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Future high-resolution measurements of the cosmic microwave background (CMB) will produce
catalogs of tens of thousands of galaxy clusters through the thermal Sunyaev-Zel’dovich (tSZ) ef-
fect. We forecast how well di↵erent configurations of a CMB Stage-4 experiment can constrain
cosmological parameters, in particular the amplitude of structure as a function of redshift �

8

(z),
the sum of neutrino masses ⌃m⌫ , and the dark energy equation of state w(z). A key element of
this e↵ort is calibrating the tSZ scaling relation by measuring the lensing signal around clusters.
We examine how the mass calibration from future optical surveys like the Large Synoptic Survey
(LSST) compares with a purely internal calibration using lensing of the CMB itself. We find that,
due to its high-redshift leverage, internal calibration gives constraints on cosmological parameters
comparable to the optical calibration, and can be used as a cross-check of systematics in the optical
measurement. We also show that in contrast to the constraints using the CMB lensing power spec-
trum, lensing-calibrated tSZ cluster counts can detect a minimal ⌃m⌫ at the 3-5� level even when
the dark energy equation of state is freed up.

I. INTRODUCTION

The abundance of galaxy clusters is a sensitive probe of
the amplitude of density fluctuations that scales strongly
with the normalization of the matter power spectrum,
�
8

, and the matter density, ⌦
m

[e.g., 3, 73]. Measuring
cluster abundance as a function of redshift allows one to
probe physics that a↵ects the growth of structure, for ex-
ample the e↵ect of massive neutrinos and the dark energy
equation of state. Recent constraints from measurements
of cluster abundances have however been limited by sys-
tematic e↵ects [e.g., 11, 22, 29, 47, 48, 58, 59, 62, 71, 72],
the dominant systematic uncertainty being the calibra-
tions of observable-to-mass relations. Therefore, accu-
rate and precise calibrations of the observable-to-mass
relation is essential for any future cluster cosmological
constraint.

Galaxy clusters are observationally identified across
the electromagnetic spectrum, from microwaves to X-ray
energies. The measurements of secondary temperature
anisotropies in the CMB that arise from the tSZ e↵ect
[67] are emerging as a powerful tool to find and count
clusters. To compare with observational abundances the
theoretical abundance predictions are typically forward
modeled from cosmological parameters through a mass
function [e.g., 60, 69] and an observable–mass relation.
For example, the recent Planck [59] and South Pole Tele-
scope [SPT, 22] cosmological constraints from tSZ cluster
counts included weak-lensing and X-ray masses to cali-
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brate their observable–mass relation, and Atacama Cos-
mology Telescope (ACT) used velocity dispersions [29].
In all tSZ cluster count analyses an independent method
for measuring and calibrating cluster masses is required
and lensing calibrations are expected to be the most un-
biased [e.g., 10].

Planned CMB experiments like Advanced ACT, SPT-
3G, Simons Array, Simons Observatory (SO) and CMB
Stage-4 will produce catalogs of tens of thousands of
galaxy clusters. Overlap with an optical survey like
LSST will allow for precise measurements of the shapes of
background galaxies behind these galaxy clusters, which
will provide accurate mass calibrations for most of the
galaxy clusters at low and intermediate redshifts. An-
other promising and independent way to calibrate the
observable–mass relation is to use the so-called CMB

halo lensing [23, 31, 33, 63], lensing of the CMB itself
[42] by dark matter halos. This technique is viable for
clusters at any redshift and has completely di↵erent sys-
tematics from optical weak lensing. The lensing signal
from dark matter halos has only recently been detected
[8, 9, 28, 45, 59] and has already been used as a mass
calibrator in an tSZ cosmological analysis [59].

In this paper we forecast the constraints that CMB
Stage-4 can achieve on cosmological parameters using
tSZ cluster counts. In the forecasts we include the exter-
nal calibrations of the tSZ observable–mass relation for
clusters from optical weak-lensing observations using ex-
periments like LSST and internal CMB Halo lensing cal-
ibration from CMB Stage-4. The paper is structured as
follows: in Section II we describe the assumptions about
the experimental setup of CMB Stage-4 and its variations
that we compare. Section III describes our methodology
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for modeling cluster detection and cluster abundance. In
Section IV, we present how we forecast the ability of an
LSST-like experiment to calibrate the tSZ scaling rela-
tion and in Section V, we describe how CMB lensing
does the same. Section VI presents our Fisher forecast-
ing assumptions and the cosmological models considered.
We conclude with a discussion in Section VII.

II. EXPERIMENTAL SETUP

We consider an experimental configuration consisting
of a single large telescope with seven band-passes shown
in Table I. Our baseline configuration has a white noise
level of s

⌫,w

= 1.5µK 0 in the 150 GHz and 90 GHz
channels. We vary the beam full-width half-maximum
(FWHM) ✓

b

in the 150 GHz channel from 1 arcminute
to 3 arcminutes, scaling the beam FWHM in the other
channels ⌫ assuming ✓

b

/ 1/⌫. The noise sensitivities
are assumed to correspond to a fraction of sky observed
f
sky

= 0.4.
In addition to instrumental white noise, we include the

e↵ect of atmospheric noise for a ground-based experi-
ment, parameterized through a knee multipole `

knee

and
tilt ↵,

N
⌫

(`) = s2
⌫,w

✓
1 +

✓
`

`
knee

◆
↵

◆
. (1)

Atmospheric noise can have a considerable impact on
the number of clusters detected and consequently on cos-
mological constraints. In our fiducial analysis, we will
assume an `

knee

of 3500 in temperature and 300 in po-
larization, and an ↵ of -4.5 in temperature and -3.5 in
polarization in every frequency bandpass [44]. In real-
ity, these parameters may depend on the aperture size
of the telescope (amongst other experimental variables)
and will vary between bandpasses. Our fiducial values
are motivated by the performances of past and ongoing
ground-based CMB experiments. A detailed analysis of
the dependence of `

knee

and ↵ on aperture size and fre-
quency of observation is beyond the scope of this work.
We do however undertake a study of the e↵ect of `

knee

and ↵ on the number of clusters detected in Section III.
As described in Section III, each assumed experimen-

tal configuration predicts a certain number of tSZ cluster
detections as a function of mass, redshift and signal-to-
noise. For the sample of tSZ clusters selected this way,
we obtain lensing mass calibration either internally us-
ing CMB lensing (see Section V), or externally from an
LSST-like optical weak lensing survey configuration (see
Section IV). The internal calibration is done either on
both temperature and polarization data (T+P) from the
150 GHz channel, or on polarization only (P-only). The
optical lensing calibration is done either for clusters with
redshifts 0 < z < 1 or for 0 < z < 2. We assume
that the optical lensing survey provides brightest central
galaxies (BCG) which are used as centroids for stacking

the optical and CMB lensing signals. We therefore as-
sume that mis-centering of the stack and the true mass
centroid can be assumed to be negligible (compared to
the beam size) for clusters with z < 2. For CMB lens-
ing mass calibration of 2 < z < 3 clusters, we do not
assume the availability of BCG centers and marginalize
over mis-centering e↵ects as described in Section V.
The optical survey is also assumed to provide photo-

metric redshifts for at least some member galaxies of each
tSZ detected cluster. These redshifts are not required to
be very precise since they are needed only for coarse bin-
ning of the clusters in redshift. Any tSZ detected clus-
ter that cannot be associated with any possible member
galaxies in the optical survey can fairly confidently be
assigned to the 2 < z < 3 redshift bin that is calibrated
using CMB lensing.

