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Outcomes of numerical relativity simulations of massive core collapses or binary neutron star
mergers with moderate masses suggest formations of rapidly and differentially rotating neutron
stars. Subsequent fall back accretion may also amplify the degree of differential rotation. We propose
new formulations for modeling the differential rotation of those compact stars, and present selected
solutions of differentially rotating, stationary, and axisymmetric compact stars in equilibrium. For
the cases when rotating stars reach break-up velocities, the maximum masses of such rotating models
are obtained.

I. INTRODUCTION

According to numerical relativity simulations, compact
stars have a significant amount of differential rotation in
two cases. One is proto neutron stars (PNS) formed af-
ter the core collapses of supernova progenitors around
8 − 25M⊙, and the other is hypermassive neutron stars
(HMNS) formed after binary neutron star (BNS) mergers
[1, 2]. The rotation curve of PNS, roughly speaking the
angular velocity profile Ω as a function of the cylindrical
radial coordinate̟ = r sin θ, may depend on various fac-
tors including initial spins, magnetic field configurations,
and equations of state (EOS), and may evolve in time
with a timescale longer than the dynamical one.
It has been reported in recent core collapse simulations

that in the range ∼ 20− 30km from the rotation axis the
rotation curves are monotonically decreasing of about a
few tens of % from the value at the rotation axis [3]. The
rotation curves of the HMNS formed after binary neu-
tron star mergers are more complex. Recent simulations
[4] suggest that the profile of the rotation curve Ω(̟)
increases of about a few tens to a few hundreds of % of
the central value Ωc and then decreases, independently of
EOS. Not only the above dynamical process, but also the
subsequent fall back accretion may amplify the degree of
differential rotations [5]. If the matter from a fall back
disk accretes onto the equatorial surface of a nascent neu-
tron star to spin it up, the angular velocity of the outer
part of neutron star could become even faster than the
inner part.
Modeling such differential rotations in the relativistic

regime is important for accurately computing stationary
and axisymmetric equilibriums of the above mentioned
astrophysical compact objects. Such equilibrium solu-
tions will be useful for studying their long time evolu-
tions in thermal/viscous timescales, for studying their
dynamical or secular stabilities, and for providing initial
data for numerical relativity simulations [6]. Stationary
and axisymmetric models of rapidly rotating stars can
be calculated most straightforwardly by deriving an an-

alytic first integral of the Euler equation, and by simul-
taneously solving the first integral and the gravitational
field potentials using a certain iterative, self-consistent,
numerical method [7, 8]. In Newtonian gravity, the first
integral can be derived assuming a one-parameter EOS
for the thermodynamic variables (namely, a barotropic
fluid), or the flow field to be va = Ωφa, where the angu-
lar velocity Ω depends only on ̟, Ω = Ω(̟). Either one
of these choices implies the other condition [9].1

In the case of relativistic gravity, the relativistic Eu-
ler equation associated with the timelike and rotational
Killing fields tα and φα can be analytically integrated for
the circular flow, uα = ut(tα + Ωφα), where uα is the
4 velocity of the perfect fluid. Different from the New-
tonian case, however, the integrability condition can not
be expressed as Ω to be a function of coordinate ̟, but
as the relativistic specific angular momentum j := utuφ

(uφ := uαφ
α) to be a function of Ω, j = j(Ω) [6]. For

this condition, it is less clear than the Newtonian case
how one should set the form of the integrability condi-
tion j(Ω). Because of this, only limited types of differen-
tial rotations have been investigated for relativistic stars
[10–13].
The differential rotation law used in most of previous

works is the so called j-constant law

j(Ω) = A2(Ωc − Ω), (1)

where Ωc and A are constants. One of the well known
applications of this rotation law is the computation of
HMNS formed after binary neutron star mergers. Baum-
garte, Shapiro and Shibata (BSS) [11] have shown that
this rotation law can support stars having nearly twice of
the maximum mass of the non-rotating star for the same
EOS. This work was extended by several authors using

