
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Monopole-antimonopole interaction potential
Ayush Saurabh and Tanmay Vachaspati

Phys. Rev. D 96, 103536 — Published 28 November 2017
DOI: 10.1103/PhysRevD.96.103536

http://dx.doi.org/10.1103/PhysRevD.96.103536


Monopole-antimonopole Interaction Potential

Ayush Saurabh†, Tanmay Vachaspati†∗
†Physics Department, Arizona State University, Tempe, AZ 85287, USA.

∗Maryland Center for Fundamental Physics, University of Maryland, College Park, MD 20742, USA.

We numerically study the interactions of twisted monopole-antimonopole pairs in the ’t Hooft-
Polyakov model for a range of values of the scalar to vector mass ratio. We also recover the
sphaleron solution at maximum twist discovered by Taubes [1], and map out its energy and size as
functions of parameters.

Magnetic monopoles are novel solutions in a large class
of non-Abelian gauge theories [2, 3]. They are also an es-
sential prediction of all Grand Unified Theories of particle
physics. They have been studied for their unconventional
classical and quantum properties [4], and experiments are
currently underway to find cosmological monopoles [5, 6]
as well as in particle accelerators [7].

In spite of the long history of monopoles, there are
certain questions that have not been fully resolved. Key
among these is to discover particle physics processes that
can create magnetic monopoles [8]. Dynamics that in-
volves both monopoles and antimonopoles, has not re-
ceived much attention [9]. On the other hand, monopole-
monopole dynamics has been beautifully resolved in the
moduli approximation [10].

An important feature in the monopole-antimonopole
system is that the monopole and antimonopole can have
a relative twist (see Sec. II). This additional degree of
freedom has profound consequences for the interaction
energy of a monopole and antimonopole. In particular it
enables the existence of static bound state solutions, now
known as a “sphaleron”, as first argued by Taubes [1].
The sphaleron was rigorously shown to exist in the spe-
cial case of vanishing scalar mass by Taubes [1, 11] and
for non-vanishing scalar mass in [12]. The Morse theory
analysis used by Taubes in an SU(2) model was used
by Manton for the physically relevant electroweak the-
ory [13]. This resulted in the discovery of the “elec-
troweak sphaleron” that interpolates between vacua of
different Chern-Simons number and is critical to under-
standing the violation of baryon number in electroweak
theory.

Based on a qualitative understanding of the scalar and
vector forces between a monopole and an antimonopole
at separation d, Taubes sketched the interaction potential
as

V (d, γ) = 4π

(
−1

d
− 2e−d

d
cos γ − e−

√
λd

d
(1− e−d)

)
(1)

where the first term on the right hand side is the usual
attractive Coulomb interaction, the second term is a cor-
rection term which represents short range interactions
mediated by the two massive vector bosons W±, γ is the
relative twist angle, and the last term is due to scalar
interactions. (Note: in Taubes’ notation, the twist is
called θ where θ = π − γ.) This vector interaction is

attractive for cos γ > 0 and repulsive for cos γ < 0, in
which case the attractive Coulomb and repulsive forces
can balance at some separation, leading to a saddle point
solution. Any perturbation to this solution that untwists
the pair will destabilize the solution, and the monopole
and antimonopole will eventually radiate, as seen in [9].

We will see that the expression for V (d, γ) in Eq. (1)
provides a good qualitative picture but does not pro-
vide a good fit to the numerical data. This can be ex-
pected because the terms in Eq. (1) assume point-like
monopoles. In reality, monopoles are extended objects
and a monopole-antimonopole can partially annihilate as
they are brought closer together, i.e. when the cores of
the monopole-antimonopole overlap there is a reduction
in the volume occupied by the cores. Further, the reduc-
tion of energy depends on the extent of partial annihila-
tion that, in turn, can depend on the amount of twist.
Thus the actual potential can be more complicated than
that given by Eq. (1).

