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The authors of ref. [1] reported about a careful analysis of the impact of lattice artifacts on the
SU(3) gauge-field propagators. In particular, they found that the low-momentum behavior of the
renormalized propagators depends on the lattice bare coupling and interpreted this as the result
of its being affected by discretization artifacts. We discuss here a different interpretation for these
results.
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I. INTRODUCTION

The understanding of the IR dynamics of QCD has
been very much boosted in the past years by the endeav-
ors in obtaining a very detailed picture for the fundamen-
tal Green’s functions of the theory in both lattice [1–8]
and continuum QCD [9–30]. Namely, a consensus has
been reached about both the fact that the gluon propaga-
tor takes a non-zero finite value at vanishing momentum
(corresponding to a dynamical generation of an effective
gluon mass [31–34]) and the fact that the ghost propaga-
tor essentially behaves, at asymptotically low momenta,
as its tree-level expression dictates. These findings have
recently contributed, for instance, to establish a striking
connection between gauge and matter sectors in defining
an interaction kernel for a symmetry-preserving trunca-
tion of Schwinger-Dyson equations (SDEs) able to repro-
duce the observable properties of hadrons [35]; as well as
to the construction of a process-independent strong run-
ning coupling which agrees very well with the Bjorken
sum-rule effective charge [36].

Very recently, the authors of [1] have performed a
thorough study of the effect of lattice artifacts on pure
Yang-Mills SU(3) gluon and ghost propagators in Lan-
dau gauge, as a result of which they claimed that they
both depend on the lattice spacing, a, in the infrared do-
main, while finite volume effects appear to be very mild
when lattice volumes are larger than (6.5 fm)4, in phys-
ical units. Specifically, the authors concluded that the
zero-momentum gluon propagator dropped roughly by a
factor of 10% when the lattice spacing increases from 0.06
fm (β=6.3) up to 0.18 fm (β=5.7). This is attributed
in [1] to a discretization artifact but, in our view, the
latter cannot fully explain the findings.

Standard discretization artifacts, mainly owing their
origin to the breaking of the rotational symmetry O(4)
and taking place at the length scale a, can hardly be
felt by gluon modes with characteristic wavelengths of

1/p� a, corresponding to deep infrared momenta. Fur-
thermore, one should expect for them, controlled by pow-
ers of ap, not to be stronger at low infrared than at
large UV momenta (otherwise, the very precise match-
ing for the lattice estimates of the Taylor running cou-
pling from many different simulations found in [37–39]
would not have been possible). On the other hand, the
Gribov ambiguity has been recently argued [40] to in-
duce, seen through an alternative lattice implementation
of Landau gauge, a different kind of discretization effect,
affecting the gluon and ghost fields specially at low mo-
menta. Other than by discretization artifacts, as will
be discussed below, the findings of [1] can be also ac-
counted by deviations in the lattice scale setting. In this
note, we will preliminary check with the gluon propaga-
tor lattice data of ref. [41, 42], exploited there for differ-
ent purposes, whether similar lattice spacing effects are
also present at low momenta and, if so, whether they can
be removed, or smoothed, by assuming small lattice scale
deviations. In ref. [40], the Taylor coupling has been seen
to be enough affected by the gauge-fixing, albeit it is not
clear at what extent it impacts on the gluon propagator,
as the ghost propagator (also involved in the coupling
definition) is known to be more sensitive to the Gribov
ambiguity. Here, we will only focus on the gluon prop-
agator, conjecture that it receives no important contri-
bution from the gauge-fixing discretization artifact and
make thus the low-momentum lattice spacing effects to
be wiped out by a lattice scale re-setting. Our conjecture
can be only supported, a posteriori, by the practical suc-
cess of this removal of lattice spacing effects, as well as
by a further scrutiny of the data analyzed by the authors
of [1].
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II. LATTICE SCALE DEVIATIONS

Let us focus on the Landau-gauge gluon propagator,
defined as

Dab
µν(p) = 〈Aaµ(p)Abν(−p)〉 = δab

(
δµν −

pµpν
p2

)
D(p2)

(2.1)
where Aaµ is the gauge field in momentum space, latin
(greek) indices correspond to color (Lorentz) degrees of
freedom, 〈·〉 expresses the integration over the gauge
fields, which is replaced by the average over gauge field
configurations in lattice QCD, and D(p2) is the so-called
gluon propagator which, as explained in [1], is to be
renormalized on the lattice by applying the MOM pre-
scription,

DR(p2, ζ2)
∣∣
p2=ζ2

= Z−1
3 (ζ2)D(ζ2) =

1

ζ2
; (2.2)

where ζ2 is the renormalization point, fixed at 4 GeV
in ref. [1]. The details of the computation of the gluon
propagator on the lattice can be found in the literature,
for instance in some previous works of the authors of [1],
as [43], or in previous works of some of us such as [8].

β N a [fm] confs
5.6 48 0.236 1920
5.8 48 0.147 960

TABLE I: Lattice set-ups specifying the bare lattice coupling
β = 6/g20 , the number of lattice sites in any of the direc-
tions, N , the lattice spacing, a, and the number of gauge-field
configurations exploited. The lattice scales have been taken
from [44], where statistical errors of 0.3-0.6 % are obtained
from the scale setting.