1 In this paper, the Latin indices denote spatial vectors or tensors,
the Greek indices spacetime ones, and geometric units G = c = 1
with solar mass M⊙ = 1 are used.
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FIG. 1. Rotation curves Ω(̟) for the rotation laws (1), (4) and (5) in the Newtonian limit. Panel(a): j-constant law (1)
(whose Ω(̟) is the left expression in Eq.(6) with q = 1). Panel(b): Eq. (4) with A = 0.1 (Ω(̟) is the left expression in
Eq. (6)). Panel(c): same as panel(b), Eq. (4) but with Ωeq/Ωc = 0.5. Panel(d): a new rotation law (5) with a negative sign
(Ω(̟) is the right expression in Eq. (6) with a negative sign). Panel(e): a new rotation law (5) with a positive sign (Ω(̟) is
the right expression in Eq. (6) with a positive sign). For the cases of panel(c)-(e), the parameter A is determined by setting
Ωeq/Ωc = 0.5, where Ωc and Ωeq are the angular velocities at the rotation axis and at the equatorial surface, respectively. In
each panel, the order of the labels in the legends (from top left to bottom right) correspond the order of the curves in the plot
(from top to bottom).
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FIG. 2. Selected rotation curves Ω(̟) for the rotation laws
(8) and (9) in the Newtonian limit. Left and right panels
are the same curves in linear and log-log scales, respectively.
The parameters A and B are determined by setting Ωeq/Ωc =
0.5 and Ωmax/Ωc = 2, where Ωmax is the maximum angular
velocity at a given point on the equatorial plane.

the same rotation law [12, 13]. However, this rotation
curve (approximately, the curve labeled A = 1 in panel
(a) of Fig.1) is even qualitatively different from the ones
resulting from the simulations mentioned above [4]. To
our knowledge, differential rotation laws different from
Eq. (1) have been used only in [14–16] for computing
compact stars, and in [17] for a rotating self-gravitating
disk around a point source in first order post-Newtonian
gravity.

In this paper, we introduce new formulations for mod-
eling realistic rotation curves of differentially rotating
compact stars extending our previous works [14, 16] and
present the first results of the set of equilibrium solutions.

II. NEW FORMULATIONS FOR THE

RELATIVISTIC DIFFERENTIAL ROTATIONS

The relativistic Euler equations are derived from
the transverse components of the conservation laws,
∇βT

αβ = 0, with respect to the 4 velocity uα, where
the perfect fluid stress energy tensor is written Tαβ =
(ǫ + p)uαuβ + pgαβ. Here, ǫ is the energy density, p
the pressure, and gαβ the spacetime metric. Applying
the symmetries along the timelike and rotational Killing
fields tα and φα, they are written

∇α ln
h

ut
+ utuφ∇αΩ −

T

h
∇αs = 0, (2)

where h is the relativistic enthalpy defined by h =
(ǫ+p)/ρ, 2 ρ the baryon rest mass density, T the tempera-
ture, and s the specific entropy. In this article, we assume
a homentropic fluid s = constant, although an exten-
sion to a more general barotropic fluid is straightforward.
Then, with the integrability condition j := utuφ = j(Ω),
Eq. (2) is analytically integrated as

h

ut
exp

[
∫

jdΩ

]

= E , (3)

where E is a constant.
The choice of the function form of the integrability

condition j(Ω) is the key for modeling various rotation
curves in relativistic stars. In our previous paper [16],
the following rotation law has been introduced

j(Ω; q, A) = A2Ω

[(

Ωc

Ω

)q

− 1

]

. (4)

2 The relativistic enthalpy h satisfies the local thermodynamic re-
lation dh = Tds+ dp/ρ.
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In addition to this, we propose new rotation laws,

j(Ω; p,A) = A2Ω

[

∓

(

Ω

Ωc

− 1

)]p

. (5)

