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The observations and researches on the neutrinos provide a kind of indirect way of revealing the
properties of dark matter particles. For the detection of muon neutrinos, the main issue is the large
atmospheric background which is caused by the interactions between the cosmic rays and atoms
within the atmosphere. Compared with muon neutrinos, tau neutrinos have a smaller atmospheric
background especially for the downward-going direction. Except for the classical neutrino sources,
dark matter particles can also annihilate into the neutrinos and are the potential high energy as-
trophysical sources. Because the annihilation rate of dark matter particles is proportional to the
square of number density. Therefore, the annihilation rate is large near the center of dark matter
halos especially for the new kind of dark matter structures named ultracompact dark matter mini-
halos (UCMHs). In previous works, we have investigated the potential muon neutrino flux from
UCMHs due to dark matter annihilation. Moreover, since the formation of UCMHs is related to the
primordial density perturbations of small scales, so we got the constraints on the amplitude of the
primordial curvature perturbations of small scales, 1 . k . 107 Mpc−1. In this work, we focused
on the downward-going tau neutrinos from UCMHs due to dark matter annihilation. Compared
with the background of tau neutrino flux we got the constraints on the mass fraction of UCMHs.
Then using the limits on the mass fraction of UCMHs we got the constraints on the amplitude of
the primordial curvature perturbations which are extended to the scale k ∼ 108 Mpc−1 compared
with previous results.
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I. INTRODUCTION

As the main component of the Universe dark matter has been confirmed by many observations while its nature
remains unknown. At present, there are many dark matter models and the mostly researched model is the weakly
interacting massive particles (WIMPs). According to the theory of WIMPs, they can annihilate into, e.g. photons (γ),
electrons (e−), positrons (e+) and neutrinos (ν(ν̄)) [1, 2]. The observations and researches on the particles produced by
dark matter annihilation provide a way of indirect detection of dark matter particles. Moreover, the related researches
can be used to constrain the properties of dark matter particles, such as the mass (mDM) and thermally averaged cross
section (〈σv〉) of dark matter particles. For example, using the observations of γ-ray flux, it can be found that for the
dark matter mass mDM . 1TeV the constraints on the thermally averaged cross section are 〈σv〉 . 10−25cm2s−1 [3–
6]. For large dark matter mass, e.g.mDM & 1TeV, the constraints on 〈σv〉 from the γ-ray observations are weaker
than that from the neutrino observations [7–9]. The main way of using the neutrinos to research the properties of
dark matter particle is through the observations and studies on muon neutrinos (νµ) [8, 10–12]. The main flaw of
observations on νµ is the large atmospheric background which is caused by the interactions between the cosmic rays
and atoms within atmosphere [13, 14]. For electron neutrinos, νe, the atmospheric background is also large and the
cascade effects make the detection of νe very difficult [15, 16]. Compared with the muon and electron neutrino the
atmospheric background of tau neutrino (ντ ) is small especially in the direction of cosθZ > 0, where θZ is zenith
angle. In particular, for cosθZ & 0.5, the atmospheric tau neutrino fluxes is three orders smaller than the atmospheric
muon and electron neutrino background [13]. For cosθZ & 0.7, the atmospheric tau neutrino fluxes is even smaller
than that from solar corona interaction and galactic neutrino flux [13]. Although the cascade effects of tau neutrino
making the detection to be difficult, with the development of detection and statistical method the detection of tau
neutrino becomes to be possible [17–19].