III. METHODOLOGY

The thermal tSZ (tSZ) signal is the observable clus-
ter property that we model onto the theoretical predic-
tions for the abundance of clusters. We use an analytic
model for these tSZ selected clusters that accounts for
measurement uncertainties in mass calibration and inte-
grated Compton-y signal. The spectral distortion caused
by the tSZ in the observed CMB temperature is a func-
tion of frequency ⌫1 and the Compton-y parameter (y):

�T (⌫)

T
CMB

= f
⌫

y, (2)

here f
⌫

= x coth(x/2) � 4, where x = h⌫/(kT
CMB

), h is
the Planck constant, and k is the Boltzmann constant.
Note that we neglected relativistic corrections to the tSZ
spectral function f

⌫

[e.g., 17, 53]. As shown in Equa-
tion 2, the amplitude of the tSZ spectral distortion is
directly proportional to y, which is defined as,

y =
�
T

m
e

c2

Z
n
e

kT
e

dl. (3)

Here the physical constants c, m
e

, and �
T

correspond to
the speed of light, electron mass, and Thompson cross-
section, respectively. The physical properties of the free
electron that scatter the CMB photons are: n

e

the elec-
tron number density and T

e

is the electron temperature.
Equation 3 is integral along the line-of-sight, dl. For a
given spherical pressure profile, P

e

(r) = n
e

(r)kT
e

(r) the
y signal for a cluster projected on the sky is,

y(✓) =
�
T

m
e

c2

Z
P
e

✓q
l2 + d2

A

(z)|✓|2
◆
dl. (4)

1

for a theoretical experiment ⌫ represents the central frequency

of a given frequency band
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TABLE I: The experimental configurations considered for CMB Stage-4. The frequency band-passes and map sensitivities are
fixed at the values in the first two columns, while beam FWHMs are varied for five configurations.

Beam (arcminutes)
Frequency (GHz) Noise [µK0] CMB-S4-3.00 CMB-S4-2.50 CMB-S4-2.00 CMB-S4-1.50 CMB-S4-1.00

21 7.9 21.4 17.9 14.3 10.7 7.1
29 5.6 15.5 12.9 10.3 7.8 5.2
40 5.4 11.2 9.4 7.5 5.6 3.8
95 1.5 4.7 4.0 3.2 2.4 1.6
150 1.5 3.0 2.5 2.0 1.5 1.0
220 5.2 2.0 1.7 1.4 1.0 0.7
270 9.0 1.7 1.4 1.1 0.8 0.6

We emphasize that this is a straw-person experimental design for CMB Stage-4, for example the frequency bands
for CMB Stage-4 have not yet been determined. These particular bands were chosen to cover the main atmospheric
windows around the peak CMB and tSZ sensitivity with extra high and low frequency bands for potential foreground
cleaning. The distribution of detectors weights among bands reflects a rough optimization for CMB and tSZ signal
and assuming some level of foreground subtraction. In this work we focused on the aperture size of CMB Stage-4
and a full optimization of the frequency bands, noise levels, and aperture sizes is beyond the scope of this work.
In particular frequency bands optimization requires simulations that include correlated sources of noise like the
analyses in Melin et al. [50].

Here r2 = l2 + d2
A

(z)|✓|2, d
A

(z) is the angular diameter
distance to redshift z, and ✓ is the 2D angular coordinate
on the sky.

For the shape of y(✓), we choose the pressure profile
from [5], which was used in the Planck cluster analysis
[e.g., 59]. The parametric form for the profile is a gener-
alized Navarro-Frenk-White profile [75],

P
e

(x) = P
0

(c x)�� [1 + (c x)↵]
���
↵ , (5)

where the x = r/R
500⇢c , and the parameters of the profile

have the values, P
0

= 8.403, c = 1.156, ↵ = 1.062, � =
0.3292, and � = 5.4807. Additionally, we choose the filter
scale for each cluster, ⇥

500⇢c(z), such that ⇥
500⇢c(z) =

R
500⇢c/DA

(z).

A. Cluster detection

We find tSZ clusters using a matched filter technique
that exploits the unique spectral distortion of the tSZ
e↵ect Herranz et al. [30], Melin et al. [49]. We model the
maps of the millimeter sky, M(✓), as:

M
⌫

(✓) = Y
0

f
⌫

g(✓) +N
⌫

(✓) (6)

here, Y
0

is the amplitude of the tSZ signal for a given
halo, g(✓) is the normalized projected y profile, g(✓) =
y(✓)/Y

0

, and N
⌫

(✓) is the noise when searching for a
tSZ signal. Here the noise is a function of ⌫ and includes
instrumental noise, atmosphere (described in Section II),
primary CMB, and other secondary sources.

The estimator we use to measure Y
0

is a matched filter
that is designed to minimize the variance across a given
set of frequency bands for an assumed y(✓) profile

Ŷ
0

=

Z
F
⌫

(✓)TM
⌫

(✓)d✓. (7)

Here we sum over ⌫ and F
⌫

(✓) is an unbiased, real-space
matched filter that minimizes the variance. In Fourier
space this matched filter has the form,

F
⌫

(`) = �2

N

[C
N,⌫⌫

0(`)]�1

f
⌫

0 g̃(`). (8)

Here g̃(`) is the Fourier transform of the normalized pro-
jected y profile, �2

N

is the variance, and C
N,⌫⌫

0(`) is the
covariance matrix of the noise power spectrum. Note that
the Fourier transform of F

⌫

(`) is F
⌫

(✓). The variance is
defined as

�2

N

= 2⇡

Z
|g̃(`)|2fT

⌫

[C
N,⌫⌫

0(`)]�1

f
⌫

0 ` d`, (9)

and the noise covariance matrix is defined as,

C
N,⌫⌫

0(`) = C
CMB,⌫⌫

0(`) + C
sec,⌫⌫

0(`)

+

✓
N

⌫

(`)

B
⌫

(`)2

◆
�
⌫⌫

0 . (10)

The components of the noise covariance matrix are the
CMB cross-power spectra C

CMB,⌫⌫

0(`), the secondary
cross power spectra C

sec,⌫⌫

0(`), and the de-beamed noise
N

⌫

(`)/B
⌫

(`)2 that only contributes to the diagonal,
where B

⌫

(`) is the Fourier transform of the beam, which
we assume to be Gaussian. The FWHM of the beams for
corresponding frequency bands are shown in Table I. The
CMB secondary anisotropies that we include are, radio
point sources (Poisson term), the cosmic infrared back-
ground (CIB, both Poisson and clustered terms), kinetic
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FIG. 1: Top: The number of clusters that can be detected
through tSZ emission by CMB Stage-4 in each redshift bin of
width �z = 0.1. The di↵erent colors correspond to di↵erent
beam FWHMs in the 150 GHz channel. Bottom: The ratio
of the number of clusters at various resolutions to that for a
telescope with 30 resolution at 150 GHz.

