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To derive a power spectrum for energy density inhomogeneities in a closed universe, we study
a spatially-closed inflation-modified hot big bang model whose evolutionary history is divided into
three epochs: an early slowly-rolling scalar field inflation epoch and the usual radiation and non-
relativistic matter epochs. (For our purposes it is not necessary to consider a final dark energy
dominated epoch.) We derive general solutions of the relativistic linear perturbation equations
in each epoch. The constants of integration in the inflation epoch solutions are determined from
de Sitter invariant quantum-mechanical initial conditions in the Lorentzian section of the inflating
closed de Sitter space derived from Hawking’s prescription that the quantum state of the universe
only include field configurations that are regular on the Euclidean (de Sitter) sphere section. The
constants of integration in the radiation and matter epoch solutions are determined from joining
conditions derived by requiring that the linear perturbation equations remain nonsingular at the
transitions between epochs. The matter epoch power spectrum of gauge-invariant energy density
inhomogeneities is not a power law, and depends on spatial wavenumber in the way expected for a
generalization to the closed model of the standard flat-space scale-invariant power spectrum. The
power spectrum we derive appears to differ from a number of other closed inflation model power
spectra derived assuming different (presumably non de Sitter invariant) initial conditions.

I. INTRODUCTION

In the standard scenario, dark energy dominates the
current cosmological energy budget and results in the
observed accelerating cosmological expansion. Earlier on
nonrelativistic (cold dark and baryonic) matter domi-
nated, powering the decelerating cosmological expansion.
In flat-ΛCDM [1], the current “standard” cosmological
model, Einstein’s cosmological constant Λ is the dark en-
ergy with nonrelativistic cold dark matter (CDM) being
the second biggest contributor to the current energy bud-
get and spatial hypersurfaces are assumed to be flat. See
Refs. [2] for reviews of the dark energy picture as well as
of the modified gravity scenario.
The standard scenario is supported by a number of

different measurements, but these do not rule out mildly
varying — in time and space — dark energy or mildly
curved spatial hypersurfaces. These measurements in-
clude cosmic microwave background (CMB) anisotropy
observations [3], baryon acoustic oscillation (BAO) data
[4], Hubble parameter versus redshift measurements [5]1,
Type Ia supernova apparent magnitude observations [8],
as well as the growth of structure as a function of redshift
[9].
Other measurements, which are not as constraining,

are also consistent with the ΛCDM model. These in-
clude HII galaxy apparent magnitude versus redshift data

∗ ratra@phys.ksu.edu
1 These H(z) data [6] are particularly interesting as they span
a large redshift range, to almost z = 2.4, and show evidence
consistent with a transition from early nonrelativistic-matter-
dominated deceleration to current dark-energy-powered acceler-
ation [5, 7], in agreement with what is expected in ΛCDM and
other dark energy models.

[10], galaxy cluster number counts [11], angular size as
a function of redshift measurements [12], lookback time
observations [13], gamma-ray burst data [14], and clus-
ter gas mass fraction observations [15]. Near-future data
will provide more restrictive and possibly very interesting
constraints [16].
It is reassuring that most current measurements are

not inconsistent with the standard flat-ΛCDM model, al-
though they are also not inconsistent with weakly vary-
ing dark energy or a mild amount of space curvature.
To be able to distinguish between the options and bet-
ter pin down cosmological parameter values will require
resolution of a number of issues. For instance, for over
a decade and a half now, median statistics analyses of
Huchra’s growing compilation of Hubble constant H0

measurements have been consistent with H0 = 68 ± 2.8
km s−1 Mpc−1 [17], in good agreement with the range
of values recently estimated from CMB anisotropy data
[3, 18], BAO observations [4, 19], Hubble parameter mea-
surements [20], and from a compilation of recent cosmo-
logical data and the standard model of particle physics
with only three light neutrino species [21]. Unfortunately,
however, local measurements of the expansion rate favor
a significantly larger value, H0 = 73.24 ± 1.74 km s−1

Mpc−1 [22], larger than what is favored by a number of
other observations. Until this difference is understood
and resolved, it is probably wiser to proceed cautiously
about judging the viability of cosmological models.2

That said, there have been a number of recent papers
suggesting that the predictions of flat-ΛCDM might not
be compatible with some H(z) data [23], as well as with
a combination of cosmological observations [24, 25], and

2 Of course, similar issues affect measurements of other parame-
ters.
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that dynamical dark energy provides a better fit to these
measurements. If this is supported by more and better-
quality data, it will be an important clue about the na-
ture of the dark energy. On the other hand, it would be
useful to check if these data were also in accord with a
non-flat ΛCDM model or if they prefer dynamical dark
energy over spatial curvature.
Compared to the time-independent cosmological con-

stant, a time-varying dark energy density evolves in a
manner closer to that of spatial curvature energy density
and this can cause a complication. For instance, when
CMB anisotropymeasurements are studied in the context
of the ΛCDM model, they indicate that spatial hypersur-
faces are close to flat, although a mild amount of curva-
ture is still allowed [3]. On the other hand, under the
assumption of flat spatial geometry these measurements
favor a time-independent dark energy density, although
mild dark energy time evolution remains an option. How-
ever, if CMB anisotropy data are analyzed using a non-
flat dynamical dark energy model, there is degeneracy
between space curvature and the parameter that governs
the dark energy density, resulting in weaker constraints
on both parameters when compared to the case when
only either dark energy density time variability or non-
zero spatial curvature is assumed [26]. This is the case
for other data also, see Refs. [5, 27].3

The simplest physically-consistent dynamical dark en-
ergy model is φCDM [29, 30].4 Here dark energy is
a scalar field φ with a potential energy density V (φ)
that gradually decreases with increasing φ. The origi-
nal φCDM model assumed flat spatial hypersurfaces.This
was generalized to the non-flat case in Ref. [32]; the time-
dependent attractor solution discovered in the spatially-
flat case is also present in the non-flat case.
To complete this non-flat dynamical dark energy model

requires a prescription for what happens at very early
times in the model. This is provided by inflation, [33, 34],
which is easily generalized to the spatially-open case in
the Gott open-bubble inflation model [35]. In this model
a spatially-open bubble nucleates and then inflates only
for a limited time so spatial curvature is not completely
diluted. If necessary, an earlier epoch of less-limited in-
flation can be used to explain spatial homogeneity.5

In this initial hyperbolic (or open) de Sitter space
of the open bubble, the standard requirement that the
ground state energy of the (appropriately rescaled) scalar
inflaton field spatial inhomogeneity not diverge in the

3 See Ref. [28] for potential constraints on space curvature from
proposed experiments.

4 While the XCDM parameterization is often used to model dy-
namical dark energy, it is an incomplete and inconsistent param-
eterization (as it cannot describe inhomogeneities). It also does
not accurately model even the spatially homogeneous part of the
φCDM model [31].

5 Alternately, if the bubble nucleation process is slow enough it
might be possible to arrange for the interior of the open bubble
to be homogeneous enough.

scale factor a → 0 limit provides the needed initial con-
dition [36] and results in a late-time energy density inho-
mogeneity power spectrum [37, 38] that is the generaliza-
tion to the open case [39] of the scale-invariant spectrum
of the flat model [40].
Perhaps the simplest model of inflation in a closed uni-

verse is that based on Hawking’s prescription for the
quantum state of the universe [41]. Hawking proposes
including in the functional integral only those field con-
figurations which are regular on the Euclidean section
[41, 42]. This may be viewed as the nucleation of a closed
de Sitter Lanczos universe on the Lorentzian section, be-
cause the waist of the Lorentzian de Sitter Lanczos hy-
perboloid and the equator of the Euclidean (de Sitter
Lanczos) sphere are identified [41, 42]. For variants of
this scenario see Refs. [43–45]. If the nucleation process
is slow enough it might be possible to make the nucleated
Lorentzian closed de Sitter space sufficiently spatially ho-
mogeneous. See Refs. [46] for discussions of homogeneity
in a more conventional closed inflation model.
During the Lorentzian closed de Sitter expansion,

quantum mechanical spatial inhomogeneities in the
scalar inflaton field could provide the needed density in-
homogeneities. A major advantage of the Hawking pro-
posal is that it provides reasonable quantum mechanical
initial conditions for these fluctuations. In the closed de
Sitter model the a → 0 limit does not lie in the Lorentzian
section [42], unlike in the open and flat cases. Remark-
ably, Hawking’s prescription of only including field con-
figurations regular on the Euclidean section does in fact
correspond to the ground state energy of the (appropri-
ately rescaled) scalar field inhomogeneity not diverging
as a → 0, which in this case is either the north or south
pole of the Euclidean section sphere (actually there are
an infinite number of spheres, each connected to the next
at the poles) [42], and in fact leads to a de Sitter invariant
ground state scalar field two-point correlation function,
[42]. It is likely that this is the unique initial condition
with this property [42].
In this paper we use this initial condition to compute

the energy density inhomogeneity power spectrum in a
closed universe in terms of the potential of the inflaton
and other parameters. The spatial wavenumber depen-
dence of the late-time spectrum we find, using a sim-
ple inflation model, is the generalization of the scale-
invariant spectrum in the spatially-flat case [40] to the
closed universe [44, 47, 48].6 There have also been a
number of earlier computations of spectra in the closed
model [45, 50, 51], using different initial conditions com-
pared to what we have used here (also see Ref. [52]). We
emphasize that the initial conditions we use here results
in a scalar field two-point function that is de Sitter in-
variant [42] and it is unclear how to interpret any other
initial condition.