Dark matter plays an important role in the process of the structure formation of the Universe. It is well known that
the structures of the Universe are the evolutionary results of the early density perturbations with a amplitude δρ/ρ ∼
10−5 [20]. If the amplitude of early density perturbations are larger than ∼ 0.3, the primordial black holes (PBHs) can
be formed [21]. Recently, the authors of [22] suggested that ultracompact dark matter minihalos can be formed in the
early time if the amplitude of primordial density perturbations is in the range of δρ/ρ ∼ 10−3−0.3. After the formation
of UCMHs, during the radiation dominated epoch, the mass of UCMHs keeps unchanged nearly due to the Meszaros
effect. After the redshift of equality of radiation and matter, the mass of UCMHs scales as MUCMHs ∼ 1/(1+ z). For
the density profile of UCMHs, one dimension simulation shows that it scales as ρUCMHs(r) ∼ r−9/4 [22]. Compared
with the mostly used dark matter halo models, such as Navarro-Frenk-White(NFW) model [23], the density profile
of UCMHs is steeper than that of NFW profile especially for r → 0, ρNFW(r) ∼ r−1. Because the annihilation rate
of dark matter particles is proportional to the square number density. Therefore, it is excepted that the annihilation
rate of dark matter particles is larger within UCMHs than that within the classical dark matter halos. In Ref. [24],
the authors investigated the γ-ray flux from UCMHs due to dark matter annihilation. They found that the γ-ray flux
from UCMHs formed during the e+e− phase transition can excess the threshold of Fermi or EGRET observations for
some dark matter annihilation channels. Besides the γ-ray flux, in theory, the neutrinos can also be emitted from
UCMHs due to dark matter annihilation especially for the lepton channels. In Ref. [25], the authors found that the
muon neutrino flux from UCMHs can excess the atmospheric muon neutrino flux. With no detection of excess of
γ-ray flux the upper constraints on the abundance of UCMHs are obtained, fUCMHs < 10−7 [26]. Similar to the γ-ray
flux, the researches on neutrino flux can also be used to do the studies on the abundance of UCMHs [25, 27]. Besides
the researches on the particles produced by dark matter annihilation, in Refs. [28, 29], the authors investigated the
gravitational effects caused by UCMHs and got the constraints on the abundance of UCMHs.

The formation of UCMHs is related to the primordial perturbations. After obtaining the limits on the abundance
of UCMHs, one can then using the limits on the abundance of UCMHs to get the constraints on the primordial
curvature perturbations [25–28]. It is well known that the structure formation is related to the primordial curvature
perturbations, PR(k), which stands for the amplitude of the primordial curvature perturbations. At present, the
constraints on PR(k) are mainly on large scales(k ∼ 10−4 − 1 Mpc−1) and from the observations and researches on
the CMB, Lyman-α forest and Large Scale Structure [20, 30, 31]. All of these observations show a nearly scale-invariant
spectrum of primordial perturbations with PR(k) ∼ 10−9 which is predicted by the popular inflation theory. On small
scales, k ∼ 1− 1020 Mpc−1, the constrains on PR(k) are mainly from the researches on PBHs, PR(k) . 10−2 [26, 32].
Similar to PBHs, the UCMHs can be formed in very early time, therefore, through the researches on the UCMHs one
can get the constraints on the primordial curvature perturbations of small scales. In Ref. [26], with no detection of
γ-ray flux from UCMHs, the authors got the constraints on PR(k) on scales k ∼ 5−108 Mpc−1, PR(k) . 10−6. Those
constraints are better than that of PBHs. Similar to the γ-ray flux, in previous work, we got the comparable results
through investigating the potential muon neutrino flux from UCMHs due to dark matter annihilation [25]. According
to the theory, νe and ντ can also be produced in the process of dark matter annihilation. Moreover, the oscillation
property of neutrinos can also result the conversation among three flavours of neutrino. As mentioned above, the
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downward-going tau neutrinos can also be used to look for the neutrino signals from dark matter annihilation due
to the lower atmospheric background. In this paper, we investigate the potential tau neutrino flux from UCMHs
due to dark matter annihilation and focus on the downward-going tau neutrino flux(cosθZ > 0). By comparing with
the atmospheric ντ background, we obtained the potential constraints on the abundance of UCMHs for the IceCube
experiment. Then using the limits on the abundance of UCMHs we got the constraints on the primordial curvature
perturbations of small scales.
This paper is organized as follows. The tau neutrino background are reviewed in Sec. II. In Sec. III, we will discuss

the main properties of UCMHs and the potential tau neutrino flux from them. In Sec IV, through comparing with
the background, the potential constraints on the abundance of UCMHs are obtained and using these constraints we
then get the upper limits on the primordial curvature perturbations of small scales. The conclusions and discussions
are presented in Sec. IV.

