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We show that dual conformal symmetry, mainly studied in planar N = 4 super-Yang–Mills theory,
has interesting consequences for Feynman integrals in nonsupersymmetric theories such as QCD,
including the nonplanar sector. A simple observation is that dual conformal transformations preserve
unitarity cut conditions for any planar integrals, including those without dual conformal symmetry.
Such transformations generate differential equations without raised propagator powers, often with
the right hand side of the system proportional to the dimensional regularization parameter ǫ. A
nontrivial subgroup of dual conformal transformations, which leaves all external momenta invariant,
generates integration-by-parts relations without raised propagator powers, reproducing, in a simpler
form, previous results from computational algebraic geometry for several examples with up to two
loops and five legs. By opening up the two-loop three- and four-point nonplanar diagrams into planar
ones, we find a nonplanar analog of dual conformal symmetry. As for the planar case this is used to
generate integration-by-parts relations and differential equations. This implies that the symmetry
is tied to the analytic properties of the nonplanar sector of the two-loop four-point amplitude of
N = 4 super-Yang–Mills theory.
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I. INTRODUCTION

Dual conformal symmetry is a hidden symmetry of planar N = 4 super-Yang-Mills theory [1, 2] which puts strong
constraints on the analytic structure of its scattering amplitudes. In this paper we will discuss applications of this
symmetry towards questions of practical interest in generic theories, such as finding useful and compact integration-
by-parts (IBP) relations and differential equations (DEs) for loop integrals. We also use these ideas to extend the
symmetry to the nonplanar sector by explicitly constructing it for the full two-loop four-point amplitude of N = 4
super-Yang–Mills theory. As for the planar case, the symmetry leads to useful IBP relations and DEs.

An important feature of the IBP relations and DEs generated by dual conformal transformations is that they are
naturally compatible with generalized unitarity [3], which is a powerful method for computing multi-loop scattering
amplitudes. Generalized unitarity helps to overcome the fast growth of complexity as the loop order and the number
of legs increase. At one loop, unitarity-compatible integrand-based reduction [4–6] simplifies loop amplitudes to a
linear combination of master integrals, with coefficients determined from generalized unitarity cuts. This has led to
tremendous progress, including the “NLO revolution” for computing NLO QCD corrections for collider processes (see
e.g. Refs. [7]). To extend the reach of generalized unitarity to generic theories at higher loops, it is natural to retain
the following two important properties: (i) the parameterization is minimal without redundant parameters, leading to
invertible linear systems which can be solved to determine the integrand; (ii) the integrand is decomposed into master
integrands and spurious integrands that vanish upon integration, so only the coefficients of the master integrands are
needed to evaluate the amplitudes.

These methods for evaluating scattering amplitudes offer great promise to tackle general problems at two loops and
beyond (see e.g. Ref. [8]). For dimensionally regularized integrals beyond one loop, it is in fact easy to write down
a parameterization that satisfies property (i) by identifying a minimal set of “irreducible numerators” that cannot
be expressed as linear combinations of inverse propagators. For integrals in integer (most often four) dimensions,
the problem is more intricate, as Gram determinant identities further reduce the number of independent terms in
the integrand. But a complete and computationally efficient solution has been found using polynomial division
algorithms [9, 10]. To construct a parameterization to satisfy the above property (ii), a first step has been developed
in the mentioned papers exploiting the rotation symmetry in the “transverse” directions orthogonal to all external
momenta. This is in direct analogy with the one-loop case [11]. A second step, which is substantially more nontrivial,
is to identify all remaining contributions that integrate to zero. At higher loops the only known practical means to
accomplish this [12] is to exploit IBP relations [13] without increasing propagator powers [14], to not only simplify
the problem, but to make it naturally compatible with generalized unitarity. Our approach based on exploiting dual
conformal transformations automatically generates IBP relations with these properties.

