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A hidden Markov model (HMM) scheme for tracking continuous-wave gravitational radiation
from neutron stars in low-mass X-ray binaries (LMXBs) with wandering spin is extended by intro-
ducing a frequency-domain matched filter, called the J -statistic, which sums the signal power in
orbital sidebands coherently. The J -statistic is similar but not identical to the binary-modulated
F-statistic computed by demodulation or resampling. By injecting synthetic LMXB signals into
Gaussian noise characteristic of the Advanced Laser Interferometer Gravitational-wave Observatory
(Advanced LIGO), it is shown that the J -statistic HMM tracker detects signals with characteristic
wave strain h0 ≥ 2 × 10−26 in 370 d of data from two interferometers, divided into 37 coherent
blocks of equal length. When applied to data from Stage I of the Scorpius X-1 Mock Data Chal-
lenge organised by the LIGO Scientific Collaboration, the tracker detects all 50 closed injections
(h0 ≥ 6.84×10−26), recovering the frequency with a root-mean-square accuracy of ≤ 1.95×10−5 Hz.
Of the 50 injections, 43 (with h0 ≥ 1.09 × 10−25) are detected in a single, coherent 10-d block of
data. The tracker employs an efficient, recursive HMM solver based on the Viterbi algorithm, which
requires ∼ 105 CPU-hours for a typical, broadband (0.5-kHz), LMXB search.

[Version 6.40]

I. INTRODUCTION

Continuous-wave gravitational radiation from accret-
ing neutron stars in binary systems is a key target of
long-baseline interferometers like the Laser Interferome-
ter Gravitational Wave Observatory (LIGO) and Virgo
in the Advanced Detector Era [1]. In particular, X-
ray–emitting neutron stars in low-mass X-ray binaries
(LMXBs) are predicted to be relatively strong sources if
they exist in a state of torque balance [2, 3]. The charac-
teristic gravitational wave strain h0 emitted by an LMXB
in torque balance is proportional to the square root of the
X-ray flux independent of the distance to the source. [3]
Scorpius X-1 (Sco X-1), the brightest LMXB in X-rays,
is therefore the highest priority target in this class. Sev-
eral plausible mechanisms exist for generating the mass
or current quadrupole moment required for torque bal-
ance, ranging from thermocompositional and magnetic
mountains [4–7] to r-modes [8–10]. Even without torque
balance, the prospects of detecting LMXBs with persis-
tent X-ray emission are encouraging, depending on the
detailed physics of deep crustal heating [11].
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A nonaxisymmetric rotor in a Keplerian orbit emits
a frequency-modulated gravitational wave signal. The
orbital Doppler shift disperses the emitted power into
Fourier sidebands separated in frequency by P−1, where
P is the orbital period. Several strategies have been de-
ployed previously to process signals of this kind. The
TwoSpect algorithm, which operates on doubly-Fourier-
transformed data, was used to conduct an all-sky search
for unknown binaries in data from LIGO Science Run 6
(S6) and Virgo Science Runs 2 and 3 (VSR2 and VSR3 re-
spectively), returning upper limits of h0 . 2×10−24 for a
whole sky search at 217 Hz and h0 . 1×10−23 for a search
of the frequency range 20–57 Hz for Sco X-1 [12, 13].
A fully templated version of TwoSpect, tailored to han-
dle directed LMXB searches, offers substantial compu-
tational savings [14]. The sideband algorithm, which
sums the power in the orbital sidebands of the maximum-
likelihood F-statistic semi-coherently, was used to con-
duct a directed search for Sco X-1 in LIGO Science Run
5 (S5) data, returning an upper limit of h0 ≤ 8 × 10−25

at 150 Hz [15–17]. The radiometer algorithm applied to
LIGO S5 data returns a model-independent upper limit
of 5× 10−25 for the root-mean-square wave strain across
a 0.25 Hz bin at 160 Hz at the sky position of Sco X-
1 [18, 19]. The cross-correlation algorithm, which mul-
tiplies Fourier transforms in pairs weighted by a phase
with an adjustable time lag [20–23], and the polynomial
algorithm [24] have not yet been applied to actual inter-
ferometer data in a Sco X-1 search but they competed in
Stage I of the Sco X-1 Mock Data Challenge (MDC) [25],
together with the TwoSpect, sideband, and radiometer
algorithms. Parameter-space metrics for binary sources,
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a key ingredient for building semi-coherent StackSlide-
type search pipelines, have been derived recently [26] and
used to estimate the optimal sensitivity of a general semi-
coherent search for Sco X-1 in the Advanced Detector
Era.

A key challenge facing LMXB searches is that the
spin frequency of the source, and hence its gravitational
wave frequency, wander stochastically. Spin wander-
ing, which is observed in X-ray pulsar timing experi-
ments [27], is driven by fluctuations in the hydromag-
netic accretion torque [28–30] due to transient accretion
disk formation [31, 32] or disk-magnetosphere instabili-
ties [30]. It is auto-correlated on time-scales of days to
weeks [33]. Recent work by Suvorova et al. [34] demon-
strates that hidden Markov model (HMM) methods offer
a practical, computationally efficient strategy for track-
ing a wandering frequency [35]. HMM methods have
been deployed with success in many engineering appli-
cations, ranging from radar and sonar analysis [36] to
mobile telephony [37]. They deliver accurate estimation,
when the signal-to-noise ratio (SNR) is low, but the sam-
ple size is large [35], as is the case for continuous-wave
searches for gravitational radiation from neutron stars in
binary systems. Suvorova et al. [34] implemented and
tested a HMM scheme based on a Bessel-weighted vari-
ant of the maximum-likelihood F-statistic and the classic
Viterbi HMM scheme [35, 38]. The scheme successfully
detects synthetic, spin-wandering, binary signals with
h0 & 8 × 10−26 in Gaussian noise with power spectral

density 4 × 10−24 Hz−1/2. It also detects 41 out of 50
signals without spin wandering in Stage I of the Sco X-1
MDC with h0 ≥ 1.1×10−25, achieving root-mean-square
accuracy ≤ 4 × 10−3 Hz in frequency estimation. A di-
rected search of LIGO Observing Run 1 (O1) data in the
range 60–650 Hz with the HMM scheme reported an up-
per limit of h0 . 8 × 10−25, and had a computational
cost of ∼ 103 CPU-hr [39].

In this paper, we report on an improved version of the
above HMM scheme, which achieves better sensitivity
while remaining competitive in terms of computational
cost. In Ref. [34], the detection statistic at each HMM
step is calculated by summing the F-statistic values at
orbital sidebands weighted by positive coefficients pro-
portional to the squares of Bessel functions. Physically
this corresponds to summing the sideband powers inco-
herently, i.e. neglecting the relative phases of the side-
band spectral components. In this paper, we replace the
above detection statistic with a variant, called the J -
statistic, that preserves the orbital phase information.
The rest of the analysis pipeline remains unchanged, i.e.
we solve the HMM recursively using the Viterbi algo-
rithm as in previous work. The J -statistic takes as an
input the initial orbital phase (or equivalently the time of
passage through the orbit’s ascending node or the epoch
of inferior conjunction) [16]. This information is typi-
cally measured for LMXBs to an accuracy of . 10−2 rad
from contemporary and historical optical spectroscopic
data [40, 41]. A refined measurement is returned by the

algorithm itself in the event of a detection.
The paper is structured as follows. In Section II, we

review briefly the HMM framework for frequency track-
ing and the Viterbi algorithm implemented to solve the
HMM. In Section III, we introduce the J -statistic and
show how it follows naturally from the phase model of
the source. The J -statistic is constructed from the same
intermediate data products as the F-statistic, leverag-
ing existing and thoroughly tested software infrastruc-
ture built by the LIGO Scientific Collaboration. The
improved HMM pipeline is tested against synthetic data
with Gaussian noise in Section IV and data from Stage I
of the Sco X-1 MDC in Section V.

II. FREQUENCY TRACKING

In this section we review briefly the HMM approach
to frequency tracking, as applied to continuous-wave
searches (Section IIA), and the classic Viterbi algorithm
for solving the resulting HMM scheme (Section IIB). The
reader is referred to Ref. [34] and references therein for
a full description of the method and its implementation.
We copy the notation from Ref. [34] in what follows.

A. HMM framework

Let f?(t) be the unknown, wandering spin frequency
of the neutron star as a function of time t. An HMM
models the time series f?(t) as a sequence of random
jumps between unobservable (‘hidden’) states, which are
themselves related probabilistically to some observable
quantity (here, the interferometer data) via a detection
statistic. The objective of an HMM analysis is to find the
most likely sequence of jumps consistent with the obser-
vations, once the transition probabilities are prescribed.

Continuous-wave searches are typically performed in
the frequency domain on interferometer data that have
been packaged into short Fourier transforms (SFTs) of
duration TSFT = 30 min, during which f?(t) remains con-
fined to one frequency bin of width ∆fSFT = (2TSFT)−1.
Consecutive SFTs are combined to compute a frequency-
domain detection statistic G(f). In between TSFT and
the total observation time Tobs, for any particular astro-
physical source, one can always calculate G(f) over an in-
termediate ‘drift’ time-scale Tdrift (TSFT ≤ Tdrift ≤ Tobs),
such that f?(t) remains confined within one G(f) fre-
quency bin of width ∆fdrift = (2Tdrift)

−1, viz.∣∣∣∣∣
∫ t+Tdrift

t

dt′ ḟ?(t
′)

∣∣∣∣∣ < ∆fdrift (1)

for all t. For example, in the published sideband search
for Sco X-1 in LIGO S5 data, 480 consecutive SFTs are
combined to compute the sideband C-statistic C(f) for
Tdrift = 10 d, under the assumption that f?(t) wanders by
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less than ∆fdrift = 6× 10−7 Hz during that time interval
[15, 16].

In an HMM search, we compute G(f) for NT =
Tobs/Tdrift blocks of data. In each block, the discre-
tised hidden variable q(t) = f?(t) is constant and oc-
cupies one of Nf? = B/∆fdrift discrete hidden states
{q1, ..., qNf?}, where B = f?,max − f?,min is the total
search bandwidth. As the HMM steps from one block
to the next, q(t) jumps from one discrete state to an-
other. For a source in a binary, G(f) depends not only
on f? but also on the projected semimajor axis of the
binary orbit, a0 = a sin i, and the orbital phase φa at a
reference time ta (here the time of passage through the
ascending node). Optical spectroscopy measures a0 and
φa to accuracies of ∼ 25% and ∼ 1% respectively (see
Section IV D for further discussion). [40, 41] Typically
these resolutions are too coarse to produce a detectable
peak in G(f) and hence the HMM output; see Figure 7 in
Ref. [34]. Hence one must normally subdivide a0 and φa
more finely and track a three-dimensional hidden state
variable q(t) = [f?(t), a0(t), φa(t)], which can take on
NQ = Nf?Na0Nφa possible values, where each a0 (φa)
bin has width ∆a0 = 2σa0/Na0 (∆φa = 2σφa/Nφa), and
σa0 (σφa) is the one–standard-deviation error bar on a0

(φa) from electromagnetic observations. Under normal
astrophysical conditions, a0 and φa are constant during
the full search (Tobs . 1 yr), and the three-dimensional
HMM reduces to its one-dimensional counterpart [with
q(t) = f?(t)] computed on a grid ofNa0Nφa pairs (a0, φa).
We adopt the latter approach, which is readily parallelis-
able, in this paper.

