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The direct detections of gravitational waves (GW) from merging binary black holes (BBH) by
aLIGO have brought us a new opportunity to utilize BBH for a measurement of the Hubble constant.
In this paper, we point out that there exists a small number of BBH that gives significantly small
sky localization volume so that a host galaxy is uniquely identified. Then a redshift of a BBH
is obtained from a spectroscopic follow-up observation of the host galaxy. Using these redshift-
identified BBH, we show that the Hubble constant is measured at a level of precision better than
1% with advanced detectors like aLIGO at design sensitivity. Since a GW observation is completely
independent of other astrophysical means, this qualitatively new probe will help resolve a well-
known value discrepancy problem on the Hubble constant from cosmological measurements and
local measurements.

I. INTRODUCTION

It is well known that there is a discrepancy between the
values of the Hubble constant determined from cosmolog-
ical measurements such as cosmic microwave background
(CMB) [1] and baryon acoustic oscillation (BAO) [2] and
local measurements using Cepheid variables [3] (for a re-
view, see [4]). This discrepancy could be caused by a sys-
tematic error in the measurements or by dark radiation,
which is unknown additional radiation and increases the
number of relativistic species in the early Universe [1].
In any case, pinning down the Hubble constant is crucial
for understanding the standard model of cosmology, and
requires another independent measurement qualitatively
different from ones above.
A gravitational-wave (GW) observation provides a new

opportunity to measure the Hubble constant. The direct
detections of GW from merging binary black holes (BBH)
during the observation runs of aLIGO [5–7] have demon-
strated that the advanced detectors have sufficient sensi-
tivity enough to detect GW out to the distant Universe.
The three events detected so far, plus one candidate, also
suggest that BBH mergers are common in the Universe,
as already predicted before the detections in [8, 9]. These
facts allow us to use BBH as a cosmological probe. The
observation of GW from a compact binary gives luminos-
ity distance to the source directly without any help of a
distance ladder. Given source redshift information, the
compact binaries can be utilized for measuring the cos-
mic expansion [10] and in this cosmological context they
are called the standard sirens [11]. However, availability
of the standard siren depends on whether a source red-
shift is available or not, because GW observation alone
is not sensitive to the source redshift. If compact bi-
naries are double neutron star (NS) binaries or NS-BH
binaries, it is often assumed that the source redshift is
obtained from an electromagnetic counterpart that oc-
curs coincidentally with the GW event [12–14], though
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the coincidence rate is still largely uncertain [15]. The
other ways to obtain redshift information are assuming
equation of state of a NS [16] or a narrow mass distri-
bution of NS [17]. On the other hand, we cannot expect
an electromagnetic counterpart for stellar-mass BBH nor
use nongravitational properties of NS to obtain redshift
information.

There have been two methods for BBH observed by
ground-based detectors that do not resort to identifying
electromagnetic counterparts. First one is a statistical
method assuming a source redshift distribution based on
galaxy catalogs [18–20]. Each GW event has typically
large sky error volume that contains many candidates of
source host galaxies. By combining a large number of
sources, a set of cosmological parameters consistent with
all GW events is chosen. This method, however, can
only be applied to GW sources at low redshifts, z . 0.1,
because no galaxy catalog is complete in realistic obser-
vations at higher redshifts unless an intentional follow-up
galaxy survey dedicated for GW events is performed in
the future [21]. Second method is to utilize anisotropies
of GW events on the sky [22–24]. The spatial distribu-
tion of BBH is anisotropic if they trace galaxy clustering
induced by the large-scale structure of the Universe. The
anisotropic signal contains rich cosmological information
helpful to constrain the cosmic expansion history and
structure formation without redshift information.

