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1 Introduction

There are few ways to analytically study the low temperature and density behavior of

QCD-like quantum field theories.1 Near the chiral limit (in theories containing light

fermions), chiral perturbation theory may be used to systematically characterize the low

energy consequences of spontaneously broken chiral symmetry using a small number of

low energy parameters. (See, e.g., Ref. [1] for a review.) But the demonstration of chiral

symmetry breaking and determination of these low energy constants requires other

methods, such as large scale lattice gauge theory simulations or input of experimental

data. Gauge-gravity duality [2] has provided insight into some 4D confining gauge

theories [3–8], but is usefully applicable primarily in theories which are strongly coupled

at all scales, not asymptotically free, and have a large number N of colors. For 4D

confining, asymptotically free gauge theories, analytic methods based on controlled

approximations are generally unavailable.

In this paper, we study properties of 4D confining QCD-like theories, at finite N , in

a regime which allows controlled analytic calculations. Specifically, we consider theories

on R3 × S1, with one dimension compactified on a circle of circumference L which is

small compared to the inverse strong scale of the theory, L � Λ−1 (and henceforth

denoted S1
L). This is a very old idea (see, e.g., Ref. [9] for a review) but interest

has been renewed in recent years with the realization that a wide range of QCD-like

theories may be engineered to possess a phase diagram in which the small-L regime

is continuously connected to the large-L or decompactified regime. Achieving such

“adiabatic compactification” requires non-thermal boundary conditions and suitable

matter content (or the addition of double trace deformations) [10–15].

Compactifying one direction on a small circle does, obviously, change properties of a

theory. Lorentz invariance is reduced from SO(1, 3) to SO(1, 2) and physical quantities

will depend on the newly introduced scale L. But if one can engineer compactifications

where the L dependence is smooth (“adiabatic”), then studies of the small-L regime

may teach one qualitative lessons which remain valid in the large-L limit. Previous work

[12–35] has examined symmetry realizations at small L and studied the properties of

the very lightest excitations. One finds that it is possible to prevent the spontaneous

breaking of the ZN center symmetry of pure Yang-Mills (YM) theory, which would

signal a deconfinement transition. With massless quarks present, one finds that chiral

symmetry is spontaneously broken. The mechanism of confinement, the generation of

a non-perturbative mass gap (without massless quarks), and the spontaneous breaking

1By “QCD-like” we mean 4D asymptotically free SU(N) gauge theories, possibly containing

fermions but without light fundamental scalar fields. We assume that the fermion content is such

that the theory, when defined on R4, has a confining phase characterized by some strong scale Λ.
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Figure 1. Characteristic length scales in the static potential V (r) for a heavy quark and

antiquark separated by a distance r in Yang-Mills theory on R4 (top), and in adiabatically

compactified YM theory on R3 × S1
L (bottom). On R4 there is only one intrinsic length scale

Λ−1 which separates the short (V ∼ 1/r) and long (V ∼ r) distance regimes. In the small-L

regime of adiabatically compactified YM theory on R3 × S1
L, there is a parametrically large

intermediate regime, m−1
W � r � m−1

γ , in which the potential is logarithmic, V ∼ ln r. Here

m−1
W ∼ NL and m−1

γ ∼ NLη−11/6 with η ≡ NLΛ� 1. (See Eq. (2.14) below for details.)

of chiral symmetry (with massless quarks) all may be nicely understood in the small-L

regime using semiclassical methods. All evidence supports the view that these center-

stabilized compactifications are, indeed, adiabatic.2

Given the weight of evidence that adiabatic compactifications exist, it is interesting

to use these calculable settings to explore properties of QCD-like theories in more

detail. In this paper we initiate efforts in this direction by investigating qualitatively,

and where possible quantitatively, the spectrum and properties of glueballs, mesons,

and baryons in the small-L regime of adiabatically compactified theories. Some of

the hadronic states we find are stable, but naturally most are resonances. In the

weakly coupled small-L regime, hadronic resonances are narrow with parametrically

small decay widths. Portions of the spectrum have interesting parallels with what one

obtains from naive quark models, but in a context where the dynamics of the quantum

field theory are under systematic theoretical control.

We mention here two especially curious aspects of our results. First, we find that

the lightest glueballs (or dual photons in the small-L description) form bound states

whose binding energies are given by iterated exponentials of the Yang-Mills coupling,

2Consistency of symmetry realizations between small and large L is, of course, necessary but not

sufficient for physics to be smooth in L. Phase transitions not involving any change in symmetry

realization could always be present at some intermediate value of L. For center-stabilized QCD, with

light quarks, the careful lattice studies which would be needed to rule out this possibility are not

yet available. In the absence of any evidence to the contrary, we proceed assuming that for the

compactifications we study below, physical properties are smooth in L.

– 2 –



∆E ∼ exp(−Agk exp(B/g2)). Second, we find that the density of states of both glue-

balls and mesons exhibits Hagedorn (or exponential) growth with energy, but this

growth has an unusual origin. Hagedorn scaling of the density of mesonic states is

typically attributed to the fluctuations of a long, highly excited confining string, and

can only be established systematically in the large N limit where mesons cannot decay.

The origin of Hagedorn scaling in our context is quite different. The extra scale L intro-

duced by the adiabatic compactification modifies the potential experienced by heavy

test quarks separated by a distance r, and introduces a parametrically large regime

where the potential is logarithmic, as illustrated in Fig. 1. The compactified theory

has many narrow resonances which can be described using non-relativistic quantum

mechanics with this logarithmic potential, leading to a Hagedorn spectrum. The fact

that stringy dynamics are not the only way to obtain a Hagedorn spectrum, and in

particular that such a spectrum arises in ordinary quantum mechanics with logarithmic

potentials does not seem to be widely appreciated.3

To make our presentation reasonably self-contained, we begin in Section 2 with a

summary of center-stabilized adiabatic compactifications. Section 3 discusses the light

sector of the compactified theory, with a focus on the spectrum of bound states. In

Section 4, we formulate the 3D non-relativistic effective field theory (EFT) which effi-

ciently describes the dynamics of heavy quark and gluon degrees of freedom. Section 5

describes how the various symmetries of the underlying 4D gauge theory act within

our 3D effective field theory. In Section 6 we examine the resulting spectrum of heavy

bound states, while Section 7 discusses decay processes. We summarize our findings in

Section 8 and discuss some of their consequences, including large N scaling relations

and implications for the thermodynamics of QCD-like theories. Several appendices

contain technical details.

2 Adiabatic compactification

Consider SU(N) Yang-Mills theory compactified on R3 × S1, with the spatial circle

having circumference L,

SYM =
1

4g2

∫
R3×S1

d4x
(
F a
µν

)2
. (2.1)

If all matter fields added to the theory transform in the adjoint representation of the

gauge group, then the theory has a ZN center symmetry. (We discuss below the addition

3However, the notion of a limiting temperature for systems with exponential densities of states was

first introduced by Rumer in 1960 [36], precisely in quantum mechanics with a logarithmic potential,

several years before Hagedorn’s suggestion [37] that such a density of states may arise in hadronic

physics.
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of fundamental representation fermions.) Order parameters for center symmetry are

built from the holonomy of the gauge field in the compact direction (or “Polyakov

loop”),

Ω ≡ P ei
∫ L
0 dx3 A3 . (2.2)

Center symmetry transformations multiply the (fundamental representation) trace of

the holonomy by a phase factor equal to an N ’th root of unity. The defining transfor-

mation is

tr Ω→ ω tr Ω , ω ≡ e2πi/N . (2.3)

At large L center symmetry is unbroken, implying that 〈 tr Ωn〉 = 0 for all integer

n 6= 0 mod N . This is a hallmark of a confining phase. At small L the realization

of center symmetry is analytically calculable [38, 39]. We require that the theory is

engineered to prevent spontaneous breaking of the ZN center symmetry in the L → 0

limit, so that the theory is not in a deconfined plasma phase at small L. This can be

achieved by adding suitable double trace deformations of the form |tr Ω|2 (plus higher

windings) to the action of pure Yang-Mills theory [12, 40]. Alternatively, the center

symmetry at small L can be stabilized by the addition of massless or sufficiently light

adjoint representation fermions [15, 18, 41–43].4 If the adjoint fermions are massive,

center stabilization for small L requires that their mass madj satisfy the constraint

madj . 2π/NL [15].

With center symmetry stabilized, the one-loop effective potential Veff(Ω) for the

holonomy, obtained by integrating out field modes with non-zero Kaluza-Klein (KK)

momentum in the compact direction, has a unique (up to gauge equivalence) ZN sym-

metric minimum,

Ω = ω−(N−1)/2 diag (1, ω, ω2, · · ·, ωN−1) . (2.4)

For sufficiently small L, the gauge coupling at the compactification scale is weak and

quantum fluctuations are suppressed. Hence, one may regard the holonomy Ω as a

nearly constant SU(N) matrix with eigenvalues which are all N ’th roots of unity for

N odd, and all N ’th roots of −1 for N even. The holonomy acts like an adjoint

representation Higgs field, “breaking” the non-Abelian gauge symmetry (using typical

sloppy perturbative language) down to the U(1)N−1 Cartan subgroup. We will refer to

the N−1 diagonal Cartan components of the gauge field as “photons.” The off-diagonal

4If center symmetry is stabilized with adjoint fermions, we assume that 2 ≤ nA ≤ 5 species of

adjoint Majorana fermions are added, so the theory is asymptotically free but non-supersymmetric

(in the massless limit). We also take the adjoint fermion mass madj to be large compared to the mass

gap scale mγ discussed below.
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components of gauge field (charged under the Cartan subgroup) will be termed “W -

bosons” and receive masses given by positive integer multiples of

mW ≡ 2π/(NL) . (2.5)

Fluctuations in the eigenvalues of the holonomy will have an effective mass mΩ

whose value depends on the details of the center symmetry stabilization. One may

regard mΩ ∼
√
λmW as a characteristic fiducial value, with λ ≡ g2N the usual ’t

Hooft coupling. This is the typical size resulting from modifications to the one-loop

effective potential for the holonomy, unless one fine-tunes the stabilization mechanism,

for instance by considering a nearly supersymmetric limit of the theory.

The dynamical Higgs mechanism and resulting Abelianization induced by the

center-symmetric holonomy is the key feature responsible for the analytic tractabil-

ity of the theory at small L. All charged degrees of freedom have masses of order mW

or more, so the 4D ’t Hooft coupling λ does not continue to run below the scale mW.

If mW � Λ, or equivalently

η ≡ NLΛ� 1 , (2.6)

then the long-distance value of the ’t Hooft coupling will be small, λ(mW) � 1. We

focus on this regime in what follows and, unless stated otherwise, the value of g2 is

taken at the scale mW.

Previous work on adiabatically compactified QCD-like theories has focused ex-

clusively on the lightest subsector in the small L limit, with characteristic energies

and momenta much less than mW and mΩ. On these scales, the physics can be de-

scribed by an effective field theory of N−1 Abelian photons living in three dimensions.

Non-perturbative monopole-instanton effects generate small but relevant interactions

between the photons. The Euclidean action for the diagonal components of the gauge

field has the schematic form5

Slight = L

∫
d3x

[
1

4g2 (F a
µν)

2 + Lmonopole
int

]
. (2.7)

A three-dimensional Abelian duality transformation leads to the Coulomb gas repre-

5Perturbative corrections generate photon mixing terms (as well as higher derivative terms which

are irrelevant at long distances). The photon mixing matrix has been calculated in N = 1 SYM

theory to first order in λ [29]. This photon mixing is diagonalized by the same ZN Fourier transform

mentioned below, and does not affect the following discussion.
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sentation,6

Slight =

∫
d3x

[
λmW

16π3
(∇σ)2 − ζ

N∑
i=1

cos(αi · σ + θ/N)

]
. (2.8)

The field σ = {σi} is an N -component compact scalar field; in our basis it is inde-

pendently periodic in every component with period 2π. The fundamental domain of

σ is the unit cell of the weight lattice, generated by the shifts σ → σ + 2πµi where

{µi} are the fundamental weight vectors of SU(N) and {αi} are the corresponding

root vectors. The “fugacity”

ζ = Am3
W λ−2 e−8π2/λ , (2.9)

where A is an O(1) coefficient which depends on the choice of regularization scheme.

Although not immediately apparent, the action (2.8) is invariant, as it must be, under

shifts in the QCD θ angle by multiples of 2π.

To obtain an expression for the masses of the dual photons, note that the potential

V = −ζ
∑N

i=1 cos(αi · σ + θ/N) has N extrema in the unit cell of the weight lattice

located at 〈σ〉k = 2πk
N
ρ for k = 0, · · ·, N−1, where ρ =

∑N−1
i=1 µi is the Weyl vector.7

For θ = 0 the minimum lies at k = 0. For general θ, the vacuum energy density is

given by

ε0 = −N2 mW

2π
ζ max

k

(
cos

2πk + θ

N

)
. (2.10)

Expanding the potential around each of the N extrema and diagonalizing the curvature

(via a ZN Fourier transform) yields the θ-dependent mass spectrum in each of the

N extrema (not all of which are minima). At the lowest-energy minimum, which

determines the physical mass spectrum, one finds

m2
p = m2

γ sin2 πp

N
max
k

(
cos

2πk + θ

N

)
, (2.11)

for p = 1, 2, · · ·, N−1, with

mγ ≡ C mW λ−3/2 e−4π2/λ . (2.12)

The O(1) coefficient C is determined in terms of the coefficient A in the fugacity (2.9).

The label p can be viewed as the charge under ZN center symmetry transformations; this

6A redundant field component has been introduced in this representation, as if the original gauge

group were U(N) instead of SU(N). The unphysical components,
∑N
a=1 F

a
µν and

∑N
a=1 σ

a, exactly

decouple and can be ignored. See, e.g., Ref. [12] for more detailed discussion. Appendix B contains

details of our conventions, normalizations, and duality transformation.
7To see this, use αi · ρ = 1 for i = 1, · · ·, N−1, together with αN · ρ = 1−N .
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is discussed in Sec. 5. One may also show that expectation values of large fundamental

representation Wilson loops (not wrapping the compactified direction) have area law

behavior, with a string tension [12]

T = C ′ λmW mγ , (2.13)

with C ′ another O(1) coefficient.

The dual photon mass mγ can be expressed in terms of the strong scale Λ by using

the renormalization group to relate λ at the scale of mW to Λ. The specific form of this

relation depends on the value of the beta function, and hence on whether center sym-

metry is stabilized by double trace deformations, or by the addition of adjoint fermions.

If center symmetry is stabilized by a double trace deformation, then parametrically [12]

mγ ∼ Λ(NLΛ)5/6 = O(Λ η5/6) , (2.14)

and mγ/mW = O(η11/6).8

2.1 Addition of fundamental quarks

We will consider center-stabilized adiabatically compactified QCD in addition to pure

Yang-Mills theory. This entails adding nf flavors of quarks — fundamental representa-

tion Dirac fermions. We restrict our discussion to nf ≤ N and, for simplicity, focus on

the massless quark limit,

mq = 0 , (2.15)

where the uncompactified theory has an SU(nf)L×SU(nf)R×U(1)V continuous chiral

symmetry.9 When compactifying the theory on R3×S1, one must specify the boundary

conditions on the quark fields. Instead of simply choosing periodic, or antiperiodic,

boundary conditions for all quark flavors, we will consider flavor-twisted boundary

conditions, or equivalently introduce a non-dynamical flavor holonomy ΩF ∈ U(nf)V .

If one regards the quark fields q as an N × nf matrix of spinors, then in A3 = 0 gauge

(where the gauge holonomy becomes encoded in boundary conditions), the boundary

conditions on quarks are

q(t,x, L) = Ω q(t,x, 0) Ω†F . (2.16)

We specifically choose the flavor holonomy ΩF to have a set of eigenvalues which are

invariant under Znf
cyclic permutations. The symmetry structure of QCD with such

8If center symmetry is stabilized by the addition of nA light adjoint Majorana fermions with mass

comparable to mW, then mγ/mW = O(η(11−2nA)/6).
9For nf > N , it is not currently known how to ensure that chiral symmetry realizations coincide at

large and small L.
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boundary conditions was discussed in Ref. [44] (see also Refs. [45–53]). To preserve

reflection (in the compactified direction) and charge conjugation symmetries, we also

require that complex conjugation leave this set of eigenvalues unchanged. These two

conditions imply that the eigenvalues of ΩF are either given by all nf ’th roots of +1,

or by all nf ’th roots of −1. Finally, to simplify our discussion and leave unchanged

the relevant degrees of freedom in the non-perturbative analysis of the light sector, we

want all flavors of quarks to receive non-zero effective masses from the compactification.

This requires that no eigenvalue of the gauge holonomy coincide with an eigenvalue of

the flavor holonomy.

Solutions to these just-stated constraints depend on the values of N and nf , in

particular whether N is even or odd and (when N is even) whether N and nf have

common divisors. For simplicity of exposition we will henceforth assume that N is

odd, unless stated otherwise, so that the eigenvalues (2.4) of the gauge holonomy Ω

are N ’th roots of unity. To avoid coinciding gauge and flavor eigenvalues, this implies

that the flavor holonomy eigenvalues must equal nf ’th roots of −1. Consequently, we

choose

ΩF = diag (ξ
1
2 , ξ

3
2 , · · ·, ξnf− 1

2 ) , ξ ≡ e2πi/nf . (2.17)

When the gauge holonomy is encoded in a non-zero value of A3 (so that the gauge field

satisfies simple periodic boundary conditions), the resulting quark boundary conditions

are

qA(t,x, L) = ξ
1
2
−A qA(t,x, 0) , (2.18)

where A = 1, · · ·, nf is a flavor index. The effect of these boundary conditions is to

shift the moding (i.e., the allowed values of the momentum in the compact direction),

in a flavor-dependent fashion which is detailed below. The boundary conditions (2.18)

reduce the non-Abelian flavor symmetry to the Abelian subgroup10

U(1)nf−1
L × U(1)nf−1

R × U(1)V . (2.19)

Note that this residual flavor symmetry of our compactified theory contains the axial

subgroup U(1)nf−1
A which differentially rotates the phases of left and right handed quarks

in a flavor-dependent fashion.

In the center-stabilized regime of YM theory, the addition of massless quarks with

the boundary conditions (2.18) produces fermion zero modes localized on the monopole-

instantons. The presence of these zero modes modifies the non-perturbative long dis-

tance dynamics. After a 3D duality transformation, one may show that nf−1 of the

10More precisely, the unbroken subgroup is U(1)nf−1
L ×U(1)nf−1

R ×U(1)V
/
Znf

. Henceforth, we will

not be explicit with the discrete identification needed to avoid double counting Znf
phase rotations.
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dual scalar fields remain exactly massless [35], while the remaining N−nf dual scalar

fields develop non-perturbative masses just as in center-stabilized YM theory without

fundamental quarks. The mechanism causing nf−1 dual scalars to become massless

in the presence of fermion zero modes involves their acquisition of non-trivial trans-

formation properties under the anomaly-free U(1)nf−1
A axial symmetry, as explained in

Ref. [35]. Consequently, these exactly-massless fields are precisely the expected Nambu-

Goldstone bosons (or ‘neutral pions’) produced by spontaneous breaking of the chiral

symmetry (2.19) down to the diagonal vector-like U(1)nf
V subgroup [35].

If a small quark mass mq is added to the theory, then some of the dual photons,

or neutral pions, become massive. For example, when nf =N one finds [35] (at θ = 0)

that

mp = C
√
mWmq e

−4π2/λ sin
πp

N
. (2.20)

(Here p is the charge of the pion under cyclic flavor permutations.) One may again relate

mp to the strong scale Λ by taking into account the contribution of the fundamental

fermions to the running of the coupling at the scale mW. With the pure-YM center

symmetry stabilized via double trace deformations and nf =N , one finds

mp = O
(
η
√
mqΛ

)
, (2.21)

where, once again, η ≡ NLΛ.

3 Light sector bound states

As noted in the introduction, when the color holonomy has the center symmetric form

(2.4), a rich spectrum of hadronic states is present in the small-L regime of the com-

pactified theory. These states fall into two categories based on the scale of their rest

masses. One set of states have rest masses of order of the light scale mγ, while the other

set has rest masses of order of the heavy scale mW. As will be shown below, in both

sectors the binding momenta are small compared to the rest masses of constituents,

so the most efficient way to describe each sector of the theory involves constructing

an appropriate non-relativistic effective field theory. In this section we describe the

effective field theory for the light ‘dual photon’ sector and discuss the resulting light

bound state spectrum.

