, introducing an external
convergence κext [34, 35].
There are two avenues to breaking this degeneracy.

The first is to use dynamical measurements of stellar

velocities in the lens, as the transformation in Eq. (6)
also implies a change (σmodel

vel )2 = (1 − λ)(σreal
vel )

2 to stel-
lar velocities [43]. In practice, however, uncertainties in
the lens profile can induce errors when extrapolating the
mass measurement at small radii to the larger Einstein
radius [36]. Moreover, the possibility of anisotropy in the
lens hampers translation from kinematic data to the lens
mass [24].
The second method is to simulate fields of view in cos-

mological N-body simulations to obtain a probability dis-
tribution function (PDF) for κext [37–39]. In an FRW
Universe this PDF has mean 〈κext〉 = 0, but the finite
width

〈

κ2ext
〉

6= 0 is one of the limiting factors in cur-
rent time-delay H0 measurements [38]. There has been
great development in the study of this PDF; for instance,
we have learned that multiply imaged quasars, as biased
tracers of the underlying matter distribution, live prefer-
entially in overdense regions, which causes a percent-level
bias on 〈κext〉 and thus on the inferred H0 [40]. An exam-
ple of this bias is found in the lens system RXJ1131-1231,
which resides in a line of sight with ∼ 40% more galaxies
than average [38], which causes the expectation value of
the external convergence to be 〈κext〉 ≈ 0.1. In an ef-
fort to find the PDF of κext for each individual system,
instead of the average PDF of an FRW universe, both
the average number counts of galaxies in the field [41],
as well as the external shear γext [38], have been used as
ancillary data.
The aforementioned N-body studies quantify the con-

tributions of independent structures, along the line of
sight, that are at large (cosmological) physical distances
from the lens. What we will consider now, though, is
the mass distribution in the lensing system, but at phys-
ical distances (e.g., ∼ 100s kpc) large compared with the
Einstein radius and impact parameter (e.g., ∼ 10 kpc).
We will first show that this can be approximated as a
mass-sheet transformation.
We focus on the spherically symmetric power-law mod-

els, with mass density given by

ρmodel(r) = ρ0 (r/r0)
−γ′

, (8)

that are usually used in lens modeling. This density pro-
file gives rise to a projected surface-mass density at a
distance b(= DLθ) from the center of the lens of

Σmodel(b) =
√
πρ0r

γ′

0 b
1−γ′

Γ

(

γ′ − 1

2

)[

Γ

(

γ′

2

)]−1

,

(9)
where Γ is the gamma function. We now compute the
critical density through πR2

EΣcrit = Mlos, where Mlos

is the line-of-sight mass contained within a cylinder of
radius RE , to find [41]

Σcrit = −ρ0rγ
′

0 R
1−γ′

E

√
π Γ

(

γ′ − 3

2

)[

Γ

(

γ′

2

)]−1

. (10)

We then obtain the convergence [42, 43] κmodel(θ) = (3−
γ′) (θE/θ)

γ′
−1
/2. The parameters of the model are the
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power-law index γ′, and the Einstein angle θE ≡ RE/DL.
Using this model, augmented with an ellipticity parame-
ter to account for the non-circularity of the lens, Ref. [38]
infer a Hubble constant H0 = 78.7+4.3

−4.5 km s−1 Mpc−1

from the RXJ1131-1231 system.
The issue we first address is the uncertainty associ-

ated with the assumption of a power-law mass distri-
bution that extends to infinite radius. It is clear that
the mass distribution cannot extend to infinity (and that
the total mass cannot be infinite, as the power-law mass
profile implies). Still, the contribution to the conver-
gence, and thus the observables, is small enough to be
neglected in prior work. As we move to sub-percent pre-
cision/accuracy, though, the effects of the truncation ra-
dius become significant. To see this, we truncate the
mass density from Eq. (8) at a finite radius by adding the

negative-mass distribution ρt = −ρ0 (r/r0)−γ′

Θ(r − rt),
to the model, where Θ(r) is the Heaviside step func-
tion, and rt is the truncation radius. This distribu-
tion gives rise to a projected surface mass density Σt =

−2ρ0r
γ′

0 r
1−γ′

t /(1 − γ′), neglecting terms of O[(b/rt)
3]

or larger. Again dividing by the critical density1 from
Eq. (10), we find the convergence due to this negative-
mass distribution to be

