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We compute the weak lensing convergence power spectrum, C
` , in a dust-filled universe using

fully non-linear general relativistic simulations. The spectrum is then compared to more standard,
approximate calculations by computing the Bardeen (Newtonian) potentials in linearized gravity
and partially utilizing the Born approximation. We find corrections to the angular power spectrum
amplitude of order ten percent at very large angular scales, ` ⇠ 2� 3, and percent-level corrections
at intermediate angular scales of ` ⇠ 20� 30.

I. INTRODUCTION

Weak lensing calculations rely on a number of assump-
tions in order to improve tractability of models. These
include physical assumptions, such as the Born approxi-
mation, where physical arguments are used to justify ne-
glecting sub-dominant e↵ects. Further assumptions are
made when modeling the gravitational physics of lensed
systems, in particular the assumption that a linearized
gravitational model provides a su�ciently accurate de-
scription of the dynamics of the evolution of the Uni-
verse as well as the geodesic equations describing propa-
gation of light. Here, we explore the impact of these as-
sumptions on weak lensing convergence calculations by
comparing standard, commonly used calculations to a
fully general relativistic treatment of the problem. We
find these approximations are accurate only to within a
few percent on large angular scales. The relative magni-
tude of corrections is found to increase on larger angular
scales, and lessen on smaller angular scales.

Such observations of weak lensing convergence power
spectra are among the primary science goals of the on-
going Dark Energy Survey (DES) and Hyper Suprime-
Cam (HSC) Subaru Strategic Survey, as well as the forth-
coming surveys of the Large Synoptic Survey Telescope
(LSST), the Euclid mission, and Wide-Field InfraRed
Survey Telescope (WFIRST). The primary driver be-
hind these measurements is their potential to use lensing
power spectra to constrain cosmology, particularly the
cause of cosmic acceleration [1] and neutrino mass (for
example, Refs. [2–4]). Observationally viable models of
dark energy and values of neutrino masses induce only
subtle alterations to lensing power spectra on the order of
a few percent. Consequently, it is of critical importance
to produce theoretical predictions for lensing power spec-
tra that are both very precise and very accurate so that
the data are not misinterpreted (e.g., Refs. [3, 5, 6]). This
continues to be one of the challenges to the exploitation
of weak lensing observations for cosmological analyses.

Carefully examining the physical and perturbative ap-
proximations made in the context of lensing measure-
ments requires a number of subtle considerations in or-

der to compare to a fully relativistic treatment, ranging
from the gauge-dependent nature of variables used in cal-
culations to the particular way in which averaged quan-
tities are utilized. We attempt to remain self-consistent
in our treatment of this problem, and to explicitly de-
fine the quantities we consider and approximations we
use. We begin by defining angular diameter distances
and convergence in terms of optical scalars, and describe
the 3+1 framework we use to numerically integrate Ein-
stein’s equations. We then compute the Bardeen (New-
tonian) gravitational potentials, use these potentials to
obtain the weak lensing convergence field in an approxi-
mate setting, and compare the two models.

Past literature has explored the magnitude of correc-
tions to observables due to commonly made assumptions
[7, 8], speculating that contributions from nonlinear grav-
itational e↵ects can lead to approximately percent-level
corrections, contingent upon the specific statistical mea-
sure being studied [9–12]. Here, we perform the first
such study in a fully relativistic setting, utilizing simula-
tions of a universe containing a cosmologically-motivated
spectrum of density fluctuations in a perfect, pressure-
less “dust” fluid. We find percent-level corrections to the
convergence power spectrum at ` ⇠ 10 � 20. The rel-
ative importance of corrections is found to increase at
smaller `, becoming of order ten percent at ` of a few.
At higher `, the relative importance of relativistic correc-
tions is found to decrease – although perhaps a physical
e↵ect, this may also be a consequence of the spectrum
of perturbations that we used, which contains only long-
wavelength modes.