For a Markov process, the jump probability for the
time step tn to tn+1 depends only on q(tn) and is de-
scribed by the transition probability matrix

Aqjqi = Pr [q(tn+1) = qj | q(tn) = qi] , (2)

where qi and qj are single-index labels enumerating NQ
discrete states. As in Ref. [34], we approximate spin wan-
dering as an unbiased random walk or Weiner process:
at every time step, f?(t) jumps by 0 or ±1 frequency
bins with equal probability in the absence of discontinu-
ous glitches [27]. As noted above, for observations with
Tobs . 1 yr, much shorter than the mass transfer time-
scale (Tacc ∼ 107 yr), the orbital elements are constant
up to negligible corrections of order Tobs/Tacc, and the
HMM is effectively one-dimensional, with q(t) = f?(t)
and NQ = Nf? . Hence the transition probabilities take
the simple form

Aqjqi =
1

3

(
δqj ,qi+1 + δqj ,qi + δqj ,qi−1

)
, (3)

where δij symbolises the Kronecker delta. Other choices
of the weights, e.g 1

4 , 1
2 , 1

4 are possible, but testing shows
there is little difference in performance. Machine learning
techniques for determining the weights from the data are
also possible but are beyond the scope of this paper [42].

In a continuous-wave search, the observable state vari-
able o(t) corresponds to the data collected during the

interval t ≤ t′ ≤ t+ Tdrift. Formally it is a vector, whose
dimension equals the interferometer sampling frequency
multiplied by Tdrift. The probability that the system is
observed in state o(tn) at time tn while it occupies the
hidden state q(tn) is called the emission probability,

Lojqi = Pr [o(tn) = oj | q(tn) = qi] (4)

In the class of continuous-wave searches considered in this
paper, Lojqi can be expressed in terms of the frequency
domain detection statistic G(f) as

Lo(tn)qi ∝ exp[G(f?i)], (5)

where G(f?i) is the log likelihood that f?(t
′) lies in the

i-th frequency bin [f?i, f?i + ∆fdrift] during the interval
tn ≤ t′ ≤ tn + Tdrift. We derive another version of G(f),
called the J -statistic, in Section III, which generalises the
estimator in Ref. [34] by summing the power in orbital
sidebands coherently with respect to orbital phase.

Given an observed sequence O = [o(t0), ..., o(tNT )],

there exist NNT+1
Q hidden sequences Q =

[q(t0), ..., q(tNT )], which can give rise to O. As-
suming the Markov property, each hidden sequence has
probability

P(Q|O) = Lo(tNT )q(tNT )Aq(tNT )q(tNT−1) · · ·Lo(t1)q(t1)

×Aq(t1)q(t0)Πq(t0), (6)

where

Πqi = Pr[q(t0) = qi] (7)

is the prior probability of each hidden state, which we
take to be uniform for simplicity, viz.

Πqi = N−1
Q . (8)

The most probable path Q?(O) = arg max Pr(Q|O), i.e.,
the path that maximises equation (6), represents the
HMM’s best estimate of the spin history f?(t) of the
source.

B. Viterbi algorithm

Many methods exist to solve efficiently for Q?(O); see
Ref. [35] for examples. The challenge is to prune the

NNT+1
Q possible hidden sequences in an efficient way.

One approach, first proposed by Viterbi [38], takes ad-
vantage of the Markov property, and the fact that sub-
sequences of the optimal sequence Q?(O) are themselves
optimal, to find Q?(O) recursively by backtracking. At
every forward step in the recursion, the Viterbi algorithm
eliminates all but NQ possible state sequences; overall its
computational cost is (NT + 1)NQ lnNQ [35].

At forward step k (1 ≤ k ≤ NT ), we calculate and
store the NQ maximum probabilities

δqi(tk) = Lo(tk)qi max
1≤j≤NQ

[
Aqiqjδqj (tk−1)

]
(9)
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and the states

Φqi(tk) = arg max
1≤j≤NQ

[
Aqiqjδqj (tk−1)

]
(10)

from which each maximum probability is reached, with
1 ≤ i ≤ NQ. The optimal path is then reconstructed by
backtracking for 0 ≤ k ≤ NT − 1:

q?(tk) = Φq?(tk+1)(tk+1) (11)

Hence, the Viterbi algorithm computes the maximum
likelihood estimator, i.e., arg max Pr(Q|O).

Detailed pseudocode for the algorithm, including the
initialisation and termination steps, is given in Ref. [34],
following the notation and presentation in the textbook
by Quinn and Hannan [35].

III. MATCHED FILTER

The emission probability Lo(t)qi is computed from the
frequency domain estimator G(f) according to equa-
tion (5). Many valid choices exist for G(f), depending
on computational constraints, the format of the interfer-
ometer data, and the assumed model for the phase evo-
lution of the source. In this paper, we leverage the exist-
ing software infrastructure for continuous-wave searches
in the LIGO Scientific Collaboration Algorithm Library
(LAL) to build G(f) out of the easy-to-use and thor-
oughly tested maximum-likelihood matched filter called
the F-statistic [43]. We review the F-statistic for an iso-
lated source without any orbital motion in Section III A.
We then describe in Section III B a method to combine
F-statistic values at orbital sidebands coherently — by
tracking orbital phase — to construct a matched filter for
a binary source. The latter version of G(f), termed the
J -statistic, is compared with incoherent algorithms for
summing orbital sidebands like the C-statistic [16, 17, 44]
and Bessel-weighted F-statistic [34] in Section III C.

A. Isolated source: F-statistic

The gravitational wave signal from a biaxial rotor with-
out any orbital motion can be written in the form

h(t) =

4∑
i=1

A1ih1i(t),+A2ih2i(t). (12)

The independent components h1i(t) are given by

h11(t) = a(t) cos Φ(t), (13)

h12(t) = b(t) cos Φ(t), (14)

h13(t) = a(t) sin Φ(t), (15)

h14(t) = b(t) sin Φ(t), (16)

where Φ(t) is the signal phase at the detector and h2i(t)
is obtained from h1i(t) by replacing Φ(t) with 2Φ(t) in

equations (13)–(16). In (12)–(16), A1i and A2i denote
arbitrary amplitudes specific to the source, and a(t) and
b(t) are antenna beam-pattern functions defined by equa-
tions (12) and (13) in Ref. [43], which contain informa-
tion about the source’s sky position (right ascension α,
declination δ), the Earth’s rotation and the detector’s ori-
entation. Following equations (18) and (96) in Ref. [43],
we split the signal phase into three terms,

Φ(t) = 2πf?[t+ Φm(t;α, δ)] + Φs[t; f
(k)
? , α, δ], (17)

where Φm is a time shift produced by the diurnal and
annual motions of the detector and source relative to the
Solar System barycentre (SSB), and Φs is a phase shift
combining the latter two effects with the intrinsic evolu-
tion of the source in its own rest frame through the intrin-

sic frequency derivatives f
(k)
? = dkf?/dt

k (with k ≥ 1).
The output from a single interferometer is given by

x(t) = h(t) + n(t), where n(t) denotes additive noise.
Consider the special case A2i = 0. If the noise is Gaus-
sian, then the normalised log likelihood of measuring the
time series x(t) over the interval 0 ≤ t ≤ Tobs is propor-
tional to

ln Λ′1 = (x||h)− 1
2 (h||h), (18)

where we define the inner product

(x||y) =
2

Tobs

∫ Tobs

0

dt x(t)y(t). (19)

Maximising ln Λ′1 with respect to the four amplitudesA1i,
we arrive at the following expression for the maximum-
likelihood matched filter known as the F-statistic,

F = D−1[B(x||h11)2 − 2C(x||h11)(x||h12) +A(x||h12)2

+B(x||h13)2 − 2C(x||h13)(x||h14) +A(x||h14)2],
(20)

with A = (a||a), B = (b||b), C = (a||b) and D = AB −
C2. When searching the data x(t) for a gravitational
wave signal, we evaluate F as a function of the source
parameters, e.g., f?, α, δ, some or all of which may not be
known. A similar, independent maximisation procedure
may be performed to solve for the amplitudes A2i. The
result is identical to (20), except that h1i is replaced by
h2i.

In practice, LIGO continuous-wave searches often take
Fourier-transformed interferometer data as inputs. It is
therefore convenient to rewrite the inner product (19)
in terms of the Fourier transform of x(t). The calcu-
lation is presented in detail in Section IIID of Ref. [43]
and also in Ref. [45]. Here we quote the result. Let f0

be the search frequency, where the F-statistic is eval-
uated, which may or may not coincide with the star’s
spin frequency f?. For f0 6= f? we have 〈F(f0) = 0〉
and

〈
|F(f0)|2

〉
≈ Sh(f0)Tobs, where 〈· · · 〉 denotes an en-

semble average over many realisations of the noise, and
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Sh(f0) denoted the one-sided noise power spectral den-
sity at frequency f0. For f0 = f?, we have 〈F(f0) = 0〉
and

〈
|F(f0)|2

〉
& h2

0T
2
obs. Define the Fourier integral

F1a =

∫ Tobs

0

dtb x[t(tb)]a[t(tb)]e
−iΦs[t(tb)]e−2πif0tb , (21)

and define F1b in the same way but with a[t(tb)] replaced
by b[t(tb)]. We can then rewrite (20) as

F =
4

Sh(f0)TobsD

[
B|F1a|2 − 2CRe(F1aF?1b) +A|F1b|2

]
(22)

after rescaling by a factor Tobs/Sh(f0) as in equation (56)
in Ref. [43]. In (21), tb = t + Φm(t) denotes a
new barycentered time coordinate related implicitly to
t through the time shift introduced by the Earth’s rota-
tion and revolution.

Formally, equation (21) integrates all the data, imply-
ing a Fourier transform with ∼ 1010 points for Tobs = 1 yr
and kilohertz sampling. In practice, to assist with stor-
age, the integral is subdivided into ‘atoms’ [45]. Each
atom corresponds to one SFT and is labelled by Xα,
where X indexes the interferometer, and α is the ordinal
of the SFT for that interferometer. If the SFT labelled
by Xα runs over the interval tXα ≤ t ≤ tXα + TSFT,
equation (21) simplifies to

F1a =
∑
Xα

âXα

∫ tXα+TSFT

tXα

dtb x[t(tb)]e
−iΦs[t(tb)]e−2πif0tb

(23)

with

âXα = a[t(tb = tXα + TSFT/2)]. (24)

We make the approximation in equations (23) and (24)
that a(t), which has a 24-hr period, changes slowly dur-
ing the 30-min SFT (typically without switching sign)
and can be approximated by its midpoint value. In or-
der to convert an SFT (frequency bin width ∆fSFT) into
atom-based quantities like F1a, F1b and F (frequency
bin width ∆fdrift = TSFT∆fSFT/Tdrift � ∆fSFT), we
‘fill in’ the intermediate bins according to the Williams-
Schutz approximation by convolving with the sinc func-
tion associated with the Fourier transform of the window
tXα ≤ t ≤ tXα + TSFT. The reader is referred to Section
4.2 of Ref. [45] for full details.

B. Binary source: J -statistic

The gravitational wave signal from a biaxial rotor in
a Keplerian orbit is given by equations (12)–(16), as for
an isolated source, except that the observed frequency is
modulated by the orbital Doppler shift, and the phase
varies harmonically as

Φs(t) = −2πf?a0 sin Ω(t− ta), (25)

where a0 is the projected semimajor axis, Ω = 2π/P
is the orbital angular velocity, P is the orbital period,
and ta = φa/Ω is a reference time, usually taken to be
the time of passage through the ascending node. The
phase model (25) assumes a circular orbit for simplicity;
a nonzero orbital eccentricity is straightforward to in-
clude in the fashion described in Section 4.5 of Ref. [16].

Intrinsic, nonorbital frequency derivatives f
(k)
? are also

omitted from (25) but are implemented as options in the
LAL F-statistic code and can be activated easily via a
software switch.

Upon substituting (25) with f? replaced by f0 into (23)
and expanding the factor e−iΦs[t(tb)] with the aid of the
Jacobi-Anger identity, we obtain the Fourier integral

J1a =
∑
Xα

∞∑
s=−∞

âXαJs(2πf0a0)e−isφa

×
∫ tXα+TSFT

tXα

dtb x[t(tb)]e
−2πi(f0−s/P )tb . (26)

The J -statistic is then obtained by evaluating (22) us-
ing (26) and an analogous formula for J1b. The sum
over Bessel orders is truncated to M = 2ceil(2πf0a0) + 1
terms, because we have |Js(2πf0a0)| � 1 for |s| >
2πf0a0 � 1.