κt =
2Γ

(

γ′

2

)

(γ′ − 1)

√
π Γ

(

γ′−3
2

)

(

RE

rt

)γ′
−1

< 0. (11)

This large-radius negative mass distribution thus modi-
fies the convergence to

κreal(θ) =
3− γ′

2

(

θ′E
θ

)γ′
−1

+ κt, (12)

independently of θ, and is then equivalent to a mass-sheet
transformation with λt = −κt. We thus use Eq. (7)
to relate the real H0 to the one inferred by the non-
truncated model,

Hreal
0 =

Hmodel
0

(1 + κt)
≈ (1 − κt)H

model
0 > Hmodel

0 . (13)

Thus, time-delay measurements of H0 are biased low if
the finite extent of the lensing mass distribution is not
taken into account.
We now consider the range of reasonable values for the

truncation radius rt. As the analysis above indicates,
the image positions do not depend significantly on the
mass distribution at large radii, a consequence of the fact
that the light rays for observed images have trajectories
with impact parameters comparable to the Einstein ra-
dius, which is much smaller than rt [26]. Nonetheless,

1 Which is accurate to first non-vanishing order in RE/rt, since
otherwise Σcrit from Eq. (10) would depend on rt.

galaxies produce weak lensing at very wide angular sep-
arations, which can be detected by the shear created on
background galaxies [44]. In Ref. [45] a study of the trun-
cation radius of galaxies was performed, where the lens
mass density was modeled as a dual Pseudo Isothermal
Elliptical (dPIE) mass distribution [46]

ρ(r) =
σ2
vels

2

4πGr2(r2 + s2)
, (14)

which is isothermal for r ≪ s, and decays as r−4 for
larger radii, effectively showing a cutoff at r ∼ s. To
first non-vanishing order in r/s the mass distribution in
Eq. (14) yields a convergence

κ(r) =
θE
2θ

(

1 +
RE

2s

)

− RE

2s
, (15)

which can be identified with the isothermal case (γ′ = 2)
of our Eq. (12), if κt = −RE/(2s). By comparing to
Eq. (11), κt = −RE/(πrt), we find s = πrt/2. This also
shows that for the purposes of strong lensing, where r ∼
RE ≪ rt, our sharp cutoff is a good approximation to the
smooth truncation scheme in Eq. (14), while remaining
valid for γ′ 6= 2, thus fitting most lens models, which
are not isothermal. The size of s has been estimated in
Ref. [45] to be s & 100h−1 kpc, whereas a more recent
study in Ref. [47] found s = 185+30

−28 h
−1 kpc on average

over an ensemble population of all galaxies. Furthermore,
in Ref. [28] it was found that red galaxies, which tend to
be early type and thus more likely to be strong lenses,
have on average larger truncation radii, s ≈ 300 h−1 kpc.
We thus find that time-delay Hubble-parameter mea-

surements are biased low by

δH0

H0

≈ −0.01

(

RE

10 kpc

)(

rt
300 kpc

)−1

, (16)

where for simplicity we have set γ′ = 2. Although the
precise bias will differ from lens to lens, the bias will
survive even if Hubble parameters inferred from multi-
ple systems are averaged, as it has the same sign for all
lenses, and thus averages to some nonzero value κ̄t. The
uncertainties in the values of rt for each lens introduce
moreover an accompanying error in the inferred value of
H0. If the κt for different lenses are distributed about
the mean with a variance σ2

κt
, then there will still be an

uncertainty in H0 of σH0
/H0 ≈ σκt

/
√
N , from N time-

delay systems. Moreover, the average κ̄t between the
lenses can only be inferred with an error σκ̄t

≈ σκt
/
√
N .

Therefore, subtracting our estimate of the average from
the data yields a residual bias δH0/H0 ∼ σκ̄t