We begin by briefly detailing the methods we use to
perform the fully relativistic calculation and the approx-
imate calculations we compare to. We then present a
quantitative comparison of simulated quantities using the
two methods. We begin in Section II by describing the
di↵erent formalisms we utilize to perform numerical cal-
culations. In Section III we describe initial conditions for
the toy universes we utilize, and in Section IV we detail
results from numerical simulations.
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II. FORMALISM

A. Raytracing in the BSSNOK formulation

The field of numerical relativity has evolved over the
past several decades to become a standard numerical tool
in contemporary physics. The field has progressed to the
point where it can model physics ranging from systems of
strongly gravitating compact objects in a fully relativis-
tic, cosmological setting [13–15], to the dynamics of per-
fect fluids as they interact on cosmological length scales
[16–18]. The BSSNOK formulation is a commonly used
numerical scheme that has been demonstrated capable
of modeling such systems with a high degree of accuracy,
and importantly, numerical stability [19–21].

The BSSNOK system of equations is a 3+1 conformal
decomposition of the Einstein field equations. In this
language, the line element is

ds2 = �↵2dt2 + e4��̄
ij

�
dxi + �idt

� �
dxj + �jdt

�
, (1)

where e4��̄
ij

is the spatial metric, and �̄
ij

is a unit-
determinant matrix. The parameters ↵ and �i are re-
spectively known as the lapse and shift. Einstein’s field
equations can be written in terms of these variables as a
system of first-order dynamical equations,
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The lapse and shift are considered gauge variables, and
may be freely chosen. An additional auxiliary vari-
able, a contraction of a conformal Christo↵el symbol,
�̄i = �̄jk�̄i

jk

, is evolved to improve numerical stability
properties of the system according to
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and is used when to computing the Ricci tensor and
scalar.

Likewise, we can integrate the optical scalar equations
[22] using the full framework of general relativity. Op-
tical integration through a spacetime involves tracking

beam “areas” along photon geodesics. The cosmological
observable we compute here is the angular diameter dis-
tance, D

A

⌘ `/⌦, for an object with some physical length
` that subtends an angle ⌦ of an observer’s sky. The op-
tical scalar equations are valid in the limit of infinitesimal
beams, or in the limit that both ` and ⌦ are small, al-
though recent work may o↵er a way of working around
this limitation [23]. The optical scalar equations assume
photons do not interact, or that the beam follows photon
geodesics and neither backreact nor interact with other
matter in the universe. The optical scalar equations are
given by

d2

d�2

` = `
�
R� �2

�
(7)

and

d

d�

�
`2�

�
= `2W , (8)

for some a�ne parameter � along a photon path, beam
area `, shear rate �, and Ricci and Weyl optical scalars,
R and W. Further details about these equations and
our previous work numerically integrating these equa-
tions can be found in [24] and references therein.
As a final point of potential interest, we remark upon

the computational complexity of the scheme described
above. In synchronous gauge where ↵ = 1, used in this
work, and indeed in the vast majority of gauges typi-
cally used in numerical relativity, Einstein’s equations
are completely local, so calculations are O(N) for some
number N of discretized elements of interest (grid points,
particles, ...). This is in contrast to the use of a nonlocal
gauge, where calculations typically scale as O(N logN).
This penalty is incurred when using Newtonian gauge,
commonplace in N-body simulations, and is encountered
in this work when we compute the Bardeen potentials.
The drawbacks of a fully relativistic calculation are due in
part to the increased number of algebraic calculations in-
volved, but perhaps more important is the need to resolve
luminal propagation. However, these penalties should
also be incurred by any code wishing to reliably integrate
geodesics, resolve luminally propagating phenomena, or
resolve higher-order gravitational e↵ects, even within a
framework of linearized gravity.