In this paper, we focus on BBH observed by aLIGO-
like detectors and show that the first method above for
BBH is utilized to measure a local rate of the cosmic
expansion, that is, the Hubble constant, at an unprece-
dented precision, < 1%. It is remarkable that there ex-
ists a small number of BBH that gives significantly small
sky localization volume containing a unique host galaxy.
This new opportunity can be revealed only by statisti-
cally studying the parameter estimation errors of stellar-
mass BBH from large samples of 50000, taking into ac-
count an astrophysical mass distribution, a redshift dis-
tribution, the realistic merger rate of BBH, and the up-
to-date phenomenological waveform of GW. Then once
a unique host galaxy is identified, the redshift of a BBH
is obtained from a spectroscopic follow-up observation of
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the host galaxy at later time. In this sense, our result is
conservative in that any galaxy catalog is not assumed
a priori. The main conclusion of this paper is that the
Hubble constant can be measured at less than 1% level
even with second-generation detectors like aLIGO, with
better precision than other astrophysical means, indepen-
dent of astrophysical systematics in other astrophysical
sources.
This paper is organized as follows. In Sec. II, we be-

gin with generating a source catalog with Monte Carlo
method, taking into account an astrophysical situation as
realistic as possible: mass distribution, redshift distribu-
tion, and networks of realistic GW detectors. In Sec. III,
we estimate model parameters of BBH and compute er-
ror volume of sky localization for each source. Then we
count the expected number of host galaxy candidates in
the volume. Based on the number of GW sources with a
unique host galaxy, we estimate the measurement preci-
sion of Hubble constant in Sec. IV. Finally, Sec. V and
VI are devoted to discussion and summary. Throughout
the paper, we adopt units c = G = 1.

II. GENERATING A SOURCE CATALOG

To perform Monte-Carlo simulations of parameter esti-
mation, we start with generating a mock catalog of BBH.
We assume circular nonspinning binaries just for simplic-
ity [26] and use the PhenomD waveform [25], which is
an up-to-date version of inspiral-merger-ringdown wave-
form for aligned-spinning (nonprecessing) BBH with
mass ratio up to 1:18. Then each binary source is
described by the following nine physical parameters
{M, η, tc, φc, dL, θS , φS , ι, ψ}: intrinsic chirp mass, sym-
metric mass ratio, time and phase at coalescence, lumi-
nosity distance, two angles corresponding to the source
sky direction, an angle between the direction of orbital
angular momentum and line of sight, and polarization
angle. The distribution of each component mass is
drawn from the mass-weighted distributions, m−α, with
α = 2.35 (Salpeter-type) and α = 1 (log-flat). Each com-
ponent mass ranges from 5M⊙ to 100M⊙, but the total
mass does not exceed 100M⊙, as assumed in the anal-
ysis of [7]. Both of these distributions are still allowed
observationally, but the corresponding BBH merger rates
are different [7]. For each BBH, we randomly choose the
directions of BBH on the sky and its orbital angular mo-
mentum. We assume a constant merger rate per unit
comoving volume and unit time. This is a conservative
assumption because the BBH merger rate in the scenario
of isolated field binaries is predicted to increase up to
z ∼ 2 by an order of magnitude [27]. The fiducial cos-
mological parameters are set to those from Planck [1],
assuming a flat Lambda cold-dark-matter (ΛCDM) cos-
mology. We limit source redshifts to z < 0.3, because
as we will see later, well-localized sources that can be
used for determination of the Hubble constant are con-
centrated at low redshifts (z . 0.1). The signal-to-noise

ratio (SNR) ρ of each BBH is computed from

ρ2 = 4
∑

I

∫ fmax

fmin

|h̃I(f)|
2

Sh(f)
df , (1)

where h̃I is the Fourier amplitude of a GW signal in
Ith detector and Sh is the noise power spectral density
of a detector. The summation in Eq. (1) is taken over
all detectors under consideration. We consider detector
networks composed of aLIGO H1 (H), aLIGO L1 (L),
aVIRGO (V), and KAGRA (K), setting locations and
orientations to realistic ones. The minimum and maxi-
mum frequencies are fmin = 30Hz and fmax = 10 kHz,
respectively.
We repeat the above procedure and generate 50000

sources up to z = 0.3 for our source catalog. Then SNR
is computed for each source and only sources with ρ > 8
are kept as observed ones. The parameter probability dis-
tributions of the GW sources are shown in red in Fig. 1.