Sunyaev-Zel’dovich, unresolved tSZ, and the tSZ-CIB
cross-correlation term [2]. For the unresolved tSZ contri-
bution, we estimate that half of the total auto-spectrum
power is coming from clusters with masses ⇠ 1014M�
[e.g., 7, 39, 70], that will be detected. Therefore, we re-
moved the contribution from these clusters to the auto-
spectrum power for the purposes of additional secondary
anisotropy noise. We use the functional forms and pa-
rameters for these secondary anisotropies presented in
Dunkley et al. [25].

B. tSZ cluster abundances

For simplicity the abundance of tSZ clusters is modeled
as the number of clusters (N) observed in bins of lensing
mass calibration (M

L

), tSZ signal-to-noise (q
Y

) from the
matched filter, and redshift (z):

N(M
L

, q
Y

, z)

�M
L

�q
Y

�z
=

Z
d2N

dzdM
P (M

L

, q
Y

|Y,M)

N (logY |logȲ ,�
logY

)dMdY. (11)

Here P (M
L

, q
Y

|Y,M) is the probability distribution func-
tion of M

L

and q
Y

given the integrated Compton-y, Y ,
and halo mass, M (see Equation 12), d

2
N

dMdz

is the di↵er-
ential number of clusters with respect to M and z (see

FIG. 2: The number of cluster detections as a function of the
`
knee

atmospheric noise parameter for each resolution consid-
ered and for three di↵erent values of the ↵ atmospheric noise
parameter. The solid lines correspond to ↵ = �4.5, dashed
to ↵ = �4 and dot-dashed to ↵ = �5. The vertical dashed
line corresponds to the `

knee

used in the rest of the analysis.

Equation 13), and N (logY |logȲ ,�
logY

) is a lognormal
distribution of Y given the mean integrated Compton-y
(Ȳ , see Equation 14) and the intrinsic scatter (�

logY

see
Equation 15).
We model the probability distribution function of M

L

and q
Y

given Y and M as two independent normal dis-
tributions (N ),

P (M
L

, q
Y

|Y,M) = N (q
Y

|Y/�
Y

, 1)

N (M
L

b
L

|M,�
M

). (12)

The Y measurement errors, �
Y

, is determined from the
matched filter (see Equation 9) and M

L

measurement
errors, �

M

, comes from either the optical weak-lensing
or CMB halo-lensing mass calibration (see Sections IV
and V for details). The parameter b

L

is set to b
L

= 1 for
the main analysis but is allowed to vary with a 1% Gaus-
sian prior when we wish to explore the imposition of a
1% systematic floor on the mass calibration. We apply b

L

to M
L

and not �
M

since we want to impose a systematic
floor that is independent of �

M

and is irreducible.
The di↵erential numbers counts can be further decon-

structed into

d2N

dMdz
=

dV

dzd⌦
n(M, z). (13)

Here the volume element is dV

dzd⌦

and for the mass func-
tion, n(M, z), we use Tinker et al. [69] while accounting
for the neutrino suppression of power in ⌦

M

after re-
combination, where ⌦

M

= ⌦
b

+ ⌦
CDM

and not ⌦
⌫

[e.g.,
15, 16, 19, 34].
Following the theoretically motivated self-similar evo-

lution of halos [37] we model the Y –M scaling relation as
a power-law that is a function of halo mass and redshift,
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Ȳ (M, z) = Y
?


(1� b)M

M
?

�
↵Y

e�Y log

2
(M/M?)(1 + z)�Y

E2/3(z)


D

A

(z)

100Mpc/h

��2

. (14)

Where Y
?

= 2.42 ⇥ 10�10 is a constant, the pivot mass
is M

?

= 1014 M�, 1 � b is the mass bias correction,
↵
Y

is the first order power-law mass dependence, �
Y

is
the second order power-law mass dependence, and �

Y

is
an additional redshift dependence beyond the expected
self-similar scaling. The functions E(z) and D

A

(z) are
the Hubble function and the angular diameter distance,
respectively. The fiducial values for the scaling rela-
tion parameters in this model are {1 � b,↵

Y

,�
Y

, �
Y

} =
{0.8, 1.79, 0, 0}. We model the scatter in this scaling re-
lation as,

�
logY

(M, z) = �
logY,0


M

M
?

�
↵�

(1 + z)�� , (15)

where �
logY,0

is the fiducial scatter and the smooth
power-law mass and redshift dependence of the scatter
are ↵

�

and �
�

, respectively. We choose the fiducial val-
ues for these scatter parameters to be {�

logY,0

,↵
�

, �
�

} =
{0.127, 0, 0}. All fiducial parameter values and their as-
sociated step sizes for our Fisher analyses are shown in
Table V.

In Figure 1 we show the number of expected clusters
that would be detected as a function of redshift for var-
ious choices of aperture size for CMB Stage-4. The bot-
tom panel illustrates the ratio of clusters compared to
the most pessimistic design of the CMB Stage-4 experi-
ment (3 arcminute aperture at 150 GHz) for the purposes
of tSZ and secondary anisotropy science. As a function
of increasing aperture the gain in detected clusters in-
creases strongly with redshift. Between z = 2 � 3, we
find increases on the order of hundreds when comparing
a 1 arcminute to a 3 arcminute aperture. This redshift
range of z = 2�3 is a new frontier for clusters and proto-
clusters science, with only a few heterogeneously detected
clusters and proto-clusters within this redshift range [55,
and references therein]. If these clusters contain hot gas,
as we have assumed, CMB Stage-4 will find them and
produce a legacy catalog of uniformly selected, high-z
tSZ clusters that will be ideal to study galaxy formation
in high redshift, dense environments.