B. Computing Convergence

Convergence in weak lensing may be defined in terms
of angular diameter distances as

 =
D̄

A

�D
A

D̄
A

, (9)

where D̄
A

is the angular diameter distance as defined in a
pure-FLRW universe [25]. Defined this way, convergence
is meaningful in a fully relativistic setting, ie. no per-
turbative assumptions need to be made, and the above
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expression reduces to expressions found in cosmological
literature in a Newtonian setting.

In a general relativistic setting, computing angular
diameter distances, and thus convergence as defined in
Eq. 9, requires integration of the optical scalar equations
as detailed in Sec. IIA. In Newtonian gauge (sometimes
referred to as Poisson gauge or longitudinal gauge; here
we follow the conventions of [26]), this task is simplified
after making several assumptions, both perturbative and
physical [11, 12, 27]. Typically, perturbative assump-
tions enter by modeling spacetime and matter dynamics
within a linearized gravity framework, while the phys-
ical assumptions include assuming the behavior of the
spacetime is su�ciently well-described by scalar degrees
of freedom and perfect fluid components. Under these as-
sumptions, this expression for weak lensing convergence
can be written in terms of the Bardeen (Newtonian) po-
tential �,

 =

Z
(r

s

� r)
r

r
s

r2

?�dr , (10)

where r is the coordinate distance (in Newtonian gauge)
along the path of integration (a line-of-sight), and r

s

is
the total coordinate distance to an emitting source of
interest. The gradient in this expression is transverse to
the direction of propagation, n̂, thus can alternatively be
written in terms of a full Laplacian minus a component
along this direction,

r2

?� = r2�� @2

n̂

� . (11)

The full Laplacian may be evaluated using the Hamilto-
nian constraint equation in Newtonian gauge linearized
around an FLRW background in the presence of a perfect
fluid, or Poisson’s equation for gravity,

r2� = 4⇡a2�⇢+ 12⇡a2(⇢̄+ p̄)�u . (12)

We will also compute the radial coordinate using a radial-
refshift relationship commonly enorced in the Born ap-
proximation,

r(z) =

Z
z

0

1

H(z0)
dz0 . (13)

This is the only time we use the Born approximation—
the Bardeen potential and stress-energy quantities are
evaluated along a true geodesic, computed using fully
general relativistic expressions. Thus, both our exact and
approximate calculations include e↵ects related to deflec-
tions of photon trajectories, for example as studied in the
context of lensing of the cosmic microwave background
in [28, 29], where such e↵ects were found to be poten-
tially detectable by future observations. The derivative
of the Bardeen potential along the path of integration
is also computed along this geodesic, with photon red-
shift rescaled to a coordinate expression using the above
radial-redshift approximation. The second derivative is
then computed with respect to this radial coordinate.

Often, the radial derivative and peculiar velocity con-
tributions are neglected entirely; we do not include these
assumptions in our analysis. However, in line with weak
lensing literature, we have also neglected some first-order
contributions to the relativistic expression for conver-
gence (for example, gravitational redshift and ISW terms
as described in [7]). The peculiar velocity contribution
can be accounted for by adding a term proportional to
the fluid velocity components at the source and observer,
~v
s

and ~v
o

along the line of sight n̂ in Newtonian gauge
[30],  ! + 

v

, where
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The final approximate expression for convergence we
seek to integrate is thus
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For a final comparison, we compute this approximate ex-
pression, Eq. 15, and compare to Eq. 9, a fully general
relativistic result.
As a final note, the precise magnitude of corrections

will depend upon the background cosmological parame-
ters that are chosen. To this end, we note that we com-
pute H(z), a(z), and D̄

A

(z) along geodesics using a back-
ground cosmology corresponding to the standard FLRW
solution for a matter-dominated universe coincident with
the choice used to set the initial conditions of our sim-
ulations. However, when computing the scale factor on
a given spatial slice in order to compute Bardeen poten-
tials, we compute a(t) using the conformally-averaged
conformal factor on a spatial hypersurface and assuming
a matter-dominated universe to determine H(t). These
choices do not significantly a↵ect our results; the di↵er-
ences between backgrounds given by averaged values and
FLRW values di↵er by less than a part in 106 (i.e., back-
reaction is negligible).