The rotation laws (4) and (5) can be combined in a gen-
eral form j(Ω; p, q, A) = A2Ω [∓ ((Ωc/Ω)

q − 1)]
p
. How-

ever, we separate them as (4) and (5), because they are
general enough, and because the integrals of j(Ω; p, q, A)
that appear in Eq. (3) involve hypergeometric functions
for arbitrary values of the indices (p, q), which may be
inconvenient for a numerical code. The minus and plus
signs of the rotation law (5) give monotonically decreas-
ing and increasing rotation curves, respectively, by choos-
ing a set of positive real roots for Ω which satisfies

∓
(

Ω
Ωc

− 1
)

> 0 (see below). We usually choose the

power indices p and q in Eqs. (4) and (5) to be positive
real numbers.
In the Newtonian limit, Ω(̟) can be solved from

utuφ = ̟2Ω = j(Ω) for each rotation law (4) and (5),
respectively, as

Ω

Ωc

=

(

1 +
̟2

A2

)−1/q

, and
Ω

Ωc

= 1∓

(

̟2

A2

)1/p

. (6)

From Eqs. (6), it becomes clear that the role of the pa-
rameter A, which has the dimension of length, is to set
the radius where the rotation curve changes from a con-
stant Ωc to a certain differential rotation at a radius
around ̟ ∼ A. As discussed in [16], for the case of rota-
tion law (4), which corresponds to the first rotation curve
in Eq. (6), Ω becomes a power of ̟, namely Ω ∼ ̟−2/q,
in the Newtonian limit for A . ̟ ≤ R0, where R0 is
the equatorial radius of the compact star. For example,
it becomes the Kepler rotation law for q = 4/3 and the
j-constant law for q = 1, as shown in panel (b) of Fig. 1.
In the regime of strong gravity, rotation profiles are mod-
ified because of relativistic effects (including the choice
of coordinate conditions). Some examples are shown for
selected solutions in the later section.
This rotation law (4) may be used in a different man-

ner: by adjusting the constant parameter A for a given
slope index parameter q, one can fix the value of Ω at
a given point to a given value. For example, we can fix
the ratio of Ω at the equatorial surface Ωeq to its cen-
tral value Ωc, and vary the slope of the rotation curve
Ω(̟). In panel (c) of Fig.1, such rotation curves Ω(̟)
of Eq. (4) in the Newtonian limit (the first equation in
(6)) are plotted for Ωeq/Ωc = 0.5. When the positive
index q is decreased, one might expect that the rotation
curves become more and more convex upward. However,
as seen in panel (c), it is not the case: the slopes of the
rotation curves with fixed Ωeq/Ωc do not change very
much for 0 < q < 1.
This is one of the motivations for introducing new rota-

tion laws (5) whose Newtonian limits are the expressions
on the right in equation (6). For the case with the minus
sign in Eq. (5), the slope of the rotation curves changes

gradually from convex downward to upward as the value
of the positive index p decreases. This is shown in panel
(d) of Fig. 1 for the Newtonian limit. For the case with
the plus sign in Eq. (5), the rotation curves monotonically
increase along the equatorial radius, and their Newtonian
limit is plotted in the panel (e) of Fig. 1. As mentioned
in the Introduction, these rotation laws with minus and
plus signs may be used for modeling the evolution of the
angular momentum distribution of the core of PNS and
HMNS, or of neutron stars spinning up because of fall
back accretion.
For the case of HMNS formed after BNS mergers, re-

sults of the simulations suggest that j(Ω) could become
a multi-valued function. Therefore, we propose the inte-
grability condition to be Ω as a function of j, Ω = Ω(j),
instead of j = j(Ω). 3 Accordingly the integral in Eq. (3)
should be rewritten,

∫

jdΩ =

∫

j
dΩ

dj
dj. (7)

Then, we propose two rotation laws,

Ω(j; p, q, A,B) = Ωc

1 +
(

j/B2Ωc

)p

1 + (j/A2Ωc)
q+p . (8)