Atmospheric noise primarily a↵ects large scales in the
CMB, but with a su�ciently high knee multipole its ef-
fects can degrade scales relevant for cluster finding. We
explore the e↵ect of atmospheric noise in Figure 2. There
is a strong dependence on `

knee

, e.g., `
knee

= 5500 for the
1-arcminute configuration corresponds to detecting 30%
fewer clusters than if there were no atmospheric noise
(`

knee

= 0).

FIG. 3: The dependence of signal-to-noise of the lensing signal
per cluster as a function of redshift for an LSST-like optical
survey (dashed lines) and internal CMB lensing calibration
using both temperature and polarization (solid lines) with a
telescope that has beam FWHM of 10 at 150 GHz. The dif-
ferent colors correspond to specific M

500⇢c masses of clusters.
The increase in S/N at low redshift is partly due to clus-
ters becoming more concentrated at lower redshifts, since we
assume a c

500

dictated by the relation in Du↵y et al. [24].
For clusters with M

500⇢c & 5 ⇥ 1014M� CMB lensing o↵ers
higher S/N per cluster at some redshift z > 1 and for all
clusters above z = 2 where the ability to measure shapes of
background galaxies degrades quickly.

IV. OPTICAL WEAK LENSING

We model the optical lensing signal as follows. For
a given cluster mass M

500c

, we compute concentration
c
500c

using the the concentration-mass relation derived in
[24]. We then convert (M

500c

, c
500c

) to (M
200m

, c
200m

) as-
suming the Navarro-Frenk-White [NFW, 52] profile. We
assume the optical weak lensing signal at redshift z

l

is
measured in terms of excess surface density (ESD);

�⌃(R;M
200m

, c
200m

, z
l

) = h⌃(< R;M
200m

, c
200m

, z
l

)i
�⌃(R;M

200m

, z
l

), (16)

where R is the galaxy-centric transverse comoving dis-
tance, ⌃(R) is the projected matter density profile along
the line-of-sight, and h⌃(R)i is the projected matter den-
sity profile averaged over distance R. We employ the
following halo model for ESD;

�⌃(R;M
200m

, c
200m

, z
l

) = �⌃NFW(R;M
200m

, c
200m

, z
l

)

+�⌃2h(R;M
200m

, z
l

), (17)

where �⌃NFW(R) is a smoothly-truncated version of
the NFW profile proposed in [6] with the dimensionless
smoothing radius ⌧ ⌘ r

t

/r
200m

= 2.6, which is converted
from ⌧ defined against virial radius in [54]. We do not
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fit for the 2-halo term �⌃2h(R), since we restrict the our
analyses to the regime where �⌃NFW(R) dominates.

The shape noise of a given radial bin R with sources
at redshift z

s

is estimated as

�2 (�⌃(R, z
l

); z
s

) =
�2

g

⌃2

cr

(z
l

, z
s

)

An
g

(z
s

)
, (18)

where �2

g

is the RMS of intrinsic ellipticity2, A is the
area of the radial bin, and n

g

(z
s

) is the number density
of source galaxies. The critical surface mass density ⌃

cr

is defined as

⌃
cr

(z
l

, z
s

) =
c2

4⇡G

D
A

(z
s

)

(1 + z
l

)2D
A

(z
l

)D
A

(z
l

, z
s

)
, (19)

where D
A

is the angular diameter distance of the lens-
source system and (1 + z

l

)�2 comes from our use of co-
moving coordinates [46]. The total shape noise is esti-
mated by assuming Eq. (18) forms the inverse variance
weight for given redshift of the lens;

�2 (�⌃(R, z
l

)) =

Z 1

zl

��2 (�⌃(R, z
l

); z
s

) dz
s

��1

.

(20)
We compute the shape noise by asserting that there

will be HSC-like survey over the entire f
sky

of the sur-
vey. This is not unreasonable considering LSST will be
available over a large area if not all of the CMB Stage-4
survey area and the parameters of HSC are conservative
compared to LSST. For the HSC survey we assumed a
source background 20 galaxies per square arcminute with
the dN

g

/dz from [54];

dN
g

dz
=

z2

2z3
0

exp

✓
�z

s

z
0

◆
, (21)

where z
0

= 1/3 that corresponds to the mean redshift
z
m

= 1.
We fit �⌃(r) given the derived shape noise errors with

an NFW profile over the radial range where the 1-halo
term is dominant using MCMC algorithm [27] assuming
a fixed concentration mass relation [24]. The radial range
we use for the fit is ⇠ 0.1� 4 in comoving Mpc. We use
the width of the inferred weak lensing mass distribution
as our weak lensing mass error and take the ratio of this
over the median inferred mass as the percent weak lens-
ing mass error �M/M . Figure 3 illustrates the S/N per
cluster as a function of redshift.

We caution that systematic errors are not taken into
account when we forecast the errors bars on �⌃(r). We
expect systematic uncertainties to be increasingly impor-
tant as the redshift of the clusters increases due to pho-
tometric redshift and shape measurement biases [e.g.,

2

In this equation, ellipticity is defined in terms of shear, i.e., g =

(a � b)/(a + b), where a and b is the major and minor axis,

respectively

35, 68]. For this reason, we compare constraints from
clusters with redshifts 0 < z < 1 and 0 < z < 2. It is
possible that at higher redshifts such systematic uncer-
tainties will be larger than 1%, in this regime CMB halo
lensing will become important.

V. CMB HALO LENSING

The CMB is lensed by all structure since recombina-
tion and hence can in principle be used as a source for any
galaxy cluster. In contrast to optical lensing where the
sources are distributed in a wide range of uncertain red-
shifts behind the cluster, the CMB source plane is fixed
at a relatively thin and well-measured slice at z = 1090.
In addition, the CMB is a di↵use field whose unlensed
statistics are well captured by a Gaussian random field
specified through a power spectrum. The e↵ect of lensing
is to to couple previously independent harmonic modes of
the CMB temperature (T) and polarization fields (curl-
free E and curl-like B). This insight allows one to write a
quadratic estimator that sums over pairs of CMB modes
optimally to reconstruct the projected lensing potential
at any given mode [33].
The quadratic estimator requires a pair of maps, the

first ‘leg’ of the pair e↵ectively serving as a measure of the
background gradient at the location of the cluster, and
the second leg capturing information about the small-
scale fluctuations induced by lensing by the cluster. For
example, in the temperature-only estimator combination
(TT), the quadratic estimator can be written as [33]

(✓) = F�1 {A(L)F {r. [rT (✓)T (✓)]}}

where rT (✓) is the low-pass filtered gradient of the tem-
perature map as a function of angle on the sky ✓, T (✓)
is the high-pass filtered temperature map, A(L) is a nor-
malization in Fourier-space that ensures this estimator is
unbiased as a function of angular wave-number L, and F
and F�1 represent 2D Fourier and inverse-Fourier trans-
forms respectively.
We use the estimator combinations TT, TE, EE, EB

and TB, where the first leg in the pair is used in gradi-
ent estimation and the second leg is used for small-scale
fluctuations. The noise per mode in each estimator is
N