A goal of our work is to rigorously determine V (d, γ).
Our numerical approach can be applied to any values of
model parameters, and we are able to reconstruct all the
fields for the monopole-antimonopole system. In partic-
ular, we calculate their interaction energy, the size, and
energy, of the monopole-antimonopole bound state, for a
range of couplings. For a special twist and separation we
can recover the sphaleron that was also investigated nu-
merically in [14] by solving the static equations of motion
by first taking an axially symmetric ansatz for the fields.
In contrast, we employ constrained relaxation over an
entire three dimensional grid without assuming any sym-
metries, and we also study monopole-antimonopole pairs
away from the sphaleron.

We start by introducing the model and magnetic
monopoles in Sec. I, and the monopole-antimonopole
configuration in Sec. II. We describe our choice of the
“twisted dipole” gauge in Sec. III, which is crucial to
the success of our numerical scheme described in Sec. IV.
Our results and conclusion can be found in Sec. V.

I. SU(2) MONOPOLES

We consider ’t Hooft-Polyakov monopoles [2, 3] in the
SU(2) model

L =
1

2
(Dµφ)a(Dµφ)a− 1

4
W aµνW a

µν−
λ

4
(φaφa−η2)2 (2)
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where a = 1, 2, 3, the covariant derivative is defined as,

(Dµφ)a = ∂µφ
a + gεabcW b

µφ
c (3)

and the gauge field strength is given as

W a
µν = ∂µW

a
ν − ∂νW a

µ + gεabcW b
µW

c
ν (4)

The equations of motion are written as [8],

∂2
t φ

a = ∇2φa − gεabc∂iφbW c
i − gεabc(Diφ)bW c

i

−λ(φbφb − η2)φa − gεabcφbΓc (5)

∂tW
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0i = ∇2W a
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jW
c
ij

−DiΓ
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∂tΓ
a = ∂iW

a
0i − g2

p[∂i(W
a
0i) + gεabcW b

iW
c
0i

+gεabcφb(Dtφ)c] (7)

where we are using temporal gauge, W a
0 = 0, Γa = ∂iW

a
i

are introduced as new variables, and g2
p is a numerical pa-

rameter that we can choose to ensure numerical stability.
By rescaling the fields and spatial coordinates appropri-
ately, and setting the vacuum expectation value and cou-
pling constants to one, that is, η = g = 1, it is easily seen
that λ is the only parameter in the theory that controls
the mass and size of the monopoles.

Varying the action with respect to the metric gives
us the following expression for energy of a given static
configuration,

E =

∫
d3x[

1

2
(Diφ)a(Diφ)a +

1

4
W a
ijW

a
ij

+
λ

4
(φaφa − 12)2] (8)

Our goal in the present analysis is to solve for static
monopole-antimonopole configurations that minimize the
above energy functional, with the constraints that fix the
locations and relative twist of the monopoles. An essen-
tial condition for the existence of finite energy solutions
is that the terms in the integrand vanish individually at
spatial infinity. This requires

φaφa → 1, (Diφ)a → 0, W a
ij → 0 (9)

at spatial infinity.
A non-zero vacuum expectation value of φa sponta-

neously breaks the SU(2) symmetry to a U(1) subgroup
and two of the three gauge fields acquire a mass while the
third is the “photon”. This electromagnetic gauge field
can be expressed as

Aµ = φ̂aW a
µ . (10)

The electromagnetic field strength is now defined as

Fµν = φ̂aW a
µν − εabcφ̂a(Dµφ̂)b(Dν φ̂)c (11)

= ∂µAν − ∂νAµ − εabcφ̂a∂µφ̂b∂ν φ̂c, if |φ| = 1.

These expressions are identical to those proposed in [2]
in the region outside the monopole. Also note that we
have set g = 1 = η in these expressions.

II. MONOPOLE-ANTIMONOPOLE
CONFIGURATION

We are going to solve the equations of motion pre-
sented in the previous section numerically using a fixed
point iteration scheme. This scheme will relax an initial
guess field configuration at each iteration step. As with
all relaxation schemes, a good initial guess is important
for our method to converge.