Ω(j; p,A,B) = Ωc

[

1 +

(

j

B2Ωc

)p](

1−
j

A2Ωc

)

. (9)

In Fig.2, rotation curves in the Newtonian limit are
plotted for selected indices (p, q) = (1, 3) and (2, 3) for
Eq. (8), and p = 1 and 1.5 for Eq. (9). In these curves, we
determine the parameters A and B by setting the ratio
of the maximum value of Ω, Ωmax to that at the rotation
axis Ωc, as well as the ratio Ωeq to Ωc to be a given
constant. In Fig.2, these ratios are set as Ωmax/Ωc = 2
and Ωeq/Ωc = 0.5.
In both (8) and (9), the index p controls the growth of

rotation curves near the rotation axis. This is analogous
to the rotation law (5) with the positive sign, but for (8)
and (9), Ω ∼ ̟2p + constant. The index q in Eq. (8)
controls the asymptotic behavior of Ω(̟), in particular
the index value q = 3 results in the Kepler rotation law
in the Newtonian limit. For non integer values of (p, q),
the hypergeometric function appears in the first integral.
Therefore, in actual applications of the rotation law (8),
we choose indices (p, q) = (1, 3) and (2, 3) only. With
these choices, the integral (7) becomes a little lengthy
but analytic expressions in terms of elementary functions
exist.

3 Eq. (2) is also written ∇αp
ǫ+p

− ∇α lnut + j∇αΩ = 0, and the

relativistic von Zeipel’s theorem states that the coincidence of the
surfaces of constant energy density ǫ and pressure p is guaranteed
if and only if f(j,Ω) = 0, where f is a function of Ω and j = utuφ

only (or f(l,Ω) = 0 where l := −
uφ

ut
= j

1+jΩ
) [18].
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TABLE I. The maximum mass and compactness of a spher-
ically symmetric (Tolman-Oppenheimer-Volkov) solution for
the case of the polytropic EOS p = KρΓ with Γ = 2. M0 is
the rest mass, M the gravitational mass, and M/R the com-
pactness (R the circumferential radius). The constant K is
chosen so that M0 = 1.5 at M/R = 0.2. To convert the value
of ρc in cgs units to that in G = c = M⊙ = 1 units, divide
the value by M⊙(GM⊙/c

2)−3 ≈ 6.176393 × 1017g cm−3.

Γ (p/ρ)c ρc [g/cm3] M0 M M/R

2 0.318244 2.76957 × 1015 1.51524 1.37931 0.214440

TABLE II. Parameters of the rotation laws used for comput-
ing equilibrium solutions presented in Fig.3. Models I to V
and DR correspond to the pair of panels in Fig.3 in order
from top to bottom in the left column, then top to bottom in
the right column. Model DR is one of the HMNS solutions
calculated in BSS [11].

Model Rotation law p q A/R0 Ωeq/Ωc Ωmax/Ωc

I (5) (minus) 1/4 — — 0.5 —

II (5) (plus) 1/2 — — 0.5 —

III (4) — 4 10−3/2 — —

IV (8) 1 3 — 0.5 2

V (9) 3/2 — — 0.5 2

DR (4) — 1 1 — —

Rotation laws of the envelope or disk of matter ejected
during events of core collapses or BNS mergers seem
more likely to follow asymptotically the j-constant law
as the remnants evolve towards axisymmetric configura-
tions. Model (8), however, can not reproduce j-constant
rotation in a region A . ̟ ≤ R0. Such a j-constant
law in the envelope can be achieved by rotation law (9).
For Eq. (9), one can integrate Eq.(7) analytically for any
arbitrary values of p in terms of elementary functions.
When the constant B is set to be B > A in order to have
Ωmax ∼ Ωc, this rotation law results in the j-constant law
as in Eq.(1). However, for Eq.(9), Ω transits from uni-
form rotation to the j-constant rotation law more sharply
than Eq.(1).