L

= L2A
L

/4 where the estimator normalization A
L

is given by Equation 19 in Hu et al. [33]. We consider
minimum variance combinations of either all the above
estimators (T+P) or ‘Polarization Only’ (P only), i.e.,
EE and EB. We do not account for the covariance be-
tween these estimators since in most cases either TT or
EB dominates, and the covariance between TT and EB
is zero. We then calculate the total signal and variance
of the lensing convergence  measured within a radius of
5✓

500

when using a matched filter designed to optimally
measure the lensing signal.
In this forecast analysis, we only use information for

CMB lensing calibration from the CMB Stage-4 150 GHz
channel, but use multi-frequency information from the
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FIG. 4: The mass sensitivity (uncertainty on M
500

over M
500

)
for N = 1000 clusters with M

500

= 2 ⇥ 1014M�/h, z = 0.7,
c
500

= 1.18 as a function of the beam FWHM at 150 GHz
when masses are estimated using a matched filter on lensing
reconstructions from CMB Stage-4. The solid curves use both
CMB temperature and polarization data while the dashed
curves only use polarization data. The gray curve assumes
that there is no noise from astrophysical foregrounds in the
temperature maps. Polarization maps are always assumed to
be foreground-free. The blue curves incorporate mis-centering
by convolving the convergence profile with a beam-dependent
Rayleigh distribution.

Planck satellite experiment. Planck has e↵ectively im-
aged CMB temperature modes at scales ` < 2000 to
nearly the cosmic variance limit (even if considering a
foreground cleaned map like SMICA [57] or LGMCA
[12, 13]). The CMB halo lensing signal can be contam-
inated by both noise and systematic biases from cluster
foregrounds such as tSZ and CIB. This contamination
is to some extent mitigated by the imposition of a low-
pass filter ` < 2000 on the gradient leg. However, the
systematic bias from cluster contaminants can be nearly
eliminated by requiring that the gradient leg be fore-
ground free. Since this leg only requires modes ` < 2000,
we lose almost no signal-to-noise if we use Planck fore-
ground cleaned maps in the temperature gradient leg of
the TT, TE and TB estimators while eliminating the
largest source of potential bias. The rest of this analy-
sis assumes Planck beam (5 arcminutes) and white noise
of 42 µK-arcmin for the first leg of TT, TE, TB (cor-
responding roughly to the level in a foreground cleaned
map) and CMB Stage-4 150 GHz (Table I) in all the
other legs of the estimator combinations.

Our model for the CMB lensing convergence signal is
an NFW profile with mass M

500

, virial radius R
500

and
concentration c

500

:

(✓) =
3

4⇡c2
H2

0

�
L

�
LS

�
S

(1 + z
L

)
M

500

c2
500

⇢c
0

R2

500

g(✓/✓
s

)

f(c
500

)
(22)

where ✓ is angle on the sky, c is the speed of light, H
0

is the Hubble constant, z
L

is the redshift of the cluster,

✓
s

is the scale radius ✓
s

= R
500

/c
500

, ⇢c
0

is the critical
density of the Universe today, �

S

is the comoving dis-
tance to the CMB, �

L

is the comoving distance to the
lens cluster, �

LS

is the comoving distance between the
CMB and cluster,

f(c) = ln(1 + c)� c

1 + c
, (23)

and

g(x) =

8
>><

>>:

1

x

2�1

h
1� 2p

x

2�1

atan
q

x�1

x+1

i
, (x > 1)

1

x

2�1

h
1� 2p

1�x

2 atanh
q

1�x

1+x

i
, (x < 1)

1

3

, (x = 1) .
(24)

The relative error on the lensing mass of a given cluster
is

�(M)

M
=

�(
5✓500)


5✓500

(25)

where 
5✓500 is the integrated convergence within a disk

of radius 5✓
500

. The matched filter variance in the same
region is given by

��2(
5✓500) =

Z
d2L

U(L)U?(L)

C

L

+N

L

(26)

where

U(✓) =
(✓)


5✓500

. (27)

Here C

L

is the power spectrum of the convergence
field (a line-of-sight integral over the cosmological mat-
ter power spectrum including non-linear corrections from
Halofit) which captures fluctuations in the lensing field
that are not related to the NFW cluster, and N

L

is
the lensing reconstruction noise per mode described ear-
lier. We note that at low instrument noise levels, the
quadratic estimator is less optimal than maximum likeli-
hood techniques [61] causing an underestimate of sensi-
tivity. However, in the small lens limit, the approxima-
tion in Eq 26 that the noise modes are uncorrelated also
breaks down resulting in an overestimate of sensitivity
[32]. Since most clusters in the cosmological sample are
not in this regime of high S/N and since the information
on halo masses does not purely come from the small lens
limit, we ignore these complications and leave a more
complete treatment for later work.
We can now compare the performance of CMB lens-

ing and optical lensing. Using the formalism described
above, in Figure 3, we compare the signal-to-noise-ratio
per cluster �(M)

M

for clusters of various masses for a 1
arcminute FWHM beam experiment that utilizes both
temperature and polarization for CMB lensing (and in-
cludes noise from temperature foregrounds). Since shape
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noise increases with redshift as fewer source galaxies be-
come available, optical weak lensing starts becoming less
statistically informative for clusters at redshifts greater
than around z = 1.2 depending on the mass of the clus-
ter.

When stacking on clusters where we have no optical
follow-up data (for the highest-redshift clusters), assum-
ing that the tSZ centroid is the center of the cluster can
result in a smearing of the signal. To model this, we
convolve the convergence profile with a Rayleigh distri-
bution:

P (✓) =
✓

�2

m

exp(�1

2

✓2

�2

m

) (28)

where �
m

is taken to be half the FWHM of the beam.
While the resolution of the CMB instrument a↵ects

the number of clusters detected through the tSZ e↵ect, it
also a↵ects the mass sensitivity since a higher resolution
experiment images smaller scales in the CMB tempera-
ture and polarization field that contribute to the lens-
ing signal. In Figure 4, we show the dependence of the
mass sensitivity on beam FWHM for five scenarios. The
most optimistic assumes that both temperature and po-
larization data are used and that there are no sources
of noise from foregrounds (discussed in Section X). Fore-
grounds in temperature degrade the mass sensitivity by
up to 80%. If one assumes there is no foreground contam-
ination in polarization, utilizing only the EE and EB po-
larization based estimators results in further degradation
of mass sensitivity by around 20%. While galactic fore-
grounds in polarization uncorrelated with the positions
of galaxy clusters are highly uncertain at small-scales,
polarized emission from clusters is expected to be well
below the 1µK level [43]. We also show in Figure 4 how
mis-centering enhances the degradation of sensitivity as a
function of beam FWHM. Our baseline forecasts assume
both temperature and polarization data with foregrounds
in temperature, and mis-centering only for clusters with
z > 2.