To understand the ansatz that we used for our analysis,
we start with the field configuration of a spherically sym-
metric magnetic monopole. We choose the Higgs isovec-
tor such that it always points along the radial position

vector, that is, φ̂a = r̂a, where r̂a = ra/|~r|. This means
that we can write our Higgs fields as

φa = h(r)r̂a (12)

The direction for gauge fields can be shown, by satisfying
the condition that the covariant derivative of the Higgs
fields vanish at spatial infinity, to take the form below

W a
i =

(1− k(r))

r
εaij r̂j (13)

To solve for the profile functions h(r) and k(r), we plug
these last expressions into the general equations of mo-
tions. This gives us two coupled ordinary differential
equations as follows,

h′′(r) +
2

r
h′(r) =

2

r2
k(r)2h(r)− λ

(
h(r)2 − 1

)
h(r)

(14)

k′′(r) =
1

r2
(k(r)2 − 1)k(r) + h(r)2k(r) (15)

These differential equations in one dimension are
solved numerically with the Gauss-Newton method for
different values of λ and with boundary conditions,
h(r) → 1 and k(r) → 0 as r → ∞, and h(r) → 0 and
k(r) → 1 as r → 0. Fig. 1 shows a plot of these profile
functions for λ = 1. The mass of the monopole is shown
in Table I for sample values of λ. We will use these solu-
tions in our initial guess for the monopole-antimonopole
field configuration.

TABLE I: Mass of the monopole as a function of λ

λ Mass in units of 4π

0.0 1.000

0.25 1.185

0.50 1.232

0.75 1.264

1.0 1.287

To get an antimonopole, we can simply invert the φ̂a

for the monopole. This gives

φa = −h(r)r̂a =
h(r)

r
(−x,−y,−z) (16)
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FIG. 1: Numerically generated profile functions, h(r) and
k(r), for λ = 1.
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FIG. 2: Higgs vectors in the xz−plane for twist = π (left)
and twist = 0 (right). The Higgs zeros are located at (0, 2)
and (0,−2), shown as filled and unfilled circles.

However, this is not the only possibility. Any further
local rotation of the directions of φa will also have the
topology of an antimonopole. These local rotations are
irrelevant if we consider an antimonopole in isolation and
all such gauge rotated antimonopoles have the same en-
ergy. However, when we patch a monopole and an an-
timonopole together, there is an alignment issue, and
the monopole-antimonopole pair may have different en-
ergies depending on their “relative twist”. For exam-
ple, in Fig. 2 we show Higgs vectors for the monopole
described above and the antimonopole configuration of
Eq. (16). This monopole-antimonopole configuration has
twist equal to π. In Fig. 2 we also show the zero twist
case, in which only the third component of the Higgs is
inverted while the first and second component are not

φa =
h(r)

r
(+x,+y,−z) (17)

Intermediate between the two cases of Eqs. (16) and
(17), there is a continuous set of configurations that can
be obtained by rotations of the scalar field directions
along the z-axis. The general configuration of the twisted
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FIG. 3: The physical configuration of the monopole-
antimonopole pair.

monopole-antimonopole Higgs field can be written as

φ̂1 = (sin θ cos θ̄ cos γ − sin θ̄ cos θ) cos(ϕ− γ/2)

− sin θ sin γ sin(ϕ− γ/2) (18)

φ̂2 = (sin θ cos θ̄ cos γ − sin θ̄ cos θ) cos(ϕ− γ/2)

− sin θ sin γ cos(ϕ− γ/2) (19)

φ̂3 = cos θ cos θ̄ + sin θ sin θ̄ cos γ (20)

where, as shown in Fig. 3, θ and θ̄ are the angles measured
from the the z-axis to the position vectors centered at
the monopole and antimonopole, and ϕ is the azimuthal
angle; γ is the relative twist angle and takes values from
0 to 2π. In Cartesian coordinates we can write these
position vectors as

rm = |x− xm|, rm̄ = |x− xm̄| (21)

where xm = (0, 0, z0) and xm̄ = (0, 0,−z0). Therefore,
Eqns. (18)-(20) are expressed in Cartesian system as fol-
lows

rmrm̄φ̂1 = (cx+ sy) [(z + z0) cos γ − (z − z0)]

− (cy − sx)rm̄ sin γ (22)

rmrm̄φ̂2 = (cy − sx) [(z + z0) cos γ − (z − z0)]