6 See Ref. [49] for a discussion of a massive scalar field inflaton
closed inflation model.
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A proper analysis of CMB anisotropy data in a slightly
closed model — which is consistent with current obser-
vations — will make use of the spectrum we have derived
here. While all that is needed for such an analysis is the
spectral shape of the power spectrum (not the overall am-
plitude), which was previously known, it is also impor-
tant to show that a computation using Hawking’s initial
conditions in a consistent inflation model — as done here
— does result in such a power spectrum. We have also
established that the de Sitter invariant initial conditions
[41, 42] do result in the expected power spectrum [47]
that differs from those found in Refs. [45, 50, 51].
It seems that flat-ΛCDM, which is consistent with

most observations, predicts more large-angle (low mul-
tipole ℓ) CMB temperature anisotropy power than is ob-
served [3]. In the context of inflation and the energy
density inhomogeneity power spectrum derived here and
in the open inflation model [35], going to a slightly non-
flat (closed) ΛCDM (or dynamical dark energy) model
might help reduce this low-ℓ discrepancy [53], also see
Ref. [54].
In Sec. II we review the spatial geometry of the closed

model and various properties of the eigenfunctions of the
spatial Laplacian. Synchronous gauge linear perturba-
tion equations, in both the scalar field inflation epoch
and fluid (radiation and nonrelativistic matter) epochs,
are derived in Sec. III, where we also list the scalar (un-
der general coordinate transformations) parts of these
equations in spatial momentum space. These are used to
establish that the synchronous gauge linear perturbation
equations of a fluid model with a specified spacetime-
dependent ‘speed of sound’ coincide with those of the
scalar field model (a generalization of the flat model
result of Ref. [55]). In Sec. III D, we examine how
the (scalar) synchronous gauge variables transform under
the remnants of general coordinate invariance, construct
gauge-invariant combinations of these variables, and de-
rive equations of motion for these gauge-invariant vari-
ables. In Sec. IV we solve the inflation epoch equations
and determine the constants of integration in the gen-
eral solution for the perturbations by using the Hawking
initial conditions. Here we also list expressions for the
gauge-invariant variables, and compute the scalar field
and energy density perturbation two-point correlation
functions. In Sec. V A we derive general solutions for
the gauge-invariant variables in the radiation epoch; in
Sec. V B we solve the synchronous gauge equations in
the nonrelativistic matter epoch, and list expressions for
the gauge-invariant variables in this epoch. The general
solutions in the radiation and matter epochs depend on
constants of integration which are determined from join-
ing conditions derived by requiring that the equations
of motion be nonsingular at the transitions; these are
listed in Sec. VI A. The constants of integration are de-

termined in Sec. VI B while in Sec. VI C we extract the
large-scale contribution to these expressions for the con-
stants. Nonrelativistic matter epoch theoretical expres-
sions characterizing large-scale structure are most con-
veniently compared to observational data on a spatial
hypersurface on which the time derivative of the trace of
the metric perturbation has been set to zero — this is
the instantaneously Newtonian spatial hypersurface. We
construct these coordinates, and list expressions for the
relevant power spectra, in Sec. VII, where we also record
the gauge-invariant energy density inhomogeneity power
spectrum. We conclude in Sec. VIII.

II. TECHNICAL PRELIMINARIES

The positive spatial curvature (closed) FLRW model
has the line element

ds2 = dt2 − a2(t)Hij(~x)dx
i dxj (1)

= dt2 − a2(t)
[

dχ2 + sin2(χ)
{

dθ2 + sin2(θ) dφ2
}]

,

where a(t) is the FLRW scale factor, Hij(~x) the metric
on the closed spatial hypersurface, the ‘radial’ coordinate
0 ≤ χ < π, and θ, φ are the usual angular coordinates on
the two-sphere. The square of the distance between two
points, (t, χ, θ, φ) and (t, χ′, θ′, φ′), is

σ2 = 2a2(t) [−1 + cos(γ3)] , (2)

cos(γ3) = cos(χ)cos(χ′) + sin(χ)sin(χ′)cos(γ2),
(3)

where γ2 is the usual angle between the two points (θ, φ)
and (θ′, φ′) on the two-sphere

cos(γ2) = cos(θ)cos(θ′) + sin(θ)sin(θ′)cos(φ− φ′). (4)

The three-dimensional spatial covariant derivative of a
spatial vector (or tensor) will be denoted by a |, is defined
in the usual way

Ai
|j = Ai

,j + Γi
jkA

k,

Ai|j = Ai,j − Γk
ijAk, (5)

where the commas denote spatial differentiation, and
obeys the usual relations of covariant differentiation. The
three-dimensional spatial Christoffel symbol is

Γi
jk =

1

2
Hil (Hlj,k +Hlk,j −Hjk,l) . (6)

The | operator obeys the usual relations of covariant dif-
ferentiation.
The three-dimensional spatial Laplacian for the metric

of Eq. (1) is

L2 =
1

sin2(χ)

∂

∂χ

(

sin2(χ)
∂

∂χ

)

+
1

sin2(χ)sin(θ)

∂

∂θ

(

sin(θ)
∂

∂θ

)

+
1

sin2(χ)sin2(θ)

∂2

∂φ2
. (7)
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The scalar eigenfunctions YABC of L2 obey, [42, 56],

L2YABC(Ω) = Hij(Ω) [YABC(Ω)]|i|j = −A(A+ 2)YABC(Ω), (8)

where Ω = (χ, θ, φ), integer A = 0, 1, 2 · · · , and the two ‘magnetic’ integral indices Bǫ[−A,A], and Cǫ[−B,B]. The
O(4) symmetry makes the spatial Laplacian eigenvalues independent of the two magnetic indices B
and C, see discussion in App. B of Ref. [42]. The orthonormal eigenfunctions are, [42, 56],

YABC(Ω) =

√

(A+ 1)Γ (A+B + 2)

Γ (A−B + 1)
[sin(χ)]

−1/2
P

−B−1/2
A−1/2 (cos(χ)) YBC(θ, φ), (9)

where YBC is the standard two-dimensional spherical harmonic, Γ is the gamma function, and Pµ
ν is the associated

Legendre function of the first kind (Chap. 3 of Ref. [57] or Chap. 8 of Ref. [58]). The orthonormality relation is
∫ π

0

dχ sin2(χ)

∫

S2

dΩ2 YABC(Ω) [YA′B′C′(Ω)]
∗
= δA,A′δB,B′δC,C′ , (10)

where S2 is the two-dimensional unit sphere with volume element dΩ2, and δA,A′ , δB,B′ , and δC,C′ are Kronecker
deltas. The addition theorem is, [42],

P
−1/2
A+1/2 (cos(γ3)) =

(2π)3/2

(A+ 1)2
[sin(γ3)]

1/2
∑

B,C

YABC(Ω) [YABC(Ω
′)]

∗
, (11)

where γ3 is in Eq. (3).
We shall have need for the following relations, which

may be derived by using standard manipulations (see the
first of Refs. [56]),

Y|i|j = Y|j|i, (12)

HjkY|k|i|j = −(A2 + 2A− 2)Y|i, (13)

HklY|l|j|i|k = −(A2 + 2A− 5)Y|i|j

+A(A+ 2)Y Hij , (14)

HklY|i|j|k|l = −(A2 + 2A− 6)Y|i|j

+2A(A+ 2)Y Hij , (15)

where we have suppressed the spatial momentum in-
dices on the scalar (under the spatial reparameterization
remnants of general coordinate transformations in syn-
chronous gauge) spatial harmonic YABC(Ω).
Also, the Ricci tensor on the spatial hypersurface is

(3)Rij = Γk
ij,k − Γk

ki,j + Γk
klΓ

l
ij − Γk

ljΓ
l
ki, (16)

and it may be shown that for the spatial metric given in
Eq. (1),

(3)Rij = 2Hij . (17)

III. EQUATIONS OF MOTION

In this section we derive the general, closed FLRW
model, position space, synchronous gauge, linear pertur-
bation theory equations of motion, for both the homoge-
neous background fields and for the spatial irregularities,
in the early time scalar field inflation epoch and in the
late time ideal fluid (radiation or matter) epochs. (The

current dark energy dominated epoch is not as analyti-
cally tractable and so is ignored here; our matter epoch
results suffice for our purposes.) We then extract the
scalar (under general coordinate transformations) parts
of these equations (i.e., we ignore transverse peculiar
velocity perturbations and gravitational wave perturba-
tions), and record their spatial momentum space form.
For later use, we establish that the synchronous gauge

linear perturbation theory equations of a fluid model
which allows for a specified spacetime-dependent ‘speed
of sound’ are identical to the scalar field model syn-
chronous gauge linear perturbation equations.
We also examine how the (scalar) synchronous gauge

spatial irregularity variables of interest transform under
the remnants of general coordinate invariance in syn-
chronous gauge, write down combinations of these vari-
ables that are invariant under these transformations, and
derive the equations of motion for these gauge-invariant
variables.