VI. COSMOLOGICAL CONSTRAINTS

By finding galaxy clusters and calibrating their masses,
we are constraining the halo abundance n(M, z), a func-
tion that is sensitive to the amplitude of matter fluctu-
ations �

8

and the total matter density ⌦
m

. The halo
abundance is related to the matter power spectrum (and
consequently the growth factor). Physics that a↵ects the
matter power spectrum or its growth can lead to di↵er-
ing predictions on the abundance of halos as a function
of mass and redshift.

We obtain predicted constraints on cosmological pa-
rameters by calculating Fisher matrices for each exper-
imental configuration [e.g., 26, 36, 38]. We proceed as
in [42, 64], modeling the observed number counts N as

FIG. 5: The uncertainty on �
8

(z) as a function of redshift for
tSZ clusters from a CMB Stage-4 experiment calibrated in-
ternally using CMB halo lensing (including temperature and
polarization data). The dark blocks have redshift bin edges
of [0., 0.5, 1.0, 1.5, 2.0, 3.0] chosen to roughly produce the same
relative constraint in each bin, while the light blocks illustrate
the �

8

(z) constraints for bins of width �z = 0.1. The di↵er-
ent colors correspond to di↵erent beam FWHMs at 150 GHz.
With a 1 arcminute beam at 150 GHz it is possible to con-
strain �

8

(z) at ⇠ 1% in the redshift bins chosen above.

Poisson distributed about the predicted mean number of
clusters N̄ (See Equation 11) in each (M, q, z) bin,

lnL(N |N̄) =
X

ML,q,z

N lnN̄ � N̄ � ln(N !) (29)

and obtain 68% C.L. constraints by expanding assuming
the likelihood is Gaussian in the parameters. This re-
quires us to calculate derivatives of the observed number
counts as a function of the parameters varied. The Fisher
matrix is

F
ab

=
X

ML,q,z

@
a

N@
b

N

N
(30)

where a and b indicate the cosmological, scaling re-
lation and other nuisance parameters. Marginalized 68
%C.L. constraints on parameter a for instance can then
be calculated as

�(a) =
p

F�1

aa

(31)

We vary N(M, z, q) with respect to the following
set of parameters. When including primary CMB
information, our ⇤CDM parameter set is ✓

c

=
{⌦

c

h2,⌦
b

h2, H
0

, A
s

, n
s

, ⌧}. When not including primary
CMB, we exclude ⌧ from the Fisher matrix. In addition,
we always marginalize over a set of scaling relation pa-
rameters ✓

s

= {b,↵
y

,�
logY

, �
Y

,�
y

, �
�

,�
�

} described ear-
lier in Section III. The other parameters and external
data sets we consider are described below.
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FIG. 6: Resolution dependence of CMB Stage-4 parameter constraints for internal CMB lensing calibration with temperature
and polarization data for a ⇤CDM +m⌫ + w

0

+ wa cosmology. The contours correspond to 68 %C.L. levels. For clarity, not
all parameters varied are shown – {⌦ch

2,⌦bh
2, As, ns} are excluded.

Before these derivatives are calculated, the original
(M, q, z) grids are rebinned such that all clusters with
z > 2 are in a single bin and such that the M -bins are
coarse enough (37 bins between 13.5 < log

10

M < 15.7)
given the mass calibration errors.

A. External data sets

The cosmological constraints considered here will ben-
efit from primary CMB information that pins down the
amplitude of primordial power. For this purpose, we
include a CMB Stage-4 Fisher matrix for {✓

c

} + ⌃m
⌫

when varying neutrino mass and {✓
c

} when not. For
CMB Stage-4, Fisher information is only included for
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FIG. 7: Constraint in the m⌫ � w
0

plane for a CMB Stage-4 telescope with 10 beam FWHM at 150 GHz shown as 68 %C.L.
levels. Left: For a ⇤CDM + m⌫ + w

0

cosmology with wa = 0 held fixed. Right: For a ⇤CDM + m⌫ + w
0

+ wa cosmology.
The blue contours are for mass calibration using CMB lensing (temperature and polarization in solid and polarization only
in dashed). The orange contours use mass calibration from an LSST-like optical survey. The blue dashed contour uses CMB
polarization only, and the dashed orange contour only uses z < 1 source galaxies.

FIG. 8: The 1�� uncertainty on neutrino mass obtained when marginalizing over ⇤CDM , ⇤CDM+w
0

and ⇤CDM+w
0

+wa,
from tSZ clusters detected using a CMB Stage-4 telescope with 10 beam FWHM at 150 GHz . Unlike in the case where only the
CMB lensing auto spectrum is used [see 4], the constraints do not degrade significantly when freeing up dark energy equation
of state parameters owing to the redshift resolution of growth of structure with tSZ clusters. Left: Constraints when the mass
calibration is from internal CMB lensing reconstruction with temperature and polarization data. Middle: Constraints when the
mass calibration is from an LSST-like optical survey using clusters up to z = 2. Right: Constraints when the mass calibration
is a combination of internal CMB and optical weak lensing. Note that “DESI” corresponds to adding BAO measurements from
the DESI survey. We show how constraints improve when the prior on the optical depth ⌧ is tightened from the fiducial width
0.01 to the Planck Blue Book value [18] of 0.006 and further to the cosmic-variance-limit value of 0.002. The grey solid line
shows the value of the minimal neutrino mass in the normal hierarchy of 58 meV, and the dashed and dot-dashed lines show
levels required for a 3� and 5� detection respectively.

the temperature multipole range 300 < ` < 3000 and
the polarization multipole range 100 < ` < 5000. In
addition, we include a Planck Fisher matrix for tempera-
ture and polarization. We avoid including low-` polariza-
tion from Planck and avoid double counting as follows.
We include 2 < ` < 30 Planck temperature information
for f

sky

= 0.6, 30 < ` < 100 Planck temperature and
polarization in the overlapping sky of f

sky

= 0.4 and
30 < ` < 2500 Planck temperature and polarization in
the non-overlapping sky of f

sky

= 0.6�0.4 = 0.2. We use
unlensed spectra to e↵ectively exclude ⌃m

⌫

information
from primary CMB. In lieu of including low-` polariza-

tion from Planck, we impose a flat prior of 0.01 on ⌧
(unless otherwise specified) whenever including primary
CMB data.

