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In the first stages of inflationary reheating, the temperature of the radiation produced by inflaton
decays is typically higher than the commonly defined reheating temperature TRH ∼ (ΓφMP )

1/2

where Γφ is the inflaton decay rate. We consider the effect of particle production at temperatures
at or near the maximum temperature attained during reheating. We show that the impact of this
early production on the final particle abundance depends strongly on the temperature dependence
of the production cross section. For 〈σv〉 ∼ Tn/Mn+2, and for n < 6, any particle produced at
Tmax is diluted by the later generation of entropy near TRH . This applies to cases such as gravitino
production in low scale supersymmetric models (n = 0) or NETDM models of dark matter (n = 2).
However, for n ≥ 6 the net abundance of particles produced during reheating is enhanced by over
an order of magnitude, dominating over the dilution effect. This applies, for instance to gravitino
production in high scale supersymmetry models where n = 6.

I. INTRODUCTION

One of the key attributes of inflationary cosmology [1]
is its independence of initial conditions. Once inflation
commences, all prior history is inflated away, and the
universe begins afresh with new nearly homogeneous and
isotropic initial conditions which depend primarily on the
reheating process after inflation. In its simplest form,
reheating occurs as the inflaton settles to its minimum
after inflation and the coherent scalar field oscillations
of the inflaton decay. If the decay products thermalize
rapidly, a radiation temperature is established, and in the
limit of instantaneous decay and reheating at Γφ ∼ H
where Γφ is the inflaton decay rate and H is the Hub-
ble parameter, we can define a reheating temperature as
TRH ∼ (ΓφMP )

1/2, where MP = (8πGN )−1/2 is the re-
duced Planck mass [2, 3].

In reality, inflaton decay is not instantaneous, though
thermalization may indeed be quite rapid [4, 5]. If ther-
malization is rapid, then the early inflaton decay prod-
ucts can achieve temperatures significantly higher than
TRH [5–7]. In turn, this may significantly alter the pro-
duction rate and abundance of particles which are weakly
coupled to the thermal bath. The gravitino is a prime
example. Gravitinos are produced during reheating and
their abundance is typically proportional to the reheat-
ing temperature [3, 5, 8–20]. Although the rate for grav-
itino production is enhanced at temperatures above TRH ,
gravitinos produced at T > TRH are diluted by the bulk
of the entropy produced in subsequent inflaton decays.
These (non)-results are, however, specific to the cross
sections that characterize the particle production.

Here we consider particle production during reheating
at temperatures T > TRH . We consider a general form
for the temperature dependence of the production cross
section. We then apply these results to three specific

cases. 1) The gravitino, as discussed above in models
of low energy supersymmetry. 2) Non-equilibrium ther-
mal dark matter [21] models. These are models where
the dark matter candidate couples to the thermal bath
through the exchange of some massive mediator. As a
result, they never attain thermal equilibrium, yet are
produced from the thermal bath. While similar to the
gravitino, the details of the production mechanism dif-
fers. 3) We return to gravitinos in the case of high scale
supersymmetry, where all superpartners (other than the
gravitino) have masses above the inflaton mass [22, 23].
In this case, gravitinos can not be singly produced but
rather can only be produced in pairs. Once again, the
details of the production mechanism differs from the pre-
vious two cases.
The paper is organized as follows. In section 2, we

write down the relevant equations for generalized parti-
cle production and describe the three specific models we
use as examples. In section 3, we derive the abundance
of particles produced assuming instantaneous reheating
and derive the effect of particle production at T > TRH

in section 4. In section 4, we also provide some numeri-
cal results to support the analytic approximations made.
Our conclusions are given in section 5.