3.1 N = 2 bound states

To illustrate the relevant physics in the simplest setting, consider adiabatically com-

pactified pure YM theory with N = 2 and θ= 0. The relativistic 3D effective theory
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describing interactions of the single (physical) dual photon field σ ≡ σ1−σ2, to leading

non-trivial order in the semiclassical expansion, is

S3D,rel =

∫
d3x

[
λmW

32π3
(∂µσ)2 − 2ζ cos(σ)

]
. (3.1)

Introducing a canonically normalized field σ̃ ≡ σ
(
λmW

16π3

)1/2
, and expanding the poten-

tial, one finds

S3D,rel =

∫
d3x

[
1
2
(∂µσ̃)2 + 1

2
m 2

γ σ̃
2 − 2

3
εmγ σ̃

4 + 16
45
ε2 σ̃6 − 32

315
ε3m−1

γ σ̃8 + · · ·
]
, (3.2)

where

ε ≡ π3mγ

λmW

= O
(
λ−5/2 e−4π2/λ

)
. (3.3)

At first glance it is tempting to assume that the interaction terms in (3.2) have neg-

ligible consequences. To our knowledge, effects of these weak interactions have not

previously been considered, either in the literature on adiabatically compactified 4D

theories starting with Ref. [12], or in the original literature on the Polyakov model

in three dimensions [54]. As we now discuss, this presumption overlooks interesting

physics.

The σ̃8 and higher terms in the action (3.2) are irrelevant and can be ignored when

focusing on the long distance behavior of the theory. The σ̃4 coupling is relevant, but

its coefficient is exponentially small in units of the σ mass. The σ̃6 coupling is marginal

and infrared-free [55–58]. It is also exponentially small and stops running below the

mass gap scale mγ. These considerations might naively be interpreted to imply that

all interaction effects in the low energy theory (3.2) are tiny. But consider interactions

of σ̃ modes with low momenta p � mγ. Such interactions can be described by a

non-relativistic effective field theory. Writing σ̃ = (2mγ)
−1/2e−imγt Σ + (h.c.), where Σ

is the non-relativistic field, and integrating out rapidly oscillating terms leads to the

non-relativistic description,11

S3D,NR =

∫
dt d2x

[
Σ†
(
i∂t +

∇2

2mγ

)
Σ +

ε

mγ

(Σ†)2 Σ2 − 8ε2

9m3
γ

(Σ†)3 Σ3 + · · ·
]
. (3.4)

The scaling dimension assignments appropriate to non-relativistic theories in spacetime

dimension d are [t] = −2, [x] = −1, [Σ] = d−1
2

, and [mγ] = 0. This implies that the

11Here and in Eq. (3.10) below, we flip the overall sign so that the nonerelativistic action S3D,NR

has the conventional T−V form.
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coefficients of the (Σ†Σ)2 and (Σ†Σ)3 interactions have dimensions d−3 and 2(d−2),

respectively. In d=3, this shows that the two particle (Σ†Σ)2 interaction becomes

marginal in non-relativistic dynamics, while the three particle (Σ†Σ)3 interaction be-

comes irrelevant. In fact, the (Σ†Σ)2 coupling ε runs logarithmically with scale [59, 60],

as may be seen (for example) by calculating the two particle scattering amplitude.

Consequently, the definition (3.3) should be interpreted as the value of the running

interaction strength ε at the UV momentum cutoff µUV ∼ mγ. In the non-relativistic

limit the only diagrams which contribute to the renormalization group (RG) evolution

of ε beyond tree level are iterated bubble diagrams. Summing them yields the exact

beta function for ε. Using dimensional regularization, one simply finds [60]

µ
d ε(µ)

dµ
= − 1

π
ε(µ)2 . (3.5)

When the initial coupling ε(µUV) is positive, corresponding to an attractive interaction,

ε(µ) diverges at the momentum scale ΛIR = µUV exp [−π/(ε(µUV))]. As a function of

momentum, the two particle scattering amplitude A(k) becomes singular at k2 = −Λ2
IR.

A pole develops at this position, indicating that ΛIR can be interpreted as the binding

momentum for a two-body bound state of dual photons.12 The two particle binding

energy is thus

∆E2 = − k2

mγ

= −µ
2
UV

mγ

e−2π/ε(µUV) = −1
4
c2mγ e

−2λmW/π2mγ . (3.6)

In the final form we used the bare value (3.3) of ε and set the ultraviolet cutoff to the

reduced mass 1
2
mγ times an O(1) coefficient c, whose determination requires a more

careful matching calculation and is left for future work. The two dual photon bound

state has a rest mass

m2 = 2mγ + ∆E2 = mγ

(
2− 1

4
c2 e−2λmW /π2mγ

)
. (3.7)

Expressed in terms of the original gauge coupling, the fractional binding energy involves

a non-perturbative double exponential,

∆E2

2mγ

= −1
4
c2 exp

(
− 2

π2C
λ5/2 e4π2/λ

)
, (3.8)

whose appearance is quite peculiar in the context of the 4D gauge theories.13

12One may also directly solve the quantum mechanical problem a particle of reduced mass 1
2mγ

moving in the attractive potential − 2ε
mγ

δ(2)(x). The bound state wave function equals K0(r/rB),

with the bound state size rB = |mγ ∆E2|−1/2 and ∆E2 equaling the binding energy (3.6).
13However, the existence of double-exponential non-perturbative scales in gauge theory has been

previously advocated [61], based on quite different considerations from those discussed here.
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In addition to a two particle bound state, an attractive two-body interaction in

two space dimensions also binds higher multi-body bound states. (See, for example,

Refs. [59, 62].) The magnitude of the k-body binding energy ∆Ek increases exponen-

tially with k, with ∆Ek+1/∆Ek ∼ 8.6 for large k [59]. In our context, we thus deduce

the presence of a very large number of bound states of dual photons, one slightly below

each k-particle threshold at E = kmγ for k = 2, 3, · · · , with fractional binding energies

proportional to the non-perturbative double exponential (3.8).14

3.2 N > 2 bound states

We now briefly consider the generalization to arbitrary N , still with θ = 0. Using a

ZN Fourier transform to diagonalize the mass terms, σi ≡
(
λmW

8π3

)−1/2∑N−1
p=1 ω

ip σ̃p/
√
N

(with σ̃∗p = σ̃N−p), the generalization of the action (3.2) is

S3D =

∫
d3x

N−1∑
p=1

1
2

(
|∂µσ̃p|2 +m2

p|σ̃p|2
)
− 4εmγ

3N

N−1∑
p1···p4=1

δp1+p2+p3+p4,0 e
iπ(p1+p2+p3+p4)/N

×
[ 4∏
i=1

sin
(πpi
N

)]
σ̃p1σ̃p2σ̃p3σ̃p4 +O(σ̃6) , (3.9)

where all center charges {pk} are understood to be defined modulo N . The masses

{mp} and coupling ε are given by Eqs. (2.11) and (3.3), respectively. [Recall that the

field σ̃0 ∝
∑

i σi decouples, and is omitted. Expression (3.9) reduces to the earlier form

(3.2) for N = 2, as it should.]

The sign of the quartic interaction depends on the values of the center charges

of the particles under consideration. For elastic scattering of dual photons with ar-

bitrary charges p1 and p2, the relevant piece of the quartic interaction has an overall

minus sign, which corresponds to attraction. The effective theory which follows from a

non-relativistic reduction of the action (3.9), and generalizes the earlier form (3.4) to

arbitrary N , is

S3D,NR =

∫
dt d2x

[
N−1∑
p=1

Σ†p

(
i∂t +

∇2

2mp

)
Σp +

2ε

N

m2
p

m3
γ

(Σ†p)
2 Σ2

p

+
∑
p1<p2

8ε

N

mp1mp2

m3
γ

Σ†p1
Σ†p2

Σp2Σp1 + · · ·

]
, (3.10)

14This weak coupling non-relativistic description breaks down when k (ln 8.6) becomes exponentially

large and comparable to 2λmW/π
2mγ ∼ λ5/2e+4π2/λ.
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where we have included only those terms contributing to elastic 2 ↔ 2 scattering.15

Note the factor of 4 difference in the coefficients of the quartic terms responsible for

scattering of identical vs. non-identical particles.

Applying the earlier analysis (either solving the two-particle Schrödinger equation

with a delta function potential, or resumming bubble diagrams and locating the result-

ing pole in the scattering amplitude) to states containing particles of center charge p1

and p2, one finds the binding energy

∆Ep1 6=p2

2 = −2c2m exp

(
−πN

4ε

m3
γ

mp1mp2m

)
, (3.11)

if p1 6= p2. Here m ≡ (m−1
p1

+ m−1
p2

)−1 is the reduced mass of the two constituents. If

the two constituents are identical, then the result is

∆Ep1=p2

2 = −c2mp1 exp

(
−πN

ε

m3
γ

m3
p1

)
. (3.12)

Bound states composed of equal mass constituents can have either equal or opposite

charge constituents. For the first case, with charges p1 = p2 = p, the identical particle

binding energy (3.12) gives a total mass

mp,p
2 = mp

[
2− c2 e−

πN
ε

(mγ/mp)3
]
. (3.13)

For opposite charges, p and N−p, the non-identical binding energy (3.11) with mp1 =

mp2 = 2m = mp gives total mass

mp,N−p
2 = mp

[
2− c2 e−

πN
2ε

(mγ/mp)3
]

(3.14)

(except for the special case of p=N/2 with N even, where the first result (3.13)

applies). In other words, the fractional binding energy for non-identical particles is

O
(
e−

πN
2ε

(mγ/mp)3)
= O

(
e−

πN
2ε
| sin πp

N
|−3)

, while bound states of identical constituents have

twice the exponential suppression in their binding energy.

15The interaction (3.9) also includes charge exchange processes which lead to mixing among bound

states with differing constituents but the same total center charge. For generic values of N and

choices of p1 and p2 the effects of such interaction terms on binding energies are suppressed in the

non-relativistic limit, because the masses of the dual photons depend on their center charge. Charge

exchange processes can only become relevant if states with differing constituents and the same total

charge also have the same total constituent mass. Such mixing will deepen the binding of the lowest

energy bound states of a given total charge. We defer a complete multi-channel treatment to future

work.
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4 Heavy sector effective field theory

We now consider states with rest masses of order mW and above, and characteristic

binding momenta p in the range

mγ � p� mW . (4.1)

This section describes the construction of a non-relativistic effective theory suitable for

the description of such states. We begin with the effective theory characterizing pure

gauge, or glueball, dynamics, and then discuss the addition of fundamental represen-

tation quarks.

4.1 Gauge field contributions

The center-symmetric holonomy (2.4) may equivalently be regarded as a non-vanishing

constant diagonal gauge field in the compact direction, A3, together with conventional

periodic boundary conditions. The tr [A3,A]2 term in the classical Yang-Mills ac-

tion generates tree-level masses of order mW for the charged W -bosons. The efficient

description of the interactions of these massive charged degrees of freedom with the

Cartan photons is provided by a non-relativistic effective field theory with action:

Sheavy =
N∑

a,b=1

∞∑′

n=−∞

∫
dt d2x

[
(~φ abn )† i∂t ~φ

ab
n −Mab

n |~φ abn |2 −
|∇~φ abn |2

2mab
n

]

+
λmW

4π

N∑
a=1

∫
dt d2x d2y ρa(t,x)G(x−y) ρa(t,y) , (4.2)

where

G(x−y) ≡ 1
2π

ln(µ|x−y|) (4.3)

is the two dimensional Laplacian Green’s function. The derivation of this effective

theory is detailed in appendix A. Higher order (in λ) corrections, such as magnetic

moment interactions, are omitted for simplicity.

The two-dimensional vector fields ~φ abn are the non-relativistic reduction of the n’th

Fourier component (in the compact direction) of the (ab) component of the SU(N)

gauge field, viewed as an N ×N Hermitian matrix. The color (or ‘Cartan’) indices a, b

run from 1 to N , and the Kaluza-Klein index n is an arbitrary integer. In the action

(4.2), the prime on the sum over n is an indication to omit the n = 0 term when a = b,

but not otherwise. The vector field ~φ abn annihilates W -bosons with charges (+1,−1)

with respect to the a’th and b’th unbroken U(1) gauge groups. The spatial gradient ∇
is a two-dimensional U(1)N covariant derivative defined by

(∇)i(φ
ab
n )j ≡

[
∇i − ig3(Aai−Abi)

]
(φabn )j . (4.4)
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Here i, j = 1, 2 label the two non-compact spatial directions and { ~A a} are N indepen-

dent spatial gauge fields. We have introduced N Abelian gauge fields, instead of N−1,

as if the original gauge group were U(N) instead of SU(N). This simplifies notation,

and makes no difference as the unphysical extra photon, Āi ≡
∑

aA
a
i , will exactly

decouple from all physical states. We have also reverted to a perturbative normaliza-

tion for the gauge fields, with a dimensionless gauge coupling g3 appearing inside the

covariant derivative, and a corresponding 3D Maxwell action given by L
∫
d3x 1

4
(F a

ij)
2.

The 3D gauge coupling is, to lowest order, just the 4D gauge coupling evaluated at the

scale mW,

g2
3 ≡ g2

4(mW) . (4.5)

Due to the non-trivial holonomy Ω, momentum in the compact direction carried

by individual field components is quantized in units of mW, not NmW = 2π/L. The

Kaluza-Klein reduction of the (ab) component of the gauge field yields a sum of modes

with momentum

p3 = mW k , (4.6a)

where

k = a− b+ nN , n ∈ Z. (4.6b)

For any given value of a = 1, · · ·, N specifying a row of the SU(N) gauge field, there

is a one-to-one mapping between the momentum index k and the corresponding values

of the column b and KK index n,

b− 1 = (k − a+ 1) mod N , n = (k − a+ b)/N . (4.7)

In the following, we will sometimes write expressions involving the relabeled field

~φ ak ≡ ~φ abn , (4.8)

with the implicit understanding that momentum index k is related to the (antifunda-

mental) column and KK indices {b, n} via relations (4.7). The momentum index k may

take on any integer value other than zero. For charged W -bosons, k mod N 6= 0. The

“diagonal” operators ~φ aan with n 6= 0 annihilate the neutral (uncharged under U(1)N)

gauge bosons carrying non-zero KK momentum. These gauge bosons form the Kaluza-

Klein tower whose n = 0 modes (excluded from Sheavy) are the U(1)N light Abelian

photons.

The rest and kinetic mass parameters appearing in the effective theory (4.2) only

depend on the Cartan and KK indices via the combination k, and equal the magnitude
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of the compact momentum p3, up to higher order radiative corrections. In other words,

Mab
n = Mk ≡ mW (|k|+O(λ)) = mW|a− b+ nN |+O(λmW) , (4.9a)

mab
n = mk ≡ mW (|k|+O(λ)) = mW|a− b+ nN |+O(λmW) . (4.9b)

Although they coincide at lowest order, the kinetic and rest masses appearing as param-

eters in our 3D non-relativistic effective field theory (4.2), or any other non-relativistic

EFT, may differ when subleading corrections are included, even when the underlying

theory retains full 2+1 dimensional Lorentz invariance.

In the effective action (4.2), the time components of the U(1)N Abelian gauge fields

have been integrated out, producing non-local Coulomb interactions. The operators

ρa ≡
N∑
b=1

∞∑′

n=−∞

[
(~φ abn )† · ~φ abn − (~φ ban )† · ~φ ban

]
, (4.10)

are the U(1)N charge densities. (Note that ρ̄ ≡
∑

a ρ
a vanishes identically.) The

conserved charges defined by spatial integrals of these charge densities must vanish,

Qa ≡
∫
d2x ρa(x) = 0 , (4.11)

when acting on any physical, gauge invariant state. Because of this, the dependence of

the 2D Laplacian Green’s function (4.3) on the arbitrary scale µ inside the logarithm

cancels in any physical state, since the variation of the Lagrangian with respect to µ is

proportional to (Qa)2.

The non-relativistic effective theory (4.2) describes the dynamics of all modes of

the non-Abelian gauge field which are charged under the U(1)N Cartan subgroup,

namely W -bosons, plus the uncharged gauge field modes which carry non-zero KK

momentum, which we will term “heavy photons.” However, we have not included any

fields describing fluctuations of the eigenvalues of the holonomy in the effective field

theory. These could easily be included as N−1 additional neutral scalar fields (not 2D

vectors like ~φ abn ) with O(
√
λmW) masses whose precise values depend on the matter

content or double trace deformations used to stabilize the center symmetry. These

scalar fields only interact with ~φ abn via higher dimension local operators, suppressed

by powers of λ. For the physics we choose to focus on, holonomy fluctuation fields

will not play any significant role and may be neglected. If adjoint fermions are used

to stabilize the center symmetry, then these fermions are also missing from our non-

relativistic effective theory. They could be easily included but, for simplicity, we will

limit our attention to states where adjoint fermions (and eigenvalue fluctuations) play

no significant role.
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Reading off the quantum Hamiltonian from the effective action (4.2) is trivial,

except for one UV subtlety. The Hamiltonian of the second quantized non-relativistic

theory (with rest energies included) is

Ĥ =
N∑

a,b=1

∞∑′

n=−∞

∫
d2x φabn (x)†i

[
− ∇2

2mk

+Mk(µ)

]
φabn (x)i

−
N∑

a,b,c=1

∞∑′

m,n=−∞

∫
d2x d2y

λmW

8π2
ln(µ|x−y|)×

×
[
φ abn (x)†i

(
φ acm (y)†j φ

ac
m (y)j − φ cam (y)†j φ

ca
m (y)j

)
φ abn (x)i

− φ ban (x)†i

(
φ acm (y)†j φ

ac
m (y)j − φ cam (y)†j φ

ca
m (y)j

)
φ ban (x)i

]
. (4.12)

where the field operators satisfy canonical commutation relations,[
φ abn (x)i, φ

cd
n′ (y)j

]
= 0 ,

[
φ abn (x)i, φ

cd
n′ (y)†j

]
= δac δbd δnn′ δij δ

2(x−y) . (4.13)

In the Hamiltonian (4.12) we have written out the charge densities ρa explicitly and

normal ordered the results. In the quartic terms, normal ordering removes the UV

sensitive self-energy of each charged W -boson. The price of that removal is that the µ

dependence of the Coulomb interaction terms no longer vanishes identically. Instead,

this unphysical dependence on the scale µ is canceled by explicit dependence on µ which

has been introduced into the bare rest masses (of charged W ’s only),

µ
d

dµ
Mk(µ) = −λmW

4π2
(1− δ0

k mod N) . (4.14)

The effective action (4.2), and corresponding Hamiltonian (4.12), depend on the

3D gauge coupling g3, or equivalently the ’t Hooft coupling λ, both in the coefficient

of the Coulomb interactions and inside the spatial covariant derivatives. But when

considering phenomena for which the coupling to the transverse Cartan gauge fields

{ ~Aa} may be neglected, the remaining dependence on λ takes a very simple form.

To see this, rescale all spatial coordinates, x → x′/s, y → y′/s, and then redefine
~φ ak (x′/s) = s ~ϕ a

k (x′). This is a unitary transformation; the rescaled operators {~ϕ a
k (x)}

satisfy the same canonical commutation relations as the original operators {~φ ak (x)}. In

the Hamiltonian, the effect of this rescaling is to change the relative coefficients of the

kinetic and Coulomb energy terms. Let

N̂ab
n ≡

∫
d2x ~φ abn (x)† · ~φ abn (x) (4.15)
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denote the number operator which counts the number of constituents of the indicated

type, and define

ĤNR(λ;µ) ≡ Ĥ
∣∣∣
~Aa=0
−

N∑
a,b=1

∞∑′

n=−∞

Mk(µ) N̂ ab
n (4.16)

as the non-relativistic Hamiltonian with rest energy contributions removed, the spatial

Abelian gauge fields set to zero, and dependence on λ and the scale µ made explicit.

If one chooses s =
√
λ, then a short exercise shows that

ĤNR(λ;µ) ∼= λ ĤNR(1, µ/
√
λ) = λ ĤNR(1, µ)− λ lnλ

8π2
mWN̂W , (4.17)

where ∼= denotes unitary equivalence and

N̂W ≡
N∑

a,b=1
a6=b

∞∑′

n=−∞

N̂ab
n (4.18)

is the total number of charged W -bosons. The scaling relation (4.17) shows that the

spectrum of the 2D Coulomb Hamiltonian ĤNR(λ;µ) is simply proportional to the ’t

Hooft coupling λ, up to an overall additive shift proportional to λ lnλ times the number

of charged constituents. This relation may equivalently be expressed as

1

λ
ĤNR(λ;µ) ∼=

1

λ′
ĤNR(λ′;µ)− mW

8π2
ln(λ/λ′) N̂W . (4.19)

4.2 Quark contributions

The quark fields modify the light and heavy sectors of the theory in several ways.