II. BACKGROUND OF TAU NEUTRINO FLUX

There are several sources for the background of tau neutrinos. The main one is the atmospheric background and
it is mainly due to the oscillation of the muon neutrinos. This background is lower than that of electron and muon
neutrinos especially for cosθZ > 0. For example, for cosθZ & 0.5, the background of ντ is about 3 orders lower than
that of νµ or νe [13]. For this background, we use the form given in Ref. [33, 34] as

dΦνµ

dEνµdΩ
= N0E

−γ−1
νµ

(

a

1 + bEνµcosθ
+

c

1 + eEνµcosθ

)

GeV−1km−2yr−1sr−1, (1)

where θ is the zenith angle, N0 = 1.95 × 1017(1.35 × 1017) for νµ(ν̄µ), γ = 1.74, a = 0.018, b = 0.024GeV−1, c =
0.0069, e = 0.00139GeV−1. The conversion probability of νµ into ντ can be written as

P (νµ→τ ) = sin22θatmsin
2

(

1.27
∆m2

atmL

Eν

)

, (2)

where L is the propagation length of neutrinos after being produced in the atmosphere [14]. For the parameters
related to the neutrino oscillations, following Refs. [13, 14], we have set sin22θatm = 1, |∆m2

atm| = 2.4× 10−3eV2.
In addition to the ντ flux coming from the conversion of νµ, the decay of charmed particles produced in atmosphere

provide another background of ντ and this can be parametrized as [13, 14, 35]

log10

[

E3
ν

dφν

dEν
/

(

GeV2

cm2 s sr

)]

= −A+ Bx− Cx2 −Dx3, (3)

where x = log10(Eν [GeV]), A=6.69, B=1.05, C=0.150 and D=-0.00820.
Neutrinos can also be produced in the solar corona by cosmic-ray collisions. This neutrino flux has been studied in

Ref. [36], the νe and νµ flux can be written as

dφν

dEν
= N0

(Eν [GeV])
−γ−1

1 + A (Eν [GeV])

(

GeV cm2 s
)−1

, (4)

which is valid for 102GeV ≤ E ≤ 106GeV. The numerical values of the coefficients N0, A and γ can be found in
Ref. [36]. Recently, the authors of Refs. [37–39] have revisited this neutrino flux and updated the results. In this
paper, we have used these new results for our calculations.
In Ref. [40], the authors discussed that the tau neutrinos can also originate from Galactic plan. Considering the

oscillations of neutrinos the tau neutrino flux can be parameterized as

dφντ

dE
= 9× 10−6

(

GeV cm2 s sr
)−1

(E[GeV])
−2.64

(5)

which is valid in the energy range 1 GeV ≤ E ≤ 103 GeV.
For the background of tau neutrino flux, the main component is the conversation of atmospheric muon neutrino.

In this paper, we considered the total flux mentioned above for our calculations. Moreover, we considered downward-
going tau neutrino flux as cosθ > 0.
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III. FORMATION OF UCMHS AND TAU NEUTRINO FLUX FROM UCMHS DUE TO DARK

MATTER ANNIHILATION

The UCMHs can be formed in the early Universe, e.g. z ∼ 1000, if the primordial density perturbations is in the
range of 10−3 < δρ/ρ < 0.3 [22, 41]. After formation the mass of UCMH changes as [22]

MUCMH(z) = Mi
1 + zeq
1 + z

, (6)

where Mi is the initial mass within the perturbations scale. The results of one dimension simulation shows that the
density profile of UCMH is in the following form [22, 24, 26]

ρ(r, z) =
3fχMUCMH(z)

16πR(z)3/4r9/4
, (7)

where fχ = ΩDM

Ωb+ΩDM
= 0.83 [42], R(z) is the radius of UCMH,

R(z) = 0.019

(

1000

1 + z

)(

MUCMHs(z)

M⊙

)1/3

pc. (8)

After the redshift, e.g. z ∼ 10, the structure formation will be dominated in the Universe. Therefore, we set zstop = 10
and at that time the mass of UCMHs stop increasing [22, 24–26, 28, 29, 43]. Due to the dark matter annihilation
rate is proportional to the square of number density, therefore the inner density profile of UCMH is very important
for the related studies [44]. Generally, one treat the density of UCMH as a constant value for raidus r . rmin,
ρUCMH(r . rmin) = cons. [24–26]. Here we considered two factors which have remarkable effects on rmin. One factor
is to consider the conservation of angular momentum of dark matter particles. After the formation of UCMHs, dark
matter particles will accrete on UCMHs by radial infall. Considering the conservation of angular momentum, the
cutoff radius rmin can be written as [26]

rmin = 5.1× 10−7pc

(

1000

1 + z

)2.43 (
M0

UCMH

M⊙

)0.27

. (9)