II. DARK MATTER PRODUCTION AT

REHEATING

For our analysis, we first need to compute the dark
matter production at early stages of reheating. We can
define the thermally averaged cross section

〈σ|v|〉 = λT n

πMn+2
, (1)

for dark matter production, where we assumed a dark
matter mass mχ ≪ T , and that χ is coupled to the ther-
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mal bath by a heavy mediator of mass mX ≫ T . In this
case, the mass scale M in (1) is parametrically related
to the mediator mass, M ∼ mX . For the case of the
gravitino, one should associate the scale M with the su-
persymmetry breaking scale, F which may be related to
the geometric mean of the Planck scale MP , and grav-
itino mass, m3/2 for the production of longitudinal modes
of the gravitino.
Reheating is a finite duration process that starts at the

end of inflation, and is concluded with the formation of a
dominant thermal bath due to inflaton decay. Assuming
instantaneous thermalization of the inflaton decay prod-
ucts [4, 5], this thermal bath reaches the maximum tem-
perature Tmax shortly after inflation ends, when only a
small fraction of the inflaton energy has decayed, and the
energy density of the universe is still dominated by the
inflaton mass. This temperature may be orders of mag-
nitude greater than the reheating temperature TRH , that
is achieved later on, when most of the inflaton energy has
decayed, and the thermal bath has become dominant [5–
7]. Most computations of relic abundances from the early
universe assume an instantaneous inflaton decay into a
thermal bath of temperature TRH . These computations
ignore any production that took place during reheating
(namely, while the thermal bath was subdominant, as
its temperature decreased from Tmax to TRH). This ap-
proach is valid as long as the production rate in eq. (1)
is not competitive with the dilution rate due to the infla-
ton decay, which is (as we will demonstrate) not always
justified.
In this section, we propose to precisely quantify the

validity of this assumption, by comparing the dark mat-
ter production obtained supposing an instantaneous re-
heating (subsection IIA) with the complete process, that
accounts for the finite-time duration of the inflaton decay
(subsection II B). We will see that the degree of accuracy
depends on the specific value of the exponent n in the
temperature dependence T n of the thermally averaged
cross-section (1). We will then discuss three different
microscopic/UV models, characterized by three different
values of n.

A. Instantaneous reheating

Under the assumption of instantaneous reheating, the
inflaton instantaneously decays into a thermal bath of
initial temperature [2, 3]

TRH =

(

40

gRHπ2

)1/4(
ΓφMP

c

)1/2

, (2)

which dominates the energy density of the universe,
where Γφ is the inflaton decay rate, gRH ≡ g (TRH) is
the number of effective degrees of freedom in the thermal
bath, and c is an order one parameter that depends on
when exactly the decay is assumed to take place. For
instance, c = 1 if we set the decay time tRH = Γ−1

φ , or

c = 2/3 if we set the Hubble rate H(TRH) = Γφ. Numer-
ical solutions to reheating give c ≈ 1.2 [5, 19]. In what
follows we will set c = 1 for definiteness.
Consider for instance the process γ1 + γ2 → χ1 + χ2,

where γ1,2 are constituents of the thermal plasma, and
χ1,2 denote the scattering products, out of which χ1 or
both χ1,2 correspond to the dark matter particle; in this
section we assume for simplicity that χ1 = χ2 ≡ χ. If
the scattering cross section is small enough to keep the
dark matter number density, nχ, well below its thermal
equilibrium value, neq

χ , at all times, then the Boltzmann
equation controlling the dark matter abundance Yχ (T ) ≡
nχ(T )
nrad(T ) is of the form [24]

Ẏχ + 3

(

H +
Ṫ

T

)

Yχ = g2χ〈σ|v|〉nrad , (3)

where H is the Hubble rate and gχ is the number of
degrees of freedom of χ (times 3/4 if χ is a fermion).
This is solved by

Yχ(T ) = Yχ(TRH)
g(T )

gRH

− g(T )

∫ T

TRH

g2χ〈σ|v|〉nrad(τ)

g(τ)H(τ) τ

[

1 +
τ

3

d ln g(τ)

dτ

]

dτ ,

(4)

where g (T ) is the number of effective relativistic de-
grees of freedom in the thermal bath at temperature T .
We have assumed entropy conservation so that gT 3a3 =
const., where a is the cosmological scale factor.
We now use the thermal cross section (1), and assume

a vanishing dark matter abundance at the beginning of
reheating, Yχ(TRH) = 0. Accounting for the fact that g
and the coupling λ depend only weakly on the tempera-
ture, eq. (4) integrates to