+ (cx+ sy)rm̄ sin γ (23)

rmrm̄φ̂3 = (z − z0)(z + z0) + (x2 + y2) cos γ (24)

where c ≡ cos γ and s ≡ sin γ. With this ansatz, we can
write our initial guess for the Higgs field configuration,

φa = h(rm)h(rm̄)φ̂a (25)

Our ansatz for the gauge fields follows from the require-
ment that the covariant derivatives of the Higgs isovector

vanish, Dµφ̂ = 0, at spatial infinity. This gives

W a
µ = −εabcφ̂b∂µφ̂c (26)
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We include profile functions to obtain our initial guess
for the gauge fields,

W a
µ = −(1− k(rm))(1− k(rm̄))εabcφ̂b∂µφ̂

c (27)

This initial guess automatically satisfies the asymptotic
conditions in Eq. (9) for finite energy configurations.

We can see that the twist has a gauge invariant mean-
ing in two ways. First, the energy is gauge invariant and
by explicit calculation we see that the energy of the con-
figuration depends on the twist. Second, the twist can be
expliclty defined in terms of the Chern-Simons number
as discussed in [15]. The bound state solution with twist
of π is the sphaleron with Chern-Simons number of 1/2.

III. TWISTED DIPOLE GAUGE

We would like to minimize the energy in Eq. (8) but
with the constraints that the monopole and antimonopole
locations and their relative twist are held fixed. We have
found a simple scheme to impose such constraints, in part
by making use of the topology of the monopole and anti-
monopole. The key realization is that local gauge trans-
formations can be made to freely choose the direction

φ̂a at any spatial point. For example, the simplest choice
would be to adopt the “unitary gauge” in which the Higgs
is spatially uniform. However, then the gauge fields are
singular and this makes the unitary gauge unsuitable for
numerical work. Instead we adopt the “twisted dipole”

gauge which is that φ̂a is fixed by Eqs. (18), (19), and
(20) throughout the numerical relaxation. This gauge
choice automatically fixes the locations of the monopole
and antimonopole due to the topology, and it also fixes
the twist. The locations of the monopoles are chosen to
lie within a cell of the lattice, not on a vertex. This avoids
evaluation of the fields at the centers of the monopoles
and the possibility of any fluctuations during field relax-
ation that can move the location of the monopoles.

Since we fix the direction of Higgs field isovectors at
each spatial point, only the magnitude of the Higgs field
can vary and it is unnecessary to relax each of the compo-

nents separately. Instead we write φa = |φ|φ̂a and relax
|φ| according to the equation

∇2|φ| = |φ|∂iφ̂a∂iφ̂a + g2|φ|W a
i W

a
i

−g2|φ|W a
i W

b
i φ̂

aφ̂b − 2g|φ|εabcW a
i ∂iφ̂

bφ̂c

+λ(|φ|2 − 1)|φ| (28)

Thus, we have 1 equation for |φ|, 9 equations for W a
i , and

3 equations for Γa. However, in the static case, and since
we are working in temporal gauge, the equations for Γa

are trivial. This leaves us with 10 non-trivial equations
to solve.

IV. NUMERICAL SOLUTION

To see how our numerical scheme works, we first set all
the time derivatives to zero in the equations for |φ| and
W a
i and discretize the spatial derivatives. Our discretized

equations at a given lattice point can be written in the
following generic form

E[{fβ}] = 0 (29)

where {fβ} denotes the set of fields, and E is the array of
discretized equations obtained from Eqs. (5)-(7). Now,
if we use second order spatial derivatives, the Laplacian
term in these equations can be written as

∇2f(i, j, k)→ − 6

δ2
f(i, j, k) +

1

δ2
[f(i+ 1, j, k)

+ f(i− 1, j, k) + f(i, j + 1, k) + f(i, j − 1, k)

+ f(i, j, k + 1) + f(i, j, k − 1)]

where f denotes any one of the fields and δ is the lattice
spacing. Then we re-write Eq. (29) for the field fα as

fα(i, j, k) =
δ2

6
Eα[{fβ}] + fα(i, j, k) (30)

So far this is exactly equivalent to Eq. (29), but now we
take the left-hand side at the current (nth) iteration step
and the right-hand side at the previous iteration step

f (n)
α (i, j, k) =

δ2

6
Eα[{f (n−1)

β }] + f (n−1)
α (i, j, k) (31)

In fact, once a field is updated at some point (i, j, k),
that value is immediately used on the right-hand side for
the next computation. In our numerical runs, we employ
this approach but use sixth order derivatives for better
accuracy. Then the numerical coefficient of the Eα term
is 6/49 instead of 1/6.

