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We present the strongest constraints to date on anisotropies of CMB polarization rotation derived
from 150 GHz data taken by the BICEP2 & Keck Array CMB experiments up to and including
the 2014 observing season (BK14). The definition of polarization angle in BK14 maps has gone
through self-calibration in which the overall angle is adjusted to minimize the observed TB and EB
power spectra. After this procedure, the QU maps lose sensitivity to a uniform polarization rotation
but are still sensitive to anisotropies of polarization rotation. This analysis places constraints on
the anisotropies of polarization rotation, which could be generated by CMB photons interacting
with axion-like pseudoscalar fields or Faraday rotation induced by primordial magnetic fields. The
sensitivity of BK14 maps (∼ 3µK-arcmin) makes it possible to reconstruct anisotropies of polariza-
tion rotation angle and measure their angular power spectrum much more precisely than previous
attempts. Our data are found to be consistent with no polarization rotation anisotropies, improving
the upper bound on the amplitude of the rotation angle spectrum by roughly an order of magni-
tude compared to the previous best constraints. Our results lead to an order of magnitude better
constraint on the coupling constant of the Chern-Simons electromagnetic term gaγ ≤ 7.2×10−2/HI
(95% confidence) than the constraint derived from B-mode spectrum, where HI is the inflationary
Hubble scale. This constraint leads to a limit on the decay constant of 10−6 . fa/Mpl at mass
range of 10−33 ≤ ma ≤ 10−28 eV for r = 0.01, assuming gaγ ∼ α/(2πfa) with α denoting the fine
structure constant. The upper bound on the amplitude of the primordial magnetic fields is 30nG
(95% confidence) from the polarization rotation anisotropies.

† Corresponding author: T. Namikawa, toshiyan@stanford.edu

Introduction.— The BICEP/Keck Array (BK) pro-
gram has been making deep observations of cosmic mi-
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crowave background (CMB) polarization at the South
Pole. The 150 GHz data taken through 2014 (BK14) have
been used to constrain primordial gravitational waves
(GWs) to r < 0.07 (95% confidence, including Planck
and WMAP) [1] and to detect gravitational lensing with
high significance [2].

In addition to GWs and lensing, CMB polarization can
also be used to test various theories of physics beyond
the Standard Model. Measurements of the polarization
rotation angle are known to be a unique probe of new
physics containing pseudoscalar fields coupled with pho-
tons through the Chern-Simons term [3–9]:

L ⊃ gaγa

4
Fµν F̃

µν . (1)

Here a is a pseudoscalar field, gaγ is corresponding cou-

pling constant, Fµν is the electromagnetic field, and F̃µν

is the dual of Fµν (for review see e.g. Ref. [10] and
references therein). The existence of the above pseu-
doscalar fields, also known as axion-like particles, is a
generic prediction of string theory, and detection or any
constraints on these fields can provide valuable implica-
tions for fundamental physics. The presence of the above
pseudoscalar fields leads to cosmic birefringence, in which
the CMB polarization angle is rotated by

α =
∆agaγ

2
, (2)

where ∆a is the change of the pseudoscalar fields along
the photons’ trajectory between the observer and re-
combination (e.g. Ref. [6]). Fluctuations in ∆a, as
some models predict, lead to spatial variations in α (e.g.
Refs. [8, 11–13]). If the pseudoscalar field is effectively
massless during inflation, the power spectrum of the fluc-
tuations of the pseudoscalar field has a scale-invariant
spectrum. Ref. [8] shows that the power spectrum of α
induced by these fluctuations is given as√

L(L+ 1)CααL
2π

=
HIgaγ

4π
, (3)

in the large-scale limit (L . 100). Here HI is the infla-
tionary Hubble parameter. Henceforth, we use L for the
multipoles of α and ` for the CMB E and B modes.

The measurements of the rotation angle can also be
used to probe primordial magnetic fields (PMFs) through
the Faraday rotation of CMB polarization [14, 15]. In the
large-scale limit (L . 100), nearly-scale invariant PMFs
lead to [16, 17]√
L(L+ 1)CααL

2π
= 1.9× 10−4

( ν

150 GHz

)−2
(
B1Mpc

1 nG

)
.