These rotation laws (1), (4), (5), (8), (9) are incor-
porated successfully into our cocal code [16, 19]. In
the following calculations, we use the Isenberg Wilson
Mathews formulation (thin sandwich formalism), which
is based on the 3+1 decomposition of the spacetime with
the assumption of conformally flat spatial metric on the
spacelike hypersurface. We also assume that the high
density matter of compact stars is a perfect fluid whose
EOS is approximated by a polytropic EOS p = KρΓ with
the index Γ = 2 (see Table I). Further details on the
formulation and numerical method can be found in our
previous papers [16, 19].

III. RESULTS

In Fig.3, solutions of representative models for com-
pact stars with various differential rotation laws are pre-
sented. In the left panel of each pair in the figure, shown
are the contours for the rest mass density ρ, the color
map for the distribution of the angular velocity Ω (nor-
malized to the equatorial radiusR0), and the deformation
sequence of the stellar surfaces (dashed green curves) in
the xz (meridional) plane 4. In the right panels, the rest
mass density profile ρ/ρc and the rotation curve Ω/Ωc

normalized to the central value of each quantity are plot-
ted along the radial coordinate ̟ in the equatorial plane.
Selected parameters for the differential rotation laws

corresponding to the models in Fig.3 are summarized in
TableII. Physical quantities of these selected solutions
are listed in Table III. Also listed are, for reference, the
differentially and uniformly rotating models DR and UR,
respectively, calculated for the same EOS. Model DR is
one of the HMNS models used in BSS [11]. The solutions
of Models I, II, III, and UR in Table III are those closest
to the maximum mass model of each rotation parame-
ter set. Those of Models IV–V and DR are close to the
maximum mass model among the calculated equilibri-
ums. Solution sequences of these models are expected to
continue to larger deformations and eventually to com-
pletely toroidal configurations. Such toroidal equilibri-
ums may support a much larger mass than the presented
solutions. Also note that, in Models II and III, the ro-
tation of the fluid near the equatorial surface is close to
the Kepler limit.
In Fig.4, the Arnowitt-Deser-Misner (ADM) mass

MADM is plotted with respect to the maximum of the
rest mass density ρc. The curves for Models II, III, and
UR are the extrapolated maximum values of MADM for
each value of ρc. For Models IV, V, and DR which ex-
hibit toroidal configurations, the curves are those of fixed
axis ratio Rz/R0 = 0.25, and for Model I, the curve is
for Rz/R0 = 0.5. Each solution in Table III is marked
by a circle in the plots. It can be seen clearly that hyper-
massive solutions exist for differential rotation Models I,
III–V, and DR, while only supramassive solutions exist
for Model II. 5

4 The degree of deformation of an axisymmetric star may be mea-
sured by the ratio of the axes along the polar and equatorial
radius Rz/R0. Each dashed green curve in each panel of Fig.3
corresponds to the shape of a star in the xz plane with a fixed
Rz/R0. (Each dashed green curve corresponds to the surface of
a different solution, and sequences of dashed green curves are de-
formation sequences of each differentially rotating model.) The
contours for ρ and the color map for Ω, as well as the corre-
sponding right panels, are those of the solution with the largest
deformation among those computed for each model.

5 We call a compact star solution hypermassive if its mass is larger
than that of the maximum mass of the uniformly rotating solu-
tion, and supramassive if its solution is smaller than the max-
imum mass of the uniformly rotating solution, but larger than
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FIG. 3. Equilibriums of differentially rotating compact stars. The set of model parameters for the rotation law for each pair
of panels is described in Table II. The pairs of panels from top to bottom in the left column, then from top to bottom in the
right column correspond to Models I to V and DR in Table II, respectively. The left panel of each pair shows the contours of
the rest mass density ρ (black solid curves), the color map for the angular velocity ΩR0 and the deformation sequence of the
surface of the rotating star Rs(θ, φ) (green dashed curves) on the xz (meridional) plane. In the right panels, plotted are the
normalized rest mass density profiles ρ/ρc and the normalized rotation curves Ω/Ωc along the equatorial axis (x = ̟ sin θ with
θ = π/2).