For most of our simulations, we chose a cubic lattice
with 1283 lattice points and lattice spacing δ = 0.2 and
Dirichlet boundary conditions. Since we have set g = 1 =
η, the mass of the heavy gauge fields is mv = gη = 1 and
the scalar mass is ms =

√
2λη =

√
2λ. The monopole

width is primarily set by the mass of the vector field and
so the core of the monopole is resolved by ∼ 53 lattice
points in our simulations.

The monopole and antimonopole locations are fixed at
z = ±(z0 + δ/2) respectively. With the offset by half
a lattice spacing, we ensure that the zeros of the Higgs
field do not lie at a lattice point and there are no artificial
numerical singularities due to 1/r factors when specifying
initial conditions as in Eqs. (25) and (27).

We perform runs with different values of the coupling
constant λ, twist γ, and monopole-antimonopole separa-
tion d = 2z0. We ran our code for each set of param-
eters for 1000 iterations and then found the asymptotic
value of energy by extrapolating the energy vs. itera-
tion number power law dependence to infinite number of
iterations.
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FIG. 4: A 3D vector plot of the magnetic field of a single
monopole. The log-log plot of magnetic field strength of the
monopole vs distance r for λ = 4. The dots represent the
numerical solution and the solid line shows a 1/r2 fit.
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FIG. 5: Magnetic field lines for λ = 4, d = 3.4 (z0 = 1.7) in
the xz-plane in the untwisted case (left) and the maximally
twisted case (right).

We validated our numerical scheme through vari-
ous means. First, we solve the equations for a single
monopole with coupling parameter, λ = 4, and in the
hedgehog gauge on a 643 lattice. The magnetic field
from this solution is found to precisely fall as ∝ r−2 away
from the location of Higgs zero as shown in the Fig. 4.
Second, for each set of parameters λ and γ, the energy
for the monopole-antimonopole asymptotes to twice the
monopole mass at large separation. Third, we find that
the energy has a saddle point at twist=π for all values
of λ that we have considered. This is consistent with the
general arguments by Taubes [1] and his analysis for the
λ = 0 case.

V. RESULTS AND CONCLUSIONS

We start with results for the magnetic field lines for
a monopole-antimonopole pair with and without twist.
The results are shown in Fig. 5. For the untwisted case
and for small separations, when the boundary effects are
not significant, we have checked that the magnetic field
strength falls off as r−3 within our lattice, just as we
would expect for a magnetic dipole.

In Fig. 6 we show the relaxed energy of the monopole-
antimonopole vs. separation for λ = 1 and for several

different twist values. At large separation, the total en-
ergy goes to twice the monopole mass, as we expect since
the Coulombic interaction dies off. At small separations,
the interaction is attractive for small values of twist and
repulsive for very large values of twist. The curve for
γ = π (maximum twist) has a minimum at d ≈ 3.4. This
is seen more clearly in Fig. 7 where we plot the relaxed
energy vs. separation for γ = π and for several differ-
ent values of λ. A three-dimensional plot of energy vs.
separation and twist would have a saddle point in which
the minimum is along the direction of separation and a
maximum along the twist direction. This saddle-point so-
lution which corresponds to a bound state of a monopole
and antimonopole is called a “sphaleron” [15] and plays
an important role in baryon number violating processes
in particle physics.

The curves in Fig. 6 have qualitative features of V (d, γ)
in Eq. (1) but quantitative differences are apparent when
we overlay the analytic expressions and the data as shown
in Fig. 8. As discussed in the introduction, the differ-
ences arise since monopoles are not point particles and
monopole-antimonopole can partially annihilate as the
separation between them becomes smaller. This annihi-
lation leads to vanishing total energy as the separation
goes to zero in the untwisted case unlike the divergent
energy predicted by Taubes’ potential.