. Detailed
studies of the lens-galaxy population are thus imperative
to overcome these uncertainties.
We have chosen a simple power-law model to illus-

trate the effects of truncation of the mass distribution,
although a similar uncertainty should be present in other
models. For instance, in Refs. [48, 49] truncated NFW
models were presented. Furthermore, in Refs. [50, 51]
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the lens systems RXJ1131-1231 and HE 04351223 were
fit with both a power-law distribution and a composite
model, which includes dark matter and baryons. The
composite model presents an effective cutoff with respect
to the power-law, due to the faster decrease of the dark-
matter density at large radii [24]. This is to be com-
pared with our modeled cutoff in Eq. (12), from which
we would expect a higher inferred value of H0 for the
composite model. Nevertheless, this effect—which we es-
timate to biasH0 by one percent—is smaller than current
measurement and modeling uncertainties.
There is another issue, of a more conceptual nature,

we now consider. In the usual discussions of lensing, a
lensing mass distribution (e.g., from a galaxy or clus-
ter) is added to an otherwise FRW Universe, thus giving
rise to potential perturbations that fall off as 1/r with
the distance r from the lens. In our Universe, however,
galaxies and clusters are formed from local overdensities,
in an otherwise FRW Universe, that are then compen-
sated by underdensities elsewhere. Thus, if we go to
distances large compared with the typical intergalactic
separation, there will be no residual 1/r potential per-
turbation (somewhat analogously to Debye screening in
a plasma). What we are considering here thus differs

from prior work [52, 53] in which the lens is embedded in
a spacetime that asymptotes to FRW at large distance
(the residual 1/r potential perturbation still arises there).
Our analysis also differs from that of Ref. [54] in that we
compensate the mass of the strong lens, instead of the
weak perturbers along the line of sight.
To estimate the impact of this issue, we consider a lens

of mass M that is surrounded by a spherical negative-
mass shell (NMS) of same total mass at some large ra-
dius Rf—i.e., we take the lens to be a spherical mass
distribution of zero total mass. We take Rf to be the
radius in a homogeneous Universe of matter density ρm,
at which a an object of mass ML dominates the gravita-
tional potential; i.e., Rf ∼ [3ML/(4πρm)]1/3, which for
a matter-density of ρm(z) ≈ 5× 10−8(1 + z)3M⊙/pc

3 is

Rf ∼ Mpc

(

ML

1011M⊙

)1/3
1

1 + zL
. (17)

The NMS has a mass distribution,

ρNMS = − Mg

4πR2
f

δD(r −Rf ), (18)

which gives rise to a convergence,

κNMS(b) = − R2
E

2Rf

√

R2
f − b2

. (19)

For Rf ∼ Mpc, and for Einstein radius RE ∼ 10 kpc,
we find κNMS ≈ −(R2

E/R
2
f)/2 ∼ −10−4, which is, again,

independent of angle to first non-vanishing order. The
convergence thus resembles a negative-mass-sheet, since

we are only observing it at distances b ≪ Rf , where the
curvature of the NMS is negligible. The magnitude of
the bias and uncertainty introduced in H0 measurements
is only O(10−4) and thus not significant for current nor
forthcoming measurements of H0.
We now return to the bias and error in H0 introduced

by the uncertainty in the large-radius mass distribution,
and now consider what is known about the truncation
radius and what more might be learned about it in the
future. Weak-lensing measurements are already begin-
ning to provide some constraints to the average value of
rt, but rt varies amongst different types of galaxies [28].
It will thus be important to extend such measurements
further restricting the population of lens galaxies to those
that more closely resemble strong-lensing systems. The
challenge here will be statistics with the reduced number
of systems and then beyond that, separating the effects,
in galaxy-galaxy lensing, of the lens potential, from those
of large-scale clustering.
Even if a lens-like population of galaxies can be well

characterized, one might want to measure the trunca-
tion radius for an individual lens. This will be difficult
with traditional weak-lensing measurements, given the
relatively small masses of the lens galaxies and the finite
number of background sources to be lensed. Still, in the
longer term, radio arrays may provide measurements of
the 21-cm line during the dark ages to arcsecond reso-
lution. This would allow studies of weak lensing around
individual objects, characterizing their environment to
great accuracy [55].
Although simulations might not shed light into the

large-distance mass distribution of every individual lens,
there is more that can be done to determine the PDF
of the effective convergence associated with a family of
lenses. The procedure should be analogous to that used
to infer the PDF of the external convergence due to line-
of-sight objects, (e. g., ray-tracing through simulations,)
albeit applied to the outskirts of lens-like galaxies with
the necessary resolution.
As yet, the effects we have considered here have been

subdominant compared with other uncertainties associ-
ated with modeling the lens mass distribution. As we
move forward, though, to sub-percent precision, there
will need to be more focus on the mass distribution in the
outskirts of the lens, work that can be pushed forward
with weak lensing and simulations, to enable a precise
and unbiased sub-percent-level measurement of H0.
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