Another factor which can effect the center density of UCMH is the annihilation of dark matter particles. For this
factor, following Refs. [24–26], we truncate the radius at rcut. For r < rcut, the density profile of UCMHs is

ρUCMHs(r < rcut) =
mDM

〈σv〉 (t− ti)
, (10)

where mDM and 〈σv〉 are the mass and thermally averaged cross section of dark matter particle respectively. t is the
cosmic time and ti is the formation time of UCMHs. For the parameters considered in this work, we find rcut & rmin,
therefore, we adopt rcut for our calculations. More detailed discussions about center density profile can be found in
e.g. Refs. [26, 45].
The neutrino flux from UCMH due to dark matter annihilation can be written as [25]

dφν

dEνdΩ
=

1

8π

dNν

dEν

〈σv〉
m2

DM

1

d2UCMH

∫ rmax

rmin

ρ2UCMH(r, zstop)4πr
2dr, (11)

where dUCMH is the distance of UCMH from the Earth, dNν/dEν is the neutrino number per dark matter annihilation
and can be obtained from the public code DarkSUSY1. The tau neutrino flux from UCMH is shown in Fig. 1. In this
figure, we considered τ+τ− annihilation channel and set the dark matter mass mDM=0.1 (blue short-dashed line) and
1 TeV (purple dot line), the thermally averaged cross section 〈σv〉 = 3 × 10−26 cm3 s−1. In this plot, we considered
the UCMH formed during the phase transition named e+e− annihilation and the distance is dUCMH = 0.1 kpc. In
addition to the background of the ντ flux, for comparison, the backgrounds of νµ flux are also shown. As shown in
Fig. 1, the ντ flux from UCMH due to dark matter annihilation is higher than the ντ background but lower than νµ
background.

1 http://www.darksusy.org/
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FIG. 1. Tau neutrino flux from UCMH due to dark matter annihilation for τ+τ− channel. We have set the dark matter mass
mDM=0.1 (blue short-dashed line) and 1 TeV (purple dot line), the thermally averaged cross section 〈σv〉 = 3×10−26 cm3 s−1.
In this plot, we have considered the UCMH formed during the phase transition named e+e− annihilation. The distance of
UCMH is dUCMH = 0.1 kpc. For comparison, in addition to the ντ background flux (red solid line) the νµ background flux are
also shown (green long-dashed line).

IV. CONSTRAINTS ON THE FRACTION OF UCMHS AND PRIMORDIAL CURVATURE

PERTURBATIONS

Detecting and researching the neutrinos provide an important way of indirectly searching for the dark matter
particles [46, 47]. At present, a typical way is to detect the muon neutrinos, especially for the upward-going neutrino
flux. The detection of electron neutrinos are also considered, see e.g. [15]. For the background, the muon neutrino is
dominated and the background of electron neutrino is in the same level compared with that of muon neutrino [13].
Compared with the muon and electron neutrino, the background of tau neutrino flux is lower especially in the direction
of cosθZ & 0.5. The main interaction for ντ is the charged-current interaction and for the IceCube or ANTARES
experiment the cascade events for the detection of ντ can be written as [48]

Nντ =

∫

dΩ

∫ Emax

Emin

dEρNAVeff

(

σνN (E)CC

dφν

dEνdΩ

)

, (12)

where Veff is the effective volume of the detection[49, 50]. ρ is the density of ice for IceCube and water for ANTARES,
NA = 6.022×1023 is Avogadro’s number. σνN (E)CC is the charged current cross section and we adopt the form given
in Ref. [51]. For the IceCube and ANTARES experiments, we set the energy bin as [max (Ethresh,mDM/5) ,mDM] for
the events calculations.
Compared with the background, 2σ statistical significance can be obtained as [13, 52]