Geometrically, the special IBP relations which do not lead to higher propagator powers are generated by polynomial
vector fields that are tangent to the unitarity cut surface [12]. This is related to the tangent algebra studied in
the mathematics literature [15], as pointed out in Ref. [16]. A key problem for generating unitarity-compatible
IBP relations is finding these special IBP-generating vectors. One solution is to solve “syzygy equations” using
computational algebraic geometry [8, 14, 17, 18]. This is often time-consuming for the more complicated multi-loop
integrals, and produces lengthy and unenlightening results. Analytic insights into the IBP-generating vectors from
Ref. [12] shows that for generic two-loop integrals with massive external legs and internal propagators, a complete set
of IBP-generating vectors comes from simple combinations of one-loop rotation vectors. These vectors will be referred
to as “generic” vectors, and can be constructed as minors of matrices in Section VIII. For Feynman integrals involving
vanishing or degenerate mass configurations, however, “exceptional” IBP-generating vectors appear, in addition to
the generic vectors found by the aforementioned reference. This leads to extra IBP relations, e.g. relations between
one-loop triangle integrals and bubble integrals. A full analytic understanding of these exceptional vectors is still
missing in the literature, though a connection with singularities of unitarity cut surfaces has been explored [16]. We
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will show that important missing insights, at least for the integral topologies covered in this paper, come from N = 4
super-Yang–Mills theory.

In the study of scattering amplitudes, theories with more symmetries have often led to unexpected simplifications
for theories with fewer symmetries. For example tree-level gluon amplitudes in pure Yang-Mills have hidden super-
symmetry because they coincide with the same amplitudes in super-Yang–Mills theory [19]. A one-loop example is
that supersymmetric decompositions can be applied to nonsupersymmetric theories [3, 20]. Following this philosophy,
we aim to develop a relatively simple analytic understanding of IBP-generating vectors for a variety of one- and
two-loop Feynman integrals with vanishing or degenerate masses, using dual conformal symmetry of planar N = 4
super-Yang–Mills theory as a guiding principle. The use of dual conformal symmetry also extends to a large class of
planar Feynman integrals in even integer dimensions, with an appropriate number of propagators [1, 21, 22]. This is
easiest to implement for planar diagrams where dual conformal symmetry is defined, but as we shall see by opening up
nonplanar diagrams into planar diagrams [23], we identify a symmetry that is analogous to dual conformal symmetry.

When we consider integrals in arbitrary dimensions, generic numerators or integrals with too few propagators, the
symmetries are lost because the numerators cannot balance the conformal weights from the denominators and the
integration measure. However, for our purpose of finding IBP-generating vectors, only the geometry of the unitarity
cut surface, fixed by the propagators not the numerators, is relevant. Therefore we can still find insights from dual
conformal symmetry in order to analyze the loop integrals of any theory more generally. It turns out that a subgroup
of dual conformal transformations, which leaves external momenta unchanged, generates infinitesimal shifts in the loop
momenta to produce IBP relations without higher-power propagators. This is connected to the fact that under dual
conformal transformations and their nonplanar generalization, the infinitesimal variations of inverse propagators are
proportional to the inverse propagators themselves. It turns out that IBP-generating vectors obtained from conformal
transformations contain exceptional vectors which we seek to understand. In the process we also find that at one loop
the exceptional vectors relate directly to Landau equations [24, 25].

To illustrate the ideas in a simple context, we first present a number of one-loop examples. As a toy example we
illustrate the case of the one-loop triangle diagram with a single external mass. While standard integral reductions [4,
5, 26] reduce tensor triangle integrals to the scalar triangle integral, we show that dual conformal transformations can
be directly applied to reduce the scalar triangle integral to bubble integrals. Then we use this example to illustrate
the embedding formalism [22, 27] which reduces conformal transformations in an SO(d−1, 1) dual spacetime to linear
Lorentz transformations in an SO(d, 2) embedding space. The latter treatment will involve a general algorithm that
can be applied to all one-loop integrals. Finally, we turn to two-loop examples, including nonplanar cases. We adopt
a level-by-level approach to IBP reduction. For each topology, we only identify IBP relations which reduce all tensor
integrals to top-level master integrals and lower-level integrals with fewer propagators. One can descend into the
lower-level topologies recursively to accomplish the complete IBP reduction.