(4)

The rotation angle from PMFs depends on the observing
frequency. Compared to the BK14 150 GHz data, the

BK14 95 GHz data has larger noise and lower angular
resolution, and the 150 GHz data from BK14 place the
strongest constraints on PMFs. Thus we use the 150 GHz
data in the following analysis. If we detect a rotation
signal, then we would look for the same signal at 95 GHz
to test whether it has the correct wavelength dependence
for Faraday rotation.

The polarization rotation effect modifies the pattern
of the CMB polarization map and leads to mixing of E
and B modes. Since E modes at last scattering are much
brighter than B mode, this effect is mostly characterized
by leakage from E to B modes. The rotation-induced B
mode is proportional to αE, so the rotation angle may
be measured from the correlation of E and B modes.
Because temperature is correlated with E modes, the ro-
tation angle may also be measured from temperature-B
correlation. These effects are the same for any sources
of the rotation. Using EB and/or temperature-B corre-
lations, the uniform polarization rotation angle has been
constrained by several groups including WMAP [18], BI-
CEP1 [19], and Planck [20] (see also Refs. [21, 22]). The
current best constraints are limited by the accuracy of
absolute detector polarization angle calibration.

Inhomogeneities in pseudoscalar fields and/or PMFs
produce anisotropies of the rotation angle [8, 17, 23]. If
the polarization angle is anisotropic, the correlation be-
tween E and rotation-induced B modes determined at
each small patch is also anisotropic. In Fourier space,
different Fourier modes of E and B modes correlate.
Thus the anisotropy of the polarization rotation is ex-
tracted through the mode coupling between E and B
modes. The angular power spectrum of the extracted
anisotropic rotation is the four-point correlation of E
and B modes, and can be reconstructed from the EBEB
trispectrum measurement [24]. Compared to a uniform
rotation, measurements of the anisotropic rotation an-
gle are insensitive to the accuracy of the overall rota-
tion angle. There already exist constraints on the cos-
mic birefringence anisotropies from the CMB. Ref. [12]
presents constraints on anisotropies of the cosmic bire-
fringence using the TBTB trispectrum of WMAP7 data,
while Refs. [25–30] used two-point correlation. The most
stringent constraints prior to this Letter were published
by POLARBEAR [31].

In this Letter, we use a similar method to improve con-
straints on the rotation anisotropies using polarization
maps made by BK.

Data and simulations.— We use the same data set de-
scribed in Refs. [1] and [2]: BICEP/Keck Array maps
which coadd all data taken up to and including the 2014
observing season—we refer to these as the BK14 maps.
In this work we use the 150 GHz Q/U maps. These have
a depth of 3.0 µK-arcmin over an effective area of ∼ 395
deg2, centered on RA 0h, Dec. −57.5◦.

We reuse the standard sets of simulations described
in Ref. [1] and previous papers: lensed CMB signal-
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only simulations (denoted by “lensed-ΛCDM”) with in-
put lensed maps generated by LensPix [32], instrumental
noise, and dust foreground, each having 499 realizations.
The details of the CMB signal and noise simulations are
given in Sec. V of Ref. [33], and the dust simulations
are described in Sec. IV A of BKP and Appendix E of
Ref. [1]. In addition, we also generate random fields of
anisotropic rotation maps, α(n̂), on the full sky (where n̂
denotes a position on the sphere) whose power spectrum
is described by

L(L+ 1)

2π
CααL = ACB × 10−4 [rad2] , (5)

with varying ACB. Since previous constraints on the cos-
mic birefringence anisotropies are derived based on this
spectrum, our result can be directly compared with the
previous studies (see e.g. Refs. [8, 12, 31]).