The second line in (26) is the same windowed Fourier

transform calculated by the F-statistic, with f
(k)
0 = 0 for

all k ≥ 1, evaluated at f0 − s/P instead of f0. Hence we
can compute the J -statistic using existing F-statistic in-
frastructure by summing the F-statistic output at orbital
sidebands weighted by a phase factor ∝ e−isφa . Strictly
speaking, according to Ref. [43], Φs in (17) is allowed to

depend on f
(k)
0 for k ≥ 1 but not on f0 itself. We may

therefore elect to replace f0 by its average value f̄0 across
a narrow sub-sideband (of width 1 Hz, say) in the argu-
ment of Js, as in previous analyses using the C-statistic
[16, 44]. It is found a posteriori that the results are nearly
indistinguishable. In the previous HMM study involving
the Bessel-weighted F-statistic, where the data are con-
volved with a Bessel filter, f0 is replaced by f̄0 in 1-Hz
sub-bands to avoid recalculating the filter in every one of
Nf? frequency bins, realising computational savings [34].
Accordingly, a search of a large band will be implemented
as a series of searches over overlapping, 1-Hz sub-bands.

Long-term optical spectroscopy measures ta to an ac-
curacy of |∆ta| ∼ 10−3P , which translates to ±1× 102 s
for Sco X-1 and ±8 × 102 s for Cyg X-2 for example
[40, 41]. The orbital-phase–coherent J -statistic is sensi-
tive to ta through (26). To preserve orbital phase coher-
ence the condition 2πf̄0a0Ω|∆ta| � 1 must be satisfied;
the absolute error |∆ta| contributes cumulatively to every
sideband, and there are ≈ 4πf0a0 significant sidebands.
In terms of fiducial Sco X-1 parameters, one requires

|∆ta| . 4.0(f0/300 Hz)−1(a0/1.44 s)−1(P/68023 s) s.
(27)
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The accuracy targeted in (27) is unachievable at the time
of writing, so we are obliged to either estimate ta or
search over it. Constraints from electromagnetic data
nevertheless reduce the search domain significantly. In
this paper, we elect to search over ta (or equivalently
φa). The results are presented in Sections IV and V.

We note in passing that any algorithm that sums F-
statistic values at orbital sidebands, like the J -statistic,
C-statistic [16, 17] and Bessel-weighted F-statistic [34],
is not truly a maximum-likelihood estimator. The F-
statistic at the s-th sideband (frequency f0 − s/P ) max-
imises the partial likelihood of detecting a signal at

f0 − s/P with respect to amplitudes A
(s)
1i and A

(s)
2i spe-

cific to that sideband, not the total log likelihood ln Λ′1
for all the sidebands added together. A true maximum-
likelihood estimator would maximise ln Λ′1 for a single,
optimal choice of the eight amplitudes A1i and A2i. We
discuss quasi-maximum-likelihood estimators further in
Appendix A.

Before presenting results based on searching over φa,
we comment briefly on an alternative approach: estimat-
ing φa. Formally, J1a in (26) is a Fourier series in the
variable φa with period 2π. Therefore, upon computing
the discrete Fourier transform of J1α in the variable s,
we expect to observe a peak at the true value of φa. The
calculation is fast, but it yields multiple spurious peaks,
when the signal approaches the detection limit. In princi-
ple, the peaks can be vetoed by the recursive logic of the
HMM, but φa is known to be constant astrophysically on
the time-scale Tobs, so the HMM reduces equivalently to
searching over φa without Fourier maximisation.

C. Relative performance

Before combining the J -statistic with the HMM in
Sections IV and V, we compare its sensitivity with
matched filters used in previous work. The compari-
son is based on injections into a single, 10-d block of
data, typical of a single HMM detection step in a Sco
X-1 search (Tdrift = 10 d), with noise level Sh(f?)

1/2 =

4× 10−24 Hz1/2 and other injection parameters as in Ta-
ble I.

Figure 1 displays the output of four matched filters as
a function of f0: the F-statistic [43], C-statistic [16, 17],
Bessel-weighted F-statistic [34], and J -statistic (Sec-
tion III B of this paper). The injected signal is strong,
with h0 = 8×10−25, making it visible to the eye in all four
panels. The matched filters are evaluated for the exact,
injected values of a0 and φa, i.e., f0 is the only search pa-
rameter. In Figure 1a we see the distinctive double-horn
profile of a binary source in the F-statistic, which arises
because a source with inclination angle ι 6= 0 spends
more time moving parallel to the line of sight (maximum
Doppler shift) than perpendicular to it. (The Fourier
transform is the time-weighted frequency histogram.) In
Figure 1b we see the distinctive onion-dome profile of the
C-statistic output. The peak is centred on the value of

f0 bracketed by the maximum number of significant side-
bands. It is broad, because sidebands are summed with
equal weights; for weaker but still detectable signals, the
peak shrinks and merges into a flat plateau raised above
the noise. In Figure 1c the onion done transforms into
a concave cusp. The peak is sharper and taller than
in Figure 1b, because the Bessel weighting favours the
central sidebands, which are intrinsically stronger. In
Figure 1d, corresponding to the J -statistic, the peak is
even taller. Essentially zero power falls outside the cen-
tral bin in the J -statistic; by accounting for the phases
∝ e−isφa in (26), we avoid power leaking into the shoul-
ders of the peak (cf. Figure 1c). The peaks are 11.8, 2.7,
14.6, and 32.6 dB above the noise (that is, the mean for
bins containing only noise) in Figures 1a, 1b, 1c, and 1d
respectively (note logarithmic vertical scale).

Figure 2 shows the probability density function (PDF)
for the J -statistic for pure noise (Figure 2a) and noise
plus signal (Figure 2b). Like the F-statistic [43], the
J -statistic is distributed as a central chi-squared distri-
bution with four degrees of freedom, χ2(4, 0) for white,
Gaussian noise (regardless of the noise amplitude). When
a signal is added to the noise, the J -statistic is dis-
tributed as a non-central chi-squared distribution with
four degrees of freedom, χ2(4, λ). The non-centrality pa-
rameter λ is related to the amplitude of the signal, the
amplitude of the noise and the observation time accord-
ing to

λ ∝ h2
0Tobs

Sh(f0)
. (28)

IV. SYNTHETIC DATA

A. Injection and search procedure

To assess the effectiveness of the J -statistic, we begin
by seeking to detect synthetic signals injected into white,
Gaussian noise. To facilitate comparison with previous
work, we re-use the trial parameters used by Suvorova
et al. [34] in an identical test of the Bessel-weighted F-
statistic. The parameters are quoted in Table I. Data
are generated for Tobs = 370 d, divided into 37 blocks
of length Tdrift = 10 d. The source frequency f?(t) is
constant within each block and jumps discontinuously by
at most one frequency bin (∆fdrift = 5.787037×10−7 Hz)
up or down when passing from one block to the next.
We generate data for two interferometers (to facilitate
comparison with Section V) using the Makefakedata v4
tool from the LAL software suite.

B. Optimal path

Table II lists the outcomes of five trials with 1.5 ≤
h0/10−26 ≤ 8. It shows whether each signal is detected
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FIG. 1: Signature of an injected binary signal into the (a) F-statistic [43], (b) C-statistic [16], (c) Bessel-weighted
F-statistic [34] and (d) J -statistic. The search frequency f0 is plotted on the horizontal axis (units: Hz). All plots
are generated from the same synthetic data. The plots are normalised so that the mean of the noise is unity; the

mean of the noise appears to be above unity in panels (a) and (d) because each pixel represents many bins. Signal
power leaks into orbital sidebands in panels (a)–(c) but is concentrated in a single frequency bin in panel (d).

Injection parameters are the same as in Table I with Sh(f?)
1/2 = 4× 10−24 Hz1/2 and h0 = 8× 10−25.

TABLE I: Injection parameters for the trials on
synthetic data in Section IV.

Parameter Value Units

f? 111.1 Hz

ḟ? 0 Hz s−1

α 4.2757 rad

δ −0.27297 rad

cos ι 0.71934 –

ψ 4.08407 rad

Sh(f?)
1/2 4× 10−24 Hz−1/2

P 68023.7 s

a0 1.44 s

Tp 1245984672 s

as the optimal Viterbi path and quotes the root-mean-
square error εf? between the optimal path and f?(t). We
see that the J -statistic is able to recover signals with
h0 ≥ 2 × 10−26, consistent with the result in Ref. [34]
for isolated pulsars. The error amounts to εf? ∼ 10−7 Hz
for all cases where there is a detection, i.e. as long as
the signal can be detected, εf? does not worsen, as h0

decreases. The error also satisfies εf? . ∆fdrift, i.e., the
error is comparable to the frequency resolution of the
J -statistic.

Figure 3 overplots f?(t) against the paths recovered by
the Viterbi algorithm. For signals with h0 ≥ 2.0×10−26,
the optimal path returned by Viterbi closely matches
f?(t) as noted above. There is a slight mismatch of or-
der one J -statistic frequency bin, because f?(t) wanders
continuously, whereas the HMM transitions between dis-
crete bins. For h0 = 1.5×10−26, just below the detection
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FIG. 2: Probability density function of the J -statistic. (a) Noise only. (b) Noise plus injected binary signal with

h0 = 8× 10−26 and other parameters as in Table I including Sh(f?)
1/2 = 4× 10−24 Hz1/2, as in Figure 1. The

empirical histograms (purple columns) are generated from 104 realisations. The theoretical (green) curves
correspond to (2a) χ2(2J ; 4, 0) and (2b) χ2(2J ; 4, λ), with λ = 111 (empirical fit).

threshold, the optimal path is 0.4 Hz from the injected
path, outside the range plotted in Figure 3e. Instead
Figure 3e shows the seventh-ranked Viterbi path, which
minimises εf? . The latter path deviates from f?(t) in the
first half of the data but recovers to converge on f?(t)
towards the end.

The strongest injection in Figure 3a, with h0 = 8.0 ×
10−26, matches the weakest signal detected by the Bessel-
weighted F-statistic [34]. With the orbital phase now
taken into account, the J -statistic detects the signal
without difficulty. Going further, the J -statistic detects
injections down to h0 = 2.0 × 10−26. A signal with
h0 = 2.0 × 10−26 corresponds to the weakest isolated
source (zero orbital motion) detected in Ref. [34]. This
suggests that the J -statistic successfully exploits all the
orbital phase information to produce a nearly optimal
outcome for a semi-coherent algorithm, i.e. it analyses
the orbital motion without any degradation in sensitiv-
ity relative to an isolated source. The only information
it neglects is the phase continuity of the carrier wave at
f0 from one HMM step to the next. We quantify the
optimality of the J -statistic further in Appendix B via
an analytic calculation of the Cramér-Rao lower bound.

C. Viterbi score

Once the HMM tracker finds the optimal path, it re-
mains to decide if the path constitutes a detection. We
define the Viterbi score S, such that the log likelihood
of the optimal path exceeds the mean log likelihood of
all paths in the relevant sub-band (1 Hz, say, or what-
ever subdivision makes a broadband search practical) by

TABLE II: Outcome of Viterbi tracking with the
J -statistic in synthetic data containing spin-wandering
injections with the parameters in Table I, Tobs = 370 d,
Tdrift = 10 d, and wave strain h0. The root-mean-square
error εf? between f?(t) and the optimal path is quoted

in columns 3 and 4.

h0 (10−26) Detect? εf? (Hz) εf?/∆fdrift

8.0 X 3.54× 10−7 6.12× 10−1

5.0 X 3.55× 10−7 6.14× 10−1

4.0 X 3.73× 10−7 6.45× 10−1

2.0 X 5.80× 10−7 1.00× 100

1.5 × 1.91× 10−1 3.31× 105

S standard deviations, viz.