In addition to their effects on the non-perturbative large distance dynamics, already

mentioned in the previous section, the compactified quark fields contain massive degrees

of freedom which play a role in physics on the scale of mW and above. Specifically,

every flavor and color component of a fundamental representation Dirac fermion leads,

in a non-relativistic description, to a pair of two-component spinor fields which we

will denote as ψaAn and χaAn . The field ψaAn annihilates quarks of flavor A which have

charge +1 under the a’th U(1) gauge group (and are neutral with respect to all other

U(1) gauge group factors). The field χaAn annihilates antiquarks of flavor A and charge

−1 under the a’th U(1) gauge group (and are neutral with respect to the other U(1)

gauge group factors). It will be convenient to define quark KK indices as half-integers,

n ∈ Z + 1
2
. These fields satisfy canonical anticommutation relations,{

ψaAn (x)s, ψ
bB
n′ (y)†s′

}
=
{
χaAn (x)s, χ

bB
n′ (y)†s′

}
= δab δAB δnn′ δss′ δ

2(x−y) , (4.20)
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where s, s′ = ± are spin-1/2 spinor indices. All other anticommutators vanish. To

describe the dynamics of the quarks, one must add another set of terms to the effective

theory (4.2) describing W -bosons, namely

Squark =
N∑
a=1

nf∑
A=1

∑
n∈Z+ 1

2

∫
dt d2x

[
(ψaAn )† i∂t ψ

aA
n −MaA

n |ψaAn |2 −
|∇ψaAn |2

2maA
n

+ (χaAn )† i∂t χ
aA
n −MaA

n |χaAn |2 −
|∇χaAn |2

2maA
n

]
, (4.21)

where the covariant spatial gradients acting on fermions are defined by

(∇)i ψ
aA
n ≡ [∇i − ig3A

a
i ]ψ

aA
n , (∇)i χ

aA
n ≡ [∇i + ig3A

a
i ]χ

aA
n . (4.22)

The compact momentum p3 carried by a quark created by (ψaAn )† is

p3 = mW

[
(a−1

2
)− (A−1

2
)N/nf + nN

]
, (4.23)

while the antiquark created by (χaAn )† carries the opposite momentum −p3. The rest

and kinetic quark masses equal |p3|, the magnitude of the compact momentum, up to

higher order radiative corrections,

MaA
n = |p3| (1 +O(λ)) , maA

n = |p3| (1 +O(λ)) . (4.24)

Note that these fermion masses in the effective theory have nothing to do with chiral

symmetry breaking quark masses in the underlying 4D theory, which we have assumed

vanish. Our EFT fully respects the chiral symmetry (2.19) of the compactified theory.

Nevertheless, the non-relativistic quark masses (4.24) are non-vanishing for all values

of n ∈ Z + 1
2
, a = 1, · · ·, N , and A = 1, · · ·, nf . (Recall that we have assumed that N is

odd.) Our explicit calculations in Sec. 6 will focus on the special case of nf = N , for

which the allowed values of the compact momentum of a quark become half-integers

(times mW),

p3 = mW k , with k ≡ a− A+ nN . (4.25)

For a given Cartan index a, relation (4.25) gives a one-to-one mapping between the

flavor and KK indices {A, n} and the quantized momentum index k. When discussing

the nf =N theory, it will often be convenient to use the momentum index k ∈ Z+ 1
2

in

place of the (equivalent) values of the the flavor and KK indices and relabel the quark

fields as

ψak ≡ ψaAn , χak ≡ χaAn , (4.26)
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with the implicit understanding that the flavor, KK and momentum indices are con-

nected via relation (4.25). In other words, ψak annihilates a quark with compact momen-

tum p3 = mWk and charge +1 under the a’th U(1) gauge group, while χak annihilates

an antiquark with compact momentum p3 = −mWk and charge −1 under the a’th U(1)

group.

In addition to the above quark kinetic terms, the Abelian charge densities ρa ap-

pearing in the Coulomb interactions of the effective theory (4.2) must be augmented

to include the quark contributions,

ρa ≡
N∑
b=1

∑′

n∈Z

[
(~φ abn )† · ~φ abn − (~φ ban )† · ~φ ban

]
+

nf∑
A=1

∑
n∈Z+ 1

2

[
(ψaAn )†ψaAn − (χaAn )†χaAn

]
,

(4.27)

and the form of the Coulomb interactions appearing in the action (4.2) must now have

the contribution from the unwanted extra U(1) gauge group removed,

SCoulomb =
λmW

4π

∫
dt d2x d2y G(x−y)

[
N∑
a=1

ρa(t,x) ρa(t,y)− 1

N

N∑
a,b=1

ρa(t,x) ρb(t,y)

]
.

(4.28)

(Without the subtraction of the second term in this expression, the Coulomb energy

would be that of a U(N) gauge theory instead of SU(N).) With quarks added to the

theory, all the conserved Abelian charges Qa, when acting on physical states, equal the

baryon number,

Qa = NB ≡
1

N

∑
a,A,n

∫
d2x

[
(ψaAn )†ψaAn − (χaAn )†χaAn

]
. (4.29)

Conversion of the effective action for quarks (4.21) to the corresponding quark con-

tribution of the non-relativistic Hamiltonian proceeds as described earlier. As with the

W -bosons, normal ordering the Coulomb interactions induces logarithmic dependence

on the scale µ in the quark rest masses,

µ
d

dµ
MaA

n (µ) = −λmW

8π2
(1− 1

N
) . (4.30)

In the presence of quarks the rescaling relation (4.19) becomes

1

λ
ĤNR(λ;µ) ∼=

1

λ′
ĤNR(λ′, µ)− mW

16π2
ln(λ/λ′)

[
2N̂W + (1− 1

N
) N̂q+q̄

]
, (4.31)

where

ĤNR(λ;µ) ≡ Ĥ
∣∣∣
~Aa=0
−

N∑
a,b=1

∑′

n∈Z

Mab
n (µ) N̂ ab

n −
N∑
a=1

nf∑
A=1

∑
n∈Z+ 1

2

MaA
n (µ) N̂ aA

n (4.32)

– 20 –



is the non-relativistic Hamiltonian with all rest energies removed,

N̂aA
n ≡

∫
d2x

[
ψ ab
n (x)†ψ ab

n (x) + χ abn (x)†χ abn (x)
]

(4.33)

counts the number of quarks plus antiquarks of the specified type, and the operator

N̂q+q̄ ≡
∑nf

A=1

∑N
a=1

∑
n∈Z+ 1

2
N̂aA
n is the total number of quarks plus antiquarks.

5 Symmetries

As already noted, physical states in an SU(N) gauge theory must be gauge invariant.

In the compactified theory, this is trivially enforced dynamically: gauge invariant states

are those which do not have divergent Coulomb energies. This is equivalent to the just-

stated condition (4.29) that all U(1) changes equal the baryon number, Qa = NB. To

see this connection more explicitly, it may be helpful to note that our effective W -boson

fields, ~φ abn , which were described earlier in a basis-dependent fashion as coming from a

specified row and column of the 4D gauge field — when the holonomy has the specific

form (2.4) — could have been introduced in a manifestly basis-independent fashion by

first defining the operators

Pa ≡
1

N

N−1∑
n=0

ω−(a− 1
2

(N+1))n Ωn , a = 1, · · ·, N . (5.1)

The operators (5.1) are mutually orthogonal Hermitian projection operators, PaPb =

δabPa, when Ω lies at the center-symmetric minimum (2.4) and the eigenvalues of Ω are

all N ’th roots of −1 or +1. Our effective 3D fields correspond to pieces of the original

4D fields extracted by these projection operators,16

F a
µν ∝ tr (PaFµν) , ~φabn ∝ Pa ~DPb , ψaAn ∝ Pa qA , χaAn ∝ q̄APa , (5.2)

(neglecting details of the KK decomposition, spinor structure, etc.). This highlights

the point that the Cartan gauge fields are associated with manifestly gauge invariant

4D operators, while the W -boson and quark fields are gauge covariant, as one would

expect. With the aid of such expressions, it is easy to see that composite operators in

the 3D theory which map onto manifestly gauge invariant 4D operators are precisely

those satisfying the condition Qa = NB. As examples, the operators

Gab ≡ ~φ ab0 · ~φ ba0 ∼ tr (DiPbDiPa) , (5.3a)

Ma
AB ≡ χaA1/2 ψ

aB
1/2 ∼ q̄BPa qA , (5.3b)

BA ≡ ψ1,A
1/2 ψ

2,A
1/2 · · ·ψ

N,A
1/2 ∼ (P1q

A) (P2q
A) · · · (PNqA) , (5.3c)

16These are leading order relations. As with any effective field theory, field redefinitions and match-

ing corrections complicate higher order relations between fields in the effective and original theories.
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(with no implied sums on Cartan indices, and extraneous structure suppressed) are

prototypical glueball, meson, and baryon operators, respectively.

The global symmetries which are respected by our compactification and under

which eigenstates of the Hamiltonian may be classified include the spacetime sym-

metries of 2+1 dimensional Minkowski space, leading to conserved total 2D spatial

momentum (~P ) and angular momentum (Jz). States with vanishing Jz may be further

classified by their behavior under 2D spatial reflections.17 Translation invariance in the

compactified direction implies conservation of the total compact momentum,

P3 ≡
∫
d2x

{ N∑
a,b=1

∑
n∈Z

mW(a− b+ nN) (~φ abn )†~φ abn

+
N∑
a=1

nf∑
A=1

∑
n∈Z+ 1

2

mW

(
(a−1

2
)− N

nf
(A−1

2
) + nN

) [
(ψ aA

n )†ψ aA
n − (χ aAn )†χ aAn

]}
. (5.4)

As discussed earlier, our individual fields carry compact momentum quantized in units

of mW (for ~φ abn ) or linear combinations of mW and (N/nf)mW (for ψaAn and χaAn ).

Physical glueball and flavor singlet mesons states must have total compact momentum

equal to an integer multiple of 2π/L = NmW, as these states remain invariant when

translated once around the compact dimension. Due to our flavor-twisted boundary

conditions for quarks, flavor non-singlet mesons can have P3 equal to integer multiples

of 2π/(nfL). The allowed values of P3 for flavor singlet (non-singlet) baryons are integer

or half-integer multiples of 2π/L (or 2π/(nfL)) depending on whether N is even or odd.

When quarks are present, the unbroken U(1)nf
V flavor symmetry transformations

are generated by the conserved flavor charges

NA ≡
∫
d2x

N∑
a=1

∑
n∈Z+ 1

2

[
(ψaAn )†ψaAn − (χaAn )†χaAn

]
. (5.5)

The sum of these flavor charges equals the total number of quarks minus antiquarks,

or N times the baryon number NB.

Axial U(1)nf
A flavor symmetry transformations act as spin rotations on the EFT

fermions and are generated by the axial charges

NA
5 ≡

∫
d2x

N∑
a=1

∑
n∈Z+ 1

2

[
(ψaAn )†σ3 ψ

aA
n + (χaAn )†σ3 χ

aA
n

]
. (5.6)

17Reflections are only a symmetry of the theory when θ = 0 (or π), but the violation of reflection

symmetry induced by a non-zero θ only affects the long distance non-perturbative physics. For a more

thorough discussion of the action of various symmetry transformations in the 3D effective theory, refer

to Appendix C.
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The perturbative dynamics conserves these charges but the long range non-perturbative

dynamics violates conservation of N5 ≡
∑

AN
A
5 (and the non-perturbative vacuum is

not annihilated by the other axial charges).

In the absence of quarks, the compactified theory is invariant under the ZN center

symmetry which, by construction, remains unbroken. The defining center symmetry

transformation (2.3) multiplies the holonomy by an N ’th root of unity, Ω→ ωΩ. This

permutes the projection operators (5.1), Pa → Pa−1 (with P0 ≡ PN), and also acts as

a cyclic permutation on our 3D fields,

σa → σa−1 , ~φ ak → ~φ a−1
k . (5.7)

Here, Cartan indices are to be understood to be defined modulo N (so a−1 ≡ N

when a= 1). Glueball operators such as Ga
k ≡ ~φ ak · ~φ

a−q
−k (with k mod N ≡ q) are

likewise cyclically permuted by center symmetry transformations. To diagonalize center

symmetry, one must perform a discrete ZN Fourier transform and define, for example,

σ̃p ≡ 1√
N

N∑
a=1

ωap σa , G̃p
k ≡

1√
N

N∑
a=1

ωapGa
k . (5.8)

These operators now have definite center symmetry charge p = 0, · · ·, N−1, meaning

that under the center symmetry transformation (2.3) they transform into themselves

multiplied by the eigenvalue ωp = e2πip/N .

Adding fundamental representation quarks to the theory generally breaks the ZN
center symmetry. However, in the special case of nf =N , the theory retains an inter-

twined ZN color-flavor center symmetry (see, e.g., Refs. [44, 45]).18 This symmetry

combines the usual center transformation (2.3) with a cyclic permutation of quark

flavors. In terms of our 3D fields, this flavor-intertwined center symmetry acts as

σa → σa−1 , ~φ ak → ~φ a−1
k , ψak → ψa−1

k , χak → χa−1
k , (5.9)

and again may be diagonalized by a discrete ZN Fourier transform.

Because the sets of eigenvalues (2.4) and (2.17) of the gauge holonomy Ω and our

chosen flavor holonomy ΩF are invariant under complex conjugation, both charge con-

jugation and reflection of the compactified dimension (x3 → −x3) remain symmetries of

theory provided they are combined with global gauge and flavor transformations which

suitably permute the Cartan and flavor indices. The ordering (2.4) of the eigenvalues

18More generally, if d ≡ gcd(nf , N) > 1, then a Zd color-flavor center symmetry remains [44]. For

simplicity, we will focus on the case of nf =N .
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of the gauge holonomy was chosen so that the required global gauge transformation V

is just a permutation which flips Cartan indices, a→ N+1− a, reflecting the fact that

Ω∗ = V ΩV † , (5.10)

with V ≡ ‖δa+b,N+1‖ an anti-diagonal transposition. Similarly, given the order (2.17) of

the flavor holonomy eigenvalues, the required flavor transformation VF also corresponds

to a simple flip of flavor indices, A→ nf+1− A, since

Ω∗F = VF ΩF V
†
F , (5.11)

with VF ≡ ‖δA+B,nf+1‖. This redefined charge conjugation symmetry acts on the fields

of our our dimensionally reduced EFT as

σa → −σā , ψaAn → χāĀ−n , (5.12a)

~φ abn → −~φ b̄ā
n , χaAn → ψāĀ−n , (5.12b)

where ā ≡ N+1− a, Ā ≡ nf+1− A.19 Note that center symmetry does not commute

with charge conjugation. In choosing a basis for degenerate levels of the Hamiltonian,

one must choose between specifying center symmetry charge, or the sign under the

(appropriately redefined) charge conjugation symmetry; we will generally opt for the

former.

Finally, reflection in the compact direction, x3 to − x3, when combined with the

same global gauge and flavor transformations V and VF , remains a symmetry. This

redefined reflection symmetry acts on our 3D EFT fields as

σa → σā , ψaAn → −iσ2 ψ
āĀ
−n , (5.13a)

~φ abn → ~φ āb̄−n , χaAn → iσ2 χ
āĀ
−n . (5.13b)

The combined symmetry of charge conjugation times x3 reflection does not involve any

global gauge or flavor transformations and acts as

σa → −σa , ψaAn → iσ2 χ
aA
n , (5.14a)

~φ abn → −~φ ba−n , χaAn → −iσ2 ψ
aA
n . (5.14b)

This is the same as a CP transformation times a 180◦ rotation in the uncompactified

directions.
19The form of this transformation relies on our simplifying assumption that N is odd, so that

eigenvalues of Ω are roots of +1 and ΩF eigenvalues are roots of −1. If N is even then both ±1 can

be eigenvalues of the flavor holonomy ΩF for some values of nf ≤ N . When two eigenvalues of ΩF are

real, the required flavor transformation VF which must be combined with the naive action of charge

conjugation no longer corresponds to the simple flip A→ Ā of flavor indices.
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6 Heavy sector spectrum

6.1 Overview

Three basic types of bound states can be formed from the constituents of our non-

relativistic effective theory: glueballs, mesons, and baryons. Here, “bound state” means

either a genuine single particle eigenstate of the full theory, or a narrow resonance whose

fractional decay width vanishes in the L → 0 (and correspondingly λ → 0) limit. In

this section, we neglect the coupling to the Abelian gauge fields contained in the spatial

covariant derivatives, as well as higher dimension operators not shown explicitly in our

effective theories (4.2) and (4.21). Effects of these terms are discussed in Sec. 7 which

discusses decay processes.

By glueballs we mean bound states of two or more charged W -bosons, and no

quarks or antiquarks. Mesons are, of course, bound states of a quark and antiquark,

possibly containing additional W -bosons, while baryons are bound states of N quarks

(perhaps with additional charged W -bosons). In our weakly coupled small-L regime,

mixing between glueballs and flavor singlet mesons is suppressed, so they are clearly

distinguishable. Manifestly gauge invariant interpolating operators for simple examples

of such states were shown in Eq. (5.3). Further possibilities, which we will not focus

on in this paper, include multi-meson or multi-glueball “molecules” and multi-baryon

bound states.

As discussed above, all physical (gauge invariant) states must satisfy Qa = NB.

Hence, glueballs and mesons must be composed of combinations of constituents for

which all U(1)N charges sum to zero. The simplest glueballs are two-body bound

states of a W -boson and its oppositely charged antiparticle, created by operators such

as

(~φ ab0 )† · (~φ ba0 )† , (6.1)

with a 6= b. Two different U(1) gauge group factors contribute to the logarithmic inter-

action between these constituents, giving an attractive interaction of relative strength

2. The explicit two-body Hamiltonian, and its spectrum, is examined in Sec. 6.2.2

below. Bound states of more than two W -bosons can also form. States of this type

which cannot be decomposed into two or more separately gauge invariant glueballs

consist of W -bosons whose charge assignments lead to a ring-like color structure with

nearest-neighbor logarithmic interactions. Examples of operators creating such states

are

(φ ab0 )†i (φ
bc
0 )†j(φ

ca
0 )†k , (φ ab0 )†i (φ

bc
0 )†j(φ

cd
0 )†k(φ

da
0 )†l , (6.2)

etc., with up to N constituents and Cartan indices a, b, c, · · · all distinct. We will

refer to these as “closed string” glueballs. These are all single trace operators when
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Figure 2. Examples of glueball states when N = 4. Filled circles represent the charged

W -bosons, with larger circles indicating more massive constituents. Lines connecting the

constituents indicate attractive logarithmic interactions (of relative strength 1).

Figure 3. Examples of meson states (with N ≥ 3). Filled circles represent the charged

constituents. Solid lines connecting constituents indicate attractive logarithmic interactions

of relative strength 1, dashed lines represent attractive interactions of strength 1− 1
N , and

dotted lines represent repulsive logarithmic interactions of strength 1/N .

expressed in terms of the original 4D fields (as in Eq. (5.3)). In these multi-body states,

a single U(1) factor generates an attractive logarithmic interaction (of relative strength

1) between each pair of neighboring constituents in the cyclic list. This is illustrated

schematically in Fig. 2. We note that there is an amusing similarity between these

states and the picture advocated long ago in Ref. [63].

The situation with mesons is similar. The simplest mesons are two-body bound

states, created by operators such as

(χaA1/2)†(ψaB1/2)† . (6.3)

The attractive logarithmic interaction between the quark and antiquark has relative

strength of (1− 1
N

), with the reduction from 1 coming from the subtraction of the

unwanted “extra” U(1) contribution in the Coulomb interaction (4.28). There are also

mesons in which one or more additional W -bosons are present. States of this type

which cannot be decomposed into meson-glueball products have charge assignments

implying an “open string” color structure. Examples of operators creating such states

include

(χaA1/2)†(φab0 )†i (ψ
bB
1/2)† , (χaA1/2)†(φab0 )†i (φ

bc
0 )†j(ψ

cB
1/2)† , (6.4)
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Figure 4. Examples of baryon states when N = 4. Filled circles represent the charged con-

stituents, with larger circles indicating more massive constituents. Dotted lines represent

attractive logarithmic interactions of strength 1/N , dashed lines represent repulsive inter-

actions of strength 1− 1
N , and solid lines show attractive interactions of strength 1. In the

single flavor example (left), each quark constituent has a different mass due to their differing

Cartan indices. The multi-flavor example (right) shows the special case with nf = 4 where all

constituents have equal mass.

etc, with up to N−1 W -bosons inserted between the quark and antiquark and Cartan

indices a, b, c, · · · all distinct. There are attractive logarithmic interactions of relative

strength 1 between each pair of neighboring constituents, along with a repulsive log-

arithmic interaction of strength 1/N between the quark and antiquark (with differing

Cartan charges). This is illustrated schematically in Fig. 3.

Finally, baryons containing N quarks, potentially with additional W -bosons as

well, are present as finite energy bound states because our gauge group is SU(N), not

U(N). The simplest non-exotic baryons are created by operators like

(ψ1,A
1/2)†(ψ2,B

1/2 )†(ψ3,C
1/2 )† · · · (ψN,Z1/2 )† . (6.5)

In such states, every pair of quarks has an attractive logarithmic interaction of relative

strength 1/N . Several such baryon states, as well as baryon states containing additional

W -bosons, are illustrated schematically in Fig. 4.

The stability of these various hadronic states will depend on their relative energy

differences and the resulting radiative transition and short distance annihilation rates.

These are discussed below in Sec. 7.