C. Computing Bardeen potentials from a fully
relativistic simulation

The Bardeen potentials, or Newtonian potentials �
and  , may be computed from a known metric in an
arbitrary gauge—here, we compute them using the syn-
chronous gauge (geodesic slicing) metric. We obtain the
Bardeen potentials by first performing a scalar-vector-
tensor (SVT) decomposition of the metric linearized
around a homogeneous FLRW background. We perform
this decomposition following Weinberg [26], writing the
metric as a background plus perturbation,

g
µ⌫

= ḡ
µ⌫

+ h
µ⌫

. (16)

An ambiguity exists in this definition in that the choice
of ḡ

µ⌫

is arbitrary—any background metric will su�ce—
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however the FLRW metric is chosen in a cosmologi-
cal setting as we expect the dynamics of the spacetime
to be well-described by such a background, so ḡ

µ⌫

=
diag(�1, a2�

ij

). Fluctuations around this background

are taken to be small so that quantities derived from
h
µ⌫

may be raised and lowered using purely the back-
ground metric with terms second-order in h

µ⌫

dropped.
The perturbed metric is then decomposed as
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The vector and scalar functions are transverse with re-
spect to the background metric,
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and the tensor perturbation is trace-free, Di

i

= 0. Given
that the 3+1 metric in synchronous gauge is written as
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we immediately see that in synchronous gauge, a number
of potentials are zero, F = G

i

= E = 0. We can also see
that the metric perturbations and their time derivatives
(which will be needed to compute the Bardeen potentials)
can be written in terms of BSSNOK variables as
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K is the extrinsic curvature,
and its time derivative can be written in terms of BSS-
NOK variables,
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From this, we can reconstruct the SVT scalar field A,
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and B,
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with time-derivatives of B being computed using time
derivatives of h

ij

. An ambiguity in this definition of B
allows for the addition of an arbitrary time-dependent
function. To address this, we note that we specify the
zero-mode of the inverse Laplacian to be zero. We numer-
ically solve these equations for A and B in Fourier space.

The remaining vector and tensor potentials may also be
determined if desired, however we do not do so here. At
this point, we have enough information to construct the
Bardeen potentials. In terms of the synchronous gauge
scalar potentials, these are given by

� = �a

2

⇣
2ȧḂ + aB̈

⌘

 =
1

2

⇣
aȧḂ �A

⌘
. (26)

Note that Weinberg’s definitions � and  are opposite
the more common convention.
As mentioned before, there is one further minor ambi-

guity: the scale factor a can be chosen in several di↵erent
ways. For example, it can be chosen to correspond to
the average conformal factor

⌦
e2�

↵
in a particular slic-

ing, or the FLRW solution corresponding to this value
computed on the initial or final slices. For this work, we
opt to choose a scale factor that coincides with the scale
factor on the initial surface, and that evolves according
to the standard matter-dominated Friedmann equations.
Converting density fluctuation amplitudes from syn-

chronous gauge to Newtonian should be performed as
well,

�⇢N = �⇢S +
a2

2
Ḃ ˙̄⇢ , (27)

along with fluid 3-velocity velocity, �u
i

= @
i

�u,

�uN = �uS � a2

2
Ḃ . (28)

As a final note, although the synchronous gauge metric
is not uniquely determined in terms of the Bardeen po-
tentials, we do not transform variables from Newtonian
to synchronous, and thus do not encounter this issue.