The simulated full-sky CMB maps are rotated by α(n̂)
before beam smoothing according to

[Q′ ± iU ′](n̂) = e±2iα(n̂)[Q± iU ](n̂) . (6)

As described in Ref. [34], we simulate observed maps by
multiplying the BK14 observing matrix with the rotated
maps. We denote these maps as “rotated-ΛCDM” sim-
ulations. The rotated-ΛCDM, instrumental noise, and
dust simulated maps are then combined to estimate the
transfer function, mean-field bias, disconnected bias, and
the uncertainties of the power spectrum of reconstructed
α. The reconstructed rotation power can then be com-
pared against lensed-ΛCDM simulations under the null
hypothesis to evaluate statistical uncertainties.

To properly include cosmic variance from α, rotated-
ΛCDM simulations must be used. To our knowledge, this
has not been done in previous papers, where unrotated
simulations are used to calculate uncertainties [12, 31]).
In this Letter, we present the test of the null hypothe-
sis using the lensed-ΛCDM simulations to compare our
measurements with prior attempts, and also show con-
straints on the anisotropic polarization rotation with the
rotated-ΛCDM simulations.

Analysis.— The rotation angle anisotropies can be re-
constructed from the off-diagonal mode-mode covariance
within, and between, the E- and B- modes. An estimator
of α(n̂) has a quadratic form similar to the lensing esti-
mator [24, 35]. The power spectrum of the anisotropic
rotation angle CααL can be obtained by squaring the ro-
tation estimator. Here we describe the method used to
reconstruct the anisotropic rotation angle from the BK14
polarization maps, to calculate the rotation spectrum,
and to evaluate the amplitudes of the resulting spectra.
The details and verification of our analysis method is de-
scribed in Ref. [36].

Under the flat-sky approximation, the CMB E and B
modes are given by

E` ± iB` = −
∫

d2n̂ e−in̂·` [Q± iU ](n̂)e∓2iϕ` , (7)

where ϕ` is the angle of ` measured from the Stokes Q
axis. From Eq. (6), the rotated CMB E and B modes
are given by [24]

E′` = E` +

∫
d2L

(2π)2
2αL

× [E`−L cos 2(ϕ`−L − ϕ`) +B`−L sin 2(ϕ`−L − ϕ`)]
(8)

B′` = B` +

∫
d2L

(2π)2
2αL

× [E`−L sin 2(ϕ`−L − ϕ`)−B`−L cos 2(ϕ`−L − ϕ`)] .
(9)

Up to first order in the anisotropic part of α, the
rotation-induced off-diagonal elements of the covariance
are [24]

〈E′`B′L−`〉CMB = wαL,`αL , (10)

where 〈· · ·〉CMB denotes the ensemble average with a fixed
realization of α and the weight function is

wαL,` = 2C̃EE
` cos 2(ϕ` − ϕL−`) , (11)

where C̃EE
` is the lensed E-mode power spectrum. The

term originated from the lensing B mode is ignored since
the improvement of the sensitivity to the polarization
rotation anisotropies by the inclusion of this term is neg-
ligible [31]. Similar to the lensing reconstruction, the
quadratic estimator of α is constructed as a convolu-
tion of the E and B modes with the weight function
of Eq. (11) [24]. The only difference between the recon-
struction of α and the lensing potential, φ, is the weight
function. Similar to the lensing analysis, we use E and
B modes obtained from the matrix-based E-B separa-
tion technique as described in Ref. [34] to avoid E-to-B
leakage.

From the reconstructed α, the rotation spectrum is es-
timated in the same way as the lensing spectrum shown
in Ref. [2]. The disconnected bias is estimated with the
realization-dependent method [36] which is more accu-
rate than simulation-based subtraction [37] and also mit-
igates the off-diagonal elements of covariance [38].