6.2 Two-body states

Neglecting couplings to the spatial Abelian gauge fields (which are relevant for radiative

decays but not the leading order spectrum), the dynamics of all two-body sectors of

our effective theory (4.12), namely glueballs composed of oppositely charged W -bosons,
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quark-antiquark mesons, and diquark baryons in the special case of N = 2, are described

by a common first-quantized two-dimensional non-relativistic Hamiltonian,

Ĥ =
p2

1

2m1

+
p2

2

2m2

+ κ ln(µ|x1−x2|) , (6.6)

with a logarithmic potential and positive interaction strength, κ > 0. Before discussing

our specific application to glueball, meson, and N = 2 baryons in compactified QCD,

we first summarize properties of the spectrum of this quantum theory.

6.2.1 2D logarithmic QM

Starting with the two particle Hamiltonian (6.6), separating the center of mass mo-

tion and working in the center-of-mass frame leads to a one-body Hamiltonian for the

relative motion,

Ĥrelative =
p2

2m
+ κ ln(µ|x|) , (6.7)

where m ≡ m1m2/(m1 +m2) is the reduced mass. Non-relativistic dimensional analysis

(with ~ ≡ 1) shows that κm/µ2 is the only dimensionless combination of parameters ap-

pearing in the Hamiltonian (6.7), so its eigenvalues must have the form E = κ f(κm/µ2)

for some univariate function f . The manifestly trivial µ dependence, ∂E/∂µ = κ/µ,

then implies that the energy eigenvalues of Ĥrelative are given by

E = κ
[
ε− 1

2
ln
κm

µ2

]
, (6.8)

where ε is an eigenvalue of the theory with κ = m = µ ≡ 1. Introducing a dimensionless

radial variable r =
√
κm |x|, eigenstates with orbital angular momentum Lz ≡ ` =

0,±1,±2, · · · satisfy the one-dimensional radial Schrödinger equation,[
−1

2

d2

dr2
+ V`(r)

]
χ(r) = ε χ(r) , (6.9)

with effective radial potential

V`(r) ≡
`2−1

4

2r2
+ ln r . (6.10)

Solutions to the Schrödinger equation (6.9) are not expressible in terms of familiar

special functions. The equation was analyzed numerically over 40 years ago [64] (see

also Refs. [36, 65]), but we will present our own more accurate and extensive results.

Calculations of low-lying energy levels are fairly straightforward using variational meth-

ods and a suitable basis set, or alternatively using pseudo-spectral methods [66] with
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n |`| = 0 1 2 3 4 5 6 7 8 9

0 0.179935 1.03961 1.49780 1.81127 2.04971 2.24214 2.40348 2.54238 2.66432 2.77301

1 1.31468 1.66290 1.92929 2.14154 2.31731 2.46710 2.59753 2.71299 2.81656 2.91044

2 1.83061 2.04777 2.23348 2.39248 2.53070 2.65265 2.76163 2.86008 2.94982 3.03224

3 2.16887 2.32609 2.46790 2.59439 2.70781 2.81028 2.90360 2.98920 3.06819 3.14152

4 2.42105 2.54403 2.65839 2.76311 2.85901 2.94717 3.02859 3.10416 3.17460 3.24054

5 2.62222 2.72309 2.81873 2.90790 2.99083 3.06805 3.14015 3.20770 3.27118 3.33102

6 2.78959 2.87502 2.95712 3.03466 3.10761 3.17622 3.24085 3.30185 3.35957 3.41429

7 2.93290 3.00696 3.07882 3.14735 3.21239 3.27407 3.33257 3.38814 3.44101 3.49138

8 3.05822 3.12356 3.18740 3.24875 3.30740 3.36337 3.41677 3.46776 3.51650 3.56314

9 3.16956 3.22799 3.28541 3.34092 3.39428 3.44548 3.49457 3.54165 3.58684 3.63024

Table 1. The first ten eigenvalues εn,` of the radial Schrödinger equation (6.9), for |`| =

0, 1, · · ·, 9. All digits shown are accurate.

a Gauss-Laguerre grid for the semi-infinite radial domain.20 The first ten levels, for

each |`| = 0, · · ·, 9, are listed in Table 1. The spectrum is shown graphically in Fig. 5.

Notice that levels at neighboring values of ` are interleaved, εn,|`| < εn,|`|+1 < εn+1,|`|.

As |`| increases, the minimum of the potential moves to larger values, with rmin ∼
|`|+O(`−2). When |`| � 1, a quadratic approximation to the potential is sufficient to

find low-lying states. For fixed level number n (starting from 0),

εn,` = ln(|`|) + 1
2

+
2n+1√

2 |`|
+O(`−2) . (6.11)

Standard WKB methods may be used to study more highly excited states. When

the energy ε is large compared to max(1, ln |`|), the classically allowed region of the

Schrödinger equation (6.9) extends out to a turning point at r∗ ≡ exp(ε). For r > r∗,

the WKB solution which decays as r →∞ is

fI(r) =
[
ln(r)/ε−1

]−1/4
exp

[
−
√

2ε |Q0(r)|+O(ε−1/2)
]
, (6.12)

20A simple choice of basis for a variational calculation consists of 2D harmonic oscillator eigenstates

with definite angular momentum `. Given a suitable adjustment of the scale of the harmonic oscillator

basis functions, a truncated basis of 40 harmonic oscillator states is sufficient to find the lowest energy

level of the logarithmic Hamiltonian (6.7) to an accuracy of a few parts in 104. However, pseudo-

spectral discretization using a Laguerre grid turns out to provide significantly better accuracy for

a given basis size. (This is because harmonic oscillator wavefunctions with their Gaussian envelope

decrease too rapidly at large r; as discussed below eigenstate wavefunctions in a logarithmic potential

decrease much more slowly.) To obtain the eigenvalues shown in Table 1 and compute transition

matrix elements for radiative decays, discussed in Sec. 7, we used Gauss-Laguerre grids with 100–200

points. To avoid excessive precision loss in the evaluation of the spectral differentiation matrices and

the resulting eigenvalue computation, we used extended precision arithmetic with slightly over twice

as many digits as the number of grid points.
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Figure 5. Energy spectrum of the radial Schrödinger equation (6.9).

where

Q0(r) ≡
∫ r∗

r

dr′
√

1− ln(r′)/ε . (6.13)

The usual Airy function matching across the turning point (or analytic continuation

around the turning point) shows that this solution matches onto the allowed region

WKB solution

fII(r) = [1− ln(r)/ε]−1/4 cos
[√

2εQ0(r)− π
4

+O(ε−1/2)
]
. (6.14)

This WKB approximation is valid down to r = O(1), where

fII(r) ∼ cos
[√

2ε r − I(ε) + π
4

+O(ε−1/2)
]
× (1 +O(ε−1)) , (6.15)

with

I(ε) ≡
√

2εQ0(0) =
√

π
2

exp(ε) . (6.16)

For parametrically small values of r, the centrifugal term in the potential cannot be

neglected but the logarithmic term is subdominant. In this region, the appropriate

solution satisfying regularity at the origin is

fIII(r) = (1
2
ε)1/4
√
πr J|`|(

√
2ε r) . (6.17)
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When r � ε−1/2, fIII(r) ∼ cos(
√

2ε r − π
2
|`| − π

4
) +O

(
(
√
εr)−1

)
. For O(1) values of r,

this matches onto the the classically allowed WKB solution (6.14) provided

I(ε) = 1
2
(2n+|`|+1) π +O(ε−1/2) , (6.18)

for some integer n. Inserting the result (6.16), one finds that eigenvalues εn,` of the

radial Schrödinger equation (6.9) are given by

εn,` = ln(2n+|`|+1) + 1
2

ln π
2
, (6.19)

up to corrections vanishing faster than O(1/n). One may verify that n equals the

number of nodes in this solution, so n is level number when counting from 0.

Numerically, the accuracy of the WKB approximation (6.19) to energy levels is

surprisingly good for modest values of the level number n. For `= 0 and n= 10, the

difference between our numerical and WKB results is less than 2 parts in 104. The

relative deviation grows with increasing ` at fixed n, reaching 2% for `=n= 10.

The WKB result (6.19) shows that the level spacing (at fixed `) decreases with

increasing level number, dε/dn = 2/(2n+|`|+1). Inverting this relation, one finds

that the asymptotic density of states with fixed orbital angular momentum ` rises

exponentially with energy,
∂n`
∂ε
∼ eε√

2π
. (6.20)

(This neglects any spin degeneracy of the constituents.) The integral of this density

of states gives the total number of quantum states, with fixed `, below a given energy,

and asymptotically equals the area of the classically allowed region in phase space (in

units of 2π~),

n`(ε) =

∫
dp

2π
dr Θ(ε−1

2
p2−V`(r)) =

√
2

π

∫ rmax

rmin

dr
√
ε−V`(r)

=

√
2

π

[∫ eε

0

dr
√
ε− ln r

]
+O(|`|−1

2
) =

eε√
2π

+O(|`|−1
2
) . (6.21)

The total number of states below energy ε (with vanishing total momentum, but no

projection onto definite `), N(ε) =
∑

` n`(ε), coincides asymptotically with the classi-

cally allowed phase space volume of the 2D relative dynamics. This grows exponentially

at twice the rate of the fixed-` result,

N(ε) =

∫
d2p

(2π)2
d2r Θ(ε−1

2
p2− ln r) =

∫ eε

0

r dr (ε− ln r) = 1
4
e2ε . (6.22)

This exponential growth is a direct consequence of the slow increase of the confining

logarithmic potential with distance. Bound states spread over rapidly growing spatial
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regions as their energy increases. The exponential behavior (6.21) of the fixed-` number

of states is nothing but linear dependence on the turning point radius r∗, while the total

number of states (6.22) is, up to a factor of 1/(4π), just the spatial area of the allowed

region, πr2
∗.

6.2.2 Glueballs

For every pair of oppositely charged W -bosons there is a manifold of bound states

described by the two-body logarithmic interaction Hamiltonian (6.6) with interaction

strength

κ =
λmW

2π2
. (6.23)

This is analogous to the ro-vibrational states associated with each electronic level in

molecular spectroscopy. For a pair of W -bosons with compact momentum indices k

and k′ (defined by the relation (4.6) and satisfying the constraint k+ k′ = 0 mod N so

that the W -bosons have opposite Cartan charges), the resulting bound state energies

are given by

EWW = Mk(mW) +Mk′(mW) +
λmW

2π2

(
εn,` − 1

2
ln

λmkk′

2π2mW

)
, (6.24)

where the reduced mass mkk′ ≡ mkmk′/(mk+mk′), and we have chosen to set the

arbitrary scale µ equal to mW. The lightest glueballs are composed of W -bosons with

one unit of compact momentum, |k| = |k′| = 1, and tree-level constituent mass mW,

leading to glueball energies

E = 2M1(mW) +
λmW

2π2

(
εn,` − 1

2
ln

λ

4π2

)
. (6.25)

Neglecting higher order relativistic corrections, as well as non-perturbative physics

on the scale of mγ, two-body glueball states have a degeneracy of 4N if they are

` = 0 and CP self-conjugate. (Center symmetry gives a factor of N , and there is a

spin degeneracy of 4 since each massive W -boson has two spin states.) There is an

additional factor of 2 degeneracy for states with non-zero orbital angular momentum

(corresponding to positive and negative values of `, which are exchanged by 2D spatial

reflections), and a separate additional factor of 2 degeneracy for states which are not

CP self-conjugate. The lightest glueball level (6.25) contains CP self-conjugate ` = 0

states, and hence has the minimal degeneracy of 4N .

Relativistic corrections to the above results contribute O(λ2mW) energy shifts, or

relative O(λ) corrections to binding energies. Spin-orbit corrections give an energy

shift proportional to ` Sz (where Sz ≡ s
(1)
z + s

(2)
z ), with a positive coefficient. In our
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dimensionally reduced effective theory, spin-spin (or hyperfine) interactions are local

and proportional to s
(1)
z s

(2)
z δ2(x), also with a positive coefficient.21 This spin-spin

correction only has a non-zero expectation value in ` = 0 states. Hence, first order

relativistic corrections produce an energy shift of the form

∆Efine-structure = λ2mW

[
A`Sz +B δ0

` (S2
z−2)

]
, (6.26)

where A and B are positiveO(1) coefficients (depending on n and |`|). For a given n and

` 6= 0, the spin-orbit correction splits the four possible spin states, {|↑↑〉, |↑↓ ± ↓↑〉,
|↓↓〉}, into three sublevels with the Sz = −2`/|`| state moving lower in energy, the

Sz = +2`/|`| state moving higher, and the two Sz = 0 states unchanged. For ` = 0

levels, the spin-spin interaction produces two sublevels, with the energy of the Sz = ±2

states shifted upward, and the Sz = 0 states downward. The degeneracy between the

spin symmetric and antisymmetric Sz = 0 states, |↑↓ ± ↓↑〉, is not lifted by these

leading relativistic corrections, but should be removed at higher orders.

Short distance effects will also induce higher order corrections to the rest and

kinetic masses, leading to further spin-independent O(λ2mW) energy shifts. Operators

producing O(λ2mW) corrections are listed in Appendix A, which discusses the relevant

power counting rules. The structure of higher dimensional operators that appear in

our non-relativistic EFT follow the same pattern known, for example, from studies of

hydrogenic spectra or heavy quark physics in QCD [67], but quantitative evaluation of

these higher order effects is left to future work.

The factor of N degeneracy associated with center symmetry would be lifted by

the non-perturbative long distance physics on the scale of mγ but, more importantly,

this degeneracy is first lifted by one loop perturbative corrections which generate pho-

ton mixing terms (mentioned earlier in footnote 5). Such mixing arises from vacuum

polarization corrections which are sensitive to the differing masses Mab
n of the charged

virtual W -bosons. This mixing (when rediagonalized) induces O(λ) variations in the

coupling strengths of different light photons. Eigenstates of bound W -bosons will have

definite center charge and are constructed by a ZN Fourier transform, as in Eq. (5.8).

The energies of states with differing values of center charge will be split by O(λ2mW),

or in other words additional O(λ) relative corrections to binding energies.

6.2.3 Mesons

Differences between the two-body meson and glueball spectra arise from the differing

constituent masses and the strength of the logarithmic interaction. For an oppositely

21In two spatial dimensions, spin-spin interactions do not have a long range dipolar form since the

magnetic field produced by a current loop is localized inside the loop.
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charged quark-antiquark pair, the interaction strength is given by

κ = (1− 1
N

)
λmW

4π2
. (6.27)

The allowed values of compact momentum (4.23) depend on both N and nf . As men-

tioned earlier, a particularly simple case which we will focus on is nf = N . For this

number of flavors the tree-level constituent quark masses (4.24) become half-integers

times mW,

MaA
n = Mk ≡ mW(|k|+O(λ)) , maA

n = mk ≡ mW(|k|+O(λ)) , (6.28)

with k = a− A+ nN and n ∈ Z + 1
2
. The resulting bound state energies are given by

Eq̄q = Mk(mW) +Mk′(mW) + (1− 1
N

)
λmW

4π2

(
εn,` − 1

2
ln

(1− 1
N

)λmkk′

4π2mW

)
, (6.29)

where, once again, mkk′ is the reduced mass. The lightest mesons have |k| = |k′| = 1
2
,

leading to

Eq̄q = 2M1/2(mW) + (1− 1
N

)
λmW

4π2

(
εn,` − 1

2
ln

(1− 1
N

)λ

16π2

)
. (6.30)

Neglecting higher order relativistic corrections, the lightest two-body meson levels

(6.30) have a degeneracy of 16N if they have `= 0, with an additional factor of 2 if

` 6= 0. (Four factors of 2 coming from the choice of spin for quark and antiquark, plus

the choice of sign of each momentum index, and a factor of N from one choice of flavor,

or equivalently from the choice of which U(1) photon provides the binding.) Higher

order spin-orbit, spin-spin and other radiative effects partially lift this degeneracy in

the same manner discussed above for glueballs.

6.2.4 N = 2 baryons

Finally, in the special case of two-color QCD, the simplest baryons are bound states

of two quarks (with no additional W -bosons). The interaction strength κ equals
1
N
λmW/(4π

2) which, forN = 2, coincides with the quark-antiquark interaction strength.

Consequently, the resulting diquark baryon spectrum is identical to the meson spec-

trum (6.29) and (6.30) given above, when specialized to N = 2. The degeneracy of the

lightest baryon levels (neglecting relativistic corrections) is 16 for ` = 0 states, with an

additional factor of two for ` 6= 0.

6.3 Multi-body states

6.3.1 Glueballs

As noted in the overview, in addition to two-body W -boson bound states, multi-body

bound states containing three or more W -bosons with a ring-like color structure can
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also form, such as those illustrated in Fig. 2. The spectrum of such “closed string”

states is quite rich.

The rest mass of W -bosons is given by Eq. (4.9), reproduced here for convenience,

Mab
n = Mk ≡ mW|k| = mW |a− b+ nN |, (6.31)

up toO(λmW) corrections. To form a physical (gauge invariant) bound state, the U(1)N

Cartan charges of all W -bosons in the bound state must sum to zero. For closed-string

glueball states which are not decomposable into multiple separate glueballs, this means

that each neighboring pair of W ’s in the ring is bound together by a distinct Abelian

gauge interaction. Bound states containing 3 ≤ P ≤ N constituents having compact

momentum indices {k1, k2, · · ·, kP} exist, consistent with this constraint, provided that

P∑
i=1

ki = 0 mod N . (6.32)

For this state to be non-decomposable, no partial sum of the momentum indices should

vanish modulo N . In addition to specifying the momentum index of each constituent,

one may specify one Cartan index of a single constituent; together this information

completely determines the Cartan and KK indices of all constituents around the cycle.

The tree-level mass of such a closed string state is just

Mtot = mW

P∑
i=1

|ki| . (6.33)

“Near extremal” states: An interesting subset of states are those with non-zero

compact momentum P3 and whose tree-level mass equals the minimal value consistent

with this compact momentum,

M = |P3| . (6.34)

This implies that the momentum indices of all constituents have the same sign. One

simple case, satisfying the constraint (6.32) (plus non-decomposability), are “pearl

necklace” bound states containing N W -bosons, all with momentum indices equal to

unity, ki = 1, or all equal to minus one, ki = −1. For these states P3 = mW

∑
i ki =

±N mW = ±2π/L and the (tree level) rest mass M = |P3| = NmW. The middle

example in Fig. 2 illustrates this type of pearl necklace state (with P3 = −2π/L) in the

case of N = 4. Such a state is created by the N -body operator

Ai1i2···iN (φ 1
−1)†i1 (φ 2

−1)†i2 · · · (φ
N−1
−1 )†iN−1

(φN−1)†iN , (6.35)
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where the coefficients {Ai1···iN} (defining a rank-N 2D spatial tensor) determine the

spin wavefunction.

There are also near-extremal states with fewer constituents. One can imagine fusing

together any neighboring pair of constituents in the operator (6.35) and replacing them

with a single W -boson having the same Cartan charges and compact momentum as the

pair. Or doing the same fusing process with a neighboring triplets of constituents, etc.

The resulting states are also near-extremal, and are created by N−1 or N−2 body

operators such as

Ai1i2···iN−1 (φ 1
−1)†i1 (φ 2

−1)†i2 · · · (φ
N−1
−2 )†iN−1

, (6.36a)

or

Ai1i2···iN−2 (φ 1
−1)†i1 (φ 2

−1)†i2 · · · (φ
N−2
−3 )†iN−2

. (6.36b)

Continuation of this fusing process leads to near-extremal states with any number of

constituents from N down to 1. Three and two body examples are

Ai1i2i3 (φ 1
−1)†i1 (φ 2

−1)†i2 (φ 3
−(N−2))

†
i3
, (6.37a)

and

Ai1i2 (φ 1
−1)†i1 (φ 2

−(N−1))
†
i2
, (6.37b)

while the endpoint of this process is a neutral “heavy photon” state created by a one-

body operator such as

Ai (φ 1
−N)†i . (6.38)

More generally, ignoring spin and center degeneracies there are
(

N
P−δP1

)
distinct cate-

gories of near-extremal states containing P constituents associated with different con-

tiguous fusing of the fields in the N -body operator (6.35), or altogether 2N−N types

of non-decomposable near-extremal states having the same value of P3 = ±NmW.

“Non-extremal” states: Bound states containing constituents with oppositely signed

momentum indices are “non-extremal.” Such states have rest masses which exceed their

compact momentum, M > |P3|, by an O(mW) amount or more. This includes all bound

states of W -bosons having vanishing total compact momentum, P3 = 0, such as the

lightest glueballs (6.25).

Binding energies: Calculating the O(λmW) binding energies of multi-body glueball

states requires one to find eigenvalues of the first-quantized Hamiltonian which describes

the sector of the theory (4.12) with the chosen number of constituents. For “closed

string” bound states composed of P ≤ N W -bosons, this is

Ĥ =
P∑
i=1

[
p2
i

2mi

+
λmW

4π2
ln(µ|xi−xi−1|)

]
, (6.39)
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with the understanding that x0 ≡ xP . The scaling relation (4.19) allows one to remove

the dependence on λ, but eigenvalues will be non-trivial functions of constituent mass

ratios,

Ebinding =
PλmW

8π2

[
f({mi/mj})− ln(λm̃mW/µ

2)
]
, (6.40)

where f is a dimensionless O(1) function (depending on the chosen energy level as well

as mass ratios), and m̃ is the harmonic mean of the constituent masses.