TABLE III. Selected solutions for various rotation law models. Models I–V and DR correspond to the rotation laws listed in
Table II. The uniformly rotating Model UR is also listed for reference. Listed quantities are the equatorial and polar radii in
proper length R̄0 and R̄z, the maximum density ρc, the angular velocity near the rotation axis Ωc, the ADM mass MADM, the
rest mass M0, the proper mass MP, the angular momentum J , the ratio of the kinetic to gravitational energy T/|W |, the virial
constant Ivir, and the Komar mass MK. Details of the definitions are found in [19].

Model R̄0 R̄z/R̄0 ρc [g/cm3] Ωc MADM M0 MP J/M2
ADM T/|W | Ivir/|W| |1−MK/MADM|

I 12.100 0.54465 2.0178 × 1015 0.056201 1.90066 2.09398 2.28918 0.79695 0.1623 7.13 × 10−4 5.14× 10−5

II 9.7507 0.76609 2.3309 × 1015 0.034174 1.48792 1.63360 1.82150 0.43227 0.0494 8.46 × 10−4 1.59× 10−5

III 14.921 0.38561 1.2531 × 1015 0.226992 1.97116 2.16320 2.31631 0.84818 0.1854 1.06 × 10−3 4.80× 10−5

IV 12.523 0.26763 1.1830 × 1015 0.062582 2.56462 2.84625 3.07421 0.88534 0.2464 1.60 × 10−4 2.67× 10−4

V 13.501 0.26010 8.6983 × 1014 0.046783 2.59667 2.86195 3.03360 0.91444 0.2461 8.59 × 10−5 2.00× 10−4

DR 14.230 0.26688 8.6985 × 1014 0.100879 2.66479 2.94986 3.12656 0.95184 0.2589 1.44 × 10−4 2.09× 10−4

UR 11.141 0.63972 2.3309 × 1015 0.044776 1.58665 1.74325 1.93925 0.56764 0.0832 8.87 × 10−4 2.54× 10−5
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FIG. 4. MADM is plotted with respect to the maximum
rest mass density ρc for differentially rotating Models I to
V in Table II. For reference, Model DR in Table II [11], the
uniformly rotating Model UR and the spherically symmetric
(TOV) model are also plotted. The curves for Models II, III
and UR correspond to their maximum deformation sequences.
Those of Models IV, V, DR correspond to sequences with a
fixed axis ratio Rz/R0 = 0.25, and Model I with Rz/R0 = 0.5.
Each solution in Table III and the maximum mass of the TOV
solution Table I is marked by a circle on each curve.

In Model I (top left column of Fig.3), the differential
rotation law is nearly constant in the core, and decreases
to 50% of the core value at the equatorial surface. This
type of rotation law may be realized in the PNS formed
as a result of core collapse. Because of the uniform rota-
tion of the core, the deformation of equilibrium solutions
appear to be limited: examining the density contours
of several solutions slightly more deformed than that of
Model I in Fig.3, we found that, although the surface of
the star is not close to the Kepler limit, the largely de-
formed inner part reaches break-up because of rapid ro-
tation, and hence the deformation sequence of spheroidal
equilibriums is terminated.
For Model II (the second panel from the top in the

left column in Fig.3), the equatorial angular velocity Ωeq

of the star is 50% higher than the central value Ωc. In
such a case, the maximum deformation can not be larger
than that of the uniformly rotating Model UR. Although
Model II is less deformed than Model UR, Ωeq(= 2Ωc

in this case) at the maximally rotating model (Kepler
limit) is about 53% larger than Ω of the uniformly rotat-
ing model (in normalized angular velocity ΩMADM is 43%
larger), while the T/|W | of Model II is 59% smaller than
that of Model UR. Such solution may become a model
for neutron stars spinning up because of equatorial accre-
tion. In more realistic situations, it might be necessary to
apply external pressure at the surface of the star, which
may allow more rapid rotation than the presented model.
Model III (the third panel from the top of the left

column in Fig.3) is an example for which the rotation
curve is a power of ̟. In this model, we choose q = 4
in Eq. (5), which becomes Ω ∼ ̟−2/q = ̟−0.5 in the