We also use dual conformal symmetries to generate DEs for integrals [28]. This has proven to be a powerful means
for evaluating integrals. The DEs we generate are in terms of integrals without propagators raised to higher powers,
along the lines of Ref. [29]. For the integrands that would be invariant in four dimensions under dual conformal
transformations or their nonplanar analogs, the right hand side of the DEs are automatically proportional to the
dimensional regularization parameter ǫ = (4 − d)/2. If there were no infrared singularities, we could take ǫ → 0, and
the right side of the DEs would vanish. This property is already known for such integrals, after reducing to a carefully
chosen basis of integrals [30, 31]. In our case, it follows from the existence of a symmetry.

Besides the practical utility of IBP relations and DEs, our considerations point to a nontrivial generalization of dual
conformal symmetry to the full nonplanar sector of N = 4 super-Yang–Mills theory. Refs. [32, 33] found in a variety of
nontrivial examples that the analytic properties implied by dual conformal symmetry such as having only logarithmic
singularities, no poles at infinity and other properties carry over to the nonplanar sector. What symmetries might
be behind this? In this paper we take initial steps towards understanding the symmetries behind these properties,
by building on the connection between dual conformal transformations and polynomial tangent vectors of unitarity
cut surfaces. For the case of the nonplanar sector of the two-loop four-point amplitude [34] based on our analysis of
symmetries of integrals we show that there is indeed a symmetry analogous to dual conformal symmetry.

This paper is organized as follows. In Section II, we review unitarity-compatible IBP relations, dual conformal
transformations and the embedding formalism which linearizes the transformations. In Section III, we illustrate the
application of dual conformal transformations, starting from the simple toy example of the one-loop triangle with
massless propagators and one massive external leg. Two parallel treatments are presented, one based directly on dual
conformal transformations in d dimensions and the other on the SO(d, 2) embedding space. The latter part of the
section will present two more complicated examples at one loop, namely the triangle diagram with two external masses,
and the massive triangle diagram involved in QCD corrections of the H → bb̄ decay. Section IV gives two-loop planar
examples, reproducing nontrivial IBP-generating vectors previously obtained from computational algebraic geometry.
Section V outlines applications to obtain DEs using transformations that act nontrivially on the external momenta.
Section VI formulates a nonplanar analog of dual conformal symmetry. Applications to IBP and differential equations
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for dimensionally-regularized nonplanar integrals are also worked out. In Section VII, we show the invariance of the
two-loop four-point amplitude of N = 4 super-Yang–Mills theory under this symmetry. Finally in Section VIII we
describe the interesting connection between the exceptional IBP vectors and Landau equations. Our conclusions and
outlook are presented in Section IX. An appendix giving matrices describing the dual conformal transformations of
the two-loop pentabox integrals is also included.

II. BASIC CONCEPTS

In this section we give an overview of basic concepts that will be useful for the remainder of the paper. We first
review the notion of unitarity-compatible IBP relations that do not increase the propagator powers, which generically
occurs whenever derivatives hit propagators. Then we discuss using dual conformal transformations as a means for
generating IBP relations that are compatible with unitarity cuts and do not increase the powers of the propagators.
We will also review the embedding formalism for dual conformal transformations. This will be useful in subsequent
sections, since it reduces conformal transformations to simpler Lorentz transformations in two higher dimensions.

A. Unitarity-compatible IBP relations

Consider an L-loop Feynman integral with L independent loop momenta, l1, l2, . . . , lL, M external legs with mo-
menta pi, 1 ≤ i ≤ M , and N propagators, 1/ρj, 1 ≤ j ≤ N ,

∫ L∏

A=1

ddlA
N∏
j ρj

. (2.1)

where N is a numerator that has polynomial dependence on all possible Lorentz-invariant dot products amongst loop
and external momenta.

Integration-by-parts relations [13] arise because total derivatives integrate to zero in dimensional regularization,