For modest values of P (three or four), an accurate variational calculation should

be feasible despite the fact that computational effort will rise as a rather high power

of the number of single particle states included in the truncated basis. We leave such

calculations to future work.

An interesting limiting case partially amenable to analytic analysis concerns low-

lying states with large orbital angular momentum, ` � 1, and constituents all having

the same mass m. Such states include rotating “pearl necklace” configurations in which

each constituent contributes equally to the total orbital angular momentum. A semi-

classical analysis of such states is straightforward. The classical Hamiltonian (for fixed

`) has a local minimum in which the constituents lie at the vertices of a regular P -sided

polygon whose circumscribed circle has radius r = 2π`/(P
√
λmmW), rotating at angu-

lar velocity Ω = `/(P mr2) = PλmW/(4π
2`). Semiclassical quantization of vibrations

about this configuration leads to energy levels whose binding energies (ignoring center

of mass motion) are given by

Ebinding =
PλmW

4π2

[
1
2

+ ln
(4π`µ sin(π/P )

P
√
λmmW

)]
+

P−2∑
i=−(P−2)

(ni+
1
2
)ω|i| +O(`−2) , (6.41)

where the P−1 vibrational frequencies {ωi} are O(λmW/`).
22

The result (6.41) grows logarithmically with increasing angular momentum `, with

a coefficient of PλmW/4π
2 proportional to the number of constituents. This linear

increase with P implies that these semiclassical “pearl necklace” states are not the

minimal energy states with a given large orbital angular momentum. “Core-halo”

states will exist in which P−1 constituents are clumped together in a region of size√
P/λmmW while a single constituent circles at a distance of order O(`/

√
λmmW) and

contributes (nearly) all the orbital angular momentum. The binding energy of such

states will increase with ` just like the two-body case, namely Ebinding ∼ (λmW/2π
2) ln `

as `→∞. Computing the sub-dominant `-independent contribution coming from the

core wavefunction requires a full quantum calculation.

22One mode, here labeled i = 0, is a uniform “breathing” mode with ω0 =
√

2 Ω. All other modes

(present only for P > 2) are higher frequency doubly-degenerate asymmetric stretching modes. For

P = 2, the form (6.41) agrees as it must with the prior results (6.24) and (6.11).
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6.3.2 Mesons

Largely identical considerations apply to multi-body mesons. Focusing, once again,

on the case of nf =N , bound states containing a quark and antiquark having half-

integer compact momentum indices kq and kq̄, plus P W -bosons with momentum indices

{k1, · · ·, kP}, will have total compact momentum

P3 = mW

(
kq − kq̄ +

P∑
i=1

ki
)
. (6.42)

For the state not to be decomposable into a glueball-meson molecule, no partial sum

of the W -boson momentum indices should vanish modulo N . With tree-level mass

Mtot = mW(|kq| + |kq̄| +
∑

i |ki|), it is immediate that Mtot ≥ |P3|. Any of the multi-

body “closed string” glueball states discussed above may be converted into an “open

string” meson state by replacing any one of the W -boson constituents by a qq̄ pair

collectively having the same Cartan charges and compact momentum. As an example,

one analogue of the near-extremal N -body glueball operator (6.35) is the near-extremal

meson operator

Bsq̄sq i1i2···iN−1 (χ 1
+1/2)†sq̄(φ

1
−1)†i1 (φ 2

−1)†i2 · · · (φ
N−1
−1 )†iN−1

(ψN
−1/2)†sq , (6.43)

(with sq and sq̄ denoting two-component spinor indices of the quark and antiquark,

respectively), in which N−1 W -bosons are inserted between the quark and antiquark.

The O(λmW) binding energies of (non-decomposable) multi-body meson states

containing P W -bosons are given by eigenvalues of the first-quantized Hamiltonian

Ĥ =
P+1∑
i=0

p2
i

2mi

+
λmW

4π2

[
− 1
N

ln(µ|x0−xP+1|) +
P+1∑
i=1

ln(µ|xi−xi−1|)
]
, (6.44)

where x0 ≡ xq̄ and xP+1 ≡ xq refer to the antiquark and quark, respectively, and

likewise for the momenta p0 and pP+1 and masses m0 ≡ mq̄ and mP+1 ≡ mq. The

resulting energy levels have the form

Ebinding = (P + (1− 1
N

))
λmW

8π2

[
f({mi/mj})− ln(λm̃mW/µ

2)
]
, (6.45)

with f some O(1) function, differing from the glueball case (6.40) just in the prefactor.

Just as with closed-string glueballs, it is interesting to consider open-string mesons

with large orbital angular momentum, ` � 1. Among such states are semiclassical

“rotating wire” states. The classical Hamiltonian (for fixed orbital angular momentum

`) has local minima in which all constituents are arrayed along a straight line which
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rotates uniformly with some angular velocity ω, with the positions of constituents along

this line adjusted so that the sum of forces (falling with inverse separation) acting on

each constituent provides the required centripetal acceleration, and the common angu-

lar velocity ω is suitably adjusted to yield the chosen angular momentum `. Solving for

this minimum analytically, for arbitrary P , is not easy, but a numerical determination

for chosen values of P is straightforward. Semiclassical quantization of such a station-

ary configuration will lead to energy levels which, as in the glueball case (6.41), grow

logarithmically with increasing `, with a coefficient which increases with the number

of constituents. Hence, for the same reasons discussed above, lower energy “core-halo”

mesonic states will exist in which all but one constituent are clumped together and

collectively carry little or no angular momentum while a single constituent (which may

be either a quark or a W -boson) circles the core at a large O(`/
√
λmmW) distance and

carries (nearly) all the orbital angular momentum.

6.3.3 Baryons

Baryonic bound states containing quarks with no additional W -bosons (“non-exotic

baryons”) may be formed from a collection of N quarks, each having a distinct color

(Cartan) index. Focusing, once again, on the case of nf = N , the momentum indices

{k1, · · ·, kN} of the quarks are arbitrary half-integers (with ki the momentum index of

the quark with Cartan index i). The total compact momentum P3 = mW

∑
i ki and

the tree-level mass Mtot = mW

∑N
i=1 |ki|.

Note that, for large values of N , baryons which are composed of the lightest quark

constituents with O(1) momentum indices will have a total mass Mtot which scales lin-

early with N . Such baryons contain quarks of (nearly) all N different flavors. Baryons

which are solely composed of quarks of a single flavor will have a total mass which

is at least O(N2), because the momentum indices of quarks must, in this case, all be

distinct and hence will, at a minimum, have magnitudes ranging from 1
2

up to bN/2c.
The strength of the attractive logarithmic interaction between two quarks of dif-

fering colors is 1/N , so the first-quantized non-relativistic Hamiltonian for non-exotic

baryons is

Ĥ =
N∑
i=1

p2
i

2mi

+
1

N

N∑
i<j=1

λmW

4π2
ln (µ|xi−xj|) , (6.46)

with mi = mW|ki| the i’th constituent quark mass.

For the lightest class of baryons, each quark has momentum index ±1
2

and the

minimal constituent mass mi = mq ≡ 1
2
mW. Such states are created by operators of

the form

Cs1s2···sN
(
ψ1
±1/2

)†
s1

(
ψ2
±1/2

)†
s1
· · ·
(
ψN±1/2

)†
sN

, (6.47)
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with si denoting the two-component spinor index of the ith quark. (Fig. 4 illustrates

one such state for N = 4.) For simplicity of presentation, we will focus our discussion

on this lightest class of baryons.

For baryons with equal mass constituents, the Hamiltonian (6.46) is completely

symmetric under permutations of constituents. The rescaling relation (4.31) implies

that

Ĥ ∼=
λmW

4π2

(
1
2

N∑
i=1

p2
i +

1

2N

N∑
i 6=j=1

ln |xi−xj|
)
− (N−1)

λmW

16π2
ln

(
λmWmq

4π2µ2

)
. (6.48)

The spectrum of this Hamiltonian was already discussed in Sec. 6.2 in the special case

of N = 2. We now examine the opposite extreme, N � 1.

As discussed by Witten [68], a Hartree approximation to the many-body wave-

function is asymptotically accurate as N → ∞. The appropriate N -body Hartree

wavefunction for the ground state is just a product of identical one-body wavefunc-

tions,

Ψ(x1, · · ·,xN) =
N∏
i=1

ψ(xi) , (6.49)

with the one-body wavefunction ψ(x) determined by minimizing the expectation value

of the Hamiltonian (subject to the normalization constraint
∫
d2x |ψ(x)|2 = 1).23 The

resulting ground state baryonic mass grows linearly with N and is given by

Ebaryon/N = M1/2(mW) +
λmW

4π2

(
ε̄− 1

4
ln

λmq

4π2mW

)
+O(1/N) , (6.50)

where

ε̄ ≡ min
ψ
ε[ψ] , ε[ψ] = T [ψ] + V [ψ] . (6.51)

Here,

T [ψ] ≡ 1
2

∫
d2x |∇ψ(x)|2

/
N [ψ] , (6.52a)

V [ψ] ≡ 1
2

∫
d2x d2x′ ln |x−x′| |ψ(x)|2 |ψ(x′)|2

/
N [ψ]2 , (6.52b)

with N [ψ] ≡
∫
d2x |ψ(x)|2. The ground state wavefunction which minimizes ε[ψ]

satisfies the Hartree equation,[
−1

2
∇2 + U(x)

]
ψ(x) = λψ(x) , (6.53)

23A better approximation would project this state onto vanishing center-of-mass momentum. How-

ever, such projection only affects O(1) contributions to the total energy of the state, which we neglect.
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with the self-consistent potential

U(x) ≡
∫
d2x′ ln |x−x′| |ψ(x′)|2

/
N [ψ] . (6.54)

This wavefunction is guaranteed to be nodeless, and hence is spherically symmetric,

ψ(x) = ψ(|x|). After angular averaging of the logarithm, the potential (6.54) becomes

a convolution with the radial Green’s function,

U(|x|) ≡
∫ ∞

0

r′ dr′ ln
(
max(|x|, r′)

)
ψ(r′)2

/∫ ∞
0

r′ dr′ ψ(r′)2 . (6.55)

We minimize the functional ε[ψ] numerically, using pseudospectral methods [66].

We write ψ(r) = e−µr/2f(r) and then represent the function f as an order M−1 polyno-

mial determined by its values {fk} on the Gauss-Laguerre grid points {rk} which are the

roots of the Laguerre polynomial LM(µr). This is equivalent to, but much more com-

putationally convenient than using the coefficients {ck} in the orthogonal polynomial

expansion f(r) =
∑M−1

k=0 ck Lk(µr). The radial integrals in expressions (6.52)–(6.55)

are evaluated using M -point Gauss-Laguerre quadrature. Radial derivatives become

dense M ×M matrices acting on the M -component vector ~f ≡ (fk), and the Hartree

equation (6.53) becomes an M -dimensional linear eigenvalue equation. Starting with a

simple pure exponential initial guess for ψ(r), we compute the Hartree potential (6.55),

solve for the lowest eigenvalue of the Hartree equation (6.53), and iterate these two

steps until convergence.24

Due to the non-analyticity in the Green’s function (6.55), the truncation error only

falls with increasing basis size as O(1/M). Six points suffice for 5% accuracy, thirty

points yield better than 1%, and several hundred are needed to achieve 0.1% accuracy.

For large M , the spectral matrices become quite ill-conditioned and extended precision

arithmetic with roughly 2M digits is needed to avoid precision loss. A very stable

extrapolation in 1/M yields the result,

ε̄ = 0.449558 . (6.56)

The degeneracy of this lightest baryon level, before taking into account splittings

due to higher order radiative corrections, is 4N , growing exponentially as N increases.

(For each quark, there is one factor of two for the choice of spin and another factor of

two from the compact momentum k = ±1
2
.)

24Demanding stationarity of ε[ψ] under a rescaling ψ(x)→ ξψ(ξx) at ξ = 1 shows that T [ψ] = 1
4 at

extrema of ε. This is the analogue of the usual virial theorem for our logarithmic potential. Choosing

the scale µ =
√

2 in our spectral representation gives our initial guess this correct value of T .
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To compare our N = 2 and N�1 results for ground state baryons in a coupling

independent fashion, consider the binding energy scaled by N−1, with the exactly

known λ lnλ contribution removed,

δEbinding(N) ≡ 1

N−1

[
Ebaryon −NM1/2(mW)

]
+
λmW

16π2
ln

λ

8π2
. (6.57)

Our results,
δEbinding(∞)

δEbinding(2)
=

ε̄
1
2
(ε00 + ln 2)

= 1.0298 , (6.58)

show stunningly little dependence on N . It would be interesting to see if this near-

constancy is a coincidence, or remains true for other values of N .

At large N , the probability density to find a quark at position x relative to the

baryon center of mass equals the square of the Hartree single particle wavefunction,

p(x) = |ψ(x)|2. To compare this with the corresponding distribution in N = 2 ground

state baryons, recall that the Hamiltonian for relative motion (6.7) was expressed in

terms of the separation between constituents, so the corresponding distribution relative

to the center of mass is p(x) = 4|ψrel(2x)|2. One finds that the single particle distribu-

tion is more highly concentrated at N = 2 than at N =∞. The mean square deviations

differ by just about a factor of two,

〈x2〉 =
8π2

λm2
W

×

{
1.0907 , N = 2;

2.0294 , N =∞.
(6.59)

Fig. 6 compares the N =∞ single particle radial probability density |x| p(x) with the

corresponding N = 2 distribution when distance is rescaled by a factor of
√

2, that is
1
2
|x| p(x/

√
2). As one sees from the figure, with this rescaling the two radial distribu-

tions are very similar.

Above the baryon ground state level there is a manifold of vibrationally excited

baryon levels. For N � 1, energy levels in which a small number of quarks are excited

may be computed using a product wavefunction with a few of the factors in the ground

state wavefunction (6.49) replaced by excited single particle wavefunctions. Low lying

levels with a single excited quark may be labeled by the number of radial nodes n and

orbital angular momentum ` of the excited quark, and have excitation energies

∆En,` =
λmW

4π2
(λn,` − λ0,0) , (6.60)

where λn,` is an eigenvalue of the Hartree equation (6.53) containing the mean field

generated by all the unexcited quarks. The subtraction of λ0,0 accounts for the decrease

in the number of quarks in the lowest single particle level. Table 2 lists the eigenvalues
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N = ∞

N = 2 (scaled)
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Figure 6. Single particle radial probability density |x| p(x) of ground state baryons at N =∞
as a function of r ≡

√
λmW|x|/(4π) (solid curve) overlaid with the corresponding density for

N = 2 baryons as a function of r′ ≡
√

2λmW|x|/(4π) (dashed curve).

n |`| = 0 1 2 3

0 0.64911 1.1367 1.5182 1.8152

1 1.4448 1.7124 1.9450 2.1457

2 1.9018 2.0805 2.2458 2.3964

3 2.2169 2.3503 2.4780 2.5979

4 2.4569 2.5632 2.6669 2.7663

Table 2. Eigenvalues λn,` of the Hartree equation (6.53), with the self-consistent potential

for the lowest baryon level, for indicated values of the radial quantum number n and orbital

angular momentum `.

λn,` for the lowest few levels. Excitation energies to baryon levels with multiple excited

quarks are, up to 1/N corrections, just the sum of the individual excitation energies

(provided the number of excited quarks is a negligible fraction of N).

Lastly, in the same manner discussed above for mesons, it is also possible to form

exotic baryons containing N quarks plus one or more W -bosons. For the bound state to

be non-decomposable into baryon-glueball molecules, no partial sum of the W -boson

momentum indices should vanish. Such states can be progressively built from non-

exotic baryons by replacing a quark with a quark plus one or more W -boson(s) which

collectively have the same Cartan charge and compact momentum as the removed

quark. One example of such a state is shown in Fig. 4. By suitably repeating this

process one may, for example, build baryons in which all N quarks have the same color

while N−1 W -bosons mediate attractive interactions between these quarks.
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7 Decay processes

Higher order perturbative interactions turn most of the hadronic states discussed in

the previous sections into narrow resonances. Examining the systematics of the various

decay processes is our next topic. First, however, we detail those states which cannot

decay.

7.1 Stable states

In the light sector of the quarkless theory, individual dual photons are exactly stable.

Each dual photon has a non-zero center charge p = 1, · · ·, N−1, and is the lightest state

with that value of center charge.25 To see this, note that the mass formula (2.11) is a

subadditive function of the center charge, mp1+p2 < mp1 + mp2 . This implies that any

splitting of a dual photon into two or more photons with the same total center charge is

kinematically forbidden. The formation of k-body light sector bound states discussed in

Sec. 3 does not affect this conclusion, as the k-body binding energies are exponentially

small compared to the relevant differences in photon masses. The two-body bound

state of dual photons with center charges 1 and N−1, whose binding energy is given

by Eq. (3.8), is the lightest center charge zero excitation and is likewise exactly stable.

If θ = 0 then the theory is CP invariant.26 Individual dual photons are CP odd.

The lightest CP even states with non-zero center charge p are bound states of two

dual photons with charges q and p−q and minimal total mass Mp = minq(mq +mp−q).

Specifically, these are the (q, p−q) bound states with

q =

{
1 , for p = 2, · · ·, bN

2
c, or p = N−1;

N−1 , for p = bN+1
2
c, · · ·, N−2, or p = 1.

(7.1)

Similarly, the lightest CP odd state with vanishing center charge is a bound state of

three dual photons with charges (1, 1, N−2) (or their conjugates). These bound states

are necessarily stable at θ = 0. Moreover, the charged two particle bound states (7.1)

remain absolutely stable at θ 6= 0 for purely kinematic reasons. These bound states are

heavier than a single dual photon of the same total center charge, but are lighter than

all other multiparticle bound states of the given charge, and hence have no allowed

decay channels which can conserve both energy and momentum.

25Recall that a p= 0 dual photon was artificially added to the light sector effective theory (2.8) to

simplify the presentation, but this extra degree of freedom exactly decouples from all physical degrees

of freedom. The physical particles of the SU(N) gauge theory do not include a p= 0 dual photon.
26This paragraph assumes that N ≥ 3. Because SU(2) is pseudo-real, charge conjugation is a

distinct symmetry in SU(N) pure YM theory only for N > 2.
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Turning now to the theory with quarks, as discussed in Sec. 2.1 with nf ≤ N

massless quark flavors, nf−1 of the dual photons become exactly massless and are

the Goldstone bosons of spontaneously broken U(1)nf−1
A symmetry. When nf =N , this

means all N−1 dual photons are massless. These massless Goldstone bosons are stable.

In the heavy sector, exactly stable states are those protected by conservation of

the U(1)nf
V flavor charges (5.5) and/or compact momentum (5.4). With nf =N , mesons

composed of a quark and antiquark having the minimal mass, mq = mq̄ = 1
2
mW, and

opposite compact momentum indices, kq = −kq̄ = ±1
2
, have flavor charges (+1,−1)

under two different U(1) flavor subgroups and non-vanishing total compact momentum

P3 = ±mW. Such mesons (with vanishing vibrational and rotational excitations) are

the lightest states with these flavor quantum numbers, and hence are stable.27 These

mesons are the small-L avatars of charged pions and kaons (in the chiral limit).

Baryons (or antibaryons) composed of N quarks (or antiquarks) all with mass

mq = 1
2
mW are the lightest states with non-vanishing baryon number, and a subset

of these states (those with minimal energy after including hyperfine interactions) are

stable. Whether there are additional bound, and hence stable, di-baryons or higher

multi-baryon states is an interesting open question.

Whether the heavy photons created by our EFT operators ~φ aa±N are stable is also

an interesting open question. These states have P3 = ±NmW and tree-level mass

M = NmW. This is the same value of P3 and the same tree-level mass as a flavor singlet

meson containing a quark and antiquark with kq = −kq̄ = ±N/2, or of a collection of

N lightest mesons each with identical values of P3 = ±1 and flavor charges summing

to zero, or a variety of other “near-extremal” flavor singlet multi-constituent states.

Whether heavy photons decay into flavor singlet mesons, or collections of flavored

mesons, or vice-versa, depends on which of these near-extremal states have the lowest

energy. To determine this one must, at a minimum, take into account the leading

O(λmW) perturbative energy shifts. These include the binding energies computed in

Sec. 6.2.3 for two-body mesons. But O(λmW) energy shifts also include corrections

to the tree-level constituent rest masses. Evaluation of such corrections requires an

improved one-loop matching of the EFT parameters to the underlying 4D gauge theory,

and this matching calculation has not yet been completed. Consequently, we are not

yet able to determine which transitions among near-extremal states are kinematically

allowed.

27More precisely, such mesons with opposite spins and total Sz = 0 are stable. As noted in Sec. 6.2,

hyperfine interactions shift the Sz = ±1 mesons up in energy relative to the Sz = 0 states. A light

Sz = ±1 meson can decay to its corresponding Sz = 0 partner via emission of a dual photon — the

QCD analog of 21 cm radiation from hydrogen.
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7.2 Light sector resonances

Light sector bound states other than those discussed above (which are stable due to

the absence of any symmetry and kinematically allowed decay channels) will decay via

emission of one of more dual photons. Such decays are induced by the cubic and higher

order terms in the expansion of the effective Lagrangian (2.8) about its minimum.