III. INITIAL CONDITIONS

We set initial conditions by generating a random re-
alization of a cosmologically-motivated power spectrum,
similar to past work [31]. As the initial conditions we
use are intended to mimic an inhomogeneous cosmology,
we attempt to, at least approximately, match large-scale
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matter density fluctuations. At large scales, the power
spectrum of density fluctuations is expected to scale as
P
�

/ k1, and at small scales as P
�

/ k�3. We choose a
spectrum that corresponds to these scalings,

P
��

=
4

3
P⇤

k/k⇤
1 + (k/k⇤)4/3

⇥ C(k, k
c

) , (29)

with k⇤ the peak frequency and P⇤ the amplitude of the
power spectrum. The function C is included in order
to introduce a short-wavelength cuto↵ scale, k

c

, to ex-
clude small-scale modes that are not well-resolved and
can therefore lead to numerical instability or inaccuracy.
In practice, this means resolving all modes by O(5� 10)
grid points or more on the initial surface. We choose C
to be a logistic function,

C(k, k
c

) =
1

1 + e10(k�kc)
. (30)

We additionally choose the initial peak frequency to cor-
respond to a length scale of roughly 300 Mpc, and a power
spectrum amplitude that corresponds to a realistic RMS
amplitude of the density. Although 8 Mpc scales are not
well-resolved, we still use a power spectrum amplitude
that corresponds to a �

8

value (RMS density fluctua-
tion amplitude smoothed on 8 Mpc scales) of �

8

⇠ 0.8.
We simulate half of a Hubble volume and include modes
down to k�1 = 1/40H�1 ⇠ 100 Mpc. Smoothed on this
scale, the expected RMS density amplitude is �

100

⇠ 0.07
at the time of observation [32]. We choose our power
spectrum amplitude such that the amplitude of the con-
formal RMS density fluctuations, defined as

�
⇢
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sR
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p
� (⇢̄� ⇢)2R
dV

p
�

, (31)

with the average density defined as

⇢̄ =

R
dV

p
�⇢R

dV
p
�

, (32)

approximately coincides with this value of �
100

.
The metric and matter fields on the initial surface must

satisfy the Hamiltonian and momentum constraint equa-
tions. In terms of BSSN variables, these are given by

H = 0 = �̄ijD̄
i
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j
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+
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ĀijĀ
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3
e6�D̄iK � 8⇡e10�Si . (34)

We choose Ā
ij

= 0, and �̄
ij

= �
ij

, imposing the restric-
tion that the 3-metric be conformally flat on the initial
slice. The momentum constraint can be trivially solved

by choosing the extrinsic curvature K to be constant and
the momentum variable Si to be zero, consistent with a
fluid initially at rest. The Hamiltonian constraint equa-
tion can be solved by specifying the remaining metric
components, and solving for the corresponding density.
For the conformally flat metric we have chosen, the con-
formal Ricci scalar is zero, R̄ = 0. The remaining metric
term in the Hamiltonian constraint is the r2e� term,
fluctuations of which will correspond to fluctuations in
⇢. In order to produce density fluctuations described by
the above cosmologically-motivated power spectrum, we
choose the conformal factor � to be described by a related
power spectrum,

P
��

= k�4P
��

. (35)

We generate a Gaussian random realization of � accord-
ing to this prescription. The remaining metric variable
K, the local expansion rate, is chosen to correspond to a
desired Hubble expansion rate. The density is then fixed
by the Hamiltonian constraint equation. Further details
on this method can be found in [31].
Although the initial conditions we use are qualitatively

similar to those found in a cosmological setting, the setup
we use does not precisely correspond to physical expecta-
tions. We therefore recognize this as a toy model, rather
than a precision calculation. Nevertheless, we are hope-
ful that the e↵ects we see here can provide a reliable
indication of the the order of magnitude of corrections to
Newtonian calculations due to general relativistic e↵ects,
and that they can provide a qualitative indication of the
relevance of relativistic e↵ects to observations. General-
izing these initial conditions to more closely correspond
to expectations from Newtonian or linear theory, but in
a relativistic setting, will be an important future task.
The final ingredient required in order to specify the

sky seen by an observer is, of course, an observer. In
this work, we lay down initial conditions and integrate
the simulation forward to a desired time of observation.
We then place an observer at the center of our simulation
volume and integrate along geodesics away from this ob-
server in Healpix [33] directions, from the observer’s
spacetime point “backwards” in time. This observer,
along with sources, are taken to be at rest in geodesic
slicing, or to be co-moving with the local fluid.