To quantify the energy reduction due to annihilation
we write

Edata(d, γ) = A(d, γ)ETaubes(d, γ)

= A(d, γ) [2m+ V (d, γ)] (32)

where Edata is the energy of the monopole-antimonopole
with separation d and twist γ as computed numerically,
m is the mass of a single monopole, 2m + V (d, γ) is the
energy as determined using the Taubes formula in Eq. (1)
valid for point-like monopoles, and A(d, γ) is an energy-
reduction factor arising due to the finite core size of the
monopoles. At large separations A(d, γ) goes to one be-
cause then the point-like approximation is valid.

We use Eq. (32) to determine A as

A(d, γ) =
Edata(d, γ)

ETaubes(d, γ)
(33)

and we plot A(d, γ) for several values of γ in Fig. 9. These
plots quantify the partial annihilation of monopole and
antimonopole due to their finite core sizes. As expected,
A → 1 at large separation because the point-like ap-
proximation gets better. At small separation, the com-
puted energy is smaller than the energy predicted from
the Taubes formula due to partial annihilation. From
the curves for different γ values, we see that the annihi-
lation is less effective as the twist increases. This too is
expected because annihilation can only occur if the fields
are aligned in suitable ways while the twist forces them
to be misaligned (see Fig. 2). In our plot we see that the
maximally twisted case has A that is ∼ 10% greater than
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FIG. 6: Total energy as a function of monopole-antimonopole
separation d for λ = 1 and twist varying from 0 to π.
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FIG. 7: Total energy as a function of monopole-antimonopole
separation d for twist γ = π and λ varying from 0.25 to 1.0.
The sphaleron solution is at the minimum in every curve.

1 at short distances. We think this is due to small nu-
merical errors or small corrections to ETaubes that have
not been taken into account.

The qualitative behavior of A(d, γ) can be written as

A(d, γ) ∼ tanh

(
d

1 + cos γ

)
. (34)

In Fig. 10 we show energy contours of the untwisted
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FIG. 8: Comparison of the data for λ = 1 and the expres-
sion in Eq. (1) plus twice the monopole mass (solid curves),
demonstrating that the expression is not a good fit to the
data.

180 °

120 °

60 °

0 °

2 4 6 8
d

0.2

0.4

0.6

0.8

1.0

A(d,γ)

FIG. 9: The “annihilation” function A(d, γ) defined in
Eq. (33) vs. d for some values of γ.
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FIG. 10: Energy density contours for λ = 4, d = 3.4 in the xz-
plane in the untwisted case (left) and the maximally twisted
case (right).

monopole-antimonopole pair and also the sphaleron so-
lution. The total energy of the sphaleron, Es, depends
on the coupling constant λ as shown in Fig. 11. The
monopole-antimonopole separation within the sphaleron
solution, ds, depends weakly on λ for large values of λ
as can be seen in Fig. 12. Since some fields fall off very
slowly as λ→ 0, our predicted total energy at such small
values of coupling constant could be underestimates by
at most 20% (we predict this error by comparing the
numerically obtained mass of BPS monopole with the
theoretical value of 4π).

To conclude, we have numerically constructed twisted
monopole-antimonopole pairs and mapped out their in-
teraction energy for a range of coupling constants.
We have explicitly confirmed the arguments made by
Taubes [1] on the existence of a bound state solution
of monopole and antimonopole, also called a sphaleron.
In addition, we have studied the dependence of the
sphaleron energy and size on coupling constant.

Our results are significant also because they provide
a method that can be used to accurately set up initial
configurations for dynamical studies such as monopole-
antimonopole scattering. In the electroweak context, the
method can be used to set up electroweak dumbbell con-
figurations [16].
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FIG. 11: Sphaleron energy as a function of λ (dots). The
solid curve shows twice the monopole mass vs. λ.
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FIG. 12: Monopole-antimonopole separation in the sphaleron,
ds, vs. λ.
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