The relative decay widths of all of these states are doubly exponentially small. Not

only are the non-linear couplings within the dual photon sector (3.2) exponentially

small, O(e−4π2/λ), more importantly the binding momentum (3.6) is so tiny that the

probability for two constituents of a bound state to be within a Compton wavelength

of each other is comparable to the relative binding energy (3.8). Consequently, the

logarithm of the relative decay width is exponentially large and negative,

− ln(Γ/mγ) = O(e4π2/λ) (7.2)

(neglecting powers of λ). We have not attempted to compute any such decays quanti-

tatively.

7.3 Heavy sector resonances

The primary decay processes for heavy sector resonances are direct analogues of fa-

miliar processes in QED and atomic physics: radiative decays and particle-antiparticle

annihilations. The key differences are the reduced dimensionality, additional conserved

quantities (compact momentum and center charge), and multiple U(1) gauge groups.

There are also more unusual decay processes involving splitting or joining of W -boson

constituents within hadrons. These include, in particular, transitions among “near-

extremal” states whose tree-level masses are identical. As noted above, understand-

ing such processes requires a higher order determination of rest masses in the non-

relativistic EFT. We leave explorations of such transitions to future work, and focus

here on radiative and annihilation processes, specifically in two-body states.

7.3.1 Radiative decays

The relevant photon momenta for radiative decays will be in the range mγ � p �
mW, so the non-perturbative physics of the light sector may be wholly ignored and

photons treated as massless. Excitation energies of low-lying heavy sector states are

O(λmW). Photons of such energies have wavelengths parametrically large compared to

the characteristic O(λ−1/2m−1
W ) size of these states. Consequently, the usual multipole

expansion of the photon field applies. The fastest radiative decays will be electric dipole

transitions. Adapting the standard logic for hydrogenic decays to our 2D multi-photon
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Figure 7. [Color online] Total radiative decay rates of two-body bound states in units of

κ2/m, as a function of the level number for the first 100 states with ` = 0, 1, 2, and 4. Higher

rows of points correspond to larger values of `.

situation, one finds that the total dipole transition rate from some initial state |I〉 to

lower energy final states {|F 〉} is given by

Γtot = π
2
κ
∑
F

∆E2
IF

∣∣〈F |x|I〉∣∣2, (7.3)

where ∆EIF ≡ EI−EF and κ equals to the strength of the logarithmic potential binding

the constituents, so κ = λmW/(2π
2) for glueballs and (1− 1

N
)λmW/(4π

2) for mesons.

Parametrically, dipole decay rates for low-lying states are O(λ2mW). To obtain

quantitative results, including state dependence, one must evaluate the precise dipole

matrix elements. We evaluated these matrix elements, for level numbers n up to 100,

using radial wavefunctions computed using pseudo-spectral methods (as briefly de-

scribed in footnote 20 and Sec. 6.3.3), with up to several hundred grid points. Figure 7

shows the resulting total dipole decay rates, in units of κ2/m (with m the reduced

mass of the two-body bound state), for orbital angular momentum ` = 0, 1, 2 and 4.

As seen in the figure, decay rates at fixed ` grow with increasing level number n and

appear to asymptote to a finite limit. At fixed level number n, decay rates also grow

with increasing `, and quickly appear to reach a limiting value. Our numerical results

are consistent with a limiting value of π
4
κ2/m in either case, with subleading O(1/`)

corrections if ` increases at fixed n, and O(n−1/2) corrections if n increases at fixed `,
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although this inverse power of n is not well-constrained by our data on the first 100

levels.

Consider states with positive orbital angular momentum, ` > 0. The interleaving

of energy levels, εn,|`| < εn,|`|+1 < εn+1,|`|, implies that the |0, `〉 minimal energy states

(for a given angular momentum) decay down to the |0, 0〉 ground level by sequential

|0, `〉 → |0, `−1〉 transitions, with each emitted photon carrying off one unit of angular

momentum. States with non-zero angular momentum and non-minimal energy, n > 0

and ` > 0, have multiple possible dipole allowed final states, including both ∆`= +1

and ∆`=−1 transitions. Examining transition rates to specific final states, one finds

that the total decay rates for states with n, ` > 0 are highly dominated by decays

to the nearest lower levels, either |n, `〉 → |n, `−1〉 or |n, `〉 → |n−1, `+1〉. Of these

two decay channels, the decay decreasing ` is significantly more likely than the decay

increasing `. All other decays channels are smaller by one or more orders of magnitude.

(The predominance of transitions decreasing |`| over those increasing |`| is visible in

Fig. 7 as the smaller values of the `= 0 points compared to `= 1.) Consequently, an

excited state |n, `〉 with n� 1 will cascade stepwise down to n= 0, with ` undergoing

a random walk biased toward ` = 0.

For high angular momentum, ` � 1, one may regard the n= 0 eigenstate as a

quasiclassical circular orbit. In two dimensions, the power radiated by an electric

dipole of magnitude eR rotating at frequency ω is

P = 1
8
e2R2 ω3 . (7.4)

For our high-` bound states with e2 = 2πκ, R = `(κm)−1/2, and orbital frequency ω =

κ/`, this gives P = π
4
κ3/(m`). The power radiated must equal the photon frequency

times the decay rate, so this classical result implies an `-independent asymptotic decay

rate,

Γ = π
4
κ2/m×

(
1 +O(`−1)

)
. (7.5)

Decay rates from states with fixed n nicely converge to this value as ` increases.

7.3.2 Annihilation decay

In addition to radiative decays, two-body bound states having `= 0 and composed of

particle-antiparticle pairs can annihilate into two or more light sector photons. This is a

short-distance process, represented by higher dimension operators in our non-relativistic

EFT. Annihilation rates are parametrically smaller than dipole-allowed radiative tran-

sition rates, and hence only significant for the lowest `= 0 energy levels. Constituents

with masses of order mW have Compton wavelengths which are comparable (for small
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N), or larger (for large N), than the compactification size L. Consequently, annihila-

tion rates are most easily calculated using a dimensionally reduced relativistic EFT,

having the form (A.2) for W -boson bound states or 2+1 dimensional QED for mesons.

The annihilation rate may be expressed as

Γannih = (lim
v→0

σv) |ψ(0)|2 , (7.6)

where σv is the flux-weighted cross-section in two spatial dimensions (a quantity with

dimensions of length) and ψ(x) is the wavefunction for relative motion, so |ψ(0)|2 is the

2D probability density for coincident constituents. Parametrically, σv ∼ λ2/mW for CP

even states which can annihilate to two photons having momenta of order mW, while

|ψ(0)|2 ∼ κm since this is the inverse mean square size of the lowest `= 0 two-body

bound states. Hence

Γannih = O(λ3mW) , (7.7)

which is one power of λ smaller than radiative decay rates.

Evaluating the cross section in the relativistic 2+1D relativistic EFT, we find28

σWW→2γ =
11π

64 v

κ2

m3

[
1 +O(p2/m2)

]
(7.8)

for annihilation of W -bosons with mass m and interaction strength κ = λmW/(2π
2),

and

σqq̄→2γ =
5π

128 v

κ2

m3

[
1 +O(p2/m2)

]
(7.9)

for qq̄ annihilation with mass m and interaction strength κ = (1− 1
N

)λmW/(4π
2).

For the lowest n= `= 0 level of our two-body logarithmic quantum mechanics, the

probability at the origin is

|ψ(0)|2 = 2.68915κ m̃ (7.10)

with m̃ the reduced mass of the two constituents. Consequently, for the lightest CP-even

glueballs and mesons (with constituent masses equal to mW and 1
2
mW, respectively)

we find

Γannih =

{
5.80815mW

(
λ

4π2

)3
, glueballs;

0.660017mW

(
λ

4π2

)3 (
1− 1

N

)3
, mesons.

(7.11)

28We consider decays from bound states with vanishing total compact momentum and equal mass

constituents. Higher KK modes (i.e., heavy photons) may be neglected. For WW annihilation, each

W -boson couples to two different U(1) photons and consequently there are three different processes

which contribute (γAγA, γBγB , and γAγB). Evaluating the leading order seagull, t, and u-channel

diagrams and taking the non-relativistic limit yields the result shown.
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8 Discussion

8.1 Adiabatic continuation

Recent studies have shown that it is possible to engineer circle compactifications of 4D

SU(N) YM theory and QCD in such a way that symmetry realizations for large and

small circle sizes coincide [12–35]. Available evidence is consistent with the natural

conjecture that the weakly coupled small-L regime is smoothly connected — that is,

without intervening phase transitions — to the strongly coupled large-L regime. The

small circle regime offers a rare luxury: controlled analytic calculations in a phase of

the theory with confinement and chiral symmetry breaking. Taking advantage of this

tractability, we have studied the behavior of glueballs, mesons, and baryons, with a

focus on the spectrum of resonances and their decays.

Our results are broadly consistent with the conjecture of continuity between small

and large L. Much physics in adiabatically compactified theories depends on the circle

size L through the parameter η = NLΛ. To place our small η results into perspective,

first recall that when η � 1, the dynamics of QCD-like theories are insensitive to the

scale L. (Finite volume effects vanish at least as fast as L−2.) With fundamental

representation fermions (nf . N) with a common mass mq � Λ, at large L there are

multiple characteristic scales for the masses of particles: the pseudo-Nambu-Goldstone

(pNGB) mass scale mpNGB ∼
√
mqΛ, the glueball and meson mass scale mM ∼ Λ, and

the baryon mass scale mB ∼ NΛ.29

In the weakly coupled regime η � 1, we find a similar picture, but with particle

masses depending on L through the combination η = NLΛ. In adiabatically compact-

ified QCD with, e.g., nf = N earlier work [35] found that the pNGB masses lie in the

range mpNGB ∼ [O(1/N)–O(1)]× η
√
mqΛ at small η (if double trace deformations sta-

bilize the color-flavor center symmetry). Our results in this paper show explicitly that

mM ∼ Λη−1 and mB ∼ NΛη−1. This is clearly similar to the large L pattern, apart

from the natural appearance of dependence on the parameter η when L is small.30 In

Fig. 8 we sketch a possible simple interpolation of the spectra of light and heavy states

as L is varied.

The situation at nf = 0 is depicted in Fig. 9. At small L, instead of light pNGB

mesons there are now light glueball states involving dual photons and their bound

29If nf � N and mq/Λ � 1/N � 1, then there is an additional scale ΛN−1/2 associated with the

mass of the η′ meson [69].
30The dependence of pNGB masses (2.20) at small L on the charge of the particle under cyclic

flavor permutations may, at first sight, seem surprising. But such dependence is also present when L

is large but finite in adiabatically compactified theories with flavor twisted boundary conditions, as

seen explicitly in the results of Ref. [70].
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Figure 8. [Color online.] A sketch of a possible interpolation of the spectrum as the circle

size L is varied in adiabatically compactified QCD with nf =N and 0 < mq � Λ. In this

log-log cartoon, masses are in units of Λ and the abscissa η ≡ NLΛ. The short-dashed

red and dotted blue curves correspond to the neutral and charged pNGBs, respectively. At

small L, the neutral pNGBs are dual photons, while the charged pNGBs are non-relativistic

quark-antiquark bound states. The large splitting in their masses at small L is due to the

partial breaking of flavor symmetry to its Cartan subgroup by our flavor-twisted boundary

conditions. The solid red curve represents the lightest flavor singlet meson which, at small L,

is a bound state of dual photons. The long-dashed blue curve represents glueballs and other

mesons (both flavor singlet and non-singlet) which are not pNGBs and which, at small L,

are bound states of W -bosons. The fuzzy green curve at the top of the figure represents the

evolution of the mass of a baryon from small to large L.

states, with masses mlight ∼ [O(1/N)–O(1)]×Λ η5/6 (if double trace deformations stabi-

lize center symmetry). The N−1 dual photons are charged under the center symmetry,

indicating that they are topologically non-trivial excitations containing flux wrapping

the compactified direction. These states cannot be created by topologically trivial local

operators (acting on the vacuum) and will have masses which do not asymptote to fi-

nite limits at large L but rather grow linearly, m ∼ σL, with σ the decompactified YM

string tension. The bound state of two dual photons with vanishing total center charge

is the lightest topologically trivial glueball at small L, and can smoothly connect to the

lightest glueball at large L. In the heavy sector at small L, W -boson bound states form
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Figure 9. [Color online.] A sketch of a possible interpolation of the spectrum as the circle

size L is varied in adiabatically compactified Yang-Mills. The illustration is for N = 2 for

simplicity. The dashed green curve shows the lightest glueball, with vanishing center charge,

which is a bound state of two dual photons at small L. The dotted blue curve with a positive

slope at small η corresponds to the lightest topologically non-trivial “glueball” with non-zero

center charge. This state is a dual photon at small L and evolves into a state with a linearly

growing energy, m ∼ σL at large L, where σ is the string tension. The two solid red curves

correspond to center-neutral W -boson bound states, which evolve into ordinary glueballs at

large L. The dotted blue curves with negative slope at small η correspond to W -boson states

with non-zero center charge, which evolve into wrapped-flux states with a linearly diverging

mass at large L.

nearly degenerate multiplets containing all values of center charge. Within each such

multiplet, the vanishing center charge state can evolve into an ordinary topologically

trivial glueball at large L, while the remaining states with non-zero center charge will

have linearly diverging masses at large L.

Finally, when 1 ≤ nf < N , the overall picture is the same as the sketch shown

in Fig. 8, except that the light sector at small L now contains nf−1 pseudo-Nambu-

Goldstone bosons, with masses vanishing at mq = 0, as well as non-pNGB states,

namely the remaining N−nf dual photons and their bound states. These non-pNGB
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states have masses on the order of mlight ∼ Λ ηb with an exponent b > 0 depending

on nf/N . Whether these states should be described as glueballs or mesons, or some

admixture, is not clear. There is no symmetry which clearly delineates a distinction.

It should be possible to clarify the situation by computing the amplitudes with which

these states are created by local fermion bilinears or Polyakov loop operators, but such

an analysis has not yet been performed. In any case, these states can smoothly evolve

into ordinary glueballs and mesons as L → ∞. The same is true of the glueballs and

mesons in the heavy sector at small L. Due to string breaking by dynamical quarks,

none of these states will have masses which diverge as L→∞.

8.2 Large N behavior

Our analysis has been carried out with N arbitrary but fixed. The usual large N

limit involves sending N to infinity while holding fixed the ’t Hooft coupling λ (or

equivalently the strong scale Λ). If the compactification size L is also held fixed, then

the large N limit takes the compactified theory out of the regime η = NLΛ� 1 where

a weak coupling analysis is possible and into the strongly coupled domain, η � 1, where

large N volume independence applies [41, 71–75]. Our small η analysis adds nothing

to the understanding of this limit.

However, it is interesting to consider an alternate N →∞ limit in which η = NLΛ

is held fixed. This is the key parameter which controls the physics of adiabatically

compactified QCD-like theories. Viewing Λ as a fixed physical scale, fixing η requires

reducing the compactification size as N increases, L ∝ 1/N , or equivalently holding

fixed mW ≡ 2π/(NL). If η is fixed at a small value, then a weak coupling analysis

remains valid for all N .

8.2.1 Heavy sector

Starting with the heavy non-relativistic sector, our results show that the glueball and

meson spectra remain stable as N → ∞ (regardless of whether nf = N , or nf � N).

For example, the value of N simply never enters the result (6.24) for two-body glueball

binding energies, while the only N dependence in meson binding energies (6.29) comes

from the quark-antiquark interaction strength proportional to 1− 1
N

. So masses of

glueballs and mesons become N -independent at large N . The lightest baryon masses,

as one would expect, grow linearly with N , but (based only on results at N = 2 and

N � 1) the ground state baryon binding energy per quark (6.58) and the shape of the

single particle distribution (Fig. 6) are quite insensitive to N .

Similarly, the only N dependence in the glueball and meson radiative decay (7.3)

and annihilation rates (7.11) arises from the same 1− 1
N

interaction strength factor for

mesons. Given this, one might guess that glueball and meson scattering amplitudes
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would also have finite, non-zero large N limits — but this is not entirely correct. If

one ignores higher order radiative corrections then, for example, two-body mesons (at

small η) may be labeled by the Cartan charge of their constituents. The amplitude

for the elastic scattering process Ma + M b → Ma + M b arising from the exchange

of one or more Cartan photons will include a trivial factor of δab expressing the fact

that both mesons must contain constituents charged under the same U(1) factor if

they are to scatter via photon exchange. When radiative corrections are included, the

actual mass eigenstates are linear combinations of the fixed Cartan charge states which

(for nf = N) have definite center charge (or more precisely, definite color-flavor center

charge, as discussed in Ref. [44]), M̃p = N−1/2
∑

a ω
−apMa. The resulting scattering

amplitude for M̃p + M̃ q → M̃p′ + M̃ q′ , is O(1/N) for all center charges satisfying

p+q = p′+q′, instead of O(1) for coinciding Cartan charges and zero otherwise.

The same argument applies to glueballs. Consider, for simplicity, glueballs which

are bound states of two W -bosons, with either nf = 0 or nf =N (so the compactified the-

ory has either an ordinary, or intertwined color-flavor center symmetry). As discussed

in Sec. 6.3.1, glueballs in our small η regime, before diagonalizing center symmetry,

may be labeled by a single Cartan index plus the ordered compact momenta of their

W -boson constituents. (Subsequent Cartan indices are determined by the mass formula

(4.9), which in turn is a consequence of the adjoint Higgs mechanism operative at small

η.) The transformation to a mass eigenstate basis with definite center charge involves

exactly the same discrete Fourier transform as for mesons, G̃p = N−1/2
∑

a ω
−apGa.

The resulting 2 ↔ 2 scattering amplitude for G̃p + G̃q → G̃p′ + G̃q′ is suppressed by

1/N for all center charges satisfying p+q = p′+q′.

More generally, scattering amplitudes at small η involving K external particles

(incoming plus outgoing) scale as O(N1− 1
2
K). This holds for processes involving any

combination of light dual photons and heavy sector bound states (either mesons or

glueballs) with O(1) constituents, provided at least one of the particles in the scattering

process is a heavy sector bound state. (Scattering involving only dual photons is

discussed below.) This relation shows that decay amplitudes into two particle final

states are O(N−1/2), so decay rates to exclusive two particle final states are suppressed

by 1/N . That may appear inconsistent with the O(1) total radiative and annihilation

rates computed in Sec. 7, but inclusive decay rates sum over all accessible final states.

Because the splittings between states with differing center charge are parametrically

smaller than heavy sector binding or rest energies (by powers of λ for heavy states, or

mγ/mW for light dual photons), inclusive 1→ 2 decay rates pick up a factor of N from

summing over all possible center charges of the final state particles consistent with the
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initial state center charge.31 The same logic shows that while fully exclusive 2 ↔ 2

scattering rates are O(N−2), inclusive 2↔ 2 scattering rates for mesons and glueballs

are O(N−1) as N →∞.

Meson-baryon scattering amplitudes scale as O(N0), since a quark (or antiquark)

with any given Cartan index can interact with the quark having the same Cartan

index in the baryon. The same scaling holds for glueball-baryon scattering (for both

heavy sector bound state glueballs, and light dual photons). Baryon-baryon scattering

amplitudes are O(N), since every quark in one baryon can interact via an unbroken

U(1) gauge group with one of the quarks in the other baryon.

These large N scaling relations at small η may be compared with conventional

large N behavior when Λ and L are held fixed, and hence η →∞. It will be interesting

to compare with conventional behavior in both the ’t Hooft (nf fixed as N →∞) and

Veneziano (nf/N fixed as N →∞) limits. In all cases, meson and glueball spectra are

stable as N →∞, while the lightest baryon masses grow linearly with N . One unusual

consequence of our flavor-twisted boundary conditions, at small η, is that baryons

composed of only a single flavor of quark (or more generally O(1) different flavors)

have masses which grow quadratically with N .

In the standard ’t Hooft large N limit, glueball scattering amplitudes scale as

O(N2−Kg), with Kg the number of external glueballs (incoming plus outgoing) [68]. For

processes involving mesons, possibly with additional glueballs, the scaling of scatter-

ing amplitudes becomes O(N1−Kg− 1
2
Km), where Km is the number of external mesons.

Hence, meson decay widths are O(N−1) and glueball decay widths to either two glue-

ball, or two meson final states are O(N−2). Rates for two glueballs to scatter into two

glueballs, or into two mesons, are O(N−4), while 2 ↔ 2 meson scattering rates are

O(N−2). Baryon-baryon scattering amplitudes are O(N) while baryon-meson scatter-

ing amplitudes are O(1) [68].

In the Veneziano large N limit, the additional factors of nf ∝ N in sums over

final states (assuming a common quark mass for all flavors) make both meson and

glueball decay rates O(1). Hence, except for the lightest states in each symmetry

channel, mesons and glueballs remain resonances, with finite lifetimes, as N → ∞.