A. Einstein-scalar-field model equations of motion

The Einstein-scalar field action, for the metric tensor
gµν and inflaton scalar field Φ, is

S = (18)

mp
2

16π

∫

dt d3x
√−g

[

−R+
1

2
gµν∂µΦ∂νΦ− 1

2
V (Φ)

]

,

where mp = G−1/2 is the Planck mass. Varying, we find
the equations of motion,

1√−g
∂µ

(√−ggµν∂νΦ
)

+
1

2
V ′(Φ) = 0, (19)
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Rµν =
8π

mp
2

(

Tµν − 1

2
gµνT

)

, (20)

where prime denotes a derivative with respect to Φ and
T is the trace of the stress-energy tensor,

Tµν =

mp
2

16π

[

∂µΦ∂νΦ− 1

2
gµν

{

gλρ∂λΦ∂ρΦ− V (Φ)
}

]

. (21)

To derive the equations of motion for the spatially ho-
mogeneous background fields and for the spatial irreg-
ularities, we linearize eqs. (19) – (21) about a closed
FLRW model and a spatially homogeneous scalar field.
We work in synchronous gauge, with line element

ds2 = dt2 − a2(t) [Hij(~x)− hij(t, ~x)] dx
idxj , (22)

where the background metric on the closed spatial hyper-
surfaces, Hij , is given in eq. (1), and the metric pertur-
bations are denoted by hij . The expansion for the scalar
field is

Φ(t, ~x) = Φb(t) + φ(t, ~x), (23)

where Φb and φ are the spatially homogeneous and in-
homogeneous parts of the scalar field (the scalar field
perturbation φ should not be confused with the angular
variable φ of Sec. II). The linearized stress-energy tensor
components are

T00 =
mp

2

32π

[

Φ̇b
2 + V (Φb)

]

+
mp

2

16π

[

Φ̇bφ̇+
1

2
V ′(Φb)φ

]

+ · · · , (24)

T0i =
mp

2

16π
Φ̇b∂iφ+ · · · , (25)

Tij =
mp

2

32π
a2Hij

[

Φ̇b
2 − V (Φb)

]

+
mp

2

16π
a2
[

Hij

{

Φ̇bφ̇− 1

2
V ′(Φb)φ

}

−1

2
hij

{

Φ̇b
2 − V (Φb)

}

]

+ · · · , (26)

where the ellipses denote terms of second and higher or-
der in the perturbations.
The equations of motion for the spatially homogeneous

parts of the fields are

Φ̈b + 3
ȧ

a
Φ̇b +

1

2
V ′(Φb) = 0, (27)

(

ȧ

a

)2

=
1

12

[

Φ̇b
2 + V (Φb)

]

− 1

a2
, (28)

ä

a
= −1

6
Φ̇b

2 +
1

12
V (Φb), (29)

where an overdot denotes a derivative with respect to
time. The only change, relative to the equations for the
flat model (Sec. VII of Ref. [30] and Sec. II of Ref. [55]),
is the new term (1/a2) on the right hand side of eq. (28).
The first order perturbation equations are

φ̈+ 3
ȧ

a
φ̇− L2

a2
φ+

1

2
V ′′(Φb)φ =

1

2
ḣΦ̇b, (30)

ḧ+ 2
ȧ

a
ḣ = 2Φ̇bφ̇− 1

2
V ′(Φb)φ, (31)

ḣ|i −
(

Hjkḣki

)

|j
= Φ̇bφ|i, (32)

ḧij + 3
ȧ

a
ḣij +

ȧ

a
Hij ḣ− 1

a2
h|i|j

+
1

a2
[

Hkl
(

hli|j + hlj|i − hij|l

)]

|k
− 4

a2
hij

= −1

2
HijV

′(Φb)φ, (33)

where the trace of the metric perturbation is denoted by
h (= Hijhij) and spatial indices are raised and lowered
with the background metric Hij . Eq. (30) governs the
evolution of the scalar field perturbation, eq. (31) that
of the trace of the metric perturbation, and eqs. (32)
and (33) that of the remaining part of the metric per-
turbation. Besides the expected change, relative to the
equations of the flat model (Sec. VII of Ref. [30] and Sec.
II of Ref. [55]), of all spatial derivatives being replaced by
spatial covariant derivatives, the only other change is the
new last term on the left hand side of eq. (33), 4hij/a

2.
To extract the scalar parts of eqs. (30) – (33) in spa-

tial momentum space we focus on a mode with spatial
momentum characterized by the indices (A,B,C), [56],

φ(Ω, t) =φ(A,B,C, t)Y (Ω), (34)

hij(Ω, t) =
1

3
h(A,B,C, t)Hij(Ω)Y (Ω) (35)

+H(A,B,C, t)

[

Y|i|j(Ω)

A(A+ 2)
+

1

3
Hij(Ω)Y (Ω)

]

,
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where h(A,B,C, t) is the trace of the metric perturbation
(the perturbation to the size of the proper volume ele-
ment) and H(A,B,C, t) is the trace-free part (the shear-
ing perturbation of the volume element). Eq. (35) is the
most general decomposition of the scalar part of the met-
ric perturbation (we have ignored gravitational wave per-
turbations). The scalar parts of eqs. (30) – (33) for a
given mode in spatial momentum space are

φ̈+ 3
ȧ

a
φ̇+

A(A+ 2)

a2
φ+

1

2
V ′′(Φb)φ =

1

2
ḣΦ̇b, (36)

ḧ+ 2
ȧ

a
ḣ = 2Φ̇bφ̇− 1

2
V ′(Φb)φ, (37)

Ḣ =
A(A+ 2)

(A− 1)(A+ 3)

[

3

2
Φ̇bφ− ḣ

]

, (38)

ḧ+ 6
ȧ

a
ḣ+

(A2 + 2A− 4)

a2
h+ Ḧ + 3

ȧ

a
Ḣ

+
(A2 + 2A− 4)

a2
H = −3

2
V ′(Φb)φ, (39)

Ḧ + 3
ȧ

a
Ḣ − A(A + 2)

3a2
H− A(A+ 2)

3a2
h = 0. (40)

B. Einstein-fluid model equations of motion

The fluid model equations of motion are covariant con-
servation of stress-energy

Tα
β
;β = 0, (41)

and the Einstein equations, eq. (20), where the stress-
energy tensor for the fluid is

T µν = (ρ+ p)uµuν − gµνp, (42)

where ρ and p are the fluid energy density and pressure
and uµ is the fluid coordinate peculiar velocity.
To derive the equations of motion for the spatially ho-

mogeneous background fields and for the spatial irreg-
ularities, we linearize eqs. (41), (20) and (42) about a
spatially closed FLRW model and a spatially homoge-
neous background fluid. We work in synchronous gauge,
with the line-element of eq. (22). The expansions for the
fluid variables are

ρ(t, ~x) = ρb(t)[1 + δ(t, ~x)], (43)

p(t, ~x) = pb(t) + cs
2ρb(t)δ(t, ~x), (44)

u0(t, ~x) = 1, (45)

ui(t, ~x) = 0 + ui(t, ~x), (46)

i.e., ui is taken to be of the same order as the fractional
perturbation in the fluid energy density, δ. Here ρb and

pb are the homogeneous background fluid energy den-
sity and pressure and the background equation of state
is taken to be

pb(t) = νρb(t), (47)

where ν is a constant. The speed of propagation of
‘acoustic’ waves is

cs
2 =

dp

dρ
, (48)

and, for the present, will be allowed to be a function of
the spacetime coordinates. Expanding the fluid stress-
energy tensor, eq. (42), we find the components

T00 = ρb + ρbδ + · · · , (49)

T0i = −a2 (ρb + pb)Hiju
j + · · · , (50)

Tij = a2Hijpb + a2
(

cs
2ρbδHij − pbhij

)

+ · · · , (51)

where the ellipses denote terms of quadratic and higher
order in the perturbations.
The equations of motion for the spatially homogeneous

parts of the fields are

ρ̇b = −3
ȧ

a
(ρb + pb) , (52)

(

ȧ

a

)2

=
8π

3mp
2
ρb −

1

a2
, (53)

ä

a
= − 4π

3mp
2
(ρb + 3pb) . (54)

The only change, relative to the equations of the flat
model (Secs. 82 and 85 of Ref. [59] and Sec. I of Ref.
[60]), is the new term (1/a2) on the right hand side of eq.
(53). The first order perturbation equations are

ρbδ̇ − (ρb + pb)

(

1

2
ḣ− ui

|i

)

= 3
ȧ

a

(

pb − cs
2ρb

)

δ,(55)

ḧ+ 2
ȧ

a
ḣ =

8π

mp
2

(

1 + 3cs
2
)

ρbδ, (56)

[

a5 (ρb + pb)Hklu
l
]

,0
= −a3

(

cs
2ρbδ

)

|k
, (57)

ḣ|i −
(

Hjkḣki

)

|j
= − 16π

mp
2
a2 (ρb + pb)Hiju

j, (58)

ḧij + 3
ȧ

a
ḣij +

ȧ

a
Hij ḣ− 1

a2
h|i|j +

1

a2

[

Hkl
(

hli|j + hlj|i

− hij|l

)

]

|k

− 4

a2
hij = − 8π

mp
2
Hij

(

1− cs
2
)