Although cluster counts measure ⌦
m

, some improve-
ment in cosmological constraints can be obtained by the
addition of baryon acoustic oscillations (BAO) measure-
ment through the information it provides on H

0

. We
consider a BAO experiment like DESI and calculate its
Fisher matrix. While not critical for the science targets,
we show how much the addition of DESI can improve
our constraints. The Fisher formalism for CMB and BAO
and the experimental configurations for Planck and DESI
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TABLE II: The fiducial and step values used in calculating
derivatives for the Fisher matrix. The step sizes have been
checked for numerical stability. We adopt a prior on the op-
tical depth of 0.01 and restrict the overall weak lensing mass
calibration to 1% by allowing it to float and adopting a prior
of 1%.

Parameter Fiducial Step Prior
⌦ch

2 0.1194 0.0030
⌦bh

2 0.022 0.0008
H

0

67.0 0.5
109As 2.2 0.1
ns 0.96 0.01
⌧ 0.06 0.02 0.01
⌃m⌫ (meV) 60 20
w

0

-1 0.05
wa 0 0.1
b 0.8 0.02
↵y 1.79 0.04
�
logY 0.127 0.02

�Y 0 0.02
�y 0 0.02
�� 0 0.02
�� 0 0.02
b
WL

1 0.1 0.01
�m 0.75 0.2 beam/2

follow those used in [4].

B. Additional nuisance parameters

We explore the e↵ect of imposing a 1% floor on the
systematic uncertainty in the mass calibration since in
the case of optical weak lensing a combination of shear
multiplicative bias, photo-z uncertainties and modeling
uncertainties is expected to lead to an overall floor at
that level. We impose this floor by re-scaling the lensing
mass as

M
L

! b
WL

M
L

(32)

marginalizing over b
WL

but with a prior of 0.01. We find
that this has very little e↵ect on parameter constraints
since the 37 mass bins used in the analysis allow for some
self-calibration [40] through information in the shape of
the mass function. We do not vary b

WL

in the main
results in this work.

For CMB lensing, we marginalize over a mis-centering
o↵set �

m

discussed in SectionV for clusters with z > 2
and impose a prior on it that is equal to half the beam
FWHM.

C. Amplitude of the matter power spectrum �
8

(z)

In order to project the sensitivity to the amplitude of
matter fluctuations as a function of redshift, we calculate
the following derivatives,

@N(M, z
i

, q)

@�
8

(z
i

)
I =

1

h
{N [(1 + h/2)2P (k, z

i

)]

� N [(1� h/2)2P (k, z
i

)]}. (33)

where h is the step size for the derivative calculation
which we take to be h = 0.05 (with other values tested
to confirm stability). When calculating these derivatives,
we fix {✓

c

, ✓
s

} to their fiducial values varying only the
power in each redshift bin that is used in the calculation
of halo abundances. These derivatives are then stitched
into a Fisher matrix for parameters {✓

c

, ✓
s

,�
8

(z
i

)} and
a CMB Fisher matrix for {✓

c

} is added to it. When
reporting constraints on the overall amplitude of power
�
8

, we involve a single derivative that varies power across
all redshifts.
In Figure 5, we show constraints on �

8

in redshift bins
for the various telescope resolutions in Table I, where
we assume internal CMB lensing calibration with T+P.
While the amplitude of the tSZ e↵ect is roughly constant
as a function of redshift, a higher resolution experiment
is able to find tSZ clusters at higher redshifts that sub-
tend smaller angles on the sky. These clusters are also
calibrated better with CMB lensing as the resolution im-
proves as indicated in Figures 3 and 4. The increased res-
olution thus primarily improves �

8

constraints at higher
redshifts. This improvement begins to saturate below
1.5 arcminutes due to degeneracies with other parame-
ters (see VII).

D. The sum of neutrino masses ⌃m⌫

Measurements of neutrino oscillations indicate that
neutrinos are massive, but the absolute mass scale (sum
of the masses of three neutrino species) is not known.
Solar and atmospheric neutrino measurements allow for
either a normal or inverted hierarchy of the three species
with the minimal possible mass scales in each case be-
ing 58 meV and 100 meV respectively. Any cosmological
observable sensitive to P (k, z) in principle o↵ers informa-
tion on the neutrino mass scale since massive neutrinos
become non-relativistic around z = 300 and a↵ect the
growth of structure. In particular, the power spectrum
is suppressed on scales smaller than the neutrino free-
streaming scale.
The CMB lensing power spectrum (which depends on

the integrated line-of-sight matter power) is likely the
cleanest cosmological probe of ⌃m

⌫

since for CMB Stage
4 lensing constraints will be driven by polarization data
with potentially fewer astrophysical systematics. How-
ever, because of a degeneracy with ⌦

m

h2, CMB lensing
will need to be combined with external data from baryon
acoustic oscillation (BAO) surveys like DESI in order to
approach sensitivities capable of providing evidence for a
minimal neutrino mass. the tSZ cluster abundances how-
ever are also highly sensitive to the neutrino mass scale
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since the neutrino free streaming scale below which mat-
ter fluctuations are suppressed is larger than the typical
virial radii of even the most massive galaxy clusters. A
cosmology with a large neutrino mass scale will therefore
have fewer clusters. Importantly, cluster abundances also
measure ⌦

m

h2, and therefore provide better constraints
than CMB lensing alone in the absence of external data.

We allow for a non-zero sum of neutrino masses
through its e↵ect on the growth of structure (captured
in the matter power spectrum P (k, z)) and consequently
on the number density of detected clusters.

E. The dark energy equation of state w(a)

We consider the dark energy equation of state
parametrized as

w(a) = w + (1� a)w
a

(34)

and forecast constraints either on {w} (with w
a

=
0) or on the combinations {w,w

a

}, {⌃m
⌫

, w} and
{⌃m

⌫

, w, w
a

}.
Measurements of the CMB lensing power spectrum are

sensitive to the integrated matter power spectrum and
lack redshift resolution. Since the equation of state of
dark energy a↵ects the growth of structure at low red-
shifts (z < 2) and massive neutrinos suppress power
below the free-streaming much earlier on, CMB lensing
power spectra measurements su↵er a degeneracy between
⌃m

⌫

and w [4]. Counting clusters in redshift bins signif-
icantly alleviates this degeneracy. In particular, as can
be seen in Figure 6 higher resolution telescopes that find
more clusters at higher redshifts su↵er less degeneracy
between ⌃m

⌫

and w.
In Figure 7, we look at constraints in either

a ⇤CDM+{⌃m
⌫

,w} cosmology (left panel) or a
⇤CDM+{⌃m

⌫

,w,w
a

} cosmology (right panel). In the
first case, allowing only z < 1 clusters when optical weak
lensing is used as a mass calibrator (anticipating photo-
metric redshift systematics for source galaxies z > 1) we
find that CMB lensing performs comparably or better re-
gardless of whether we restrict ourselves to polarization
data only. When w

a

is freed up, optical weak lensing
performs better relative to CMB lensing. Figure 8 looks
at the marginalized constraint on the sum of neutrino
masses alone, in cosmologies with w

0

fixed, w
0

varied
with w

a

fixed, and both w
0

and w
a

varied. We find that
in contrast to the CMB lensing power spectrum, con-
straints on neutrino mass are not significantly degraded
when the equation of state of dark energy is freed up.