Yχ,instant.(T ) ≃ −
ζ(3)

√
90 g2χMP

π4Mn+2
g(T )

∫ T

TRH

λ(τ)τn

g(τ)3/2
dτ

≃
g(T ) ζ(3)

√
90 g2χMP

(n+ 1)π4Mn+2

[

λ(TRH)T n+1
RH

g
3/2
RH

− λ(T )T n+1

g(T )3/2

]

(5)

which asymptotes to the value

Yχ,instant. ≃
(

90

gRH

)1/2 g(T ) ζ(3)g2χλ(TRH)T n+1
RH MP

gRH (n+ 1)π4Mn+2
,

(6)
when T < TRH . We have assumed n > −1 in eq. (6) (so
that the first term dominates in the square parenthesis
of eq. (5)). We can then define

Rχ,instant.(T ) =
Yχ,instant.(T )

Yχ,instant.
(7)

as the ratio of the temperature-dependent abundance rel-
ative to its asymptotic value.
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In the next subsection we compare the result (5), ob-
tained under the assumption of instantaneous reheating,
against the abundance obtained if we more properly ac-
count for the finite duration of reheating.

B. Instantaneous thermalization

Reheating after inflation is a continuous process, that
dumps the energy density of the inflaton into the rela-
tivistic plasma, while diluting the previously created con-
tent of the universe. Therefore, in order to track the relic
dark matter density, one must solve the following system
of equations

ρ̇φ + 3Hρφ + Γφρφ = 0 (8)

ρ̇γ + 4Hργ − Γφρφ = 0 (9)

ṅχ + 3Hnχ + 〈σ|v|〉
[

n2
χ − (neq

χ )2
]

= 0 (10)

ρφ + ργ = 3M2
P H2 (11)

where ρφ and ργ , are, respectively, the energy density of
the inflaton and of the thermal bath formed by inflaton
decay. We stress that we are assuming that the dark mat-
ter is not directly coupled to the inflaton, and it is only
produced by the thermal bath with the cross section (1).
We continue to assume instantaneous thermalization of
the inflaton decay products, as justified in [4, 5]. Finally,
we disregard the production of dark matter in the second
and fourth equations (9 and 11), as we will work in the
limit of small dark matter production, so that ργ and H
are negligibly modified by dark matter production.
Solving the first two equations of the system one finds

that the thermal bath reaches a maximum temperature
Tmax when only a small amount of the inflaton energy
has decayed [5–7]. This temperature is much higher than
the reheating temperature, defined to be the temperature
of the thermal bath when it starts to dominate over the
residual energy of the inflaton. One finds (see for instance
[5])

Tmax ≃ 0.5

(

mφ

Γφ

)1/4

TRH , (12)

where mφ is the inflaton mass. Perturbativity requires
Γφ < mφ, and it is not uncommon to have Γφ ≪ mφ (this
is for instance the case if the inflaton decays gravitation-
ally). Therefore Tmax can be many orders of magnitude
greater than TRH , possibly leading to a larger produc-
tion of dark matter. This opens the question regarding

the accuracy of the result (5), that assumes that the tem-
perature was never above TRH . On the other hand, most
of the energy of the universe is still in the inflaton when
T = Tmax, and the entropy generated by the subsequent
decay of this energy dilutes the dark matter quanta pro-
duced at T ∼ Tmax. Given these two contrasting argu-
ments, only an explicit solution of the system (8)-(9)-(10)
can shed light on the accuracy of the instantaneous re-
heating result (5).
We assume that the inflaton performs coherent oscilla-

tions about the (quadratic) minimum of its potential at
the end of inflaton. This leads to an equation of state
for the inflaton w = p/ρ = 0, when averaged over a
complete oscillation (the oscillations occur on a timescale
m−1