ζ ≡ NS√
NS +NB

, (13)

where NS and NB are the neutrino events from UCMH and background respectively.
The fraction of UCMHs can be calculated using the following formula [26]
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FIG. 2. Upper limits (95% C.L.) on the mass fraction of UCMHs for the downward-going tau neutrino flux for IceCube (red
solid line) and ANTARES (green dashed line). Here we have set the dark matter mass mDM = 1TeV and the thermally averaged
cross section 〈σv〉 = 3× 10−26 cm3 s−1. The annihilation channel is τ+τ−.

fUCMHs =
fχM

0
UCMH

MMW

log(1− y
x)

log(1− Md<d
obs

MMW
)
, (14)

where Mr<dobs
is the mass within the radius dobs which is the distance on which the neutrino signals from UCMH

would be observed by the detector2. In this work, we use the NFW profile for the dark matter halo model of the
Milky Way. Using above equations, one can obtain the values of dobs for 2σ statistical significance for different mass of
UCMH. Then the limits on the fraction of UCMHs can be obtained using Eq. (14) and the results are shown in Fig. 2.
These constraints are comparable to the previous results which obtained using the gamma ray flux, e.g. Ref. [26].
Since the background of ντ flux is lower than that of νµ flux, therefore, compared with previous works, the constraints
are extended to the smaller mass3, MUCMH ∼ 10−11M⊙. Similar to the constraints on the basic parameters of dark
matter particle [9], for ANTARES, the constraints on the fraction of UCMHs are about 4 factors better than that of
IceCube for the most mass range of UCMHs.
The constraints on the mass fraction of UCMHs can be used to get the limits on the amplitude of the primordial

curvature perturbations, PR(k). Here we briefly review the main processes of calculations and one can refer to Refs. [25,
26] for more detailed discussions. As mentioned above, UCMHs can be formed if the early density perturbations are
in the range of 0.001 . δρ/ρ . 0.3. If the initial perturbations are Gaussian, the fraction of UCMHs is related to the
primordial density perturbations as

ΩUCMHs =
2ΩDM√
2πσH(R)

MUCMHs(z = 0)

MUCMHs(z = zeq)

∫ δmax

δmin

exp

(

− δ2H(R)

2δ2H(R)

)

dσH(R), (15)

2 If the distance of UCMH is larger than the radius of Milky Way(MW), the mass within dobs is written as [25, 32] Md<dobs
= 4π

3
(d3

obs
−

d3max,MW )ρDM +MMW, where MMW is the mass of MW.
3 Considering the effect of kinetic decoupling of WIMP, there is the smallest mass of UCMH [26].
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where δmax and δmax are the maximal and minimal values of density perturbations required for the formation of
UCMHs and both of them depend on the redshift [26]. σH(R) is related to the curvature perturbations as

σ2
H(R) =

1

9

∫ ∞

0

x3W 2(x)PR(x/R)T 2(x/
√
3)dx, (16)

where W (x) = 3x−3(sinx − xcosx) is the Fourier transform of the top-hat windows function with x ≡ kR. T is the
transfer function describing the evolution of perturbations. Using above equations, one can translate the limits on the
mass fraction of UCMHs into the constraints on the amplitude of primordial curvature perturbations. The results are
shown in Fig. 3. From this plot, one can find that the limits on the amplitude of primordial curvature perturbations
are PR(k) . 2 × 10−6 for the scales 3 . k . 4 × 108 Mpc−1. The results are comparable to that of previous works.
Because the constraints on fUCMHs for ANTARES are better that of IceCube, therefore, as shown in Fig. 3, the limits
on PR(k) is also better for the ANTARES.
There are several factors which can influence the final constraints. One is the inner density profile of UCMH.