ρbδ. (59)
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Eq. (55) governs the evolution of the fractional energy
density perturbation, eq. (57) that of the peculiar veloc-
ity perturbation, eq. (56) that of the trace of the metric
perturbation, and eqs. (58) and (59) that of the remain-
ing part of the metric perturbation. Besides the expected
change relative to the equations of the flat model (Sec. II
of Ref. [55]), of all spatial derivatives being replaced by
spatial covariant derivatives, the only other change is the
new last term on the left hand side of eq. (59), 4hij/a

2.
To extract the scalar parts of eqs. (55) – (59) in spatial

momentum space we focus on a mode with spatial mo-
mentum characterized by the indices (A,B,C) and write

δ(Ω, t) = δ(A,B,C, t)Y (Ω), (60)

ui(Ω, t) = − 1

A(A+ 2)
u(A,B,C, t)Y|i(Ω); (61)

we also use the metric perturbation decomposition of eq.
(35). Eq. (61) only accounts for longitudinal peculiar
velocity perturbations (we ignore the transverse peculiar
velocity). The scalar parts of eqs. (55) – (59), for a given
mode, are

ρbδ̇ − (ρb + pb)

(

1

2
ḣ− u

)

= 3
ȧ

a

(

pb − cs
2ρb

)

δ, (62)

ḧ+ 2
ȧ

a
ḣ =

8π

mp
2

(

1 + 3cs
2
)

ρbδ, (63)

[

a5 (ρb + pb)u
]

,0
= A(A+ 2)a3cs

2ρbδ, (64)

Ḣ =
A(A+ 2)

(A− 1)(A+ 3)

[

24π

mp
2

a2(ρb + pb)u

A(A+ 2)
− ḣ

]

, (65)

ḧ+ 6
ȧ

a
ḣ+

(A2 + 2A− 4)

a2
h+ Ḧ+ 3

ȧ

a
Ḣ

+
(A2 + 2A− 4)

a2
H+

24π

mp
2

(

1− cs
2
)

ρbδ = 0, (66)

Ḧ + 3
ȧ

a
Ḣ − A(A + 2)

3a2
H− A(A+ 2)

3a2
h = 0. (67)

C. Scalar field as spacetime-dependent ‘speed of

sound’ fluid

We have shown that in the spatially flat and spa-
tially open models the synchronous gauge linear pertur-
bation equations of a fluid model with a given spacetime-
dependent speed of propagation of ‘acoustic’ distur-
bances are identical to those of a scalar field model, Sec.
II of Ref. [55] and Sec. III.C of Ref. [38]. Here we show
that this result also holds in the closed model.
Defining the background energy density and pressure

of the scalar field

ρbΦ =
mp

2

32π

[

Φ̇b
2 + V (Φb)

]

, (68)

pbΦ =
mp

2

32π

[

Φ̇b
2 − V (Φb)

]

, (69)

and the fractional energy density, peculiar velocity, and
‘speed of sound’ of the scalar field perturbation,

ρbΦδΦ =
mp

2

16π

[

Φ̇bφ̇+
1

2
V ′(Φb)φ

]

, (70)

a2 (ρbΦ + pbΦ)Hiju
j
Φ = −mp

2

16π
Φ̇b∂iφ, (71)

csΦ
2ρbΦδΦ =

mp
2

16π

[

Φ̇bφ̇− 1

2
V ′(Φb)φ

]

(72)

we see that the fluid stress-energy tensor, eqs. (49) – (51),
coincides with the scalar field stress-energy tensor, eqs.
(24) – (26). It is straightforward to show that when eqs.
(68) and (69) are used in eqs. (52) – (54) these homo-
geneous fluid equations coincide with the homogeneous
scalar field equations, eqs. (27) – (29). Using the defini-
tions of eqs. (70) – (72) in the fluid spatial irregularity
equations (56), (58) and (59), we find that they repro-
duce the scalar field spatial irregularity equations (31)
– (33). It may also be shown that when the definitions
of eqs. (71) and (72) are used in eq. (57) this equation
reduces to an identity (if the equation for the spatially
homogeneous part of the scalar field, eq. (27), is satis-
fied). It is only a little bit more involved to show that
the definitions (68) – (72) imply that eq. (55) reduces
to eq. (30) (the manipulations are very similar to those
outlined at the end of Sec. II of Ref. [55]).

D. Gauge-invariant variables

Choosing synchronous gauge does not completely fix
general coordinate invariance — there are four remaining
time-independent gauge symmetries. Their effect on the
metric perturbation is

δhij(Ω, t) =−
(

f0
|i|j(Ω) + f0

|j|i(Ω)
)

∫ t dt′

a2(t′)
− ωi|j(Ω)

− ωj|i(Ω)− 2
ȧ

a
f0(Ω)Hij(Ω), (73)

where the general coordinate transformation parameters
f0 and ωi are time independent. The scalar field per-
turbation and the variables derived from it transform ac-
cording to

δφ(Ω, t) = Φ̇bf
0(Ω), (74)

δ [δΦ(Ω, t)] =
ρ̇bΦ
ρbΦ

f0(Ω), (75)

δui
Φ(Ω, t) = − 1

a2
Hijf0

|j(Ω), (76)

δ
[{

csΦ
2δΦ

}

(Ω, t)
]

=
ṗbΦ
ρbΦ

f0(Ω), (77)
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while the fluid variables transform, as expected, accord-
ing to

δ [δ(Ω, t)] =
ρ̇b
ρb

f0(Ω), (78)

δui(Ω, t) = − 1

a2
Hijf0

|j(Ω), (79)

δ
[{

cs
2δ
}

(Ω, t)
]

=
ṗb
ρb

f0(Ω). (80)

In spatial momentum space the scalar parts of the fields
transform as

δH(A,B,C, t) = −2A(A+ 2)f0(A,B,C)

∫ t dt′

a2(t′)

+2ω(A,B,C), (81)

δh(A,B,C, t) = 2A(A+ 2)f0(A,B,C)

∫ t dt′

a2(t′)

−2ω(A,B,C)− 6
ȧ

a
f0(A,B,C), (82)

δφ(A,B,C, t) = Φ̇bf
0(A,B,C), (83)

δ [δ(A,B,C, t)] =
ρ̇b
ρb

f0(A,B,C), (84)

δ [u(A,B,C, t)] =
A(A + 2)

a2
f0(A,B,C), (85)

δ
[{

cs
2δ
}

(A,B,C, t)
]

=
ṗb
ρb

f0(A,B,C), (86)

where ωi and ω obey a relation like eq. (61).

Following Ref. [55], it may be shown that all gauge-invariant information about the scalar part of the fluid pertur-
bations is encoded in the gauge-invariant combinations

∆(A,B,C, t) = δ(A,B,C, t) + 3
ȧ

a

(

ρb + pb
ρb

)

a2u(A,B,C, t)

A(A+ 2)
, (87)

A(A,B,C, t) = δ(A,B,C, t) − ρb + pb
2ρb

[h(A,B,C, t) +H(A,B,C, t)] (88)

(the variable A should not be confused with the spatial momentum A). In the scalar field model eqs. (87) and (88)
may be rewritten, using eqs. (68) – (71), as

∆Φ =
1

Φ̇b
2 + V (Φb)

[

2Φ̇bφ̇+ V ′(Φb)φ + 6
ȧ

a
Φ̇bφ

]

, (89)

AΦ =
1

Φ̇b
2 + V (Φb)

[

2Φ̇bφ̇+ V ′(Φb)φ− Φ̇b
2(h+H)

]

. (90)

We now record the equations of motion for the fluid
gauge-invariant variables, ∆ and A. We have need only
for the equations in the ideal fluid model, so we set

cs
2 = ν, (91)

where ν is a numerical constant defined in eq. (47). It is

convenient to work with

D = A/(ρb + pb), (92)

instead of the variable A of eq. (88). Using the fluid
equations of motion, eqs. (52) – (54) and (62) – (67), we
find that ∆ and D obey

∆̇ +

[

3

2
(1− ν)

ȧ

a
+

{

(1 + 3ν)

2
+

A(A+ 2)

3

}

1

aȧ

]

∆ =
1

3
(A− 1)(A+ 3)(1 + ν)

ρb
aȧ

D, (93)

Ḋ −
[

A(A+ 2)

3aȧ
+ 3(1 + ν)

ȧ

a

]

D = −A(A+ 2)

(1 + ν)ρb

[{

1

3
+

3

2

(1 + ν)

(A− 1)(A+ 3)

}

1

aȧ
+

3

2

(1 + ν)

(A− 1)(A+ 3)

ȧ

a

]

∆. (94)

These equations may be combined to yield

∆̈ + (2− 3ν)
ȧ

a
∆̇ +

[

− 3

2
(1 − ν)(1 + 3ν)

(

ȧ

a

)2

+

{

−3

2
(1 − ν)(1 + 3ν) + νA(A + 2)

}

1

a2

]

∆ = 0; (95)

a similar second order equation may be derived for the variable D — since we have no need for it we do not
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record it here.