The inclusive rate for two mesons to scatter into two mesons is O(N−1), while two

glueballs can scatter into two mesons with an O(N−2) inclusive rate, parametrically

faster than the O(N−4) rate for pure glueball scattering.

Comparing these conventional large η scaling relations with our small η results,

one sees that for mesons our O(N0) total decay rates, O(N−1) inclusive two particle

31This assumes the decay channel is not parametrically close to threshold, so that the decay kine-

matics is insensitive to the splittings between final state particles with differing center charges.

– 55 –



scattering rates, and O(N−2) exclusive two particle rates all coincide with the behavior

of mesons in the Veneziano limit. The scaling of our baryon-baryon and baryon-meson

scattering amplitudes is the same as in conventional large N limits. But the fact that,

at small η, glueball processes have the same large N scaling as mesons is quite peculiar.

Two significant features contribute to this change in behavior of glueball dynam-

ics between large and small η. First is the adjoint Higgs mechanism induced by the

center-symmetric holonomy at small η. This suppresses fluctuations in off-diagonal

components of the SU(N) gauge field, so that only the N−1 gluonic degrees of free-

dom play a singificant role in resonance formation, scattering, and decay. In contrast,

at large η there are huge fluctuations in the holonomy and all N2 gluonic degrees of

freedom contribute to every glueball operator. This leads to the familiar 1/N2 sup-

pression factors in exclusive decay rates and 2→ 2 scattering amplitudes of glueballs.

A second essential difference at large and small η is the contribution of states with

non-zero center charge. At nf = 0, such states have linearly diverging energy as η →∞
(as shown in Fig. 9), and play no role in scattering processes involving O(N0) energies.

But at small η these topologically non-trivial states become nearly degenerate in energy

with vanishing center charge states, and dominate inclusive scattering and decay rates

at large N .

8.2.2 Light sector

Turning now to the light sector, when nf � N , the smallest non-zero dual photon mass

is O(mγ/N). Holding η fixed as N → ∞ implies that the light scale mγ is also held

fixed. Consequently, the lightest (non-Goldstone boson) mass vanishes as N →∞.

The interpretation and consequences of the vanishing of the mass of the lightest

non-Goldstone boson excitations in the small-η large N limit were the focus of Ref. [76].

At very low energies, small compared to mγ, the theory does not flow to a trivial fixed

point. Rather, to all orders in the semi-classical expansion the low energy theory

becomes gapless as N → ∞. The low energy dynamics at N =∞ is most naturally

written as a four-dimensional theory, despite the fact that the “parent” UV theory

was compactified on a tiny circle. The fourth dimension in the low energy, large N

dynamics is emergent, appearing only on length scales large compared to m−1
γ .

The results in this work are consistent with this picture, but do not shed much

additional light on the origin or interpretation of this unexpected phenomena. The

quartic interactions of dual photons, shown in Eq. (3.9), may be interpreted in the large

N emergent dimension description as momentum-dependent interactions with vertex

factors proportional to 1/N times the product of photon momenta in the emergent

dimension. Consequently, for O(N0) momenta (in the original spatial dimensions),

– 56 –



dual photon scattering amplitudes scale as O(N−1) at large N , the same as for heavy

sector glueballs.

As shown in Eqs. (3.11) and (3.12), the dual photon binding energies (and mo-

menta) discussed in Sec. 3 vanish exponentially as N →∞. So these bound states play

no significant role at large N , and the emergence of the extra dimension in the light

sector of the theory happens just as described in Ref. [76]. To understand how, e.g., the

glueballs arising from W -boson bound states fit into the large N emergent dimension

picture, recall that the emergent dimension appears as an N -site discretized circle with

lattice spacing m−1
γ [76]. A continuum 4D description is only relevant for physics with

momenta small compared to mγ. But at small η, the O(mW) W -boson masses, their

O(λmW) binding energies, and the O(λ2mW) radiative corrections to binding energies

are all large compared to mγ. So the large N bound state dynamics does not involve the

low energy emergent dimension, and must be treated using a 3D effective field theory,

as done in the present paper.

8.3 Outlook

The analysis and results of this paper raise a number of questions which would be

interesting to study in future work. First, as noted near the end of Sec. 7.1, we have not

performed the matching calculation necessary to determine the O(λ) corrections to the

rest mass parameters of the 3D non-relativistic EFT. Differences in the short distance

corrections to the EFT rest masses are needed to determine the relative stability of

meson, glueball, and heavy photon resonances whose leading order masses are identical.

For example, the lightest glueball resonances with mass near 4mW might be composed

of two W -bosons each with (tree level) mass 2mW, or from four of the lightest W -bosons

each with mass mW. Such glueball states are nearly degenerate with heavy photons

having a tree-level mass of 4mW. The results of a one-loop matching calculation of

EFT rest energies would enable one to determine the relative ordering of these states.

In particular, this would allow one to answer the interesting question of which near-

extremal states are absolutely stable by virtue of minimizing the ratio of mass to

compact momentum, M/|P3|.
Second, as emphasized in Sec. 6, the bound state spectra for glueballs, mesons, and

baryons have an exponentially rising (Hagedorn) density of states. It is interesting that

this Hagedorn scaling emerges as a consequence of a logarithmic potential within the

domain of validity of non-relativistic quantum mechanics, in contrast to the common

lore that Hagedorn scaling is characteristic of relativistic string dynamics. In any case,

the implications of Hagedorn scaling in the density of states for the thermodynamics

of adiabatically compactified QCD deserve further study. Previous work [19, 22, 27]

considered the SU(2) deformed Yang-Mills theory (see also Refs. [77, 78]), and argued
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that a thermal confinement-deconfinement transition occurs near the temperature

β−1
c '

λmW

4π2
. (8.1)

The picture behind this conclusion is that in the regime32 ζ1/3 � β−1 � mW, the

dilute monopole-instanton gas representation of the 3D Euclidean vacuum effectively

reduces to a dilute two-dimensional gas of magnetically charged particles subject to

binary logarithmic interactions. At the same time, there is also a thermal gas of elec-

trically charged particles, namely W -bosons. The thermal phase transition is believed

to be driven by a competition between the effects of these electrically and magnetically

interacting gases. However, in Refs. [19, 22, 27, 77, 78] the electrically-charged compo-

nent of the gas was treated classically, and the existence of Hagedorn behavior in the

density of states was not taken into account. It would be interesting to revisit these

calculations in light of our results here, and clarify whether the temperature (8.1) is

indeed a correct estimate of the phase transition temperature.

Next, it would be very interesting if lattice gauge theory simulations could be

performed in both pure Yang-Mills and QCD exploring the cross-over regions in Figs. 8

and 9, along the lines of Refs. [20, 30]. This would require simulations in a variety of

lattice volumes with one dimension having double trace center stabilizing terms and

flavor-twisted boundary conditions on quarks.

Last, and perhaps most interesting from a phenomenological perspective, is the

possibility of studying multi-baryon states at small L. To motivate this, recall that in

the real world there is a wide separation between “nuclear” excitation scales relevant

in multi-baryon systems and the energy scales characteristic of single baryons. For

example, the saturation binding energy per nucleon of nuclear matter, roughly 14 MeV,

is tiny compared to the ≈ 300 MeV energy required to excite a single nucleon beyond its

ground state. Or, one may compare nuclear binding scales to nucleon masses of nearly

a GeV. Both comparisons indicate a wide separation between nuclear and single-baryon

energy scales. Moreover, lattice simulations indicate that the nuclear/hadronic scale

separation persists even as quark masses are varied [79–81], and that it also persists

when N = 2 instead of 3 [82], suggesting that this scale separation is robust feature of

QCD. This scale separation is vital for essentially all phenomenological understanding

nuclear physics, including the modeling of nuclei as a collection of individual nucleons.

The puzzle is that there is no fundamental explanation for this important exper-

imentally-observed scale separation from QCD. For example, this scale separation is

32This temperature range is similar to, but slightly more restrictive than the condition for the validity

of our non-relativistic EFT analysis, and is needed to justify the treatment of the monopole-instanton

gas as two-dimensional.
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not an automatic consequence of either the large N or chiral limits. The adiabatic

small-L regime allows one to use straightforward numerical and analytic methods to

study multi-baryon systems for any quark mass and any number of colors. Further

exploration of QCD phenomenology on a small circle may thus yield useful insights

into the long-standing and important puzzle of the separation between nuclear and

hadronic energy scales in QCD.
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A Non-relativistic EFT derivation

We denote SU(N) indices by a, b, c, d, etc., each running from 1 to N , and define the set

of N ×N basis matrices {Eab} by (Eab)cd ≡ δac δbd. We use an N -dimensional basis for

the root vectors βab (a 6= b). The positive roots are βab = (0, ..., 0, 1, 0, ..., 0,−1, 0, ..., 0),

a < b, with 1 and −1 in the a-th and b-th position, respectively; the negative roots are

βba = −βab, a < b. The indices µ = 0, 1, 2 denote the noncompact spacetime directions

and x3 ≡ x3+L is the coordinate of the compact direction. The circumference L ≡ 2πR.

The Cartan generators are denoted by Ha ≡ Eaa. The overall U(1) photon coupling to∑
aH

a decouples from the SU(N) dynamics and is introduced solely for the convenience

of working with an N -dimensional weight basis. Since all weight vectors are orthogonal

to the vector (1, 1, 1, 1, ..., 1), the static interactions discussed below in Appendix B

only involve SU(N) charges which are neutral with respect to this overall U(1).

Until otherwise specified [just before Eq. (A.9)], we write Euclidean space expres-

sions in this appendix. The Yang-Mills Lagrangian L = N
4λ

trF 2
αβ, with Fαβ Hermitian.

The ’t Hooft coupling λ ≡ Ng2(mW), where the scale mW ≡ 1/(NR) denotes the light-

est W -boson mass. We decompose the gauge field into components along the compact

and noncompact directions,

A3 =
∑

1≤a≤N

Aa3(xµ)Ha , (A.1a)

Aµ =
∑

1≤a≤N

Aaµ(xµ, x3)Ha +
∑

1≤a<b≤N

W ab
µ (xµ, x3) Eab +W ab∗

µ (xµ, x3) Eba . (A.1b)
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The expansion (A.1) is written in the unitary gauge, where the only nonzero gauge

field components along the S1 direction are the Cartan components and they have no

x3-dependence. The N real fields Aaµ describe 3D photons in the Cartan subalgebra,

while the 1
2
(N2−N) complex fields W ab

µ (a < b) in the off-diagonal elements describe

charged W -bosons.

Next, we expand Aa3 around the center symmetric expectation value (2.4) of the

holonomy, Aa3 ≡ ρa/(NR) + φa, so that φa represents the fluctuations of the holon-

omy.33 Plugging the expansion (A.1) into the Yang-Mills Lagrangian one obtains, up

to quadratic order in the W -boson fields,

L2W =
N

4λ

{ ∑
1≤a≤N

F a
µν F

µν a + 2 ∂µφ
a ∂µφa + 2 ∂3A

a
µ ∂

3Aµa

+
∑

1≤a<b≤N

2
∣∣∣∂µW ab

ν + i(Aaµ−Abµ)W ab
ν − (µ↔ ν)

∣∣∣2
+ 4

∣∣∣(−i∂3 + a−b
RN

+ φb−φa
)
W ab
µ

∣∣∣2 + 2i
(
F a
µν−F b

µν

)
W ab

[µ W
ab∗
ν]

}
. (A.2)

The second line shows explicitly that the W -boson field W ab
µ has charge +1 and −1

under the a-th and b-th Cartan U(1) gauge groups, respectively. Hereafter, we neglect

the fluctuations φa of the holonomy; as explained in Sec. 4, they play no role in the

dynamics to the order that we study. (These neutral fluctuations are gapped by the

perturbative center-stabilization mechanism.)

Next, we derive the leading-order EFT valid for momenta p � mW (but large

compared to the non-perturbatively induced mass gap (2.12), p� mγ). This EFT de-

scribes the interactions of charged massive W -bosons with the (perturbatively) massless

Cartan photons and with the “heavy photons,” modes in the Kaluza-Klein (KK) tower

containing the Cartan photon fields. (See Ref. [83] for a closely related treatment.)

As a final step before considering the p� mW non-relativistic limit, we rewrite the

Lagrangian (A.2) in a mass (or KK) eigenstate basis. The KK expansions are defined

as usual, e.g.,

Aaµ(xν , x3) =
∞∑

n=−∞

eix
3n/RAa,nµ (xν) , (A.3)

with Aa,−nµ (xν) = (Aa,nµ (xν))∗, and similarly for the W ab
µ fields (without a corresponding

reality condition). Inserting these expansions into the 4D Lagrangian (A.2), integrating

33Here, ρa = 1
2 (N+1)−a are the components of the Weyl vector in our basis. The expectation value

〈Aa3〉 = ρa/(NR) corresponds to ZN symmetric eigenvalues of the holonomy and produces vanishing

traces in the fundamental representation, 〈trF Ωk〉 = 0 for k = 1, ..., N−1.
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over x3 (and neglecting holonomy fluctuations), leads to an effective three-dimensional

Lagrangian

L3D = L2 + L3 + L′3 + · · · , (A.4)

in which we separate, for convenience, quadratic, cubic, and higher order terms. The

quadratic part is given by

L2 =
NL

4λ

∞∑
n=−∞

( ∑
1≤a≤N

|F a,n
µν

∣∣2 + 2
∣∣maa

n Aa,nµ
∣∣2 +

∑
1≤a<b≤N

2
∣∣∂[µW

ab,n
ν]

∣∣2 + 4
∣∣mab

n W
ab,n
µ

∣∣2) ,
(A.5)

with the KK masses

mab
n ≡ mW|a− b+ nN | , mW ≡ (NR)−1 . (A.6)

The cubic terms contain the coupling of the Cartan photons to the charge currents of

the W -bosons,

L3 =
NL

4λ

∞∑
m,n=−∞

∑
1≤a<b≤N

2i∂[µW
ab,n∗
ν]

(
Aa,n−m[µ − Ab,n−m[µ

)
W ab,m
ν] + (h.c.), (A.7)

as well as their magnetic-moment coupling to the spin of the W -bosons,

L′3 =
NL

4λ

∞∑
m,n=−∞

∑
1≤a<b≤N

2i
(
F a,n−m
µν − F b,n−m

µν

)
W ab,m

[µ W ab,n∗
ν] . (A.8)

Quartic terms in the Lagrangian, if needed, can be worked out similarly.

We shall eventually return to our Lagrangian of interest, L3D, but first we discuss

the construction of a non-relativistic effective field theory (NR EFT) in the simpler case

of a single massive charged vector boson. To this end, let Wµ denote a 3D complex

vector field with U(1) gauge symmetry, Wµ → eiαWµ, and Lagrangian34

L =− 1

4e2

(
∂[µAν]

)2 − 1
2

∣∣∂[µWν]

∣∣2 −M2WµW
µ ∗

+ i Aµ
(
W ν ∗ ∂[µWν] −W ν ∂[µW

∗
ν]

)
− 1

2

∣∣A[µWν]

∣∣2 − i
2
∂[µAν]W[µW

∗
ν] . (A.9)

This charged vector boson Lagrangian contains precisely the kinds of terms appearing

in the Lagrangian (A.4)–(A.8) of our full theory. We use e2 to denote the coupling

constant of the massless photon. The leading-order correspondence with our full theory

is

e2 =
λ

NL
=
λmW

2π
. (A.10)

34At this point, we revert to Minkowski space expressions using a (−,+,+) metric signature.
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Note that the vector field Wµ has a conventional normalization, but we have chosen to

scale the charge e out of covariant derivatives and define the photon field Aµ as having

dimension 1.

A 3D massive vector field has two polarization states. Define polarization vectors

eiµ(k), i = 1, 2, obeying eiµ(k) ej µ(k) = δij and kµ eiµ(k) = 0, for on-shell momenta

kµ ≡ (|k|,k). Explicitly,

e1
µ(k) ≡

(
0,

k̃

|k|

)
, e2

µ(k) ≡
( |k|
M
,

k

|k|
ωk
M

)
, (A.11)

where ωk ≡
√

k2 +M2 and (k̃)i ≡ εij(k)j (we use i, j = 1, 2 to denote spatial indices

and take ε12 = −ε21 = 1). The free mode expansion of the second quantized field is

Wµ(t,x) =

∫
d2k

(2π)2
√

2ωk

2∑
i=1

[
ei(ωkt−k·x) eiµ(k) ai(k)† + e−i(ωkt−k·x) eiµ(k) bi(k)

]
,

≡ W+
µ (t,x) +W−

µ (t,x) , (A.12)

where [ai(k), aj(p)†] = [bi(k), bj(p)†] = (2π)2δij δ2(p−k), and all other commuta-

tors vanish. It is convenient to denote by W±
µ the positive frequency (∝ eiωkt) and

negative frequency (∝ e−iωkt) parts, respectively. The U(1) charge operator Q ≡∫
d2x 2 Im

(
W ν ∗∂0Wν

)
, after normal ordering, becomes Q =

∫
d2k

(2π)2

∑
i

[
ai(k)†ai(k) −

bi(k)†bi(k)
]
, from which it is evident that the operators ai(k)† (ai(k)) are creation

(annihilation) operators of positively charged vector bosons while the operators bi(k)†

(bi(k)) create (annihilate) negatively charged antiparticles. Polarization index i=1

(i=2) refers to particles with transverse (longitudinal) polarization, respectively. The

free Hamiltonian P0 =
∫

d2k
(2π)2 ωk

∑
i

[
ai(k)†ai(k) + bi(k)†bi(k)

]
and has eigenvalue ωk

for all four single-particle states of a given spatial momentum k.

Apart from explaining the physical content of the massive vector boson theory, the

mode expansion (A.12) provides an easy way to see that an effective theory describing

the dynamics of non-relativistic vector bosons can be expressed solely in terms of the

spatial components Wi of the vector field Wµ. For small momenta, |k| � M , the

longitudinal polarization vector e2
µ(k) =

(
0, k
|k|

)
+O

( |k|
M

)
, with only spatial components

to leading order. Since the transverse polarization vector e1
µ(k) is purely spatial, in the

non-relativistic limit the time component W0 can be eliminated, leading to an effective

theory for a spatial vector field.

One may construct the Lagrangian of this effective non-relativistic theory by writ-

ing all terms consistent with the symmetries and matching the coefficients to terms

in the relativistic theory to the desired order in the small coupling and small momen-

tum expansion (treating |∇|
M
∼ |k|

M
� 1, where ∇ is a spatial gradient.) To carry out
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this procedure, we introduce two different two-component complex fields, ~φ+(t,x) and
~φ−(t,x). In a second-quantized non-relativistic theory, these fields (and their Hermi-

tian conjugates) annihilate (or create) particles of charges +1 and −1, respectively.

The two-component vector represents the direction in the two-dimensional polarization

space. To leading order in the derivative and small-coupling expansion, the fields ~φ±
can be considered as scalars under SO(2) spatial rotations, with an emergent SO(2)

“flavor” symmetry acting as rotations in the polarization space. Magnetic moment in-

teractions explicitly break this SO(2)×SO(2) symmetry down to the diagonal SO(2).

(This is completely analogous to the approximate spin rotation symmetry in light atoms

and molecules when spin-orbit interactions can be neglected.)

Temporarily ignoring the gauge field Aµ, to lowest non-trivial order in powers of
∇
M

, the Lagrangian of the NR EFT is

LNR = ~φ †+ i∂t ~φ+ + ~φ †− i∂t ~φ− −M |~φ+|2 −M |~φ−|2 −
|∇~φ+|2

2m
− |∇

~φ−|2

2m
. (A.13)

and the corresponding Hamiltonian is

H =

∫
d2x ~φ+(x)† ·

(
M − ∇2

2m

)
~φ+(x) + ~φ−(x)† ·

(
M − ∇2

2m

)
~φ−(x) . (A.14)

The conserved charge Q =
∫
d2x (~φ+)† · ~φ+ + (~φ−)† · ~φ−. Mode expansions of the

non-relativistic fields read

φi+(t,x)† =

∫
d2k

(2π)2
eiεkt−ik·x ai(k)† , φi−(t,x)† =

∫
d2k

(2π)2
eiεkt−ik·x bi(k)† , (A.15)

where εk ≡ M + k2/(2m), and ai(k)† and bi(k)† are the same creation operators

appearing in the relativistic expansion (A.12) (and its Hermitian conjugate). The fields

(A.15) satisfy non-relativistic canonical commutation relations, [φi+(t,x), φj+(t,y)†] =

[φi−(t,x), φj−(t,y)†] = δij δ2(x−y), with other commutators vanishing.

To fix parameters in the NR EFT one demands that physical quantities, computed

in the EFT and in the IR limit of the full theory, agree with each other order by

order in the low energy and weak coupling expansions. At low orders, the matching is

rather straightforward. In the free theory (A.13), single-particle states have energies

εk = M+ k2

2m
and charges ±1. This agrees with the energy and charge of low momentum

states in the relativistic theory (A.9) provided both the rest mass parameter M , and

the kinetic mass m, appearing in the non-relativistic theory (A.13) equal, at lowest

order, the physical mass M of the original theory.