φ , which is much shorter than the other timescales of
reheating, and taking w = 0 for the inflaton is therefore
a very accurate assumption). The inflaton dominates the
energy density until the very end of reheating, so it is a
good approximation to set w = 0 for the whole duration
of reheating. This will allow us to obtain an analytic re-
sult for the dark matter abundance, that we can compare
with an exact numerical solution of the system (8)-(9)-
(10). Under this assumption, the scale factor evolves
as [5]

a(t)

aend
≃
(

1 +
v

A

)2/3

≃
( v

A

)2/3

, (13)

with v ≡ Γφ (t− tend) (the suffix “end” indicating the
end of inflation, when w = −1/3) and

A ≡ Γφ

m

(

3

4

ρend
m2M2

P

)

−1/2

≃ O(1)
Γφ

m
, (14)

where the O(1) factor in the second equality is approxi-
mately equal to 2.8 for Starobinsky inflation, and to 1.3
for a quadratic potential.
In the regime A ≪ v ≪ 1, we obtain [5]

ργ ≃ ρendA
2v−8/3

γ(5/3, v)

≃ 3

5
ρendA

2v−1 =
4

5
(ΓφMP )

2v−1 , (15)

where γ denotes the lower incomplete gamma function.
This in turn, implies

T ≃
(

24

π2g

)1/4

(ΓφMP )
1/2v−1/4 . (16)

With the scattering cross section given by (1), and neq
χ =

gχnrad, we can readily rewrite (10) as
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d

dT

[

nχ

(

a

aend

)3
]

=
g2χ〈σ|v|〉n2

γ

Ṫ

(

a

aend

)3

= g2χ

(

λT n

πMn+2

)(

ζ(3)T 3

π2

)2(

−96ΓφM
2
P

gπ2T 5

)

(

24Γ2
φM

2
P

gπ2T 4A

)2

, (17)

which is solved by

nχ

(

a

aend

)3

=
55296ζ(3)2 g2χλΓ

5
φM

6
P

g3π11Mn+2A2
×











1

n− 6

(

T n−6
max − T n−6

)

, n 6= 6

ln

(

Tmax

T

)

, n = 6
. (18)

Dividing this by nrad, we find, at the end of reheating,

Y (n)
χ (TRH) =

96ζ(3) g2χλMPT
7
RH√

40g
1/2
RHπ4Mn+2

×











1

n− 6

(

T n−6
max − T n−6

RH

)

, n 6= 6

ln

(

Tmax

TRH

)

, n = 6
. (19)

We can now compare this result with (6), obtained under the assumption of instantaneous reheating. At T ≪ TRH

we find

R(n)
χ (T ) ≡ Y

(n)
χ (T )

Yχ,instant.
≃ f(n)











































8

5

(

n+ 1

6− n

)

, n < 6

56

5
ln

(

Tmax

TRH

)

, n = 6

8

5

(

n+ 1

n− 6

)(

Tmax

TRH

)n−6

, n > 6

, (20)

where we have inserted a function f(n) shown in Fig. 1,
which corrects the analytic result discussed above, with
the exact numerical evaluation. This correction is nec-
essary as, around v ∼ 1, the approximation (16) to the
plasma temperature is not accurate, due to the shift of
the equation of state parameter from w ≈ 0 to w ≈ 1/3;
moreover, entropy production continues beyond v = 1,
which further dilutes the dark matter yield below the
analytical approximation. Note that, nevertheless, the
correction is not large, 0.4 . f(n) . 3.3 for n > 0.
Eq. (20) is one of the main results of this paper.