III. HOST GALAXY IDENTIFICATION

We compute parameter estimation errors for each BBH
with a Fisher information matrix with the nine param-
eters for a nonspinning binary. The parameters we are
interested in for the purpose of host-galaxy identification
are luminosity distance and sky localization area. The
sky localization error is computed by

∆ΩS ≡ 2π| sin θS |
√

(∆θS)2(∆φS)2 − 〈δθSδφS〉2 , (2)

where 〈· · · 〉 stands for ensemble average and ∆θS ≡
〈(δθS)

2〉1/2 and ∆φS ≡ 〈(δφS)
2〉1/2.

In Fig. 2, we show the error probability distributions
of luminosity distance and sky localization area. A typi-
cal fractional error in luminosity distance is from 0.05 - 2
(undetermined), while a typical sky localization error is
0.1 - 100 deg2. On the tails of the distributions, however,
there exists a small population of BBH that has signifi-
cantly smaller errors in the distance and sky localization.
Although its fraction is small, non-negligible number of
such BBH is observed if the total number of BBH ob-
served is large. It is possible for these golden binaries to
uniquely identify a host galaxy in each sky localization
volume and obtain a source redshift.
Assuming that the number density of galaxies is ngal =

0.01Mpc−3, which covers roughly 90% of the total lumi-
nosity in B-band [21], we count the number of galaxies
Nhost in sky localization error volume at 90% CL for each
BBH by

Nhost ≡ ngal [V (dL,max)− V (dL,min)]
∆ΩS

4π
. (3)

Here V (dL) is comoving volume of a sphere with ra-
dius dL. The maximum and minimum luminosity dis-
tances are determined by dL,max = dL(zf) + ∆dL and
dL,min = max [dL(zf)−∆dL, 0], where zf is a fiducial
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Figure 1. Probability distributions of source parameters in a source catalog observed by the HLV detector network. The colors
are all binaries (blue, solid), binaries with Nhost < 100 (green, dot-dashed), and binaries with Nhost < 1 (red, dotted).
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Figure 2. Probability distributions of parameter estimation errors for sources from the mass distribution (α = 2.35), observed
by HLV detector network: all binaries (red, solid), binaries with Nhost < 100 (green, dashed), and binaries with Nhost < 1
(blue, dotted).

source redshift and ∆dL is a parameter estimation er-
ror of luminosity distance. In these conversion between a
redshift and luminosity distance, we used fiducial cosmo-
logical parameters, which may cause a bias in cosmolog-
ical parameter estimation, but it is a higher order effect
and can be ignored for our purpose to investigate leading-
order measurability of the Hubble constant in aLIGO era.

In Fig. 3, the probability distribution of the number
of host galaxy candidates in sky localization volume for
each BBH is plotted. Most of BBH has 102 - 106 galaxies
in their sky localization volume. However, there exists a
small number of BBH that can identify a unique host
galaxy. The fractions of these BBH among all BBH ob-
served is 0.74% for HLV network and 1.4% for HLVK
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Figure 3. Probability distributions of the number of host
galaxy candidates for a BBH merger event observed by HLV
network. The color shows the mass distributions, α = 2.35
(orange) and α = 1 (blue).

network in α = 2.35 case, and 1.0% for HLV network
and 2.2% for HLVK network in α = 1 case, as listed in
Table I. In either case, the success probabilities of host-
galaxy identification are rather small, but a large number
of sources observed leads to a non-negligible number of
host-galaxy identified sources. In Figs. 1 and 2, we plot
the probability distributions of these BBH subclasses fil-
tered by Nhost < 100 and Nhost < 1. As seen from
Fig. 1, chirp masses are almost independent of the num-
ber of host galaxy candidates. However, well-localized
sources are those at rather low redshifts and consequently
with high SNR. Indeed, in Fig. 2, these BBH have much
smaller distance and sky localization errors. Therefore,
our statistical study reveals that a small number of BBH
at significantly low redshifts enables us to obtain their
redshifts by identifying their host galaxies from a spectro-
scopic follow-up observation or just referring to a nearly
complete galaxy catalog at z . 0.1. This conclusion has
also been reached in a recent work on 3D error volume
and host galaxy identification by Chen and Holz [28]. We
note that the number of sources withNhost < 1 for HLVK
network is roughly twice of HLV network. This simply
results from a sky localization error twice better due to
extending a detector network.