IV. INFLATION EPOCH

In this section we solve the synchronous gauge equa-
tions of motion to derive expressions for the spatially
homogeneous and inhomogeneous fields in the inflation
epoch.
The potential energy density for the scalar field Φ

which drives inflation is taken to be

V (Φ) = 12h2[1− ǫΦ], (96)

where h2 is a numerical parameter related to the inflation
epoch cosmological constant (the parameter h should not
be confused with the trace of the metric perturbation h)
and ǫ is a small numerical parameter. (These two free
parameters will be constrained by comparing our pre-
dictions to observational data.) The first term, 12h2, is
large and is responsible for driving the expansion of the
universe during inflation, and the term proportional to
ǫΦ is small and is responsible for forcing the scalar field
down the slope. This form of potential energy density is
chosen so that the leading term acts like a cosmological
constant and results in closed de Sitter inflation while
the subleading term powers a very slowly rolling inflaton
field.
Besides the standard expansion in spatial irregularity

(or the Newtonian gravitational constant) used to derived
the usual equations of synchronous gauge relativistic lin-
ear perturbation theory, we shall also make use of an
expansion in the parameter ǫ to simplify the computa-
tion, [38, 61]. This second expansion assumes that ǫ is
small; we shall have to check that this is a consistent as-
sumption by comparing our predictions to observational
data and verifying that the needed numerical value of ǫ
is indeed small.

A. Spatially homogeneous background fields

We wish to determine the solutions of eqs. (27) – (29)
for the model with the scalar field potential energy den-
sity of eq. (96). Our ansatz for the homogeneous fields
is

Φb(t) = Φb0(t) + ǫΦb1(t), (97)

a(t) = a0(t) [1 + ǫf(t)] , (98)

where Φb0(t), Φb1(t), a0(t) and f(t) are independent of ǫ
and will be determined below.
To lowest order in ǫ eqs. (27) – (29) are

Φ̈b0 + 3
ȧ0
a0

Φ̇b0 = 0, (99)

(

ȧ0
a0

)2

− 1

12
Φ̇b0

2 − h2 +
1

a02
= 0, (100)

ä0
a0

+
1

6
Φ̇b0

2 − h2 = 0. (101)

The first integral of eq. (99) is

Φ̇b0(t) = Φ̇b0i

(

a0i
a0(t)

)3

, (102)

where Φ̇b0i(a0i)
3 is a constant of integration. This so-

lution decreases with time, because of Hubble damping,
and we choose the constant to be

Φ̇b0i = 0. (103)

The lowest order solution for the scalar field is then

Φb0(t) = Φb0i, (104)

where Φb0i is a constant of integration. The lowest order
solution for the scale factor is

a0(t) = h−1 cosh(ht). (105)

The first order in ǫ parts of eqs. (27) – (29) are

Φ̈b1 + 3
ȧ0
a0

Φ̇b1 − 6h2 = 0, (106)

2
ȧ0
a0

ḟ − 2f

a02
+ h2Φb0i = 0, (107)

f̈ + 2
ȧ0
a0

ḟ + h2Φb0i = 0 (108)

After some work, it may be shown that the solutions of
these equations are

Φb1(t) = c̄0 +
c̄1
2h

[

sinh(ht)

cosh2(ht)
+ tan−1 {sinh(ht)}

]

+2

[

ln {cosh(ht)} − 1

cosh2(ht)

]

, (109)

f(t) =
1

2
Φb0i −

[

c̄3h
2 +

1

2
Φb0iht

]

tanh(ht), (110)

where c̄0, c̄1 and c̄3 are constants of integration.

B. Spatial irregularities

We shall only have need for the order ǫ0 part of φ. To
this order eq. (36) is

φ̈0 + 3htanh(ht)φ̇0 +
A(A + 2)h2

cosh2(ht)
φ0 = 0. (111)

The solution of this equation is

φ0(A,B,C, t) = (112)

h

cosh(ht)

[

c+ {sinh(ht)− i(A+ 1)} e−i(A+1)tan−1{sinh(ht)}

+c− {sinh(ht) + i(A+ 1)} ei(A+1)tan−1{sinh(ht)}

]

,
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where c± are A dependent constants of integration which
will be determined from quantum mechanical initial con-
ditions. We note that, to leading order in ǫ, the two
solutions in this equation are gauge invariant.
We shall have need for the fractional energy density

and peculiar velocity perturbations during the inflation
epoch, eqs. (70) and (71). Using eqs. (60), (61) and (112),
and the expressions of Sec. IV A, we have, to lowest order
in ǫ,

δΦ(A,B,C, t) = (113)

− ǫ

6cosh5(ht)

[

c+e
−i(A+1)tan−1{sinh(ht)}

×
[

A(A+ 2)

{

c̄1 + 2hsinh(ht)
[

cosh2(ht) + 2
]

}

+6hcosh4(ht) [sinh(ht)− i(A+ 1)]

]

+c−e
i(A+1)tan−1{sinh(ht)}

×
[

A(A + 2)

{

c̄1 + 2hsinh(ht)
[

cosh2(ht) + 2
]

}

+6hcosh4(ht) [sinh(ht) + i(A+ 1)]

]]

,

uΦ(A,B,C, t) = (114)

A(A+ 2)h3

ǫ
[

c̄1 + 2hsinh(ht)
{

cosh2(ht) + 2
}]

×
[

{sinh(ht)− i(A+ 1)} c+e−i(A+1)tan−1{sinh(ht)}

+ {sinh(ht) + i(A+ 1)} c−ei(A+1)tan−1{sinh(ht)}

]

We shall also have need for expressions for the gauge-
invariant variables ∆Φ and AΦ during inflation. We find,
to leading order in ǫ,

∆Φ(A,B,C, t) = (115)

ǫ

6cosh5(ht)

[

c+e
−i(A+1)tan−1{sinh(ht)}

×
[

3sinh(ht)

{

c̄1 + 2hsinh(ht)
[

cosh2(ht) + 2
]

}

× [sinh(ht)− i(A+ 1)]

−A(A+ 2)

{

c̄1 + 2hsinh(ht)
[

cosh2(ht) + 2
]

}

−6hcosh4(ht) [sinh(ht)− i(A+ 1)]

]

+c−e
i(A+1)tan−1{sinh(ht)}

×
[

3sinh(ht)

{

c̄1 + 2hsinh(ht)
[

cosh2(ht) + 2
]

}

× [sinh(ht) + i(A+ 1)]

−A(A+ 2)

{

c̄1 + 2hsinh(ht)
[

cosh2(ht) + 2
]

}

−6hcosh4(ht) [sinh(ht) + i(A+ 1)]

]]

AΦ(A,B,C, t) =δΦ(A,B,C, t). (116)

where δΦ is given in eq. (113).

C. Initial conditions and two-point correlation

functions

Conformal time t̃ is related to t through

tant̃ = sinh(ht). (117)

In eq. (112), defining the constants c̃±,

c± = ± i
√

2A(A+ 1)(A+ 2)

(

16π

mp
2

)1/2

c̃±, (118)

the initial conditions, Sec. VII of Ref. [42], require that
we choose (up to an irrelevant phase)

c̃+ = 1 and c̃− = 0. (119)

This is equivalent to Hawking’s prescription of including
only regular Euclidean field configurations [41], and is de
Sitter invariant, see Secs. VI–IX of Ref. [42].

In the closed de Sitter model the a → 0 limit does
not lie in the Lorentzian section [42], unlike in the open
and flat cases. Hawking’s prescription [41] of only includ-
ing field configurations regular on the Euclidean section
does in fact correspond to the ground state energy of
the rescaled scalar field inhomogeneity not diverging as
a → 0, which in this case is a pole of the Euclidean sec-
tion sphere [42] and in fact leads to a de Sitter invariant
ground state scalar field two-point correlation function,
[42].

With this choice we find that the equal-time scalar field
perturbation two-point correlation function is
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<φ0(A,B,C, t)φ∗
0(A

′, B′, C′, t)>= |φ0(A,B,C, t)|2 δA,A′δB,B′δC,C′ , (120)

|φ0(A,B,C, t)|2 =
16π

mp
2

1

2(A+ 1)a2

[

1 +
h2a2

A(A + 2)

]

. (121)

This result coincides with eq. (7.13) of Ref. [42]. We note that at late time the right hand side of eq. (121) becomes
time independent, as does the corresponding two-point correlation function in flat (exponentially expanding) de Sitter
spacetime (Sec. V of Ref. [42]) as well as in open de Sitter spacetime (Sec. IV of Ref. [36] and Sec. IV.3 of Ref.[38]),
however, the dependence on spatial momentum in the long wavelength limit are quite different in the non-flat and
flat cases.
This difference in the infrared behavior is also seen in the fractional energy density perturbation two-point correlation

function. We find

<δΦ(A,B,C, t)δ∗Φ(A
′, B′, C′, t)>= |δΦ(A,B,C, t)|2 δA,A′δB,B′δC,C′ , (122)

where the fractional energy density perturbation power
spectrum is

|δΦ(A,B,C, t)|2 = ǫ2
16π

mp
2

1

2A(A+ 1)(A+ 2)a2

×
[

(A+ 1)2 +

[

√

h2a2 − 1 +
A(A+ 2)

6h5a4

×
{

c̄1 + 2h
√

h2a2 − 1(h2a2 + 2)
}

]2]

, (123)

where c̄1 is the real constant of integration in the expres-
sion in eq. (109). In the short wavelength limit the last
term in the inner square parentheses dominates, and at
late times

|δΦ|2 ∝ A/a4, (124)

which is what one finds in the flat de Sitter case (eqn.
(3.56) of Ref. [62], also see Ref. [63]); this is the scale-
invariant spectrum, [40]. In the long wavelength limit
the first term in the inner square parentheses dominates
at late time

|δΦ|2 ∝ 1/A; (125)

this suggests that in the closed model the large-scale
energy density power spectrum will break away from

the scale-invariant form and will instead behave like an
n = −1 spectrum, like in the open case, see eq. (4.31) of
Ref. [38].