To quantify the constraints on polarization rotation
anisotropies, we estimate the amplitude for the recon-
structed rotation spectrum [2]

ÂCB =

∑
b wbAb∑
b wb

, (12)

where Ab = Cb/C
fid
b is an amplitude relative to a fiducial

power spectrum at each multipole bin, b. The coefficients
wb are defined as

wb =
∑
b′

Cfid
b Cov−1

bb′C
fid
b′ , (13)
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and the power spectrum covariance Covbb′ is estimated
from the lensed- and rotated-ΛCDM+noise+dust simula-
tions for evaluating the null hypothesis and constraining
ACB, respectively. The fiducial rotation spectrum Cfid

b

corresponds to ACB = 1.

In the reconstruction from the rotated-ΛCDM sim-
ulations, even after the subtraction of a disconnected
bias, there exists a non-negligible correction from the sec-
ondary contraction at smaller scales [36]. As detailed in
Ref. [36] the secondary contraction of the EBEB trispec-
trum (N1 term) is proportional to the signal, so we in-

clude this term for estimating ÂCB. On the other hand,
the lensing-induced trispectrum is negligibly small for
BK14 data [36].

Reconstructed spectrum.— Fig. 1 shows the power
spectrum of the reconstructed rotation angle from BK14
data. In the baseline analysis we use CMB multipoles be-
tween ` = 30 and 700 but remove B modes for multipoles
` < 150, which significantly reduces the large-scale dust
foreground contamination (see Ref. [2]). In addition to
the baseline analysis, we also show the cases with differ-
ent choices of CMB multipole ranges used for the rotation
angle reconstruction and the case without a dust compo-
nent. We calculate the χ2-PTE for the baseline analysis
and each variant analysis against the null-hypothesis. For
the baseline case the χ2-PTE is found to be 0.25. The
χ2-PTE for other cases are in the range between 0.18 to
0.59. These results indicate that the reconstructed spec-
trum is consistent with the null hypothesis irrespective
of the choice of the multipole range and the inclusion of
dust in the simulations. Fig. 1 indicates that, to con-
strain the model of Eq. (5), the largest-scale multipole
bin is the most important. One advantage of BK14 data
is the capability of measuring such large scales.

Fig. 2 shows the histogram of ÂCB for each realization
of the null (lensed ΛCDM+noise+dust) simulations. The

observed ÂCB is shown as the vertical solid line, and is
consistent with the null hypothesis. The rotation spec-
trum amplitude is estimated from Eq. (12). We also show
the histogram obtained from the POLARBEAR analysis
[39] which leads to ACB < 3.1 at 95% confidence (ignor-
ing the cosmic variance from α). The statistical uncer-
tainties for BK14 are an order of magnitude smaller. The
histogram obtained in this work is skewed because the
constraint on ACB is mostly determined by the largest
scale multipoles where the PDF of the power spectrum
becomes a chi-squared distribution.

Cosmological implications.— To obtain a constraint
on ACB, we next apply the direct likelihood method of
Ref. [40] to ACB. We run simulations with varying over-
all amplitude of the input scale-invariant spectrum up to
ACB = 1.5 to obtain the distribution of ÂCB for each
value of the input ACB. The posterior distribution for
the amplitude parameter ACB is obtained from this direct
likelihood by assuming a flat prior on ACB for ACB ≤ 1.5.

FIG. 1: Angular power spectrum of rotation anisotropies
measured from BK14 real data using the standard lensed-
ΛCDM+noise+dust simulation to obtain the power spectrum
and uncertainties. In addition to the baseline analysis we
also show cases with different choices of CMB multipole range
used for the rotation angle reconstruction and a case without
inclusion of the dust simulation. We group the multipoles up
to 700 into 10 bins. The solid line shows the scale-invariant
spectrum of Eq. (5) with ACB = 1.

FIG. 2: Histogram of rotation spectrum amplitude ÂCB from
BK14 data. The blue histogram shows the results from the
standard ΛCDM simulations while the green histogram shows
the POLARBEAR result [39]. The blue vertical line shows
the value from the observed spectrum.

The resulting constraint is ACB ≤ 0.33 at 95% confi-
dence and is the best constraint on cosmic birefringence
anisotropies to date.