Newtonian limit. We have confirmed that this power law
is reproduced in the less massive solutions, but in the
presented solution which is close to the maximum mass,
the index appear to be Ω ∼ ̟−0.4, which is considered
to be a relativistic effect in isotropic coordinates.
In the pairs of panels in the right column of Fig.3, equi-

librium models largely deformed to become toroidal den-
sity distributions are presented. Model IV (top panels)
is the result for Eq.(8) with (p, q) = (1, 3), and Model V
(middle panels) for Eq.(9) with p = 3/2. Model DR (bot-
tom panels) is the model with Eq.(8) with q = 1, which
is the same as rotation law (1), and is shown for compar-
ison. Model DR has been commonly used for studying
HMNS and other relativistic differentially rotating stars
including PNS [10–13]. Solution sequences of increasing
deformation of these three models seem not to terminate
at a certain axis ratio, but continue to toroidal solutions.
This allows masses as high as, or even higher than, twice
the maximum mass of the spheroidal solution.
Since these differential rotation profiles allow toroidal

distributions of mass, these three solutions are qualita-
tively similar. However, the detailed structure of the so-
lutions, especially near the rotation axis, depends on the
rotation curves. The rotation curve is flatter for larger
index p, and accordingly, the distance between the rota-
tion axis and the maximum density (center of the toroidal
density distribution) becomes wider.
The overall features of the rotation curve of each com-

pact star presented in Fig. 3 are qualitatively the same
as the corresponding Newtonian rotation curves shown
in Figs. 1 and 2. Differences in the details of the profiles
may be due to the use of isotropic coordinates on the
spacelike hypersurface, for which the coordinate length
becomes relatively short in the region of stronger gravity
(with higher density).

IV. DISCUSSION

In recent papers [20, 21], fully numerical relativity sim-
ulations for high density matter associated with large
shear viscosity have been performed. In [20], the evo-
lution of rotation profiles due to viscosity was shown for
the HMNS formed after BNS mergers. Because of the
assumption of high viscosity, the rotation profile evolves
towards uniform rotation in a short timescale, about
∼ 20msec, and hence the rotating HMNS stably evolves
in such short timescale. However, if the viscosity is not
strong enough, the evolution timescale of such HMNS
may be longer, and then the stability of each rotating
model with a certain rotation profile needs to be exam-
ined. Our equilibrium models will be useful for studying
the stability of such HMNS. As a step for such a study,
one can investigate the bar mode instability of differen-
tially rotating neutron stars with the proposed new ro-
tation laws, as it has been done limitedly to rotation law
1 in [22].
We have proposed new function forms of integrabil-
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ity conditions for differential rotation laws of relativistic
compact stars in equilibrium. It is possible to develop
further variations of function forms for other rotation
laws. More practically, one could prepare interpolating
or fitting functions for a data table of j(Ω) or Ω(j) ob-
tained from the results of numerical simulations. In this
paper, we have concentrated on the effect of differential
rotation on the increase of the maximum mass seen in
the HMNS. However, in more realistic situations, the in-
crease of the mass of HMNS is due also to the thermal
part of the EOS. It is therefore important to include the
thermal part of the EOS to develop more realistic equi-
librium models of such PNS or HMNS for distinguishing
the contributions from the thermal pressure and the dif-
ferential rotation to the mass excess. As for GW170817,
a search for a rotating neutron star remnant has been

performed in the data following GW170817 and the up-
per limits of gravitational wave signal is obtained which
is of an order of magnitude larger than expected. The
signal would be detected by LIGO/VIRGO of the design
sensitivity and the such future detectors as KAGRA [23].
Such extensions of the present method and their applica-
tions to actual compact objects are the next step of our
future works.
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