V. THE RADIATION AND MATTER EPOCHS

In this section we solve the equations of motion to de-
rive expressions for the spatially homogeneous and inho-
mogeneous fields in the radiation and matter epochs.

A. The radiation epoch

In this epoch ν = 1/3 = cs
2 and from eq. (52) ρbR ∝

a−4, or

ρbR(t) =
3mp

2

8π

hR
2

a4(t)
, (126)

where hR is a constant of integration determined below.
We shall not have need for the explicit expression for a(t).
It suffices to derive expressions for the gauge-invariant

variables ∆R and AR. Defining

x = a/hR, (127)

and using eq. (53) to rewrite eq. (95) in the radiation
epoch we have

x2(1− x2)∆′′
R − x3∆′

R +

[

−2 +
1

3
A(A+ 2)x2

]

∆R = 0; (128)

here a prime denotes a derivative with respect to x. The solution of this equation is

∆R(x) = c
(R)
1 x2F (1 + b, 1− b; 5/2;x2) + c

(R)
2 x−1F (−1/2 + b,−1/2− b;−1/2;x2); (129)

c
(R)
± are spatial momentum dependent constants of inte-
gration, determined below, the F ’s are hypergeometric

functions (Chap. 15 of Ref. [58]), and

b =
1

2

(

A(A+ 2)

3

)1/2

. (130)
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From eqs. (92) and (93) we have

AR(x) =
3

(A− 1)(A+ 3)

(1− x2)

x
∆′

R +
3

(A− 1)(A+ 3)

[

1

x2
+

A(A+ 2)

3

]

∆R, (131)

so from eq. (129) we find

(A− 1)(A+ 3)AR(x) = (132)

3c
(R)
1

[

− 4

5
(b2 − 1)x2(1− x2)F (2 + b, 2− b; 7/2;x2)

+
{

3 + (4b2 − 2)x2
}

F (1 + b, 1− b; 5/2;x2)

]

+3c
(R)
2

[

(4b2 − 1)(1− x2)x−1F (1/2 + b, 1/2− b; 1/2;x2)

+(4b2 + 1)x−1F (−1/2 + b,−1/2− b;−1/2;x2)

]

B. The matter epoch

In this epoch ν = 0 = cs
2 and from eq. (52) ρbM ∝ a−3,

or

ρbM (t) =
3mp

2

8π

hM
2

a3(t)
, (133)

where hM is a constant of integration determined below.
We shall not have need for the explicit expression for a(t).

In the matter epoch eq. (64) reduces to

d

dt

[

a5ρbMuM

]

= 0, (134)

and we find

uM (t) =
c
(M)
8

a2(t)
, (135)

where c
(M)
8 is a constant of integration. In this epoch

eqs. (62) and (63) reduce to

δ̇M − 1

2
ḣ(M) + uM = 0, (136)

ḧ(M) + 2
ȧ

a
ḣ(M) =

8π

mp
2
ρbMδM , (137)

where h(M) is the trace of the metric perturbation in the
matter epoch. Differentiating eq. (136) with respect to
time, adding this result to eq. (136) multiplied by 2ȧ/a,
and using eqs. (135) and (137) we find

δ̈M + 2
ȧ

a
δ̇M − 4π

mp
2
ρbMδM = 0. (138)

Introducing the variable x, Sec. 11.C of Ref. [59],

x = a/hM
2, (139)

we find that eq. (138) becomes

2x2(1− x)δ′′M + x(3 − 4x)δ′M − 3δM = 0, (140)

where a prime denotes a derivative with respect to x.
The solution of this equation is, [59],

δM (x) = c
(M)
2

√
1− x

x3/2
(141)

+c(M)

[

−1 +
3

x
− 3

√
1− x

x3/2
tan−1

√

x

1− x

]

,

where c
(M)
2 and c(M) are spatial momentum dependent

constants of integration. In terms of the variable x eq.
(136) is

h(M)′ = 2δ′M + 2hM
2

√

x

1− x
uM . (142)

The solution of this equation is

h(M)(x) = c
(M)
1 + 2δM (x) − 4c

(M)
8

hM
2

√

1− x

x
, (143)

where c
(M)
1 is a spatial momentum dependent constant of

integration and δM (x) is given in eq. (141). It is straight-
forward to verify that the solutions of eqs. (141) and
(143) satisfy eq. (137). Using eq. (135), eq. (65) reduces
to:

H(M)′ = − A(A+ 2)

(A− 1)(A+ 3)
h(M)′ +

9

(A− 1)(A+ 3)hM
2

c
(M)
8

x5/2
√
1− x

. (144)

The solution of this equation is

H(M)(x) = c
(M)
9 − A(A+ 2)

(A− 1)(A+ 3)
h(M)(x) − 6c

(M)
8

(A− 1)(A+ 3)hM
2

√
1− x (2x+ 1)

x3/2
, (145)
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where c
(M)
9 is a spatial momentum dependent constant of integration. In the matter epoch eqs. (63), (66) and (67)

may be combined to give

ȧ

a
ḣ(M) +

(A− 1)(A+ 3)

3a2

(

h(M) +H(M)
)

+
8π

mp
2
ρbMδM = 0. (146)

Using eqs. (141), (143) and (145), we find that this equation results in

c
(M)
9 =

3

(A− 1)(A+ 3)

[

c
(M)
1 − 2c(M)

]

. (147)

It may be verified that this result with eqs. (143) and (145) satisfies eq. (67).
The matter epoch gauge-invariant variables, ∆M and AM , eqs. (87) and (88), are

∆M (x) =

{

c
(M)
2 +

3c
(M)
8

A(A+ 2)hM
2

} √
1− x

x3/2
+ c(M)

[

−1 +
3

x
− 3

√
1− x

x3/2
tan−1

√

x

1− x

]

, (148)

AM (x) =
A(A+ 2)

(A− 1)(A+ 3)

{

c
(M)
2 +

3c
(M)
8

A(A + 2)hM
2

} √
1− x

x3/2
(149)

−c(M)

[

1− 3A(A+ 2)

(A− 1)(A+ 3)

{

1

x
−

√
1− x

x3/2
tan−1

√

x

1− x

}]

.

VI. JOINING CONDITIONS AND

EXPRESSIONS FOR THE INTEGRATION

CONSTANTS

In the previous section we have derived expressions for
the spatially homogeneous and spatially inhomogeneous
fields in the radiation and matter epochs. These solutions
depend on constants of integration, and in this section we
list the equations that determine these constants of inte-
gration and compute them. We then approximate these
expressions for the constants of integration by discard-
ing the contribution from perturbations that were inside
the Hubble radius at the reheating and radiation-matter
transitions (since we have ignored physical processes that
are relevant on these small length scales).

As in the models of Refs. [38, 62, 64], the constants
of integration, in the radiation and matter epochs in the
model at hand, are determined by joining conditions at
the inflation-radiation (or reheating) transition and the
radiation-matter transition. We make use of the spatially
homogeneous local energy density spatial hypersurface
transition model (discussed in Refs. [38, 55, 62]), gener-
alized to the closed FLRW model, to derive the needed
joining conditions. The resulting joining conditions are
identical to those in Sec. VI A of Ref. [38], as they must
be.

A. Joining conditions

In linear theory, the scalar field is identical to a
spacetime-dependent ‘speed of sound’ fluid (Sec. III C),
so we treat both the reheating and radiation-matter tran-

sitions as special cases of an equation of state transition
between two spacetime-dependent ‘speed of sound’ fluid
epochs. In the transition model we consider, it occurs
instantaneously when the local energy density drops to
a critical value (at different values of synchronous gauge
time (t) in different parts of space). At the transition spa-
tial hypersurface we require that the equation of state
and ‘speed of sound’ change discontinuously from the
value appropriate to the pretransition fluid to that ap-
propriate to the posttransition fluid. We consider a tran-
sition at t = tMR from an R fluid characterized by the
variables ρbR, pbR, csR

2, to an M fluid characterized by
the variables ρbM , pbM , csM

2, with a jump in the pressure
at the transition.
Since spatial gradients in the local energy density are

of first order in the perturbations, the spatially homo-
geneous local energy density spatial hypersurfaces and
the synchronous gauge constant time hypersurfaces coin-
cide at lowest order. We may therefore match the scale
factor and the spatially homogeneous part of the energy
density at the corresponding synchronous gauge constant
time spatial hypersurface,

aM (tMR) = aR(tMR), (150)

ρbM (tMR) = ρbR(tMR). (151)

Joining conditions for the inhomogeneities are derived
in Sec. VI A of Ref. [38]. For our purposes here we only
need

∆M (tMR) = ∆R(tMR), (152)

(

AM

ρbM + pbM

)

(tMR) =

(

AR

ρbR + pbR

)

(tMR). (153)
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B. Determining the constants of integration