Using Eq. (3), this ACB constraint can be translated
into constraints on coupling between axion-like particles
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and photons

gaγ ≤
7.2× 10−2

HI
. (14)

This is at least an order of magnitude better than the
constraint from Ref. [6] which obtains gaγHI . 1.

The constraint above leads to implications for axion-
like particles with a small mass as discussed in e.g.,
Ref. [10]. In general, if axion-like particles have a mass,
ma, the field value perturbation starts to oscillate when
the Hubble friction becomes inefficient as similar to the
uniform value. The change of the field value in Eq. (2),
and equivalently the polarization rotation angle, is signif-
icantly suppressed after the oscillation. Thus, the polar-
ization rotation anisotropies are generated if the oscilla-
tion of the axion-like particles starts after recombination
(t = trec). Since the time of the transition to oscillation
is given by H(tosc) ∼ ma, the mass range of the axion-
like particles is ma = 10−33 − 10−28 eV where the lower
limit comes from ma ∼ H0 and the upper bound comes
from ma ∼ H(trec). String axion generally predicts such
a mass spectrum. According to Fig.2 of Ref. [41], the
constraint on gaγ presented above is much tighter than
other experiments at ma = 10−33 − 10−28 if the tensor-
to-scalar ratio is r ∼ 0.01.

The coupling constant is related to the decay constant
fa as gaγ = (α/2π)Caγ/fa where α is the fine structure
constant and Caγ is a model-dependent dimensionless
coupling. The typical value of Caγ is O(1). The value
of the decay constant in string theory models is typically
fa ∼ 1016 GeV (e.g., the model-independent axion in
heterotic string theory and M-theory axiverse) but could
be fa . Mpl (Type IIB theory) with Mpl denoting the
Planck energy scale [10]. Our constraint tightens the al-
lowed region of fa for string axions with a mass within the
above mass range. For example, if r ∼ 0.01 and Caγ ∼ 1,
we obtain HI ∼ 10−5Mpl and the allowed range becomes
10−6 . fa/Mpl . 1. In near future, measurement of
polarization rotation from CMB-S4∗ would further im-
prove the lower bound by ∼ 4 − 5 orders of magnitude
compared to our results, and significantly constrain fa.

Following Refs. [17, 31, 42], we can also convert the
above upper bound to the amplitude of the PMFs. The
above result constrains the strength of the scale-invariant
PMFs smoothed over 1Mpc to B1Mpc ≤ 30nG which
is roughly three times better than that obtained from
the previous best constraints on the polarization rota-
tion (note that other statistics such as the PolarBear BB
spectrum at high ` can further tighten the magnetic-field
constraint compared to the trispectrum constraint pre-
sented here).

∗ https://cmb-s4.org/CMB-S4workshops/index.php/Main_Page

TABLE I: Probability to exceed a χ2 statistic for the jack-
knife tests (see Ref. [44] for definitions of these jackknife
splits).

Deck 0.822
Scan Dir 0.856
Tag Split 0.064
Tile 0.285
Phase 0.776
Mux Col 0.383
Alt Deck 0.567
Mux Row 0.715
Tile/Deck 0.964
Focal Plane inner/outer 0.375
Tile top/bottom 0.924
Tile inner/outer 0.248
Moon 0.375
A/B offset best/worst 0.194

Note that a BB spectrum is also generated by the
anisotropies of the cosmic birefringence through conver-
sion from E to B modes. The BK14 BB spectrum is,
however, less sensitive to cosmic polarization rotation
anisotropies than CααL , and the upper bound on the cos-
mic polarization rotation anisotropies using the BB spec-
trum is much larger than ACB ≤ 0.33. In other words,
the results in this Letter also rule out significant contri-
butions from cosmic birefringence to BK14’s main BB
results, a possibility raised by Ref. [43].
Discussion— The BK14 data have been extensively

searched for possible systematics in previous publications
in the power spectrum and lensing trispectrum. To fur-
ther test potential systematic contamination in the mea-
sured rotation spectrum, we perform rotation reconstruc-
tion on differenced (“jackknife”) maps and check whether
they are consistent with null (see Ref. [44] for the details
of the jackknife maps). Table I shows the probability-to-
exceed (PTE) the χ2 observed value constructed for these
jackknife tests. The jackknife spectra show no evidence
of spurious signals.