S =
ln δq?(tNT )− µln δ(tNT )

σln δ(tNT )
(29)

with

µln δ(tNT ) = N−1
Q

NQ∑
i=1

ln δqi(tNT ) (30)

and

σ2
ln δ(tNT ) = N−1

Q

NQ∑
i=1

[ln δqi(tNT )− µln δ(tNT )]
2. (31)

[The symbol δ is defined in equation (9).] We then estab-
lish a threshold Sth, and claim a detection for S > Sth.
The threshold determines the false alarm probability Pa.
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FIG. 3: True f?(t) (blue curve) and Viterbi path (green curve) for the five injected signals in Table II with binary
parameters quoted in Table I. Panels (a)–(d) correspond to h0/10−26 = 8, 5, 4, 2 respectively; a good match between
the true and optimal Viterbi paths is obtained in all cases. In panel (e), with h0/1026 = 1.5, the best Viterbi path

lies outside the graph’s bounding box; the seventh-best path is plotted instead, which matches f?(t) best in a
root-mean-square sense. The units on the horizontal and vertical axes are days and µHz respectively.
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TABLE III: False alarm probability Pa versus Viterbi
score threshold Sth in equation (29); that is, the

probability that a particular Viterbi path (ending in a
particular hidden state) exceeds the threshold for a

search done in pure Gaussian noise. The table is
generated from a Monte Carlo simulation with

1.7× 1011 trials.

Sth Pa

4 9.0× 10−5

5 2.2× 10−6

6 2.9× 10−8

7 2.4× 10−10

Selecting a desired false dismissal probability, Pd, then
determines the weakest signal we can reliably detect.

Appendix C discusses in detail the PDF of the termi-
nal Viterbi probabilities δqi(tNT ) in (9). To the authors’
knowledge, an analytic formula for the PDF does not ex-
ist in the literature; the calculation is rendered difficult
by the correlations between Viterbi paths and the non-
linear maximisation step in the algorithm. Appendix C
presents an empirical fit to the associated cumulative dis-
tribution function in the form of a Gumbel law, moti-
vated by asymptotic results from extreme value theory
[46]. The two parameters of the fit (denoted by a and
b in Appendix C) are tabulated as functions of NQ and
NT in Table VII in the appendix.

Table III presents Pa as a function of Sth for four con-
venient, representative, integer thresholds. The Pa values
given in Table III are expressed as probabilities per ter-
minal hidden state. The false alarm rate for a practical
search is given by

Pa;NQ = 1− (1− Pa)NQ (32)

where NQ is the number of hidden states.
For this paper, we choose Sth = 7, which is the low-

est integer that, for a search of a 1 Hz band for a sin-
gle (a0, φa) pair over a 370 day observation time divided
into 37 10-day blocks, achieves a false alarm probability
below 1 per cent, which is a common choice in the litera-
ture. The choice Sth = 7 also matches what was done in
Ref. [34], for ease of comparison. The non-Gaussian noise
present in real LIGO data is likely to modify these num-
bers somewhat, so we postpone a detailed calculation to
future work.

D. Sensitivity to orbital parameters

Electromagnetic observations of LMXBs play an im-
portant role in narrowing down the range of possible val-
ues of the projected semimajor axis a0 and reference or-
bital phase φa [40, 41]. Typically, however, the range is
wider than the resolution of the J -statistic–based HMM,
and a search over multiple templates within the range is
still required.

Figure 4 quantifies the resolution of the J -statistic–
based HMM in a0 and φa to help fix the template spac-
ing. The figure is drawn for a synthetic signal with
h0 = 8 × 10−26, with parameters as in Table I. It plots
log likelihood for 1.3 ≤ a0/s ≤ 1.6, 2.6 ≤ φa/rad ≤ 3.2,
and NT = 37. All other parameters, including the
search frequency f0 = f?, are held fixed at their in-
jected values. The grid resolution is 1 × 10−4 s for a0

and 1.5259 × 10−5 rad for φa. The figure shows a clear
peak at the injected values of a0 and φa. The peak is
surrounded by rings (particularly visible in the zoomed
upper-left panel), which arise for two reasons: (i) the
decision in equation (26) to sum a finite number of side-
bands, which introduces a sinc-function envelope as a0

changes, and (ii) the finite observation time, which intro-
duces a sinc-function envelope, as φa changes. There are
no false peaks away from the injected values.

The J -statistic is sensitive to errors in a0. For exam-
ple, a 10% error in the measured value of a0 causes a drop
of two orders of magnitude in the log likelihood, while the
C-statistic sees a 10% reduction in detection probability
for the same situation (see Figure 4 in Ref. [16]). The
a0 range covered in Figure 4 is comparable to the un-
certainty in the electromagnetic measurement of a0 at
the time Stage I of the Sco X-1 MDC was run [25, 47].
Since then, the uncertainty has increased to 0.36 s–3.25 s
(Z. Wang et al., private communication). The computa-
tional cost scales linearly with the range of a0.

V. SCO X-1 MOCK DATA CHALLENGE: A
“REALISTIC” EXAMPLE

The next stage in validating the J -statistic–based
HMM is to engage in Stage I (version 6) of the Sco X-
1 MDC [25]. The MDC is based on a mock observa-
tional dataset intended to simulate the noise level and
duty cycle of Advanced LIGO. Stage I of the MDC com-
prises 50 Sco X-1–type signals without spin wandering
injected into Gaussian noise. [25] Stage II of the MDC is
currently being prepared and is planned to include spin
wandering. The MDC establishes a standard to compare
the J -statistic HMM tracker against the Bessel-weighted
F-statistic [34], CrossCorr [20–23], TwoSpect [12–14],
Radiometer [18], Sideband [15–17] and Polynomial [24]
pipelines.

The parameters of the 50 Stage I MDC injections are
listed in Table III of Ref. [25]. Originally, these 50 in-
jections were “closed”, i.e. their parameters were kept
secret to enable a blind comparison. The TwoSpect, Ra-
diometer, Sideband and Polynomial pipelines performed
the test under closed conditions as reported in Ref. [25],
while CrossCorr and the Bessel-weighted F-statistic [34]
participated after the release of the parameters under
self-blinded conditions, as we propose to do here. Par-
ticipants in the original tests were asked to assume, that
the injections experience spin wandering (although they
do not), with the Sideband search being restricted to
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FIG. 4: Log likelihood as a function of reference orbital phase φa and projected semi-major axis a0 for a search with
NT = 37 using two interferometers on synthetic data, for the parameters in Table I with h0 = 8× 10−26. (Top left.)
Contour plot of log likelihood on the φa - a0 plane near the injection. The colour scale shows the log likelihood and
is defined by the colour bar in the bottom right panel. (Top right.) Cross-section of log likelihood versus a0 (units:

s). The cross section is at φa = 0.6080 rad, chosen to pass through the peak. (Bottom left.) Cross-section of log
likelihood versus φa (units: rad). The cross section is at a0 = 1.3138 s, again chosen to pass through the peak.

(Bottom right.) Contour plot showing the entire parameter range searched. No spurious detections are found away
from the injection parameters.

Tobs = 10 d as a result [25]. We use the transition ma-
trix (3) to replicate this mode of operation.

The orbital period P of Sco X-1 is measured to ±0.04 s
[41]. The error in sideband frequency, for all M side-
bands, must be less than one J -statistic frequency bin,
which limits the allowed uncertainty in P to |∆P | ≤
P 2/(MTdrift) ≤ 0.2 s.1 This suggests that searching over
P is unnecessary. For the search described in this sec-
tion, we assume P = 68023.70 s for all injections [41] (cf.
Table II in Ref. [25]).

We divide the year-long dataset, starting at GPS time
1 230 338 490, into NT = 37 blocks with Tdrift = 10 d.

1 This formula is the same as equation (58) in Ref. [16] for
∆fdrift = 1/(2Tdrift).

Data from two simulated interferometers (H1 and L1)
are used in the analysis below.

A. Single block: NT = 1

The first step is to ask how many injections are de-
tected using the first block only (NT = 1). We find that
the answer is 43 out of 50. The exceptions are those with
index 41, 48, 57, 64, 72, 73 and 90. By way of compar-
ison, the Bessel-weighted F-statistic with NT = 1 and
two interferometers detects only 12 signals [34], and the
C-statistic with NT = 1 and three interferometers detects
16 signals [25].

Detailed test results are presented in Table IV. The
table lists the injection parameters (f?, a0, φa, h0) as well
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as the absolute (as opposed to relative) errors εf? , εa0 and
εφa in the recovered values for f?, a0 and φa respectively.
For a0 and φa, the search returns single grid values, so
εa0 and εφa are defined as the signed difference between
the injected and recovered values. For f?, which wanders
in general, we define εf? as the root-mean-square error
between the injected and optimal paths for however many
blocks are needed to achieve a detection, in preparation
for the analysis in Section V B with NT > 1.

For most signals, the error in a0 and φa is smaller than
the bin size for those parameters (1 × 10−4 s for a0 and
1.5259 × 10−5 rad for φa), so the error is the difference
between the bin boundary and the injection parameter.
The log likelihood peaks sharply, as the estimate of φa
improves, so it may be possible to improve the sensi-
tivity somewhat by estimating φa more precisely. We
defer to future work the task of determining the opti-
mal template spacing for a given mismatch using the
parameter space metrics derived in Ref. [26]. For 13
injections, the RMS error between the optimal and in-
jected paths is less than the J -statistic frequency bin
width, ∆fdrift = 5.8 × 10−7 Hz, and seven more have
1.0∆fdrift ≤ εfstar ≤ 1.5∆fdrift. The remaining 23 injec-
tions are detected with frequency error 19∆fdrift < εf? <
34∆fdrift. The distance (in frequency space) between this
group and the group with error less than 1.5∆fdrift cor-
responds roughly to the frequency separation between
sidebands.

The characteristic wave strain h0 influences detectabil-
ity, in conjunction with the source inclination angle ι,
which enters the plus and cross polarisations differently.
A popular, approximate proxy for signal strength, given
by equation (19) in Ref. [25], is the effective characteristic
wave strain

heff
0 = h02−1/2{[(1 + cos2 ι)/2]2 + cos2 ι}1/2. (33)

To test if heff
0 captures faithfully the joint dependence of

detectability on h0 and ι, we generate synthetic signals
for 0 ≤ cos ι ≤ 1 and 0 ≤ ψ ≤ 2π, while holding heff

0

constant (that is, with different values of h0 for each ι
value) and calculate the J -statistic. If heff

0 is a perfect
proxy, we expect the same J -statistic output for all ι.
The results of 100 Monte-Carlo realisations per (cos ι, ψ)
pair are plotted in Figure 5. Indeed the J -statistic score
is roughly constant, showing no discernible pattern across
the full parameter space, and fluctuating by ≤ 12%.

Figure 6 summarises the error estimates in Table IV.
It displays εf? , εa0 and εφa plotted against heff

0 . The
vertical “step” in εf? visible in Figure 6a corresponds to
the sideband separation P−1. In Figures 6b and 6c, εa0
and εφa are comparable to the grid resolution, with all 50
injections having errors less than seven (εa0) or five (εφa)
search bins. There is no apparent correlation between the
errors and heff

0 amongst the injections that are detected
successfully.
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FIG. 5: Log likelihood (for NT = 1) versus orientation
angles cos ι and ψ, holding heff

0 = 8× 10−26 fixed and all
other parameters as in Table I. Each grid cell is an

average over 102 noise realisations.

B. Multiple blocks, 1 < NT ≤ 37

For the seven out of 50 injections that are not detected
with NT = 1, we do HMM tracking for Tdrift = 10 d and
1 < NT ≤ 37. The search parameters and prior are
the same as in Section V A. We successfully detect all
seven remaining injections, with NT = 3 for injection 73,
NT = 13 for injection 90, and the others in between, as
in Table V. Although these seven injections do not have
the lowest h0 in the sample, they do have the lowest heff

0 .
This further supports the contention that heff

0 is a more
accurate proxy for detectability than h0.