IV. MEASUREMENT OF THE HUBBLE

CONSTANT

With golden binaries whose redshifts are known from
host galaxies, we estimate a measurement error of the
Hubble constant with a Fisher matrix. In the flat ΛCDM
cosmology, the cosmic expansion history is described by
two parameters: Hubble constant H0 and matter en-
ergy density Ωm. Since GW golden binaries at low red-
shifts are not sensitive to Ωm, which plays a role only at
high redshifts, we adopt a Gaussian prior ∆Ωm = 0.013

from the CMB observation by Planck [1]. There are
two systematic errors that can contribute to a luminos-
ity distance measurement [29]: gravitational lensing and
galaxy peculiar velocity. The former directly changes ap-
parent luminosity distance by magnifying/demagnifying
GW amplitude, but it is negligible because the golden bi-
naries are at low redshifts. The latter affects a measured
redshift via the Doppler shift in a spectroscopic measure-
ment of galaxy and indirectly contributes to an error in
luminosity distance [30, 31]. The systematic error due to
the peculiar velocity σpv is more important at lower red-
shifts. The total error in luminosity distance is defined
as

σ2
dL
(z) = σ2

GW(z) + σ2
pv(z) , (4)

where σGW is a luminosity distance error purely from a
GW observation and σpv is given by

σpv(z) =

∣

∣

∣

∣

1−
(1 + z)2

H(z)dL(z)

∣

∣

∣

∣

σv,gal .

We set the radial velocity dispersion of galaxies to
σv,gal = 300 kms−1. Then we estimate measurement er-
rors of the cosmological parameters, H0 and Ωm, from
the Fisher matrix:

Γab =
∑

i

∂adL(zi)∂bdL(zi)

σ2
dL
(zi)

, (5)

where i runs over all redshift-identified GW sources and
∂a is a derivative with respect to H0 or Ωm.

Let us denote the observed number of BBH with
Nhost < 1 by Ngold. For each Ngold up to 50, we take 100
sets of Ngold binaries randomly sampled from our source
catalog and average the cosmological parameter errors
over the realizations. The average ∆H0/H0 is shown as
a function of Ngold in Fig. 4. As the number of observed
BBH increases, the fractional error of H0 decreases down
to 1.5%, 0.85%, and 0.65% with HLV network and 1.2%,
0.69%, and 0.52% with HLVK network in the presence
of the systematic error when using 10, 30 and 50 BBH,
respectively. In the absence of the systematic error, the
sensitivities of HLV and HLVK networks are almost same.
This is just because high-SNR events are always detected
with both networks and the fractional error in luminos-
ity distance has almost no difference between them ex-
cept for statistical fluctuations if SNR is fixed. However,
in the presence of the systematic error from peculiar ve-
locity, HLVK network is slightly more sensitive for the
same number of Ngold. The reason is because HLVK net-
work can detect sources at further distance, where the
systematic error is slightly smaller. More importantly,
the largest advantage of HLVK network is that the num-
ber of golden binaries expected to be observed is nearly
twice.
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α = 2.35 case event rate [yr−1]

source selection source catalog 220Gpc−3 yr−1 130Gpc−3 yr−1 40Gpc−3 yr−1

BBH merger (z < 0.3) 50000 1956 1156 356

HLV (ρ >8, z < 0.3) 47982 1877 1109 341

HLV (ρ >8, z < 0.3, Nhost < 1) 353 14 8 3

HLVK (ρ >8, z < 0.3) 49361 1931 1141 351

HLVK (ρ >8, z < 0.3, Nhost < 1) 696 27 16 5

Table I. Expected number of BBH observed by HLV and HLVK when α = 2.35 mass distribution is assumed. The selected
BBH merger rates correspond to the current maximum, intermediate, and minimum ones from the aLIGO observation [7]. The
numbers in specific cases of BBH merger rates are scaled from those obtained for the source catalog, containing Poissonian
errors up to roughly 5.3% and 3.8% for HLV and HLVK, respectively.