We see from eq. (20) that as n increases, the final result
for the abundance is increasingly sensitive to the highest
temperature, and the details of reheating are relevant.
In particular, physically different results are obtained for
n < 6 vs. n ≥ 6, as already noted in [7] (that only fo-
cused on the n < 6 case). For n < 6 the more accurate
result (19) corrects the instantaneous reheating result by
a factor of O(1). For a steeper dependence of the cross
section on the temperature, the final dark matter abun-
dance can be significantly different from the naive expec-
tation. In particular, in terms of the inflaton decay rate,
the enhancement for the n = 6 case can be equivalently

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

FIG. 1. Numerical correction to the analytical result (20) for
the ratio of the exact dark matter yield to the instantaneous

approximation, R
(n)
χ . The function f(n) asymptotes to the

value ∼ 0.4 for large n .

rewritten as

Rχ ≃ 1.14 ln

(

mφ

Γφ

)

− 3.17 . (21)
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III. REPRESENTATIVE EXAMPLES

In this section we consider three representative cases
characterized by the thermal cross section (1), with three
different values of the coefficient n. These are: (1)
Gravitino production in low scale supersymmetry models
(with a single gravitino in the final state). This is char-
acterized by n = 0; (2) Non-Equilibrium Thermal Dark
Matter (NETDM), characterized by n = 2; (3) Gravitino
production in high scale supersymmetry where produc-
tion occurs in processes having two gravitinos in final
state, leading to n = 6.

A. Single Gravitino Production

In commonly studied models of weak scale supersym-
metry, in the absence of direct inflaton to gravitino de-
cays, the dominant scattering source for gravitino pro-
duction is X + Ỹ → G̃ + Z or X + Y → Z̃ + G̃ where
X,Y, Z are standard model (SM) particles or their super-
symmetric partners. The cross section for the production
of the transverse components of the gravitino is simply
proportional to (1/M2

P ) [3, 8–10, 13]. However, when the
mass of the gravitino is less than the gaugino masses (and
in particular the gluino mass), the cross section for the
production of the longitudinal components is enhanced
by a factor of (mg̃/m3/2)

2 [5, 12, 15–20].
The thermally-averaged cross section for the Standard

Model SU(3)c×SU(2)L×U(1)Y gauge group was calcu-
lated in [17, 18, 20]. The dominant contributions to the
cross section can be parametrized as

〈σtotvrel〉 = 〈σtotvrel〉top + 〈σtotvrel〉gauge , (22)

with

〈σtotvrel〉top = 1.29
|yt|2
M2

P

[

1 +
A2

t

3m2
3/2

]

, (23)

where At is the top-quark supersymmetry-breaking tri-
linear coupling, and

〈σtotvrel〉gauge =
3
∑

i=1

3πcig
2
i

16ζ(3)M2
P

[

1 +
m2

g̃i

3m2
3/2

]

ln

(

ki
gi

)

=
26.24

M2
P

[(

1 + 0.558
m2

1/2

m2
3/2

)

− 0.011

(

1 + 3.062
m2

1/2

m2
3/2

)

log

(

T

1010 GeV

)

]

,

(24)

where the mg̃i are the gaugino masses and the constants
ci, ki depend on the gauge group, as shown in Table I.
The second line of (24) was obtained in ref. [5] from
a fit to the result of [20] using the parametrization of
[18], under the assumption of a unified gauge coupling

α = 1/24 and universal gaugino masses m1/2 at the

scale MGUT = 2 × 1016GeV (see [5] for details). Note
that the first term in the gaugino mass-dependent fac-
tors (1+m2

g̃i
/3m2

3/2) corresponds to the production of the

transversally polarized gravitino, while the second term is
associated with the production of the longitudinal (Gold-
stino) component. For m3/2 ≪ mg̃i , the production of
the longitudinal components dominates.

Gauge group gi ci ki

U(1)Y g′ 9.90 1.469

SU(2)L g 20.77 2.071

SU(3)c gs 43.34 3.041

TABLE I. The values of the constants ci and ki in the param-
eterization (24) for the Standard Model gauge groups U(1)Y ,
SU(2)L, and SU(3)c. See [5] for details.

Ignoring the logarithmic dependence in eq. (24), the
cross section is constant corresponding to n = 0 in eq. (1).
Figure 2 shows the comparison between the fully nu-

merical calculation (black, continuous), using R
(n)
χ in

eq. (20) with n = 0, and the instantaneous reheating re-
sult (orange, dotted), given by Rχ,instant.(T ) from eq. (7).
The latter by definition asymptotes to 1 at late times
(large v). As it is clear, the instantaneous approxima-
tion slightly overestimates the true gravitino abundance
by a factor of ∼ 1.1, as expected from eq. (20). More im-
portantly we see that gravitino production prior to the
end of reheating can be ignored, as any production be-
tween TRH and Tmax is diluted by the bulk of the entropy
produced in later inflaton decays.