Galactic dust contamination affects the rotation spec-
trum measurement by producing additional disconnected
bias and trispectrum induced by dust non-Gaussianity.
While a thorough estimation of these two effects requires
a reliable non-Gaussian dust simulation, the following
evidence demonstrates that our rotation spectrum mea-
surement is not significantly affected by Galactic dust:

• We estimate the rotation spectrum by repeating the
simulations with no dust and show that the change
of the spectrum is negligible compared to the statis-
tical uncertainties. This means that the additional
disconnected bias by the Gaussian dust component
is negligible. Since the power of the non-Gaussian
dust is comparable to that of the Gaussian dust,
the impact of the non-Gaussian dust on the dis-
connected bias would also be negligible.

https://cmb-s4.org/CMB-S4workshops/index.php/Main_Page
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• To test the possible impact of dust we tighten the
cut on large scale B modes from 150 < ` to 200 < `.
The results remain consistent with the null hypoth-
esis.

• The dust could also lead to nonzero cross power
between the lensing and rotation maps. We cross-
correlate the reconstructed rotation angle with the
reconstructed lensing maps from BK14 shown in
our lensing paper [2] and also with the public
Planck 2015 lensing maps [45]. The χ2-PTEs of
these cross spectra are 0.75 for α× κBK14 and 0.63
for α × κP15. We find the cross spectrum to be
consistent with zero.

These negative results suggest that the dust foreground
contamination is not significant in the reconstructed ro-
tation spectrum.

In our analysis the overall polarization angle is cali-
brated by minimizing the TB and EB spectra [1, 19, 31,
46]. However, limited accuracy of relative detector po-
larization calibration can also affect rotation spectrum
measurements. To test this we generate a set of signal-
only TOD simulations where the baseline detector po-
larization angles are offset according to measured values
for Keck 2014 data (see Ref. [47] for details). We then
coadd them to maps using the nominal detector polariza-
tion angles. We repeat the analysis replacing the stan-
dard ΛCDM signal with this simulation, finding that the
change in the reconstructed power spectrum is < 1% of
the 1σ statistical uncertainty in all bandpowers. Even
if we repeat the analysis using the simulation where the
offsets from nominal are multiplied by 5, the change in
the reconstructed spectrum is still ∼ 1% of the 1σ sta-
tistical error. We therefore conclude that the systematic
errors due to relative detector polarization angle offsets
are negligible in our analysis.

Conclusion.— We present measurement of anisotropies
of the CMB polarization rotation angle using BK14 data
and find that the spectrum is in agreement with the null
hypothesis (the standard ΛCDM prediction). The 95%
upper bound on the amplitude of the scale-invariant ro-
tation spectrum relevant to the inflationary scenario is
0.33 × 10−4[rad2] = 0.11 deg2 which is approximately
10 times better than the best previous result [39]. The
measured rotation spectrum is used to constrain cosmic
birefringence from axion-like particles and Faraday rota-
tion of PMFs. The constraint presented in this paper
tightens the allowed range of the coupling constant for
axion-like particles with ma = 10−33 − 10−28. At this
mass range, the CMB polarization rotation measurement
is the best avenue to probe the axion-like particles, and
in near future CMB-S4 will further tighten the allowed
parameter space. We test systematics in the measured
rotation spectrum by 1) performing jackknife null tests,
2) cross-correlating with gravitational lensing maps, and

3) evaluating the effect of relative rotation angle offsets
between detectors, finding no spurious signals.

The anisotropic rotation angle is a unique probe of
parity-violating models, and its measurement is impor-
tant to test new physical theories of the early universe.
Future CMB experiments such as BICEP Array, Ad-
vanced ACT, CMB-S4, LiteBIRD, Simons Array and
SPT-3G will measure rotation angle anisotropies more
precisely.
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