IV. RESULTS

Here we present results from a simulation in which
photon geodesics are integrated from an observer back
in time to a redshift of z = 0.25. In particular, we com-
pare Eq. 9 to Eq. 10. In order to compute the former
of these we utilize the above 3+1 formulation of Ein-
stein’s equations, thus integrating through a fully gen-
eral relativistic spacetime including no approximations
or reductions to the Einstein field equations. The latter
of these expressions originates from a linearized, scalar
gravity treatment, for which we additionally utilize the
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Born approximation in order to obtain a radial coordi-
nate as described in Sec. II B.

In order to compute the angular power spectrum, we
decompose the convergence field on the sky into spherical
harmonics. The convergence field is written as

(✓,�) =
X

lm

a
lm

Y
lm

(✓,�) . (36)

From this, the angular power spectrum is then defined,

C

l

=
1

2l + 1

X
|a2

lm

| . (37)

In practice, we compute the angular power spectrum
by integrating angular diameter distances—and therefore
convergences—in Healpix directions for an observer in
our simulated universe. We then use standard Healpix
routines to compute the power spectrum from the conver-
gence maps we produce. Convergence maps are plotted
in Figure 1, depicting the di↵erence between relativistic
simulation results and approximate results. The power
spectra that correspond to these images are shown in
Figure 2.

FIG. 1: Observed skies: top left is a sky generated using ap-
proximate theory (Eq. 10), top right a relativistic sky (Eq. 9),
and bottom the di↵erence between the two. These skies are
generated using a Healpix resolution of Nside = 32, and all
maps have had the angular monopole and dipole contributions
removed.

In order to obtain meaningful results, we must also
compute the numerical error for convergence values along
each geodesic. We do so by performing runs using a set of
four resolutions in our simulation, N3 = 1283, 1603, 1923,
and 2563. We Richardson extrapolate convergence val-
ues in the continuum limit by using di↵erent pairs of runs
and assuming accumulated error is O(�x) [24]. We then
use the distribution of extrapolated values to provide us
with a measure of uncertainty in these convergence val-
ues. The extrapolated values typically agree at one part

FIG. 2: Power spectra of the simulated skies shown in Fig-
ure 1. The brown (solid) curve depicts results from a fully
relativistic run, teal (dashed) from approximate theory, dark
purple (dotted) the average power spectrum of the di↵erence
map, and light purple (dot-dashed) a direct subtraction of the
GR and approximate power spectra.

in 104, or at a level significantly smaller than the di↵er-
ence between convergences computed using approximate
and relativistic methods. The uncertainty in extrapo-
lated power spectra is also found to be accurate at this
level. As an additional note, we compute power spectra
using `

max

⇠ 2.4max(`) in Healpix in order to obtain
more accurate results. The resulting numerical error in
the spectra we present in this paper is then expected to
be better than a part in 104.
There is, in addition, sampling error—or cosmic

variance—resulting from the limited number of simula-
tions we run. In order to address this, we simulate twenty
skies in total, and average the power spectra together.
The resulting spectra are shown in Figure 3, in which
we find an `-dependent increase in the amplitude of the
approximate power spectrum compared to the fully rel-
ativistic spectrum. Some remaining cosmic variance can
be seen as ripples or wiggles in the power spectra; such
e↵ects may be expected to diminish as an increasing num-
ber of simulations are averaged over.
Finally, we remark on the potential origins of the dis-

crepancies we see: are these due to nonlinear physics, the
radial-redshift approximation, or merely artifacts of the
gauge transformations we have performed? The ampli-
tude of the Newtonian potentials, and amplitude of the
components of the gauge transformation, are not large,
being of order a part in 105 on these large scales. Fluctu-
ations in the synchronous gauge metric itself, �

�

/�, are
closer to a part in 104, and second-order contributions
to the convergence from shear terms in the optical scalar
equations are also present at this level. One may there-
fore expect ambiguities due to gauge and nonlinear e↵ects
to be smaller than the observed percent-level corrections,
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FIG. 3: Shown are averages of 20 power spectra obtained
from independent simulations. The brown (solid) curve shows
the fully relativistic power spectrum, and teal (dashed) the
approximate spectrum. The dark purple (dotted) curve is
the average power spectrum of the di↵erence maps, and the
light purple (dot-dashed) power spectrum the average of a
direct subtraction of the GR and approximate power spectra.

indicating the remaining physical approximations may be
breaking down.

The main physical approximation we utilize enters
when computing the radial coordinate, Eq. 13, where
we find that the perturbed and FLRW redshifts agree
to roughly a part in 103. The remaining discrepancy
can ostensibly be explained by the physical approxima-
tions made in order to obtain Eq. 10 from the optical
scalar equations [7]. However, as a final note, we also find
that the Newtonian potentials � and  evolve towards
percent-level disagreement, or that a significant gravita-
tional slip develops, suggesting the system may also be
evolving away from the linearized constraint equations
typically enforced in a cosmological setting. Further ex-
ploration will be required to precisely characterize the
physics at play here, and to determine how both physical
and perturbative approximations are breaking down.

V. DISCUSSION

In this manuscript, we have described the possibility of
percent-level corrections to lensing power spectrum pre-
dictions due to a fully relativistic treatment of gravita-
tional lensing by large-scale structure. This suggests cir-
cumspection in the utilization of weak lensing measure-
ments to constrain cosmological parameters. However, a
direct comparison of our work to prior literature on lens-
ing cosmology is not possible at the present time. Due
to computational limitations, we work within a toy, in-
homogeneous Einstein-de Sitter cosmology, explore only
large angular scales (` ⇠ 10), and only consider lens-

ing out to a redshift of z ⇠ 0.25. By way of contrast,
lensing by ongoing and forthcoming observational facili-
ties is dominated by structure at significantly higher red-
shifts (z ⇠ 0.6� 1), and the majority of the cosmological
information is contained in lensing correlations on con-
siderably smaller scales (significantly less than a degree,
multipoles of ` & 300).
We also do not currently have a reliable method of

extrapolating our results to the more practical case of
small-scale lensing correlations induced by high-redshift,
large-scale structure in a dark energy-dominated uni-
verse. However, it is interesting to speculate on the pos-
sible importance of our work in this context. Using the
methods of [6] and [3] it is straightforward to estimate the
potential impact of the systematic errors that we explore
on the program to constrain cosmology using weak gravi-
tational lensing correlations. For an LSST- or Euclid-like
survey, we estimate that a one-percent systematic o↵set
in the lensing power spectrum corresponds to a system-
atic error on the inferred dark energy equation of state
parameter, w, that is roughly twice the statistical error
with which this parameter may be measured. We esti-
mate a similar level of error for the neutrino mass. We
argue that this is strong motivation to pursue fully rel-
ativistic lensing studies further. However, we emphasize
that these estimates remain speculative as we do not yet
understand the cosmology dependence, scale dependence,
or redshift dependence of the e↵ects we describe, and all
of those factors can significantly alter these estimates.
Future studies may also wish to examine the behavior

of specific dark energy or dark matter models in a fully
relativistic context. Important e↵ects have been consid-
ered using approximate treatments in the past, includ-
ing baryonic physics [34], radiation [35], interactions of
propagating light with contents of the Universe [36], and
a more complete picture of phase space dynamics [37].
Incorporating such phenomenology into a fully general
relativistic simulation has not yet been performed in a
cosmological setting, and will be an important task for
relativistic simulations in the coming years.
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