Since the annihilation rate of dark matter particles is proportional to the square number density, therefore, the inner
density profile of UCMH is very important for the production of neutrino flux caused by dark matter annihilation.
The detailed discussions about this issue are given in Ref. [44]. In this work, for the center density profile, we have
used the Eq. (10) for our calculations and it is the results of dark matter annihilation. The main flaw of using Eq. (10)
is neglecting the infalling of dark matter particles after the annihilation [44]. The Fig. 4 shows the constraints on the
fraction of UCMHs and amplitude of primordial curvature perturbations for different rmin of UCMH. In this plot, we
have simply set rmin/RUCMH = 10−5, 10−6 and 10−7. For the constraints on the mass fraction of UCMHs, there are
about two orders differences for some mass range of UCMHs. There are also clear differences for the constraints on the
amplitude of primordial curvature perturbations. Another very important factor which can effect the final constraints
are the misidentification of events and the detector efficiency for tau leptons. Detailed discussions are given in Ref. [13].
As shown in Ref. [13], for the choice of reasonable parameters, compared with the case of no misidentification, the
final constraints are about one order weaker.4 Besides these two factors, different dark matter annihilation channels
have also significant impacts on the final results. In this paper, we have investigated four annihilation channels,
bb̄,W+W−, τ+τ− and µ+µ−. The limits on fUCMHs and PR(k) for different channels are shown in Fig. 5. From this
plot, it can be seen that the better constraints are for the lepton channels, µ+µ− and τ+τ−. The constraints on
fUCMHs are about two orders better for µ+µ− channel than that of bb̄ channel for some mass range of UCMHs. For
τ+τ− channel, the limits on fUCMHs are about a factor of two weaker than that of µ+µ− channel. The similar results
can also be found for the limits on PR(k).

V. CONCLUSIONS

In this work, we have investigated the potential downward-going tau neutrino flux from UCMHs due to dark
matter annihilation. Compared with muon neutrino flux the background of tau neutrino flux is smaller while the
tau neutrino flux from UCMHs is the same order with the muon neutrino flux. With no detection of neutrino flux
from UCMHs, we got the constraints on the mass fraction of UCMHs. The strongest limits are fUCMHs . 10−7 for
the mass MUCMH ∼ 104M⊙. These results are comparable with previous works. Using the limits on the fraction
of UCMHs we then got the constraints on the amplitude of primordial curvature perturbations on the scales of
3 . k . 4 × 108 Mpc−1. The strongest limits are PR(k) . 1.5 × 10−7 at scale k ∼ 106 Mpc−1. Compared with
previous works, e.g. Ref. [25], the strongest constraints on PR(k) are comparable.5 In Ref. [25], the authors used
the muon neutrino flux to get the constraints on PR(k) on scales 1 . k . 107 Mpc−1. In this work, since the lower
background of tau neutrino flux, the scales can be extend to k ∼ 108 Mpc−1.
Due to the dark matter annihilation rate is proportional to the square number density of dark matter particles,

therefore the center density profile of UCMHs is very important for the constraints on fUCMHs and PR(k). The
researches on the center density profile of UCMH are beyond the scope of this work and detailed discussions on this
issue can be found in Ref. [44]. In this paper, in order to investigate the influences of different center density profile
on the final constraints we simply considered three forms of center density profile of UCMH. Specifically, we have set
rmin/RUCMH = 10−5, 10−6 and 10−7 for the purpose. For these setting, there are about two orders differences for
the constraints on fUCMHs and also obvious differences for the constraints on PR(k). Another factor which can effect

4 For detailed discussions one can refer to Ref. [13], e.g. the Fig. 10.
5 In Ref. [25], for the final constraints on PR(k), the authors have set δmin = 0.001 for all scales to got the conservative constraints. In
fact, the values of δmin depends on the redshift [26]. In this work, following the methods in Ref. [26], we used the redshift dependent
values of δmin(z) for our calculations.
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FIG. 3. Upper limits (95% C.L.) on the amplitude of the primordial curvature perturbations, PR(k), for scales 3 . k .
4 × 108 Mpc−1, for IceCube (red solid line) and ANTARES (green dashed line). The parameters of dark matter particle are
the same as Fig. 2.
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the finals results is the misidentification of events. Detailed discussions can be found in Ref. [13]. According to their
calculations, for the choice of reasonable parameters, there are about one order difference for the final constraints.
Besides above factors, different dark matter annihilation channels have also significant impacts on the final constraints.
In order to investigate these impacts, we have set four channels for our calculations, bb̄,W+W−, τ+τ− and µ+µ−.
We have found that for the limits on fUCMHs the best results are from µ+µ− channel. There are not big differences
between µ+µ− and τ+τ− channels. The similar results can also be found for the limits on PR(k).
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