In a very recent lattice analysis of the three-gluon ver-
tex and running coupling [41], we have also computed
the gluon propagator for different lattice bare couplings.
In particular, we obtained the results displayed in Fig. 1,
for β=5.6 and β=5.8 from quenched simulations with the
Wilson action in 484 lattices. Details of the lattice set-
ups can be found in Tab. I. Both our physical volumes,
namely (7.1 fm)4 and (11.3 fm)4, are larger than (6.5
fm)4, above which the authors of [1] found a negligible
impact from finite volume effects. The statistical errors
have been estimated by applying the jackknife method.
The propagators are displayed as a function of the lat-
tice momenta pµ = 2π/(Na)nµ, with nµ = 0, 1, . . . N/4,
instead of the tree-level improved p̂µ = 2/a sin (apµ/2).
We have applied the H(4)-extrapolation [45], which has
been proven to be a very efficient prescription to cure
the data from the hypercubic artifacts [45–47]. In addi-
tion, we have also employed such a kinematical cut that
ap ≤ π/2, thus lessening the impact of any remaining
discretization artifacts. As a consequence of this, the
largest accessible momentum for the simulation at β=5.6
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FIG. 1: Upper panel.- Lattice gluon propagator results for
the set-ups given in Tab. I. Lower panel.- The same gluon
propagator results after applying to the data at β=5.8 the
“recalibration” described in the text through Eqs. (2.4,2.5),
with δ=-0.05 for the deviation parameter.

is not much above the momentum, ζ = 1.3 GeV, which
we take here for the renormalization point. Indeed, im-
posing the renormalization condition at ζ = 4 GeV, for
which aζ ∼ 1.5π at β=5.6 and ∼ π at β=5.8, might
imply to incorporate sizable discretization artifacts and,
as the propagators are thus required to take there the
same value, 1/ζ2, propagate these artifacts down to low
IR momenta.

The latter is a possible source, partially at least, for
the lattice spacing effect reported in [1]. However, our
propagators displayed in the upper panel of Fig. 1, renor-
malized at ζ = 1.3 GeV, show the same effect: the data
obtained with a larger value of the lattice spacing (lower
β) appear to deviate upwards when the momentum de-
creases. Alternatively, we argue this effect may also re-
sult from a systematic uncertainty in the lattice scale
setting. Indeed, if one admits a small deviation in the
lattice scale, a(δ) = a(1 + δ), such that a(δ) is a better
estimate for the lattice spacing; any dimensionless lat-
tice result, obtained at a physical momentum p with the
scale a, would correspond to a new physical momentum
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p/(1 + δ) with the scale a(δ). Thus, one can write

(a(δ))−2D(δ)(p2/(1 + δ)2) = a−2D(p2) , (2.3)

where D and D(δ) stand for the bare gluon propagator
resulting from setting the scale with, respectively, a and
a(δ). After replacing p/(1 + δ) → p, the “recalibrated”
gluon propagator can be then recast as

D(δ)(p2) = (1 + δ)2D((1 + δ)2p2) , (2.4)

and, after renormalization at p2 = ζ2, one would get

D
(δ)
R (p2, ζ2) =

D((1 + δ)2p2)

ζ2D((1 + δ)2ζ2)
. (2.5)

Therefore, the systematic deviation in the scale setting
expressed by δ would result in a non-trivial transforma-
tion of the data that might well account for the low-
momentum discrepancies shown by the upper panel of
Fig. 1.

In order to check the validity of this conjecture, we just
consider the results obtained at β=5.6 as non-deviated
and estimate the deviation parameter δ at β=5.8 required
to get rid of the low-momentum discrepancies and get the
data from both simulations lying on top of each other.
This can be strikingly seen in the lower panel of Fig. 1, to
be left with which one needs to apply δ = −0.05. Prop-
erly interpreted, the latter means that all the discrepan-
cies can be explained if we accept a 5 % of deviation in the
ratio between the lattice spacings at β=5.8 and at β=5.6,
with respect to the values quoted in Tab. I. These values
have been obtained in [44] by using the Sommer parame-
ter, r0, and are compatible with those used in [1] and set
by the string tension in [48]. In both cases, the scale set-
ting procedures refer to the force between external static
charges. The relative accuracy of r0/a resulting from the
thorough statistical analysis of [44] is of the order 0.3-
0.6 %, but a larger cut-off-dependent systematical uncer-
tainty can be sensibly conceived. The 5 % of deviation
for the ratio of lattice spacings can very well result from
a combination of deviations of around 2-3 % in the lattice
space setting for both simulations. The same might be

enough to explain the effects at low-momentum reported
in [1]. Other scale setting prescriptions as the more pre-
cise ones grounded on the Wilson flow [49–51] could pre-
sumably result on reduced systematic uncertainties. The
comparison of the running of renormalized propagators
can anyhow be of much help to check these uncertainties
and refine the scale setting.

III. CONCLUSIONS

We suggest that the lattice spacing effects discussed by
the authors of [1], taking place in the low-momentum do-
main of the quenched gluon propagators, can also result
from a small systematic deviations in the lattice scale set-
ting based on the definition of the force between external
static charges. We have made the conjecture that nei-
ther gauge-fixing induced nor other possible discretiza-
tion artifacts have a visible impact on the gluon prop-
agator. Since the lattice scale re-setting that we have
here applied results in a non trivial modification of the
propagator’s low-momentum behaviour, the good agree-
ment of the latter obtained from lattice ensembles with
different lattice spacings supports that conjecture. How-
ever, albeit discretization artifacts might have impact on
the low-momentum gluon propagator, lattice scale devi-
ations will undoubtedly affect it and should be properly
considered. A further and detailed study of data for the
ghost propagator and the Taylor coupling, along the line
of this note, would be very welcome as it would help to
pinpoint the extent of the gauge-fixing discretization ar-
tifacts in the low-momentum running of the gauge field
propagators.
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