Using the joining conditions for the scale factor and
the background energy density, eqs. (150) and (151), at
the two transitions, we have, from eqs. (68), (96), (126)
and (133), to leading order in ǫ,

h = hR/aRΦ
2, (154)

hR = hM
√
aMR, (155)

where aRΦ and aMR are the values of the scale factor at
the reheating and radiation-matter transitions and h, hR,
and hM are the constants in eqs. (96), (126) and (133).
We note that at the reheating transition the radiation

epoch variable xR, eq. (127), is given by

xR(tRΦ) =
aRΦ

hR
=

1

haRΦ
, (156)

while at the radiation-matter transition the matter epoch
variable xM , eq. (139), is

xM (tMR) =
aMR

hM
2
=

aMR
2

hR
2

= xR
2(tMR). (157)

Using the joining conditions of eqs. (152) and (153) at
the reheating transition, we find, from eqs. (115), (116),
(129) and (132), that to leading order in ǫ the radiation
epoch constants of integration are given by

c
(R)
1 =

4i

9ǫ

(

16π

mp
2

)1/2
(A− 1)(A+ 3)

√

2A(A+ 1)(A+ 2)

CDE

hR
3xR

6(tRΦ) {1− xR
2(tRΦ)}

×F (−1/2 + b,−1/2− b;−1/2;xR
2(tRΦ))exp

{

−i(A+ 1)tan−1

√

1− xR
2(tRΦ)

xR
2(tRΦ)

}

, (158)

c
(R)
2 = − 4i

9ǫ

(

16π

mp
2

)1/2
(A− 1)(A+ 3)

√

2A(A+ 1)(A+ 2)

CDE

hR
3xR

3(tRΦ) {1− xR
2(tRΦ)}

×F (1 + b, 1− b; 5/2;xR
2(tRΦ))exp

{

−i(A+ 1)tan−1

√

1− xR
2(tRΦ)

xR
2(tRΦ)

}

, (159)

where

C−1 = (4b2 − 1)xR
2(tRΦ)F (1 + b, 1− b; 5/2;xR

2(tRΦ))F (1/2 + b, 1/2− b; 1/2;xR
2(tRΦ))

−3F (1 + b, 1− b; 5/2;xR
2(tRΦ))F (−1/2 + b,−1/2− b;−1/2;xR

2(tRΦ))

+
4

5
(b2 − 1)xR

2(tRΦ)F (−1/2 + b,−1/2− b;−1/2;xR
2(tRΦ))F (2 + b, 2− b; 7/2;xR

2(tRΦ)), (160)

D−1/2 = c̄1xR
3(tRΦ) + 2h

√

1− xR
2(tRΦ)

{

1 + 2xR
2(tRΦ)

}

, (161)

and

E = A(A+ 2)c̄1h
−1xR

5(tRΦ) + 2A(A+ 2)xR
2(tRΦ)

√

1− xR
2(tRΦ)

{

1 + 2xR
2(tRΦ)

}

+6
{

√

1− xR
2(tRΦ)− i(A+ 1)xR(tRΦ)

}

. (162)

where b is defined in eq. (130) and c̄1 in eq. (109).
Using the joining conditions of eqs. (152) and (153) at the radiation-matter transition, we find, from eqs. (129),

(132), (148) and (149), that the matter epoch constants of integration c(M) and

ĉ(M) ≡ c
(M)
2 +

3c
(M)
8

A(A+ 2)hM
2
, (163)

are given by

c(M) = c
(R)
1

[

− 3

5
(b2 − 1)xM (tMR) {1− xM (tMR)}F (2 + b, 2− b; 7/2;xM(tMR))

+
1

12

{

27− (A2 + 2A+ 18)xM (tMR)
}

F (1 + b, 1− b; 5/2;xM(tMR))

]

+c
(R)
2

[

3

4
(4b2 − 1)xM

−1/2(tMR) {1− xM (tMR)}F (1/2 + b, 1/2− b; 1/2;xM(tMR))

− 1

12
(A2 + 2A− 9)xM

−1/2(tMR)F (−1/2 + b,−1/2− b;−1/2;xM(tMR))

]

, (164)
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ĉ(M) 4
√

1− xM (tMR)

3xM
3/2(tMR)

= (165)

c
(R)
1

[

4

5
(b2 − 1) {1− xM (tMR)}

{

3− xM (tMR)− 3

√

1− xM (tMR)

xM (tMR)
tan−1

√

xM (tMR)

1− xM (tMR)

}

×F (2 + b, 2− b; 7/2;xM(tMR))−
{

9/xM (tMR)− (A2 + 2A+ 27) + (A2 + 2A+ 6)xM (tMR)/9

−
{

9/xM (tMR)− (A2 + 2A+ 18)/3
}

√

1− xM (tMR)

xM (tMR)
tan−1

√

xM (tMR)

1− xM (tMR)

}

×F (1 + b, 1− b; 5/2;xM(tMR))

]

+c
(R)
2

[

(4b2 − 1)xM
−3/2(tMR) {1− xM (tMR)}

{

− 3 + xM (tMR)

+3

√

1− xM (tMR)

xM (tMR)
tan−1

√

xM (tMR)

1− xM (tMR)

}

F (1/2 + b, 1/2− b; 1/2;xM(tMR))

+
1

9xM
3/2(tMR)

{

3(A2 + 2A− 9)− (A2 + 2A− 21)xM (tMR)

−3(A2 + 2A− 9)

√

1− xM (tMR)

xM (tMR)
tan−1

√

xM (tMR)

1− xM (tMR)

}

F (−1/2 + b,−1/2− b;−1/2;xM(tMR))

]

.

C. Large-scale approximation

We have ignored small-scale processes like the produc-
tion of entropy at reheating. Our expressions are there-
fore only relevant for large-scale perturbations. From
eq. (8) we see that the ratio of the Hubble length to
a length scale which characterizes the perturbations is
√

A(A+ 2)/(aH); small-scale perturbations are those for
which this ratio is ≫ 1. In this subsection we approxi-
mate the expressions for the constants of integration by
discarding the contribution from small-scale perturba-

tions at the reheating and radiation-matter transitions.

At reheating we have, from eq. (127),

√

A(A+ 2)

a(tRΦ)H(tRΦ)
= xR(tRΦ)

√

A(A+ 2)

1− xR
2(tRΦ)

, (166)

so large-scale perturbations at reheating correspond to
small xR(tRΦ). Expanding eqs. (158) and (159) in this
limit we find for the radiation epoch constants of inte-
gration

c
(R)
1 = − 2i

9ǫ

(

16π

mp
2

)1/2
(A− 1)(A+ 3)

√

2A(A+ 1)(A+ 2)

e−i(A+1)π/2

h2hR
3xR

6(tRΦ)
(167)

×
[

1 + (A− 1)(A+ 3)xR
2(tRΦ) +

{

2i

3
A(A+ 1)(A+ 2)− c̄1

h

}

xR
3(tRΦ) + · · ·

]

,

c
(R)
2 =

2i

9ǫ

(

16π

mp
2

)1/2
(A− 1)(A+ 3)

√

2A(A+ 1)(A+ 2)

e−i(A+1)π/2

h2hR
3xR

3(tRΦ)
(168)

×
[

1 +

{

4

5
A(A+ 2)− 21

10

}

xR
2(tRΦ) +

{

2i

3
A(A+ 1)(A+ 2)− c̄1

h

}

xR
3(tRΦ) + · · ·

]

;

we note that the c̄1 dependent contribution to these ex-
pressions are a subleading term.

At the radiation-matter transition the relevant ratio of

length scales is, from eq. (139),
√

A(A + 2)

a(tMR)H(tMR)
=

√

xM (tMR)A(A + 2)

1− xM (tMR)
, (169)
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so large-scale perturbations at this transition correspond
to small xM (tMR). Expanding eqs. (164) and (165),
and using eqs. (167) and (168) as well as the relation
a(tMR) ≫ a(tRΦ), we find for the matter epoch constants
of integration

c(M) = − i

2ǫ

(

16π

mp
2

)1/2
(A− 1)(A+ 3)

√

2A(A+ 1)(A+ 2)
(170)

× e−i(A+1)π/2

h2hR
3xR

6(tRΦ)
+ · · · ,

ĉ(M) =
2

45
xM

5/2(tMR)c
(M) + · · · . (171)

VII. MATTER EPOCH ‘NEWTONIAN’

SPATIAL HYPERSURFACE AND POWER

SPECTRA

Often, theoretical expressions characterizing large-
scale structure (for instance, the fractional mass per-
turbation and the peculiar velocity perturbation power
spectra) are given in the coordinate system in which the
time derivative of the trace of the metric perturbation
has been removed on a given ‘observational’ hypersur-
face; this is what is known as the instantaneously Newto-
nian synchronous coordinate system, Sec. V of Ref. [62].
In this section we construct this instantaneously Newto-
nian coordinate system (this is a generalization to the
closed model of the flat model construction of Sec. V D
of Ref. [62] so we can be brief; also see Sec. VII A of
Ref. [38]), and record the power spectra of fractional en-
ergy density and peculiar velocity perturbations in this
coordinate system. In this section we also record the
matter epoch gauge-invariant fractional energy density
power spectrum.