VII. DISCUSSION AND CONCLUSIONS

Future measurements of CMB secondary anisotropies
from experiments like CMB Stage-4 will find a very large

FIG. 9: The constraint on the dark energy equation of state
and sum of neutrino masses as we increase prior information
on each parameter for CMB Stage-4 (1 arcminute at 150 GHz)
with internal CMB halo lensing (T+P) calibration. With each
step in the forward-x direction, we decrease the 68 %C.L.
width of the prior on the respective parameter on a logarith-
mic scale until it saturates the constraint (determined as the
point when the change in constraint is less than 0.1%). Once
this saturation is seen, we retain the final value of the prior
for that parameter and proceed to repeat the same procedure
on the next parameter of interest (represented by a di↵erent
color). This makes clear which parameter degeneracies are
primarily limiting the constraint. The dashed curve includes
DESI BAO information.

number of galaxy clusters, N
c

⇡ 100, 000, with the pre-
cise number depending on the resolution of the exper-
iment. With such large statistics, many of the scal-
ing relation parameters and the mass calibration self-
calibrate. One would expect that the cosmological in-
formation would increase roughly with the square root of
the number of clusters detected, especially since most of
the clusters detected with higher resolution are at high
redshifts. However, certain parameter degeneracies pre-
vent there from being significant improvement in con-
straints beyond a resolution of around 1.5 arcminutes,
particularly for the sum of neutrino masses.
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Our fiducial forecasts assume knowledge of the opti-
cal depth to a precision of 0.01 (realized by the most
recent Planck analysis of low-ell polarization [56]). Since
a measurement of low-redshift amplitude of structure re-
quires the amplitude of scalar fluctuations as a reference
for untangling the e↵ects of neutrino mass or dark en-
ergy, a degeneracy with the optical depth is introduced
when using primary CMB data. This degeneracy is par-
ticularly limiting for ⌃m

⌫

, and prevents increased clus-
ter counts from higher resolution CMB measurements
from commensurately improving constraints. In Figure 8,
we show the improvement obtained if the constraint on
optical depth were 0.006 (the Planck Blue Book value)
and the cosmic-variance-limited value of 0.002. Such im-
provements would allow the minimal neutrino mass in
the normal hierarchy to be detected at the 5-sigma level
or greater using CMB Stage-4 clusters + primary CMB
data along, even when freeing up dark energy equation
of state parameters, allowing for critical cross-checks of
measurements made through other probes such as the
CMB lensing power spectrum. The optical depth could
be measured to the cosmic variance limit (CVL) by a fu-
ture space-based CMB experiment or by a ground-based
CMB experiment if significant advances are made in con-
trolling low-` polarization systematics. It could also be
potentially improved beyond CVL with a 21 cm experi-
ment [41].

Our knowledge of other parameters such as the Hub-
ble constant is also a limiting factor in these constraints.
We explore the contributions of all parameter degenera-
cies in Figure 9 by starting with our fiducial constraint
and cumulatively improving the prior knowledge on ev-
ery other parameter along the x-axis, switching to the
next parameter once the previous parameter saturates
the constraint. Perfect knowledge of ⌧ and H

0

signifi-
cantly improves constraints for ⌃m

⌫

and w as expected.
Previous forecasts and analyses of cosmological con-

straints from CMB Stage-4 SZ clusters have come to
same conclusions as this work with regards to the po-
tential cosmological utility of SZ selected clusters. The
constraints on ⌃m

⌫

shown in this work, Louis & Alonso
[42], and Melin et al. [50] are competitive with other
large-scale structure probes, for example CMB lensing
[1, and references therein]. These constraints have the
advantage that they do not require an additional con-
straint on ⌦

m

h2. This work goes beyond previous work
[e.g., 42, 50] in a few ways. First, we include the atmo-
sphere in the noise modeling, which a↵ects the number
of clusters one expects to find (see Figure 2). Second, we
include additional degrees of freedom in the Y–M scaling
relation modeling, such as mass and redshift dependent
intrinsic scatter, and we explore a systematic uncertainty
floor of 1% on the lensing mass calibration. Thirdly, we
include the unresolved tSZ source background, which is
an irreducible source of noise for the match filter, since
it has the same frequency dependence as the SZ clus-

ters we are looking for. We consider the optical weak-
lensing mass calibration from a conservative LSST-like
survey over the entire CMB Stage-4 survey area, which
will already be completed before CMB Stage-4 finishes
its surveying. Finally, our cosmology constraints also ex-
tend to a model-independent forecast on the amplitude
of matter fluctuations �

8

(z) which demonstrates the ef-
fectiveness of larger telescopes in distinguishing between
di↵ering predictions of the growth of structure at high
redshifts.

In this work we have been very conservative in how
we implement the observable–mass relation, scatter, and
the mass calibrations, however, if tSZ cluster counts are
going to drive the design of CMB Stage-4 then mov-
ing beyond Fisher forecasts is imperative. Important
steps forward include the incorporation of correlations
between the weak-lensing and tSZ mass proxies. As ex-
pected these correlations are present [65, 66, 74], and
to properly quantify these correlation requires hydrody-
namic cosmological simulations. Additionally, correlated
foregrounds, in particular the tSZ-CIB correlation will
need to be properly addressed with future analyses of
cosmological simulations, similar to the analyses in Melin
et al. [50]. A realistic treatment of internal CMB halo
lensing requires the full utilization of mutli-frequency in-
formation, explicitly projecting out the foregrounds that
cause the most bias, a full accounting of the impact of
kinetic SZ that cannot be removed through component
separation and a comparison with maximum likelihood
techniques that takes into account the presence of fore-
grounds. Finally, we do not consider any uncertainties on
the halo mass function that could be as high as 10% when
considering the baryonic e↵ects [e.g., 14, 20, 21]. Fortu-
nately, these baryonic e↵ects can be separated from the
impact of ⌃m

⌫

on the halo mass function [51]. Regard-
less of these proposed forecasts advancements that will
require more sophisticated treatments like simulations,
the trends with aperture size and the overall constraints,
particularly on ⌃m

⌫

, will not be a↵ected substantially,
since they are limited by external parameters like ⌧ .
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