α = 1 case event rate [yr−1]

source selection source catalog 70Gpc−3 yr−1 30Gpc−3 yr−1 10Gpc−3 yr−1

BBH merger (z < 0.3) 50000 622 267 89

HLV (ρ >8, z < 0.3) 49030 610 262 87

HLV (ρ >8, z < 0.3, Nhost < 1) 495 6 3 1

HLVK (ρ >8, z < 0.3) 49721 619 265 88

HLVK (ρ >8, z < 0.3, Nhost < 1) 1083 14 6 2

Table II. Same as Table I, but the mass distribution is different, α = 1 here. Correspondingly, the selected merger rates are
different.

w/ sys. error

w/o sys. error

HLV

HLVK

Figure 4. Measurement precision of the Hubble constant as a
function of the observed number of golden BBH in the case
of α = 2.35 mass distribution. The detector networks are
HLV (red) and HLVK (blue). The solid and dotted lines are
with/without the systematic error from peculiar velocity. The
horizontal line shows 1% precision.

V. DISCUSSIONS

A. Calibration error

Current data of GW amplitude from aLIGO observa-
tions include at most 5% uncertainty from a calibration
error at one-sigma level [7]. This directly affects the mea-
surement precision of luminosity distance and is not av-
eraged away because of a systematic error. Although

we did not take into account the calibration error in our
analysis, it should be seriously considered and mitigated
in the future observations to achieve the potential sensi-
tivity of GW detectors to the Hubble constant. It would
be possible to reduce the calibration error to 1% level
with the sophisticated method proposed by Tuyenbayev
et al. [32].

B. Computation of sky localization volume

One of simplifications in our analysis is the definition of
sky localization volume in Eq. (3), which slightly overesti-
mates the error volume. In a real data analysis, however,
the shape of an error volume is much more complicated,
because luminosity distance error and sky localization er-
ror are correlated in a nontrivial manner. Thus, an error
volume is expected to be more like an ellipsoid [33], in-
dicating that the corners of our error volume should be
truncated. To estimate an error volume more accurately,
we need to go beyond the Fisher matrix analysis, though
the other method like fully coherent Bayesian analysis is
computationally much intensive.

C. Galaxy clustering and properties

Another simplification in our analysis is ignorance
of galaxy clustering and properties. We assumed that
galaxy number density is spatially constant, but in real-
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ity, galaxies are more concentrated in denser regions due
to gravity and halo bias. This clustering would make
more difficult to find a unique host galaxy and reduce
Ngold available in our analysis. Then it takes more years
to reach the same sensitivity to H0. Even if a unique host
galaxy is not found, one can treat the redshift distribu-
tion of host galaxy candidates in a Bayesian statistical
framework as in [18–20]. This may improve a measure-
ment precision of the Hubble constant by using full in-
formation about GW sources, though a further study on
possible observational biases due to missing galaxies on
a catalog is necessary. On the other hand, if one filters
host galaxy candidates by galaxy properties, e. g. metal-
licity, it would be easier to find a unique host galaxy.
At present we cannot conclude if these associations are
true, but the future GW detections would provide more
evidences on the properties of host galaxies.

VI. CONCLUSION

We have considered a measurement of the Hubble con-
stant with stellar-mass BBH. We found that a small num-

ber of BBH has significantly small error volume, which
enable us to identify a unique host galaxy and then ob-
tain the redshift of BBH from a spectroscopic follow-up
observation without preparing a galaxy catalog a pri-

ori. With the golden GW events, we have shown that
the Hubble constant can be determined at the precision
better than 1% only if a calibration error is reduced to
that level [32]. Therefore, future GW observations will
help resolve a well-known discrepancy problem between
cosmological measurements and local measurements.
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