A. Instantaneously ‘Newtonian’ synchronous

coordinates

The following derivation is a generalization of that of
Sec. V D of Ref. [62] so we will omit technical details
here. We choose coordinates x̂µ = (t̂, x̂i),

t̂ = t−∆t(tN , ~x), (172)

x̂i = xi − f i(t, ~x), (173)

which are synchronous, and require that the time deriva-

tive of the trace of the metric perturbation, ∂̂0ĥ(x̂), van-
ish on a spatial hypersurface at the ‘observational’ time
t̂ = t̂N . For the coordinates x̂µ to be synchronous we
must require

f i(t, ~x) = (174)

Hij(~x)∂j∆t(tN , ~x)

∫ t dt′

a2(t′)
+ ωi(~x);

in what follows we set ωi = 0. The fields in the two
coordinate systems are related by

δ̂(x̂) = δ(x) +
ρ̇b(t)

ρb(t)
∆t(tN , ~x), (175)

ûi(x̂) = ui(x)− 1

a2(t)
Hij(~x)∂j∆t(tN , ~x), (176)

ĥij(x̂) = hij(x)− 2
ȧ

a
∆t(tN , ~x)Hij(~x)

−Hik(~x)f
k
|j(x) −Hkj(~x)f

k
|i(x), (177)

and from the last equation, and the matter epoch equa-
tions (53) and (54), we have

∂̂0ĥ(x̂) = ḣ(x) +

[

24π

mp
2
ρb(t)−

6

a2(t)

]

∆t(tN , ~x)

− 2

a2
Hij(~x)∆t|i|j(tN , ~x). (178)

Using the matter epoch (ν = 0 = cs
2) fluid equations

of motion in the unbarred coordinates, Sec. III B, it is

straightforwardly established that when ∂̂0ĥ(t̂N , x̂k) = 0,

∂̂0δ̂(t̂N , x̂k) + ûi
|i(t̂N , x̂k) = 0, (179)

∂̂2
0 δ̂(x̂) + 2Ĥ(t̂)∂̂0δ̂(x̂) =

4π

mp
2
ρ̂b(t̂)δ̂(x̂); (180)

these are the Newtonian matter epoch equations of mo-
tion, Secs. 9.B and 10 of Ref. [59]. Comparing the second
one of these to the matter epoch version of eq. (9.19) of
Ref. [59], we find that the Newtonian gravitational po-
tential in these coordinates, ϕ̂, obeys

∇̂2ϕ̂

â2
=

4π

mp
2
ρ̂bδ̂. (181)

In spatial momentum space, the scalar parts of the
above equations are

δ̂(A,B,C, t̂) = δ(A,B,C, t) +
ρ̇b(t)

ρb(t)
∆t(A,B,C, tN ), (182)

v̂(A,B,C, t̂) = v(A,B,C, t) +
A(A+ 2)

a(t)
∆t(A,B,C, tN ) (183)

(where v = au), and

∂̂0ĥ(A,B,C, t̂) = ḣ(A,B,C, t) +

[

24π

mp
2
ρb(t) + 2

(A− 1)(A+ 3)

a2(t)

]

∆t(A,B,C, tN ). (184)
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Defining the Newtonian hypersurface by requiring

∂̂0ĥ(A,B,C, t̂N ) = 0, (185)

we find, in the matter epoch, from eq. (184),

∆t(A,B,C, tN ) = −ḣ(M)(A,B,C, tN )

[

24π

mp
2
ρbM (tN ) +

2(A− 1)(A+ 3)

a2(tN )

]−1

. (186)

Using the matter epoch solutions of Sec. V B we find

∆t(A,B,C, tN ) = (187)

hM
2 [9 + 2(A− 1)(A+ 3)xM (tN )]−1

×
[

c
(M)
2 {3− 2xM (tN )} − 2

c
(M)
8

hM
2
xM (tN )

+c(M)

{

9
√

xM (tN ){1− xM (tN )}

−{9− 6xM (tN )}tan−1

√

xM (tN )

1− xM (tN )

}]

,

where the variables and coefficients are defined in Sec.
V B, and we have, for the Newtonian hypersurface frac-
tional energy density and peculiar velocity,

δ̂M (A,B,C, t̂N ) = (188)

[9 + 2(A− 1)(A+ 3)xM (tN )]
−1

×
[

2A(A+ 2)ĉ(M)

√

1− xM (tN )

xM (tN )

+c(M)

{

6A(A+ 2)− 2(A− 1)(A+ 3)xM (tN )

−6A(A+ 2)

√

1− xM (tN )

xM (tN )
tan−1

√

xM (tN )

1− xM (tN )

}]

,

v̂M (A,B,C, t̂N ) = (189)

A(A+ 2) [9 + 2(A− 1)(A+ 3)xM (tN )]−1

×
[

ĉ(M)

(

3− 2xM (tN )

xM (tN )

)

+ c(M)

{

9

√

1− xM (tN )

xM (tN )

−
(

9− 6xM (tN )

xM (tN )

)

tan−1

√

xM (tN )

1− xM (tN )

}]

,

where ĉ(M) is defined in eq. (163) and the other expres-
sions are defined in Sec. V B.

B. Power spectra

From eqs. (53), (133) and (139) we find, in the matter
epoch,

xM (t) =
Ω0 − 1

Ω0(1 + z)
. (190)

The matter fractional energy density perturbation and
peculiar velocity perturbation equal-time two-point cor-
relation functions are

<δ̂M (A,B,C, t̂N )δ̂∗M (A′, B′, C′, t̂N )> = P̂ (A, t̂N )δA,A′δB,B′δC,C′ , (191)

<v̂M (A,B,C, t̂N )v̂∗M (A′, B′, C′, t̂N )> = P̂v(A, t̂N )δA,A′δB,B′δC,C′ , (192)

where, from the results of the previous subsection, the Newtonian hypersurface spectra are

P̂ (A, t̂N ) = W5
2

(

W1

c1

)2
(A− 1)2(A+ 3)2

A(A + 1)(A+ 2)

[

A(A+ 2) + e1
A(A+ 2) + d1

]2

, (193)

P̂v(A, t̂N ) = W5
2

(

W3

c1

)2
(A− 1)2A(A + 2)(A+ 3)2

(A+ 1)[A(A+ 2) + d1]2
, (194)

where we have defined

W1 =
4

45

√

1 + Ω0zN
Ω0 − 1

[

Ω0 − 1

Ω0(1 + zMR)

]5/2

+6− 2

[

Ω0 − 1

Ω0(1 + zN)

]

(195)

−6

√

1 + Ω0zN
Ω0 − 1

tan−1

√

Ω0 − 1

1 + Ω0zN
,

W2 = 6

[

Ω0 − 1

Ω0(1 + zN )

]

, (196)

W3 =
2

45

(2 + Ω0 + 3Ω0zN)

Ω0 − 1

[

Ω0 − 1

Ω0(1 + zMR)

]5/2

+9

√

1 + Ω0zN
Ω0 − 1

(197)

−3

[

2 + Ω0 + 3Ω0zN
Ω0 − 1

]

tan−1

√

Ω0 − 1

1 + Ω0zN
,
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W5 =
1

2ǫ

(

16π

mp
2

)1/2
(1 + zRΦ)

2

a0

×
√

Ω0

2(Ω0 − 1)(1 + zMR)
, (198)

e1 =
W2

W1
=

3c1
W1

, (199)

c1 =
2(Ω0 − 1)

Ω0(1 + zN)
, (200)

c2 = 9− 3c1, (201)

d1 =
c2
c1

=
(6 + 3Ω0 + 9Ω0zN )

2(Ω0 − 1)
; (202)

here zN , zMR, and zRΦ are the redshifts of the Newto-
nian hypersurface, the radiation-matter transition, and
the reheating transition. The terms dependent on zMR

in the expressions for W1 and W3 are the contributions
of the decaying solution.

We note that the matter epoch power spectrum for the
gauge-invariant variable ∆M , eq. (148), is

P∆(A, t) = W5
2

(

W1

c1

)2
(A− 1)2(A+ 3)2

A(A+ 1)(A+ 2)
, (203)

with zN in the definitions of W1 and c1 above replaced
by z. This is the generalization of the flat-space scale-
invariant spectrum [40] to the closed model [47]. In
the small-scale limit, which is the same as the flat-
space limit, A is large and becomes the usual flat-space
Fourier wavenumber k and this power spectrum reduces
to P∆ ∝ k, the standard scale-invariant expression [40].
The full closed-space power spectrum above is plotted in

Fig. 1 of Ref. [53], where it is compared to an almost
scale-invariant flat-space power spectrum.

VIII. CONCLUSION

Using Hawking’s prescription for the quantum state
of the universe as the initial conditions, we have shown
that in a closed, inflating universe model the late-time
power spectrum of gauge-invariant energy density inho-
mogeneities is not a power law. This power spectrum
depends on wavenumber in the way expected for a gen-
eralization to the closed model of the standard flat-space
scale-invariant power spectrum [47]. The power spectrum
we derive appears to differ from a number of other closed
inflation models power spectra derived assuming different
(presumably non de Sitter invariant) initial conditions.
Recent suggestions that dynamical dark energy might

provide a better fit to the observations requires consid-
eration of non-flat cosmological models. It is not yet
clear if non-flat ΛCDM, without dynamical dark energy,
is able to accommodate these data. Also, even if the uni-
verse is flat, to properly establish spatial flatness from the
CMB anisotropy data requires use of a physically consis-
tent non-flat cosmological model, such as that developed
here for the positive curvature case. The power spec-
trum we have derived in this model will also be needed
for a proper analysis of CMB anisotropy data in a mildly
closed model, which not only remains observationally vi-
able but might be in better accord with the low ℓ CMB
anisotropy observations [53, 54].
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