10-8 10-5 0.01 10

10-4

10-3

10-2

10-1

1

FIG. 2. Dark matter yield during and after reheating with
n = 0; here Γφ = 10−11 mφ. The numerical result using

R
(n)
χ (eq. (20)) with n = 0 is shown as the continuous black

curve. The orange dotted curve is the instantaneous reheating
solution from Rχ,instant.(T ) (eq. (7)).

B. NETDM Production

In the standard gravitino production mechanism dis-
cussed above, the gravitino is produced from the thermal
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αf αχ

X

f

f χ

χ

FIG. 3. Feynman diagram depicting the freeze in production
of the dark matter χ through a heavy X mediator.

bath, but it never itself achieves thermal equilibrium with
the bath. Dark matter particles coupled to the thermal
bath through a heavy mediator (such as an intermedi-
ate scale gauge boson) can also be produced from the
thermal bath while never achieving thermal equilibrium.
Such NETDM candidates [21, 25, 26], may arise in non-
supersymmetric grand unified theories such as SO(10)
when a SM singlet component of either a 45, 54 or 210
representation of SO(10) is the dark matter [25, 27].
Here, we consider the production of a fermionic dark

matter candidate, χ, via a 2 ↔ 2 process mediated by the
exchange of a heavy gauge boson X . For definiteness, we
assume that the parent SM particles (denoted by f) are
also fermions, leading to the diagram depicted in Fig. 3
with matrix element squared

|M|2 =
α2
fα

2
χs

2

(s−m2
X)2

(1 + cos2 θ) . (25)

Here αf,χ denote the gauge couplings, while θ is the an-
gle between the incoming and outgoing particles in the
CM frame. The same amplitude is obtained for a scalar
mediator X , with αf,χ playing the role of Yukawa cou-
plings without the cos2 θ. The scattering cross section
can be obtained in a straightforward way,

σχχ↔ff =
α2
fα

2
χs

12π(s−m2
X)2

. (26)

The dark matter abundance follows eq. (10), with neq
χ =

gχnrad. The thermally averaged cross section can be com-
puted in the ultrarelativistic limit T ≫ mχ as [21, 28]

〈σv〉 = 49

18

Nfα
2
fα

2
χ

m4
Xπ

[

ζ(4)

ζ(3)

]2

T 2 ≃ 2.2 Nf

α2
fα

2
χ

πm4
X

T 2 ,

(27)
where Nf the number of SM fermions coupling with
the mediator X and we have assumed T ≫ mχ and
T ≪ mX . The final expression is of the form (1), with
n = 2, λ = α2

fα
2
χ and M = mX . We use this expression

in the system of equations (8)-(9)-(10), which we inte-
grate numerically, under the assumption, characteristic
of NETDM, that the dark matter abundance is much
smaller than the thermal equilibrium value, nχ ≪ neq

χ .
For generality we plot Rχ, which scales out all model-
dependent factors from the dark matter yield during re-
heating, and we have assumed a constant g = gRH . Fig-

ure 4 shows the comparison between the fully numeri-

cal calculation (black, continuous) using R
(n)
χ in eq. (20)

with n = 2, and the instantaneous reheating result (or-
ange, dotted) given by Rχ,instant.(T ) from eq. (7). It can
be seen that the instantaneous approximation minimally
overshoots the exact solution by a mere 3%, in agreement
with (20).

10-8 10-5 0.01 10

0.5

1

5

10

50

100

FIG. 4. As in Fig. 2, for n = 2.