Figure 7 summarises the results in Tables IV and V. It
plots all 50 injections twice against heff

0 . The red circles
(left axis) indicate the minimum NT required to achieve
a detection. Most injections are detected in a single block
(open red circles). The seven injections requiring multi-
ple blocks (filled red circles) are all weak signals, along
the left-hand border of the plot. The blue squares (right
axis) show the Viterbi score S after processing the full
year of data, even if the signal is detected with NT < 37.
There is a positive correlation between S and heff

0 , with
S ∝ heff

0 roughly for S . 2.6 × 102. The Viterbi score
for injection 66 (S = 522) lies outside the range of the
graph, due to a lucky coincidence of a relatively strong
signal and a φa value that happens to lie close to the
search grid.

VI. CONCLUSION

In this paper, we extend the HMM scheme for track-
ing continuous-wave gravitational radiation from a neu-
tron star undergoing spin wandering in an LMXB de-
scribed in Ref. [34]. The new scheme tracks the orbital



13TABLE IV: Results of J -statistic HMM tracking of the 50 closed signals in Stage I (version 6) of the Sco X-1 MDC,
ordered by ascending injection frequency f?. The index is copied from Ref. [25]. Signal strength is quantified by h0

(traditional gravitational wave strain in Ref. [25, 43]) and heff
0 (Ref. [25]). The recovered orbital parameters a0 and

φa and their signed, absolute errors appear in columns six to nine.

Index h0 heff
0 f? εf? a0 εa0 φa εφa

(10−25) (10−25) (Hz) (Hz) (s) (s) (rad) (rad)

1 4.160101 2.706 54.498391348174 1.853E-07 1.379519 5.190E-04 0.564832303 -2.606E-05

2 4.044048 2.511 64.411966012332 1.681E-07 1.764606 6.060E-04 0.572064312 -3.339E-04

3 3.565197 3.463 73.795580913582 4.603E-07 1.534599 -4.010E-04 0.585084391 1.198E-04

5 1.250212 1.154 93.909518008164 2.244E-07 1.520181 1.810E-04 0.633165725 -1.794E-04

11 3.089380 1.399 154.916883586097 4.866E-07 1.392286 2.860E-04 0.576082666 -8.545E-05

14 2.044140 1.286 183.974917468730 7.248E-07 1.509696 -3.040E-04 0.577142828 -2.819E-04

15 11.763777 4.169 191.580343388804 1.424E-05 1.518142 4.200E-05 0.599799259 -2.449E-04

17 3.473418 1.253 213.232194220000 1.225E-05 1.310212 2.120E-04 0.578899085 2.177E-04

19 6.030529 2.437 233.432565653291 7.465E-07 1.231232 2.320E-04 0.596020206 -2.541E-04

20 9.709634 3.434 244.534697522529 7.748E-07 1.284423 4.230E-04 0.617523371 -1.137E-04

21 1.815111 0.792 254.415047846878 6.374E-07 1.072190 1.900E-04 0.595996707 -2.776E-04

23 2.968392 1.677 271.739907539784 7.173E-07 1.442867 -1.330E-04 0.598663241 -1.243E-04

26 1.419173 1.172 300.590450155009 5.630E-07 1.258695 -3.050E-04 0.610242598 1.453E-04

29 4.274554 3.131 330.590357652653 5.968E-07 1.330696 -3.040E-04 0.580326474 -2.398E-04

32 10.037770 4.391 362.990820993568 1.209E-05 1.611093 9.300E-05 0.573105599 7.911E-05

35 16.401523 9.183 394.685589797695 6.921E-07 1.313759 -2.410E-04 0.608012394 -1.999E-04

36 3.864262 1.539 402.721233789014 1.219E-05 1.254840 -1.600E-04 0.602207114 2.780E-04

41 1.562041 0.746 454.865249156175 6.744E-07 1.465778 -2.220E-04 0.605945666 2.466E-04

44 2.237079 1.996 483.519617972096 5.065E-07 1.552208 2.080E-04 0.590657162 3.774E-05

47 4.883365 1.992 514.568399601819 3.425E-07 1.140205 2.050E-04 0.563763897 1.622E-04

48 1.813016 0.745 520.177348201609 1.451E-05 1.336686 -3.140E-04 0.563161604 -4.401E-04

50 1.092771 1.027 542.952477491471 4.038E-07 1.119149 1.490E-04 0.542275328 3.644E-05

51 9.146386 3.372 552.120598886904 1.457E-05 1.327828 -1.720E-04 0.573295251 -3.596E-04

52 2.785731 1.550 560.755048768919 1.436E-05 1.792140 1.400E-04 0.594773666 -2.440E-04

54 1.517530 1.256 593.663030872532 1.443E-05 1.612757 -2.430E-04 0.569675332 -2.095E-04

57 1.576918 0.788 622.605388362863 4.347E-07 1.513291 2.910E-04 0.608877237 3.658E-05

58 3.416297 1.287 641.491604906276 1.503E-05 1.584428 4.280E-04 0.602738791 1.813E-04

59 8.834794 4.981 650.344230698489 1.444E-05 1.677112 1.120E-04 0.550155435 -2.516E-04

60 2.960648 2.467 664.611446618250 1.492E-05 1.582620 -3.800E-04 0.568756259 1.280E-04

61 6.064238 2.158 674.711567789201 1.509E-05 1.499368 3.680E-04 0.626850596 -2.113E-04

62 10.737497 3.853 683.436210983289 1.483E-05 1.269511 -4.890E-04 0.585682431 8.954E-05

63 1.119028 0.745 690.534687981171 1.440E-05 1.518244 2.440E-04 0.587764962 -3.412E-04

64 1.599528 0.570 700.866836291234 1.129E-05 1.399926 -7.400E-05 0.571080095 -6.145E-05

65 8.473643 4.334 713.378001688688 5.023E-07 1.145769 -2.310E-04 3.981714377 6.434E-05

66 9.312048 5.944 731.006818153273 4.061E-07 1.321791 -2.090E-04 3.937174208 -5.789E-05

67 4.579697 1.623 744.255707971300 1.432E-05 1.677736 -2.640E-04 0.619168642 2.749E-04

68 3.695848 1.844 754.435956775916 3.240E-07 1.413891 -1.090E-04 0.577934937 -1.181E-04

69 2.889282 1.053 761.538797037770 1.433E-05 1.626130 1.300E-04 0.642604270 -1.656E-04

71 2.922576 1.232 804.231717847467 1.398E-05 1.652034 3.400E-05 0.614347724 -1.478E-04

72 1.248093 0.792 812.280741438401 1.466E-05 1.196485 4.850E-04 0.612575356 -3.521E-05

73 2.443983 0.936 824.988633484129 4.802E-07 1.417154 -4.600E-05 0.545563765 1.833E-04

75 7.678400 3.987 862.398935287248 1.440E-05 1.567026 2.600E-05 3.958458316 1.576E-04

76 3.260143 1.725 882.747979842807 1.443E-05 1.462487 -1.300E-05 0.648061399 2.650E-04

79 4.680848 1.656 931.006000308958 1.953E-05 1.491706 -2.940E-04 0.598919953 1.324E-04

83 5.924668 2.186 1081.398956458276 1.198E-05 1.198541 4.100E-05 0.598724345 -6.321E-05

84 11.608892 7.184 1100.906018344283 1.484E-05 1.589716 -2.840E-04 0.609351448 -1.176E-04

85 4.552730 1.633 1111.576831848269 1.514E-05 1.344790 0.000E+00 0.623329562 3.758E-05

90 0.684002 0.618 1193.191890630547 1.433E-05 1.575127 1.270E-04 0.636321462 -1.652E-04

95 4.293322 3.059 1324.567365220908 3.271E-07 1.591685 -3.150E-04 0.587727432 2.496E-04

98 5.404060 1.948 1372.042154535880 1.449E-05 1.315096 9.600E-05 0.640164126 -9.243E-05
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FIG. 6: Accuracy of the J -statistic–based HMM
applied to Stage I of the Sco X-1 MDC versus effective
characteristic wave strain heff

0 . (a) Root-mean-square
error in f? (Hz). (b) Absolute unsigned error in a0 (in

s). (c) Absolute unsigned error in φa (in rad). The
cluster in (a) at εf? ≈ 1.4× 10−5 Hz corresponds to the
orbital sideband separation P−1. All 50 MDC injections

are shown: 43 are detected with NT = 1 (filled red
circles; see section V A), while seven require

1 < NT ≤ 37 (open blue squares; see section V B).
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FIG. 7: Minimum number of 10-d data blocks NT for a
detection (left axis; red circles, filled for NT > 1, open
for NT = 1) and Viterbi score S with NT = 37 (right

axis; blue squares) versus the logarithm of the effective
characteristic wave strain for 50 injections in Stage 1 of

the Sco X-1 MDC.

TABLE V: Minimum number of data blocks NT
required to detect the seven MDC injections that
cannot be detected with NT = 1. Indices refer to

Table IV. A detection is claimed when the Viterbi score
exceeds the mean by at least seven standard deviations
(S > 7). These injections have the lowest heff

0 values in
the sample (although not the lowest h0).

Index Blocks

41 4

48 11

57 7

64 8

72 9

73 3

90 13

phase of the source by using a frequency-domain matched
filter, termed the J -statistic, to compute the emission
probabilities at each HMM step. The J -statistic sums
the F-statistic power in orbital sidebands coherently by
weighting each sideband by a suitable Bessel amplitude
and Fourier phase. Monte-Carlo simulations in Gaus-

sian noise with Sh(f?)
1/2 = 4 × 10−24 Hz−1/2 show that

the J -statistic HMM successfully detects spin-wandering
injections with wave strain h0 & 2 × 10−26 with two
interferometers. This equals the sensitivity achieved in
Ref. [34] for isolated neutron stars; the J -statistic suc-
ceeds in marshalling all the signal power in orbital side-
bands into a single frequency bin with essentially zero
leakage. Even better sensitivity will be achieved when
combining three interferometers.

When competing in self-blinded mode in Stage I of
the Sco X-1 MDC, the J -statistic HMM detects all 50
signals, 43 of them using a single HMM step (10 d of
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data). It estimates f?, a0 and φa to accuracies of εf? <
2× 10−5 Hz, εa0 < 6× 10−5 s, εφa < 4× 10−4 rad respec-
tively. By comparison, the CrossCorr, Bessel-weighted
F-statistic HMM, TwoSpect, Radiometer, Sideband and
Polynomial methods found 50, 41, 34, 28, 16 and 7 out
of 50 signals, respectively. The accuracy of f? estimation
by the J -statistic HMM is roughly as good as the most
accurate existing algorithms (CrossCorr, Bessel-weighted
HMM, TwoSpect). The same is true for its accuracy of
a0 estimation. (Radiometer and Polynomial do not es-
timate a0.) A comparison of the performance metrics
for the seven algorithms listed above is presented in Ta-
ble VI. The J -statistic HMM is the only scheme to be
tested formally on spin-wandering data, as reported here,
although this will change when Stage II of the Sco X-1
MDC is completed. We emphasise that several of the
algorithms in Table VI have undergone substantial re-
finement, since Ref. [25] was published, e.g. the tuned
TwoSpect method [14]. When performance data are pub-
lished for the refined algorithms, some of the entries in
Table VI will require updating.