Note that if one ignores the explicit polarization vector dependence in the relativis-

tic expression (A.12), then the operator φi+(t,x)† corresponds, in the non-relativistic
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limit and after a trivial rescaling by
√

2M , to the positive-frequency part W+
i of Wµ,

while φi−(t,x)† corresponds to the positive frequency part (W−
i )† of the conjugate field

W †
µ.

We now proceed to write down the NR EFT Lagrangian describing the theory

(A.9) to leading order in the small-λ and derivative expansion. We choose to work in

Coulomb gauge for the photon field Aµ. The time component A0 is not an independent

field but is determined by the charge distribution of the W -bosons via Gauss’ law. We

denote the vector boson charge density by

n(t,x) = iW ν ∗ ∂[0Wν] − iW ν ∂[0W
∗
ν] , (A.16)

(neglecting higher order “seagull” contributions). Varying the action, the Lagrangian

(A.9) gives A0(t,x) = e2
∫
d2y G(x−y)n(t,y), where the two-dimensional Laplacian

Green’s function G was defined in Eq. (4.3). Using this result to eliminate A0 from

the action, one obtains the Coulomb energy, VC ≡ − e2

2

∫
d2x d2y n(t,x)G(x−y)n(t,y),

as a contribution to (minus) the Lagrangian. Ignoring, for the moment, interactions

mediated by spatial components of the photons as these are higher order in the non-

relativistic limit, our effective theory (A.13) changes, to leading order, only by the

inclusion of the Coulomb energy in the action,

SNR =

∫
dt d2x

(
~φ †+ i∂t ~φ+ + ~φ †− i∂t ~φ− −M |~φ+|2 −M |~φ−|2 −

|∇~φ+|2

2M
− |∇

~φ−|2

2M

)
+
e2

2

∫
dt d2x d2y n(t,x)G(x−y)n(t,y) , (A.17)

where n(t,x) = ~φ+(t,x)† · ~φ+(t,x) − ~φ−(t,x)† · ~φ−(t,x) is the non-relativistic limit of

the vector boson charge density (A.16). The corresponding Hamiltonian is just

H =

∫
d2x ~φ+(x)† ·

(
M − ∇2

2M

)
~φ+(x) + ~φ−(x)† ·

(
M − ∇2

2M

)
~φ−(x)

− e2

2

∫
d2x d2y n(x)G(x−y)n(y) . (A.18)

The action (A.17) or Hamiltonian (A.18) include all leading-order terms in the non-

relativistic (v/c � 1) limit using the systematic power counting rules that we discuss

next. (In what follows, c ≡ 1.)

Higher order terms which can appear in the NR EFT may be classified and ordered

using a suitable power counting scheme for the operators and their matrix elements,

evaluated in characteristic bound states.35 This approach is now well-established for

35These are determined by solving the two-particle Schrödinger equation which results from pro-

jecting the Hamiltonian (A.18) into the two-particle Hilbert space.
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3+1 dimensional Coulombic systems [67]. Compared to such systems, several important

differences arise in our 2+1D theory. The first is that a particle of mass M moving in a

non-relativistic orbit due to a central force F ∼ e2/r moves at speed v ∼ e/
√
M , for any

orbit radius, rather than v ∼ e/
√
Mr as in a three dimensional F ∼ e2/r2 central force

field. The second is the appearance of e2 ln(e2/M) terms, non-analytic in the coupling,

in the ground state energy [as seen in Eq. (6.8)], owing to the scaling properties of

the logarithmic potential. Ignoring such logarithmic factors, the appropriate power

counting is similar to that detailed in Ref. [67]: the size of bound states is of order

a0 ∼ (e2M)−1/2 and their characteristic binding energy ∆E ∼ e2. For estimating the

parametric dependence of matrix elements of arbitrary operators that may arise in the

NR EFT Hamiltonian, evaluated in low-lying bound states of the lowest-order theory

(A.18), we take36 the fields ~φ± to scale as
√
e2M , time derivatives ∂t ∼ e2, spatial

derivatives ∇ ∼
√
e2M , and Coulomb-gauge scalar and vector potentials eA0 ∼ e2 and

eA ∼ e4/
√
e2M . Thus, the field strengths scale as eE ∼ e2

√
e2M and eB ∼ e4. (Here,

and below, we have rescaled the Maxwell action for the photon by e2, to give the gauge

field a conventional perturbative normalization.) Using these parametric estimates,

it follows that all terms in the lowest-order NR Hamiltonian (A.18), excepting the

rest-energy terms, are of order e2, as required.

To assess the relative importance of higher order terms, we begin with the magnetic

moment coupling of the vector bosons, the last term in the NR Lagrangian (A.9).

Writing the leading terms consistent with the symmetries of the theory which couple

the field strength tensor Fij to the NR vector fields φi and φi †, one finds, to leading

order in 1/M , that there is a unique such term,

Lmag
NR = − i

2M
eFij

(
φi †+φ

j
+ − φ

i †
−φ

j
−
)
, (A.19)

whose coefficient follows by matching to the relativistic form (A.9) using relations

(A.11), (A.12), and (A.15). The above power counting rules show that magnetic mo-

ment interactions will shift bound state energy levels by an amount of order e4/M , or

a relative O(e2/M) correction to binding energies.

Given our original choice (A.11) of polarization vectors, the NR fields φi±, i = 1, 2

annihilate vector bosons which are linearly polarized, either transverse or parallel to

their momenta, respectively. However, using operators that create particles in eigen-

states of Sz, the spin of the vector boson field Sz =
∫
d2x(εijẆiW

∗
j + h.c.), is typically

more convenient when discussing bound states in a central potential. Such operators

36These power counting rules for ~φ± follow, e.g., by demanding that
∫
d2xφ†φ ∼ 1 in a bound state

of size a0. For the remaining assignments, the arguments are the same as given in Ref. [67]; see also

Ref. [84].
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can be obtained by redefining our NR field operators as follows:

φ1
± = 1√

2

(
φ↑± + φ↓±

)
, φ1 †

± = 1√
2

(
φ↑ †± + φ↓ †±

)
,

φ2
± = 1√

2i

(
φ↑± − φ

↓
±
)
, φ2 †

± = i√
2

(
φ↑ †± − φ

↓ †
±
)
.

(A.20)

The new operators φ↑ †± and φ↑± obey canonical commutation relations and create or

destroy vector bosons with Sz = 1, similarly, φ↓ †± and φ↓± create or destroy Sz = −1

states. Using these redefined fields, the magnetic moment coupling (A.19) becomes

Lmag
NR = − eB

2M

(
φ↑ †+ φ↑+ − φ

↓ †
+ φ↓+ − φ

↑ †
− φ

↑
− + φ↓ †− φ

↓
−
)
, (A.21)

showing that the magnetic moment couplings split, at order e4/M , the level degener-

acy of ↑↑ and ↓↓ bound states. In particular, the magnetic moment interaction term

(A.21) leads to the spin-spin hyperfine interaction potential (local in 2D), discussed in

Sec. 6.2.2.

Coefficients of further operators in the EFT can be found by matching scattering

amplitudes between the full and effective theories, as done in continuum NRQED in

Ref. [84]. (See Ref. [67] for matching in NRQCD using lattice gauge theory.) The

resulting terms are dimensionally reduced versions of ones listed in the above references

and include, for example, e
M2

[
C1∇·E φj †+ φj+ +C2 (∂iEj− 1

2
δij∇·E)φi †+ φ

j
+ + · · ·

]
, whose

coefficients can be found by matching scattering amplitudes in external static electric

fields. The contribution of these operators to the bound state energies also scale as

e4/M . Additionally, there are a number of possible contact terms involving four non-

relativistic fields, schematically of the form e2(φ†φ)2, that also contribute O(e4/M)

energy shifts. There are, of course, also corrections arising from higher orders in the

expansion of the relativistic dispersion relation of the form φi †+
∇4

M3φ
i
+ + · · · . According

to the power counting rules, these also contribute to bound state energies at order

e4/M . We have not systematically enumerated all possible higher order terms in the

NR EFT and leave their detailed study and matching for future work.

To conclude this Appendix, we invite the reader to consider the transition from the

non-relativistic effective theory (A.17) for our toy single vector boson model (A.9), to

the effective theory (4.2) describing our full theory (A.4)–(A.8). The transition from

the toy NR EFT (A.17) to our full EFT (4.2) is largely one of bookkeeping due to

the proliferation of fields in the full theory. In brief, in the NR EFT (4.2), the fields
~φab with a > b correspond to the field ~φ+ of the toy model, while the fields ~φab with

a < b correspond to the ~φ− field of the single complex vector model. The charge

densities (4.10) are the multi-field generalizations of toy model charge density (A.16).

The Hamiltonian (A.18) is easily seen to give rise to the complete form (4.12) (with

the same normal ordering issues discussed in Sec. 4).
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B Light sector details

We start with the quadratic part (A.5) of the 4D action to remind the reader about

the 3D photon-scalar duality and the normalization of the dual photon field used in

dual description (2.8). The Cartan generators in the fundamental representation have

eigenvalues given by the N weight vectors νA, A = 1, ..., N . In our basis and choice of

normalization, the highest weight is ν1 = (1− 1
N
,− 1

N
, ...,− 1

N
) and coincides with the

first fundamental weight vector µ1 of su(N). Consider a static quark, or fundamental

representation probe charge, placed at the origin of R2 and having some weight vector

ν characterizing its color charge. This adds a source to the 3D (Minkowskian, c.f.

footnote 34) Lagrangian for the static (KK index n = 0) Cartan components of the

gauge field, −NL
4λ
F a
µνF

µν a +Aa0(x) νa δ2(x) (where a sum on a is implied, and νa is the

a-th component of the quark’s weight).

The resulting Aa0 equation of motion, NL
λ
∇2Aa0(x) = νa δ2(x), implies Gauss’ law,∮

C
dl n̂i

(
NL
λ
F a
i0

)
= νa, where the curve C encircles the origin (counterclockwise) and

n̂ is its outward normal. An N -component dual photon field σ may be introduced

via the relation NL
λ
F a
i0 = 1

2π
εij ∂jσ

a (with ε12 ≡ 1). The choice of coefficient ensures

that
∮
C
dl n̂i εij ∂j σ

a = 2πνa, i.e., the monodromy of the dual photon field is 2π times

the charge (the weight vector ν). To be consistent with probes in all fundamental

representations, the dual photon field is defined to be periodic with a periodicity of 2π

times the su(N) weight lattice, generated by the fundamental weights {2πµA}. The

2+1D Lorentz invariant form of the above duality relation is F a
µν = λ

2πNL
εµνλ ∂

λσa =
λmW

4π2 εµνλ∂
λσa (with ε0ij ≡ −εij). To implement the duality, we replace the Maxwell

part of the quadratic action (A.5) by −NL
4λ
F a
µνF

µν a + 1
4π
εµνλ F

µν a ∂λσa. Treating σa

and F a
µν as independent integration variables and integrating out the field strength F a

µν ,

the resulting kinetic term for the dual photon is λ
8π2NL

(∂λσ
a)2 = λmW

16π3 (∂λσ
a)2, as shown

in the light sector action (2.8).

The Coulomb energy VC of two static charges with weights λ1 and λ2, separated

by a distance r, can also be obtained from the above expressions. One finds VC =

−λmW

4π2 (λ1 · λ2) ln r. The weights for W -bosons are root vectors, and since roots have

length two, the interaction energy of oppositely charged static W -bosons is λmW

2π2 log r, as

shown in Eqs. (6.6) and (6.23). For a fundamental quark and an antiquark of opposite

weights, we have −λ1 · λ2 = ν · ν = 1 − 1
N

, hence they experience attraction of that

strength, as shown in (6.27). On the other hand, a quark with weight λ1 = ν and

antiquark with weight λ2 = −ν ′, with ν 6= ν ′, experience repulsion since −λ1 · λ2 =

ν · ν ′ = − 1
N

, as shown in Fig. 3. Likewise, it follows that quarks (or antiquarks) of

different weights attract with strength 1
N

, as shown in Fig. 4.

Finally, a magnetic monopole-instanton of magnetic charge α (one of the affine
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roots), is represented in the dual description by insertions of eiα·σ(x) (x ∈ R3). Hence

the interaction action between two monopole-instantons of charges α1 and α2 can

be obtained as 〈eiα1·σ(x1)eiα2·σ(x2)〉 = exp
[
− 2π2

λmW

α1·α2

|x1−x2|

]
, where the expectation value

was calculated with the free field portion of the σ-field Lagrangian (2.8). A remark

relevant for the thermal case is that, when reduced to two dimensions, the corresponding

correlator becomes e
4π2T
λmW

α1·α2 ln(|x1−x2|T )
for |x1−x2| � 1/T .

C Symmetry transformations

Let us choose to work in A3 = 0 gauge, where the holonomy Ω is an independent degree

of freedom. Regarding Aµ(x) as anti-Hermitian, and viewing the quark field q as an

N×nf matrix of spinors, we will define ΩF = diag(ξ1/2, ξ3/2, · · ·, ξN−1/2). Our boundary

conditions (in both index-free and component forms) are

Aµ(x3+L) = ΩAµ(x3) Ω† , Aµ(x3+L)ab ' ωa−bAµ(x3)ab , (C.1a)

q(x3+L) = Ω q(x3) Ω†F , q(x3+L)aA ' ω−
N
2

+(a− 1
2

) ξ−(A− 1
2

) q(x3)aA , (C.1b)

where ' means when Ω has the form (2.4).

Mode expansions

Suppose that Ω has the form (2.4) with negligible fluctuations, let y ≡ (y1, y2) denote

the non-compact spatial coordinates, and ignore interactions. Then:

Aµ(t,y, x3)ab =
1

L

∑
n∈Z

∫
d2p

(2π)2
√

2ω

[
e−i(ωt−p·y−k

ab
n x3)eiµ(~p)φi(p)abn

− ei(ωt+p·y+kabn x3) eiµ(−~p)∗
(
φi(−p)ba−n

)†]
, (C.2)

where µ = 0, 1, 2, the compact momentum kabn ≡ 2π
NL

(a − b + nN), the 3D spatial

momentum ~p ≡ (p1, p2, k
ab
n ), and the frequency ω ≡ (p2 + (kabn )2)1/2 (with dependence

on p, n, a and b implicit). The polarization vectors {eiµ(~p)}, i = 1, 2, satisfy 2+1D

transversality, pµeiµ = 0, with p0 ≡ ω. This expansion satisfies BCs (C.1a), anti-

Hermiticity and transversality of Aµ, and the 4D free wave equation �Aµ = 0.

The corresponding mode expansion for the quarks is

q(t,y, x3)aA =
1

L

∑
n∈Z+ 1

2

∫
d2p

(2π)2
√

2ω

[
e−i(ωt−p·y−k

aA
n x3) us(~p)ψs(p)aAn

+ ei(ωt+p·y+kaAn x3) u−s(−~p)
(
χs(−p)aAn

)†]
, (C.3)
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where the quark compact momentum is kaAn ≡ 2π
NL

[(a−1
2
) − N

nf
(A−1

2
) + nN ], the 3D

spatial momentum ~p ≡ (p1, p2, k
aA
n ), and the frequency ω ≡ (p2 + (kaAn )2)1/2. The

free particle spinors us(~p) have helicity s = ±1 and satisfy γαp
αus(~p) = 0 with pα ≡

(ω, ~p). In a chiral basis, γ0 ≡
(

0 1
−1 0

)
, γi ≡

(
0 σi
σi 0

)
, γ5 ≡ −iγ0γ1γ2γ3 =

(
1 0
0 −1

)
, one

has u+(~p) =
(
ξ+(p̂)

0

)
and u−(~p) =

(
0

ξ−(p̂)

)
, where ξ±(p̂) are two-component spinors

satisfying p̂ · ~σ ξ±(p̂) = ±ξ±(p̂) with phase convention ξ±(p̂)∗ = ±iσ2 ξ∓(p̂). The free

particle spinors satisfy γ5 us(~p) = s us(~p) and us(~p)
∗ = Cu−s(~p) with C ≡ iγ5γ2 and

C†γαC = (γα)∗. The above mode expansion satisfies the boundary conditions (C.1b)

and the massless Dirac equation γα∂αq = 0.

The coordinate space EFT operators are just 2D spatial Fourier transforms of the

momentum-space mode operators,

~φ(y)abn ≡
∫

d2p

(2π)2
eip·y ~φ(p)abn , (C.4a)

ψ±(y)aAn ≡
∫

d2p

(2π)2
eip·y ψ±(p)aAn , (C.4b)

χ±(y)aAn ≡
∫

d2p

(2π)2
eip·y χ±(p)aAn . (C.4c)

Axial U(1)nf
A

Let θ = diag(θ1, · · ·, θnf
). The axial transformation is standard:

q(x)→ eiγ5θq(x) , q(x)aA → eiγ5θAq(x)aA , (C.5)

with γ5 ≡ (γ5)†. Non-invariance under the diagonal U(1)A only appears in the non-

perturbative light sector. This transformation is produced by

ψ±(p)aAn → e±iθA ψ±(p)aAn , χ±(p)aAn → e±iθA χ±(p)aAn . (C.6)

Building two-component operators, ψ(p)aAn ≡
(
ψ+(p)aAn
ψ−(p)aAn

)
and χ(p)aAn ≡

(
χ+(p)aAn
χ−(p)aAn

)
, this

transformation is equivalent to

ψ(p)aAn → eiθAσ3 ψ(p)aAn , χ(p)aAn → eiθAσ3 χ(p)aAn . (C.7)

Charge conjugation

Recall that N is assumed odd. Combine the basic charge conjugation transformation,

Aµ → A∗µ, with global color and flavor permutations V and VF , respectively, chosen to

preserve the form (2.4) of Ω at the ZN symmetric minimum and the quark boundary

conditions,

V ≡ ‖δa+b,N+1‖ = ‖δā,b‖ , VF ≡ ‖δA+B,nf+1‖ = ‖δĀ,B‖ , (C.8)
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where ā ≡ N + 1 − a, Ā ≡ nf + 1 − A. Note that Ω∗ = V ΩV † and Ω∗F = VF ΩF V
†
F .

The action of charge conjugation is

Ω→ V Ω∗V † ' Ω , (C.9a)

Aµ(x)→ V Aµ(x)∗V † , Aµ(x)ab → (Aµ(x)ā,b̄)∗ = −Aµ(x)b̄,ā , (C.9b)

q(x)→ C(V q(x)∗V †F ) , q(x)aA → C(q(x)āĀ)∗ , (C.9c)

This transformation is produced by

~φ(p)a bn → −~φ(p)b̄ ān , ψs(p)aAn → χs(p)āĀ−n , χs(p)aAn → ψs(p)āĀ−n . (C.10)

x3 reflection

Let y ≡ (x0, x1, x2, L−x3) denote the reflected coordinates. Combine the basic reflec-

tion, Aµ(x)→ Aµ(y) (recall A3 ≡ 0), with the global color and flavor permutations V

and VF defined above. Then the action of x3 reflection is

Ω→ V Ω†V † ' Ω , (C.11a)

Aµ(x)→ V Aµ(y)V † , Aµ(x)ab → Aµ(y)āb̄ , (C.11b)

q(x)→ R3(V q(y)V †F ) , q(x)aA → R3 q(y)āĀ , (C.11c)

where R3 satisfies R†3γ
αR3 = (1 − 2δα3 )γα and in our chiral basis R3 = γ5γ3. The free

particle spinors satisfy R3us(~p
′) = su−s(~p ) where ~p ′ ≡ (p1, p2,−p3). This transforma-

tion is produced by

~φ(p)abn → ~φ(p)āb̄−n , ψs(p)aAn → −s ψ−s(p)āĀ−n , χs(p)aAn → s χ−s(p)āĀ−n . (C.12)

ZN center

Assume here that either nf = 0, or nf = N . Combine the basic ZN center transforma-

tion, Ω→ ωΩ, with global color and flavor permutations P and PF chosen to preserve

the form (2.4) of Ω and the quark boundary condition,

P ≡ ‖δa,b−1‖ , PF ≡ ‖δA,B−1‖ , (C.13)

with color and flavor indices regarded as defined modulo N . Note that P †ΩP = ωΩ

when Ω has the form (2.4), and similarly P †FΩFPF = ωΩF . The action of a ZN center

transformation is

Ω→ ω PΩP † ' Ω , (C.14a)

Aµ(x)→ PAµ(x)P † , Aµ(x)ab → Aµ(x)a−1,b−1 , (C.14b)

q(x)→ Pq(x)P †F , q(x)aA → q(x)a−1,A−1 (C.14c)
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This transformation is produced by

~φ abn (p)→ ~φ a−1,b−1
n−δa+δb

(p) , ψaAn (p)→ ψa−1,A−1
n−δa+δA

(p) , χaAn (p)→ χa−1,A−1
n−δa+δA

(p) , (C.15)

where δa = 1 if a = 1, otherwise 0. This is equivalent to relations (5.7) and (5.9).
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