C. High Scale Supersymmetry, with two gravitinos

final state processes

Our final example is that of two-gravitino final state
processes which are the dominant gravitino production
mechanisms in high scale supersymmetry models where
the only supersymmetric state below the inflationary
scale is the gravitino [22, 23]. In this case, the process

X+ Ỹ → G̃+Z is not possible as there are no supersym-
metric particles in the thermal bath and X+Y → Z̃+ G̃
is kinematically forbidden. Thus, the dominant process
becomes X + Y → G̃ + G̃ which is highly suppressed.
Since m3/2 ≪ mg̃, we expect the cross section to longi-
tudinal modes to dominate and when accounting for all
possible SM initial states, the thermally averaged cross
section can be written as [22]

〈σv〉 ≃ 2000
T 6

πF 4
, (28)

where F =
√
3MPm3/2 is the supersymmetry breaking

order parameter.
The strong suppression (∝ F 4) of the cross section

would indicate that a relatively high reheating tempera-
ture and gravitino mass are required to produce a suffi-
cient quantity of gravitinos to account for the observed
relic density. Indeed for a gravitino mass of 1 EeV, a
reheating temperature of approximately 5 × 1010 GeV
is needed [23], placing strong constraints on inflationary
models and supersymmetry breaking [29].
Figure 5 shows the exact and instantaneous results for

Rχ in the n = 6 case. In this case, one sees that the
standard estimate of the dark matter abundance evalu-
ated at TRH is not very accurate and the final ratio is
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Rχ ∼ 25.7, consistent with the result (21). From eq. (6)
we see that, in order to obtain the correct gravitino dark
matter abundance, the reheating temperature should be
decreased by a factor ∼ 2

3 with respect to that indicated
by the naive assumption of instantaneous decay.

10-8 10-5 0.01 10

10

104

107

1010

FIG. 5. As in Fig. 2, for n = 6.

IV. CONCLUSIONS

Reheating after inflation is responsible for the entire
matter and radiation content of the Universe. Thus, un-
derstanding the details of this process is crucial to our
ability to develop models incorporating entropy produc-
tion, baryogenesis, and dark matter among many other
important ideas in cosmology.
In many models of dark matter, including well studied

models of supersymmetric dark matter, thermally pro-
duced dark matter particles come into thermal equilib-
rium, and their final abundance is often determined af-
ter they freeze out of the thermal bath. On the other
hand, there are many models in which the dark mat-
ter candidates never attain thermal equilibrium yet are
produced from the thermal bath. Gravitino dark matter
is a good example of this situation, and early estimates
of the final gravitino abundance [2, 3] relied on the in-
stantaneous reheating approximation and the definition
of the reheating temperature. Reheating, however, is not
an instantaneous process, but rather a continuous one.
The rapid thermalization of the particles produced in the
earliest stages of reheating results in a thermal bath with
temperatures potentially much higher than the classically

defined reheating temperature.

Here, we have examined the effect of the high tempera-
tures attained during reheating on the production of dark
matter particles. We computed the abundance of a parti-
cle produced from the thermal bath with thermally aver-
aged cross section 〈σv〉 ∝ T n. Eq. (20) provides a simple
result for the discrepancy between the exact abundance,
and the naive calculation based on instantaneous reheat-
ing. This result can be immediately applied to obtain the
exact abundance for a number of particle physics models.
We considered three specific examples, characterized by
three different values of the exponent n.
Two cases, singly produced gravitinos in low energy

supersymmetric models, and NETDM candidates cou-
pled to the SM through heavy mediators, have produc-
tion cross sections with a relatively mild temperature de-
pendence (n = 0 and n = 2, respectively). Even in the
case of n = 2, the increased cross section at tempera-
tures T > TRH , is not sufficient to overcome the dilution
from inflaton decays when T < Tmax. However, we also
considered the case of gravitino production in high scale
supersymmetric models when the only non-SM particle
lighter than the inflaton is the gravitino. In this case,
gravitinos must be produced in pairs leading to an ad-
ditional scale suppression of the cross section which in
turn, leads to a larger temperature dependence. Indeed,
in this case, n = 6 and the production of gravitinos near
Tmax can not be neglected. We found that the true grav-
itino abundance exceeds the naive calculation by a factor
of ∼ 25.
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