Although this paper focuses on spin wandering in
LMXBs, the same methods are likely to prove helpful
when searching for isolated, nonaccreting neutron stars
as well. Radio timing experiments reveal that spin wan-
dering is endemic in rotation-powered pulsars, where it
goes by the name of ‘timing noise’ [48, 49]. Timing noise
exhibits a red spectrum and is autocorrelated on time-
scales ranging from days to years [50, 51]. Its physical
origin is still debated, but it is generically attributed to
fluctuations in the structure of the magnetosphere and/or
superfluid interior [48, 52–56]. Until now, continuous-
wave searches have handled timing noise in various ways.
All-sky searches for periodic signals from isolated neutron
stars in the LIGO (S5 and S6) and Virgo (VSR1 to VSR4)
data sets, using various algorithms (e.g., loosely coherent,
Hough, F-statistic), typically consider a range of spin-
down rates [12, 57–59]. For these experiments, spin wan-
dering effectively limits the maximum observation time,
before the phase model loses coherence with the source.
The same applies to directed F-statistic and hierarchi-
cal searches pointed at young supernova remnants and
the Galactic centre respectively [60–62]. Coherent nar-
rowband searches for objects like the Crab and Vela pul-
sars are guided by radio pulsar timing ephemerides, so in
principle the timing noise is tracked electromagnetically
[57, 58, 63–66]. Even so there is no guarantee that the
gravitational-wave-emitting quadrupole is locked to the
stellar crust and magnetic field and hence the radio emis-
sion; a lag may exist between the two components and it
may fluctuate stochastically [56, 67, 68]. Coherent nar-
rowband searches usually safeguard against this eventu-
ality by scanning a band of frequency centred on the radio
ephemeris, typically ∼ ±10−2 Hz wide, without explicitly
testing all possible frequency wandering paths within the
band, e.g., [44]. Ashton et al. [69] quantified the loss of
sensitivity caused by timing noise in ephemeris-guided
narrowband searches, calculating the template mismatch

as a function of the total observation time. We will in-
vestigate the performance of HMM frequency tracking in
these contexts in future work.

VII. ACKNOWLEDGEMENTS

We thank the LIGO Scientific Collaboration Contin-
uous Wave Working Group for informative discussions.
The synthetic data for Stage I of the Sco X-1 MDC were
prepared primarily by Chris Messenger with the assis-
tance of members of the MDC team. [25] P. Clearwater
is supported by a Melbourne Research Scholarship and a
CSIRO Office of the Chief Executive Postgraduate PhD
Scholarship in Zettabyte Data Management. L. Sun is
supported by an Australian Postgraduate Award. This
work was supported by the Multi-modal Australian Sci-
enceS Imaging and Visualisation Environment (MAS-
SIVE), by Australian Research Council (ARC) Discov-
ery Project DP110103347, ARC Centre of Excellence
CE170100004 and by the U.S. Air Force Office of Sci-
entific Research under Grant No. FA9550-12-1-0418.



16

TABLE VI: Comparison between the J -statistic HMM (Viterbi 2.0) and other algorithms that participated in
Stage I of the Sco X-1 MDC. Viterbi 1.0 refers to the Bessel-weighted F-statistic combined with the Viterbi HMM
solver in Ref. [34]. The table does not include unpublished performance improvements to several algorithms listed.

Viterbi 2.0 CrossCorr Viterbi 1.0 TwoSpect Radiometer Sideband Polynomial

Hit rate (out of 50) 50 50 41 34 28 16 7

Best h0 (10−25) 0.684 0.684 1.093 1.250 2.237 3.565 7.678

Best h0/
√
f? (10−25 Hz−1/2) 0.020 0.020 0.047 0.082 0.102 0.235 0.261

Typical εf? (Hz) 10−5 10−5 10−5 10−4 10−1 10−2 10−2

Typical εa0 (s) 10−4 10−4 10−4 10−2 — — —

Typical run time (CPU-hr) 105 106 103 105 103 103 108
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Appendix A: Quasi–maximum-likelihood
generalisations of the F-statistic for binary sources

A true maximum-likelihood, frequency-domain esti-
mator that generalises the F-statistic to handle binary
sources has not yet been derived in the literature. Such
an estimator would maximise Λ′1 in (18) for the signal
model (12)–(16) and phase model in (25) by solving for
the optimal values of the eight amplitudes A1i and A2i

and possibly other ‘nuisance’ parameters like φa = Ωta.
Instead, in practice to date, frequency-domain searches
for binary sources—including in this paper—seek to sum
the F-statistic power in orbital sidebands efficiently with
suitable weightings in order to concentrate the signal
power into as few frequency bins as possible. This repre-
sents a quasi–maximum-likelihood approach, because the
F-statistic maximises Λ′1 for each sideband separately ;
as noted in Section III B, this procedure implicitly picks

different A1i and A2i values at each sideband [viz. A
(s)
1i

and A
(s)
2i , where s is the order of the sideband]. A true

maximum-likelihood estimator, in contrast, maximises
Λ′1 for all the sidebands added together for a single, op-
timal set of eight amplitudes {A1i, A2i}.

In this appendix, we review two quasi–maximum-
likelihood estimators, which are independent of orbital
phase, namely the C-statistic [16, 17] and Bessel-weighted
F-statistic [34]. We then examine how to refine these es-
timators to include the orbital phase.

The C-statistic weights the power in the central M =
2ceil(2πf0a0) + 1 orbital sidebands equally without any
phase correction:

C(f) =

(M−1)/2∑
s=−(M−1)/2

F(f − s/P ). (A1)

Here ceil(...) returns the smallest integer greater than or
equal to its argument, and P and a0 denote the orbital
period and light travel time across the projected semi-
major axis respectively. The Bessel-weighted F-statistic
weights the power in the central M orbital sidebands
by the squared amplitude of the Bessel envelope of the
Fourier decomposition of a frequency modulated har-
monic signal [34]:

G(f) =

(M−1)/2∑
s=−(M−1)/2

J2
s (2πfa0)F(f − s/P ). (A2)
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FIG. 8: Signature of an injected binary signal in (a) the Bessel-weighted F-statistic, described in Ref. [34] and (b)
the quasi-maximum likelihood estimator, defined by (A22). As in Figure 1, the plots are normalised such that the

mean of the noise is unity. Parameters: as in Table I, with h0 = 8× 10−25.

Here Js denotes a Bessel function of order s of the first
kind. Equation (A2), like (A1), does not exploit the in-
formation contained in the Fourier phases of the orbital
sidebands; it is a sum of real-valued, positive terms. In
Ref. [34], (A2) is evaluated in practice by first convolv-
ing the SFT data with a Bessel filter [see equations (37)
and (38) of the latter reference] constructed for the aver-
age f in a 1-Hz sub-band (instead of separately for every
individual frequency bin) to save computational cost.

To generalise C(f) and G(f) to include orbital phase,
we expand (12)–(16) with the phase model (25) as a
Jacobi-Anger sum of orbital sidebands, in order to con-
struct a signal template h(t). The result is

h(t) =

4∑
i=1

∞∑
s=−∞

(−1)sJs(2πf0a0)A1ih
(s)
1i (t), (A3)

with

h
(s)
11 (t) = a(t) cos(2πf0t+ sΩt− sφa), (A4)

h
(s)
12 (t) = b(t) cos(2πf0t+ sΩt− sφa), (A5)

h
(s)
13 (t) = a(t) sin(2πf0t+ sΩt− sφa), (A6)

h
(s)
14 (t) = b(t) sin(2πf0t+ sΩt− sφa), (A7)

where f0 is the gravitational wave search frequency, and
we write φa = Ωta. In general h(t) contains components
with f0 = f? [amplitudes A1i in (12)] and f0 = 2f? [am-
plitudes A2i in (12)]. The latter components lead to anal-

ogous terms in (A3) involving analogous factors h
(s)
2i (t),

with f0 replaced by 2f0, which can be added easily if
required.

The quasiharmonic functions h
(s)
1i (t) involve a rapid os-

cillation at frequency f0+s/P modulated by a slow, diur-
nal oscillation introduced by the beam pattern functions

a(t) and b(t) defined in Ref. [43]. They satisfy the fol-
lowing orthogonality relation with respect to the inner
product (19):

(h
(s)
1i ||h

(s′)
1j ) =

1

2
Hijδs,s′ , (A8)

with

Hij =


A C 0 0

C B 0 0

0 0 A C

0 0 C B

 . (A9)

Equation (A8) holds because (i) we truncate the sum
over Bessel orders in (A3) to M terms as in (A1)
and (A2), yielding |sΩ| < 2πf0a0Ω � 2πf0 for all s
(e.g., a0Ω = 1.33 × 10−4 for Sco X-1), so that even
widely separated Bessel orders are orthogonal; and (ii)
we have ΩTdrift & 10 typically (e.g. ΩTdrift = 79.8 with
Tdrift = 10 d for Sco X-1), so that beats between neigh-
bouring Bessel orders s′ = s± 1, s± 2, ... are integrated
over & 10 cycles in the inner product and therefore ‘wash
out’.

We compute the log likelihood from (18) and (A3)–
(A9) in the usual way. The result is

Λ′1 = (x||h)− 1
2 (h||h) (A10)

=

4∑
i=1

∞∑
s=−∞

(−1)sJs(2πf0a0)Ã
(s)
1i (x||h(s)

1i |φa=0)

− 1

4

4∑
i,j=1

∞∑
s=−∞

[Js(2πf0a0)]2Ã
(s)
1i Ã

(s)
1j Hij , (A11)
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with

Ã
(s)
11 = A11 cos sφa −A13 sin sφa, (A12)

Ã
(s)
12 = A12 cos sφa −A14 sin sφa, (A13)

Ã
(s)
13 = A11 sin sφa +A13 cos sφa, (A14)

Ã
(s)
14 = A12 sin sφa +A14 cos sφa. (A15)

In writing (A11)–(A15), we transfer the unknown φa out

of the inner product, leaving (x||h(s)
1i |φa=0), and fold it

into the coefficients Ã1i. Thus (x||h(s)
1i |φa=0) is indepen-

dent of φa and can be computed from the data stream
x(t) using the standard F-statistic given f0 and P .

Suppose we now seek to maximise (A11) with re-
spect to the five unknowns A11, A12, A13, A14, and
φa. This leads to five nonlinear, simultaneous equa-
tions, each containing M terms from the truncated Bessel
sums. The equations are poorly conditioned, because
the terms oscillate rapidly as functions of φa with pe-
riods 2π, π, ..., 4π/(M − 1). It is therefore tempting to
maximise each Bessel order separately by way of approx-
imation, as we do implicitly in (A1) and (A2). Writing

Λ′1 =
∑
s Λ
′(s)
1 , we observe that Λ

′(s)
1 is linear in A1i. The

linear subsystem (1 ≤ i ≤ 4)

0 =
∂Λ
′(s)
1

∂A
(s)
1i

(A16)

can be solved to give

A
(s)
11 = 2D−1{[B(x||h(s)

11 |φa=0)− C(x||h(s)
12 |φa=0)] cos θ

+ [B(x||h(s)
13 |φa=0)− C(x||h(s)

14 |φa=0)] sin θ}
(A17)

A
(s)
12 = 2D−1{[A(x||h(s)

12 |φa=0)− C(x||h(s)
11 |φa=0)] cos θ

+ [A(x||h(s)
14 |φa=0)− C(x||h(s)

13 |φa=0)] sin θ}
(A18)

A
(s)
13 = 2D−1{[B(x||h(s)

13 |φa=0)− C(x||h(s)
14 |φa=0)] cos θ

+ [C(x||h(s)
12 |φa=0)−B(x||h(s)

11 |φa=0)] sin θ}
(A19)

A
(s)
14 = 2D−1{[A(x||h(s)

14 |φa=0)− C(x||h(s)
13 |φa=0)] cos θ

+ [C(x||h(s)
11 |φa=0)−A(x||h(s)

12 |φa=0)] sin θ},
(A20)

for each s, with θ = sφa, where A
(s)
1i denotes the ampli-

tude A1i in Λ
′(s)
1 (see first paragraph of this appendix).

Upon substituting (A17)–(A20) into Λ
′(s)
1 , we find that

Λ
′(s)
1 is independent of θ, i.e. Λ′1 has maximum value

Λ′1 =

∞∑
s=−∞

[2(−1)sJs(2πf0a0)− J2
s (2πf0a0)]D−1

× [B(x||h(s)
11 |φa=0)2 − 2C(x||h(s)

11 |φa=0)(x||h(s)
12 |φa=0)

+A(x||h(s)
12 |φa=0)2

+B(x||h(s)
13 |φa=0)2 − 2C(x||h(s)

13 |φa=0)(x||h(s)
14 |φa=0)

+A(x||h(s)
14 |φa=0)2]

(A21)

=

∞∑
s=−∞

[2(−1)sJs(2πf0a0)− J2
s (2πf0a0)]F(f0 + s/P ).

(A22)

The sideband phases enter (A11) through Ã1i. They are
missing from (A22) following the approximate maximi-
sation step in (A16). Hence (A22) does not exploit the
information in the orbital phase; it does not combine the
sidebands coherently.

An alternative approach involves replacing A1i [not

Ã
(s)
1i ] by the maximum-likelihood expressions from the

classic F-statistic in each sideband separately, i.e. re-

place A1i in (A3) with A
(s)
1i as given by

A
(s)
11 = 2D−1[B(x||h(s)

11 |φa=0)− C(x||h(s)
12 |φa=0)] (A23)

A
(s)
12 = 2D−1[A(x||h(s)

12 |φa=0)− C(x||h(s)
11 |φa=0)] (A24)

A
(s)
13 = 2D−1[B(x||h(s)

13 |φa=0)− C(x||h(s)
14 |φa=0)] (A25)

A
(s)
14 = 2D−1[A(x||h(s)

14 |φa=0)− C(x||h(s)
13 |φa=0)]. (A26)

One then evaluates (A10) on a grid of φa values and picks
out the maximum “by brute force”, without attempting
to maximise Λ′1 analytically with respect to φa. This ap-
proach leads to the J -statistic introduced in section III B.
Expressed in terms of the Fourier integrals F1a and F1b

which enter the F-statistic, it takes the form

J =
4

Sh(f0)TobsD

[
B|J1a|2 − 2CRe(J1aJ ?1b) +A|J1b|2

]
,

(A27)

where J1a and J1b are given by

J1a =

∞∑
s=−∞

Js(2πf0a0)e−isφaF1a(f0 + s/P ), (A28)

J1b =

∞∑
s=−∞

Js(2πf0a0)e−isφaF1b(f0 + s/P ). (A29)

Note that (A27) is still an approximate, quasi-maximum–
likelihood formula for the reasons discussed in the first
paragraph of this appendix; it takes a maximum likeli-
hood approach to every sideband separately rather than
maximising the sum over sidebands in toto.
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FIG. 9: Zoomed-in portion of the J -statistic for an
injection with h0 = 8× 10−25, showing diurnal

sidebands (six clearly discernible). Each frequency bin
covers ∆fdrift = 5.787× 10−7 Hz. Frequency bin number

100 corresponds to the injection frequency
f? = 111.1 Hz. The sidebands are ≈ 20 frequency bins

apart, i.e., 1/(86400 s).

The relative performances of the Bessel-weighted
F-statistic and the orbital-phase-independent statis-
tic (A22) are displayed in Figure 8. The right panel
plots Λ′1 in (A22) versus observing frequency f0 for an
injected signal with h0 = 8 × 10−26 and other parame-
ters copied from Table I. Λ′1 displays a double-horned
structure that is similar to (albeit narrower than) the F-
statistic. The double-horn in the original F-statistic has
a width of 2.91 × 10−2 Hz; the estimator (A22) narrows
this to 6.22 × 10−3 Hz, although it remains wider than
the full-width half-maximum of the Bessel-weighted F-
statistic (A2) (2.93×10−4 Hz; see Figure 1). Both (A22)
and the Bessel-weighted F-statistic, peak ≈ 14 dB above
the noise. The J -statistic does even better. In the bot-
tom right panel of Figure 1, the signal is concentrated
entirely into one frequency bin at f = f?; there are no
shoulders around the peak, unlike (A2) and (A22), and
the J -statistic peaks 32 dB above the noise.

The J -statistic, like the F-statistic, leaks a small
amount of residual power into nonorbital sidebands
bracketing the central spectral line. Figure 9 displays
a close-up of the J -statistic for a strong injection, with
h0 = 8×10−25. Individual frequency bins are discernible
across a 1.1574× 10−4 Hz band. The sharp peak coinci-
dent with the injected signal splits into sidebands spaced
by approximately 20 (out of 200) frequency bins, i.e.
1.157 × 10−5 Hz = 1/(86400 s). The sidebands are asso-
ciated with the component of the Earth’s diurnal motion
that is not completely removed in the F-statistic, due
to approximations like the one leading to (23) and (24).
Each diurnal sideband spreads across several adjacent
bins; its profile is a sinc function produced by the ob-
serving window Tobs. The signature in Figure 9 is also
observed in the F-statistic for an isolated source.

Appendix B: Cramér-Rao lower bound for the
J -statistic

In general, the Cramér-Rao lower bound (CRLB) of a
model parameter θ estimated from noisy measurements
is the minimum possible variance of any unbiased estima-
tor of θ. The CRLB depends on the PDF of the observed
data, specifically its curvature in the neighbourhood of
the true value of θ. The more sensitively the PDF de-
pends on the parameter (the greater the curvature, in
other words), the more accurately the parameter can be
estimated.

Let x(t) = h(t;θ) + n(t) represent the output from a
single interferometer in a gravitational-wave observatory,
where h(t;θ) is the signal defined by (12)–(16), n(t) rep-
resents stationary Gaussian noise, and θ = (f0, a0, φa =
Ωta) is a vector containing the three unknown signal pa-
rameters in the search. Let p(x;θ) be the PDF of the
observed data; here, x is a vector containing every sam-
ple x(0), x(t1), x(t2), ..., x(Tobs) of the interferometer
output over the full observation 0 ≤ ti ≤ Tobs. We define
the Fisher information matrix I by its entries

Iij = −
〈
∂2 ln p

∂θi∂θj

〉
, (B1)

where 〈· · · 〉 denotes the expectation value taken over
many realisations of the noise. Then the CRLB for the
parameter θi is [70]

var(θi) ≥ (I−1)ii, (B2)

where I−1 is the matrix inverse of I, and (I−1)ii symbol-
ises the i-th diagonal entry of I−1 as opposed to its trace,
i.e. the Einstein summation convention does not apply
in (B2).

For stationary, Gaussian noise with normalised unit
variance, the log likelihood is given by (see Section III)

ln p = −1

2
(x− h||x− h) (B3)

up to a constant. The model h(t;θ) depends on θ,
and the inner product (19) in (B3) is symmetric, so the
derivatives of the log likelihood reduce to

∂ ln p

∂θi
=

(
x

∣∣∣∣∣∣∣∣ ∂h∂θi
)
−
(
h

∣∣∣∣∣∣∣∣ ∂h∂θi
)

(B4)

and

∂2 ln p

∂θi∂θj
= −

(
∂h

∂θi

∣∣∣∣∣∣∣∣ ∂h∂θj
)

+

(
x− h

∣∣∣∣∣∣∣∣ ∂2h

∂θi∂θj

)
. (B5)

When the ensemble average is taken, the second term
in (B5) vanishes, because one has 〈x − h〉 = 0 for an
unbiased estimator. Equations (B1) and (B5) then imply

Iij =

(
∂h

∂θi

∣∣∣∣∣∣∣∣ ∂h∂θj
)
. (B6)
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The derivatives ∂h/∂θi are straightforward to evalu-
ate in terms of the signal defined by (12)–(16). Defining
Φ±(t) = Φ(t)± (Ωt− φa), we obtain

∂h

∂θi
=

4∑
j=1

A1j
∂h1j

∂θi
(B7)

with

∂h11

∂f0
= −2πta(t) sin Φ(t)

− πa0a(t)[cos Φ+(t)− cos Φ−(t)], (B8)

∂h13

∂f0
= 2πta(t) cos Φ(t)

− πa0a(t)[sin Φ+(t)− sin Φ−(t)], (B9)

∂h11

∂a0
= −πf0a(t)[cos Φ+(t)− cos Φ−(t)], (B10)

∂h13

∂a0
= −πf0a(t)[sin Φ+(t)− sin Φ−(t)], (B11)

∂h11

∂φa
= −πf0a0a(t)[sin Φ+(t) + sin Φ−(t)], (B12)

∂h13

∂φa
= πf0a0a(t)[cos Φ+(t) + cos Φ−(t)]. (B13)

In the same way ∂h12/∂f0, ∂h14/∂f0, ∂h12/∂a0,
∂h14/∂a0, ∂h12/∂φa, and ∂h14/∂φa are obtained by re-
placing a(t) with b(t) in (B8)–(B13) respectively.

When evaluating Iij from (B6) using (B7)–(B13), we
note three points. (i) In ∂h1j/∂f0, the first terms on
the right-hand sides of (B8) and (B9) are larger than
the second and third terms by a factor of ≈ 2t/a0 � 1,
implying ∂h11/∂f0 ≈ −2πta(t) sin Φ(t) and ∂h13/∂f0 ≈
2πta(t) cos Φ(t). For example, we have a0 = 1.44 s and
t ≤ Tdrift = 10 d for Sco X-1. (ii) The beam-pattern
functions a(t) and b(t) oscillate about nonzero means.
Specifically they are linear combinations of DC terms
and sinusoids with periods of 0.5 d and 1.0 d; see equa-
tions (12) and (13) in Ref. [43]. As the latter peri-
ods are typically much shorter than Tdrift, the relevant
timespan for calculating the J -statistic, we can write
(ta||ta) = 1

3T
2
driftA, (tb||tb) = 1

3T
2
driftB and (ta||tb) =

1
3T

2
driftC plus correction terms of order (Tdrift/1 d)−1,

with A, B, and C defined following equation (19). (iii)
The off-diagonal products (∂h/∂θi)(∂h/∂θj) with i 6= j
are composed of linear combinations of terms oscillating
harmonically in time with zero means. Again the os-
cillation periods are typically much shorter than Tdrift,
yielding Iij = 0 for i 6= j to a good approximation
[plus correction terms of order max(P, 1 d)/Tdrift � 1].
For example, (∂h/∂f0)(∂h/∂a0) is a linear combination
of terms proportional to sin(Ωt− φa) cos2 Φ(t), sin(Ωt−
φa) cos Φ(t) sin Φ(t) and sin(Ωt− φa) sin2 Φ(t), which os-
cillate proportional to exp[±2iΦ(t)± iΩt] and exp(±iΩt)
when expanded. Likewise, (∂h/∂a0)(∂h/∂φa) is a lin-
ear combination of terms proportional to sin 2(Ωt − φa)
multiplied by cos2 Φ(t), cos Φ(t) sin Φ(t), and sin2 Φ(t),

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  10  20  30  40  50

Fr
a
ct

io
n

Log likelihood

χ2(x; 12,0)
correlations

no correlations

FIG. 10: Correlations and maximisation in the HMM
log likelihood statistics for the illustrative, three-step

example in Appendix C: PDF of the sum of three F- or
J -statistic values (red histogram); maximum log

likelihood of nine arbitrary, independent Viterbi paths
(blue curve); maximum log likelihood of the nine

Viterbi paths in a single realisation of synthetic noise
(green curve).

which oscillate proportional to exp[±2iΦ(t) ± 2iΩt] and
exp(±2iΩt) when expanded.

Putting together points (i)–(iii) above, we find that the
Fisher information matrix is approximately diagonal, i.e.
Iij ≈ diag(If0f0 , Ia0a0 , Iφaφa), with

If0f0 =
2T 2

obsIa0a0
3f2

0

, (B14)

Ia0a0 = π2f2
0 [A(A2

11 +A2
13) +B(A2

12 +A2
14)

+ 2C(A11A12 +A13A14)], (B15)

Iφaφa = a2
0Ia0a0 . (B16)

The factor [· · · ] in square brackets in (B15) equals
twice the noncentrality parameter λ appearing in the
chi-squared PDF of the F-statistic, i.e., p(2F) =
χ2(2F ; 4, λ); see Section III A in Ref. [34]. The CRLBs
on the three parameters follow directly from (B2):

var(f0) ≥ 3f2
0

2T 2
obsIa0a0

, (B17)

var(a0) ≥ 1

Ia0a0
, (B18)

var(φa) ≥ 1

a2
0Ia0a0

. (B19)

Appendix C: False alarm and dismissal rates

In order to calculate the false alarm probability Pa and
false dismissal probability Pd for the algorithm developed
in this paper, one needs the PDFs of the Viterbi prob-
abilities after k steps of the HMM in the absence and
presence of a signal respectively. As far as the authors
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TABLE VII: Gumbel law [see (C4)] parameters a(NT , NQ) and b(NT , NQ) for empirical fits to K(z, λ = 0) as
functions of NT and NQ in ranges useful in practice. The RMSE column gives the root-mean-square error between
the fit and empirical cumulative distribution function from Monte-Carlo simulations; one finds RMSE < 1%. The

values of NQ are equally spaced logarithmically.

NQ = 1.73× 106 NQ = 1.73× 106/
√

10 NQ = 1.73× 106/10

NT a b RMSE a b RMSE a b RMSE

1 2.13 32.13 7.8× 10−3 2.13 32.13 7.8× 10−3 2.13 32.13 7.8× 10−3

5 2.67 73.83 6.5× 10−3 2.67 73.83 6.5× 10−3 2.67 73.83 6.5× 10−3

10 3.35 119.27 6.0× 10−3 3.35 119.27 6.0× 10−3 3.35 119.27 6.0× 10−3

15 3.46 162.99 5.7× 10−3 3.46 162.99 5.7× 10−3 3.46 162.99 5.7× 10−3

20 3.44 205.59 5.5× 10−3 3.44 205.59 5.5× 10−3 3.44 205.59 5.5× 10−3

25 3.75 247.62 5.3× 10−3 3.75 247.62 5.3× 10−3 3.75 247.62 5.3× 10−3

30 4.25 289.34 5.1× 10−3 4.25 289.34 5.1× 10−3 4.25 289.34 5.1× 10−3

37 4.55 347.18 4.6× 10−3 4.55 347.18 4.6× 10−3 4.55 347.18 4.6× 10−3
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FIG. 11: Least-squares fit of a Gumbel law (C4) (red
curve) to K(z, λ = 0) in (C1) derived from Monte-Carlo
simulations (blue curve) for the representative example
NT = 37 and NQ = 1.73× 106. The best fit is for

a = 10.0 and b = 268.

know, no general formula for these HMM PDFs exists
in the literature for a chi-squared–distributed estimator
like the F-statistic or J -statistic. In this appendix, we
review why the HMM maximisation step makes it hard to
calculate the score PDF (section C 1), present an approx-
imate, empirical distribution whose form is suggested by
extreme value theory (section C 2), and quantify Pa and
Pd in terms of the empirical distribution (section C 3).
We improve on a first attempt at these calculations in
Ref. [34] and compute the probability of outliers more
realistically.

1. Viterbi path correlation and maximisation

Equation (33) in Ref. [34] estimates Pa crudely by
assuming that max log Pr(Q|O) follows a central chi-
squared distribution with 4k degrees of freedom after k
HMM steps, because 2F = logLo(tk)q(tk) is drawn from

the PDF p(2F) = χ2(2F ; 4, 0) in the absence of a sig-
nal, and the chi-squared distribution is additive. How-
ever, this assumption breaks down on two counts. First,
the nonlinear maximisation operator in the Viterbi al-
gorithm returns values from the tail of χ2(2F ; 4, 0), be-
cause χ2(2F ; 4, 0) is sampled NQ times, once for each
possible transition from the previous step. Second, the
Viterbi paths overlap partially, so the random numbers
logLo(tj)q(tj) for 1 ≤ j ≤ k are not independent and
identically distributed. Exactly the same issues arise, if
the frequency domain estimator at each HMM step is the
J -statistic instead of the F-statistic.

Consider all admissible paths following the transition
rule in equation (3), that end in state qi after the k-th
HMM step. Label the log likelihood of each path by
xp = log Pr(Q|O), with 1 ≤ p ≤ 3k. We wish to compute
the cumulative probability that maxp xp is less than z,
viz.

K(z;λ) = Pr(x1 < z, · · · , x3k < z) (C1)

where λ is the non-centrality parameter (zero for the case
of noise, and positive for signal plus noise) which is re-
lated to the gravitational wave signal strength by equa-
tion (28) in Section III C.

A difficulty arises because x1, ..., x3k are correlated, so
the joint distribution cannot be written as a product of
individual probabilities. We illustrate with an example.
Consider all admissible paths up to k = 3 ending in
q3. We have x1 = X(1, 1) + X(2, 2) + X(3, 3) for the
path {q1, q2, q3}, x2 = X(2, 1) + X(2, 2) + X(3, 3) for
the path {q2, q2, q3}, and so on, where X(i, j) are inde-
pendent samples of the F-statistic or J -statistic in state
qi at the j-th HMM step. We can write the sums in
matrix notation as x = Au with x = (x1, · · · , x9)T ,
u = [X(1, 1), X(2, 1), X(3, 1), X(4, 1), X(5, 1), X(2, 2),
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X(3, 2), X(4, 2), X(3, 3)]T and

A =



1 0 0 0 0 1 0 0 1

0 1 0 0 0 1 0 0 1

0 0 1 0 0 1 0 0 1

0 1 0 0 0 0 1 0 1

0 0 1 0 0 0 1 0 1

0 0 0 1 0 0 1 0 1

0 0 1 0 0 0 0 1 1

0 0 0 1 0 0 0 1 1

0 0 0 0 1 0 0 1 1


. (C2)

The covariance of x is

〈xi, xj〉 = AAT =



3 2 2 1 1 1 1 1 1

2 3 2 2 1 1 1 1 1

2 2 3 1 2 1 2 1 1

1 2 1 3 2 2 1 1 1

1 1 2 2 3 2 2 1 1

1 1 1 2 2 3 1 2 1

1 1 2 1 2 1 3 2 2

1 1 1 1 1 2 2 3 2

1 1 1 1 1 1 2 2 3


. (C3)

Equation (C3) is clearly not diagonal. At the time of
writing, it is unclear how to fold equation (C3) analyti-
cally into the computation of K(z, λ = 0).

2. Log likelihood PDF

Although it is challenging to calculate the PDF of
maxp xp = maxQ log Pr(Q|O) theoretically, it is rela-
tively simple, albeit time-consuming, to compute it em-
pirically. Figure 10 plots three histograms for the illus-
trative example of a three-step HMM: the PDF of the
sum of three independent F- or J -statistic values, which
matches a central chi-squared distribution with 12 de-
grees of freedom (red histogram); the PDF of δqi(tNT )
without taking correlations into account, i.e. the max-
imum log likelihood for any nine independent paths,
each path comprising three independent F- or J -statistic
samples (blue histogram); and the PDF of δqi(tNT ) tak-
ing correlations into account, i.e. the maximum log like-
lihood from the nine paths in the vector x for a single
realisation of a synthetic observation (green histogram).
The PDF taking correlations into account peaks to the
right of the PDF that neglects correlations, because ex-
treme F-statistic values are likely to end up in multiple
paths (if they are large) or end up in few paths (if they
are small). Correlations therefore play a significant role.

Extreme value theory states that there exist three PDF
families that describe asymptotically the maximum of N ′

samples of a random variable for N ′ � 1: the Weibull,
Gumbel and Fréchet laws [46]. The families correspond
to light, exponential, and heavy tails respectively in the

PDF of the underlying random variable. Here we seek
empirically the best fit to K(z, λ) in (C1). The under-
lying variable xp is crudely chi-squared distributed, even
when the correlations discussed in Section C 1 are in-
cluded; the tail is exponential, which is easy to verify by
replotting Figure 10 on log-linear axes. Testing by trial
and error confirms that the Gumbel Law is a superior fit
compared to the Weibull and Fréchet laws, with

K(z, λ = 0) = exp{− exp[−(z − b)/a]}, (C4)

where a(NT , NQ) and b(NT , NQ) are dimensionless pa-
rameters. Note that C4 strictly applies to a variable that
takes values along the whole real line. In this application,
in contrast, we have z ≥ 0. But we also have b� a and
hence K(0) ≈ 0 to a good approximation.

An example of the fit for NT = 37 and M = 1.73 ×
106 is graphed in Figure 11. The plot confirms vi-
sually, that the fit is good, with root-mean-square er-
ror ≈ 1.46 × 10−2. In a Sco X-1 search, these val-
ues of NT and NQ correspond to an observation with
Tdrift = 10 d and Tobs = 370 d, covering a bandwidth of
NQ∆fdrift = 1.0 Hz.

Table VII presents a, b and the root-mean-square error
of the fit for various practically motivated choices of NT
and NQ. The error is generally less than one per cent,
giving confidence that (C4) is a good approximation.

When a signal is introduced (i.e. λ > 0), the situ-
ation is complicated considerably, because the optimal
path may travel through some states containing the sig-
nal (drawn from a non-central chi-squared distribution)
and others containing noise only (drawn from a central
chi-squared distribution). We simplify things by consid-
ering the extreme case, where the optimal path exactly
matches the signal path. The simplification is conserva-
tive, because in a real search it is possible for the optimal
path to include some noise-only bins yet still exceed the
threshold for a detection.

In the extreme case, the cumulative distribution func-
tion for λ > 0 is given by

K(z;λ) = 1−Qk/2(
√
λ,
√
z) (C5)

after k HMM steps, where Qk/2 is the Marcum-Q func-
tion,

Qk/2(u, v) =
1

u(k/2)−1

∫ ∞
v

dxxk/2 (C6)

exp[−(x2 + u2)/2]I(k/2)−1(ux),

and I(k/2)−1 is a modified Bessel function of order (k/2)−
1.

3. Receiver operator characteristic (ROC) curve

The HMM tracker determines the log likelihood z that
a given set of parameters corresponds to a signal. We
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choose a threshold log likelihood zth and claim a detec-
tion for z > zth. The false alarm probability, Pa, quanti-
fies how often pure noise gives z > zth, causing a spurious
detection. Given Pa, we solve

K(zth;λ = 0) = 1− Pa (C7)

for zth.
Once Pa and hence zth are fixed, some signals by

chance fail to be detected because they are too weak,
relative to the noise, to produce z > zth. The false dis-
missal probability, Pd, quantifies the probability of this
outcome. Upon choosing Pd, we determine the weakest
signal that can be reliably detected by solving

K(zth;λ) = Pd (C8)

for λ and hence h0 via (28).

Figure 12a displays ROC curves for four values of λ.
Each curve shows the tradeoff of Pa (on the horizon-
tal axis) against detection rate 1 − Pd (on the vertical
axis). The results are replotted on logarithmic axes in
Figure 12b to magnify the edges of the plot. The de-
tection probability increases, as λ increases. It also rises
superlinearly (linearly) with Pa for Pa . 0.1 (Pa & 0.1).

Figure 13 shows how the detection probability in-
creases as more data blocks are processed, again for the
same four values of λ as Figure 12. As expected, the de-
tection probability rises, as NT and hence Tobs increase,
keeping Tdrift fixed.
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FIG. 12: Receiver operator characteristic curves for NT = 37 blocks and four representative choices of λ, ranging
from a strong signal (λ = 10, red curve) to a signal too weak to be reliably detected at the commonly used false
alarm probability Pa = 0.1 (λ = 3.5, purple curve). At each point along a curve, the vertical axis indicates the

detection probability 1− Pd, and the horizontal axis indicates the false alarm probability Pa. (a) Linear scale. (b)
Log-log scale. Detection occurs when the optimal path exactly matches f?(t), c.f. Viterbi score in Section IV C.
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FIG. 13: Detection probability versus number of HMM
steps NT with Tdrift = 10 d for the same four values of λ
as in Figure 12. Detection occurs when the optimal path
exactly matches f?(t), c.f. Viterbi score in Section IV C.