0 =

∫ L∏

A=1

ddlA
∂

∂lµB

vµB N∏
j ρj

, (2.2)

where there is implicit summation over the loop momentum label B, and vµB is built out of all possible Lorentz vectors
pµi and lµA, each multiplied by polynomials in Lorentz-invariant dot products. The identity amongst integrals comes
from explicitly applying the derivative. We will refer to

vµB
∂

∂lµB
, (2.3)

as an IBP-generating vector or IBP vector.
If the vector satisfies the condition [14],

vµB
∂

∂lµB
ρj = Wjρj , (2.4)

where there is an implicit sum over B and µ, for each 1 ≤ j ≤ N , with the Wj being polynomials in Lorentz-invariant
dot products, then the IBP relation Eq. (2.2) will not lead to propagators raised to two or more powers. More
generally speaking, if we start with some propagator raised to a power, the power of that propagator will not be
increased further in the IBP relation [8]. This will be called a “unitarity-compatible” IBP relation, as unitarity cut
conditions are easily imposed when there are no raised propagator powers. The standard ways to find IBP vectors
that satisfy Eq. (2.4) are based on solving syzygy equations [8, 14, 17, 18], often using software for computational
algebraic geometry [35].

This is natural with the unitarity approach. If a certain inverse propagator ρj is set to zero by a unitarity cut, then
for that case the right hand side of Eq. (2.4) is zero, which means the IBP-generating vector is a tangent vector to
the unitarity cut surface of any cut, maximal or non-maximal [12]. It should be emphasized that it is a polynomial
(rather than rational) tangent vector.
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B. Unitarity-compatible differential equations

A powerful method for evaluating Feynman integrals is differential equations with respect to external momenta [28].
In this method, one computes derivatives

χµ
i

∂

∂pµi

∫ L∏

A=1

ddlA
N∏
j ρj

, (2.5)

where there is implicit summation of i over every external momentum, and χµ
i generates an infinitesimal change in

the kinematic invariants (i.e. Lorentz-invariant dot products between external momenta). We require χµ
i to have no

dependence on loop momenta. Since total derivatives vanish upon integration, Eq. (2.5) is equivalent to

∫ L∏

A=1

ddlA

[
χµ
i

∂

∂pµi

N∏
j ρj

+
∂

∂lµB

vµB N∏
j ρj

]

=

∫ L∏

A=1

ddlA

[
∂vµB
∂lµB

+

(
χµ
i

∂

∂pµi
+ vµB

∂

∂lµB

)]
N∏
j ρj

. (2.6)

We will refer to

χµ
i

∂

∂pµi
+ vµB

∂

∂lµB
(2.7)

as the DE-generating vector. Under the condition [29]

(
χµ
i

∂

∂pµi
+ vµB

∂

∂lµB

)
ρj = Wjρj , (2.8)

for some polynomial Wj for each 1 ≤ j ≤ N , Eq. (2.6) has no propagators raised to higher powers, i.e. is unitarity-
compatible. In our framework, IBP-generating vectors are special cases of DE-generating vectors without external
momentum derivatives. Similarly, IBP relations are regarded as special cases of differential equations whose left hand
side is zero rather than an external momentum derivative of the integral. Similar to the interpretation of Eq. (2.4),
Eq. (2.8) implies that the DE-generating vector is a tangent vector to unitarity cut surfaces, considered as solutions
to unitarity cut conditions in the space of both external and loop momenta.

We will refer to Wj as the weight of the inverse propagator ρj under the infinitesimal transformation of pi and
lB generated by the vector (2.7). The total divergence term ∂vµB/∂l

µ
B in Eq. (2.6) may be regarded as the weight

Wmeasure of the integration measure, coming from an infinitesimal deviation of the Jacobian from unity (see a later
discussion around Eq. (2.23)), under the same transformation. In addition, in some cases of interest, the numerator N
also has a well-defined weight WN with polynomial dependence on external and loop momenta. In this case Eq. (2.6)
is rewritten as

∫ L∏

A=1

ddlA

[
∂vµB
∂lµB

+

(
χµ
i

∂

∂pµi
+ vµB

∂

∂lµB

)]
N∏
j ρj

=

∫ L∏

A=1

ddlA

(
Wmeasure + WN −

∑

k

Wk

)
N∏
j ρj

. (2.9)

If in the above equation,

Wmeasure + WN −
∑

k

Wk = 0 , (2.10)

then the integral is formally invariant under the infinitesimal transformation generated by the vector (2.7). A trivial
example is a Lorentz transformation (in both external and loop momenta), under which the integration measure,
propagators, and the numerator are separately invariant. In most cases the integrals are infrared singular and an
infrared regulator is needed. This shifts the weight of the measure factor by terms proportional to ǫ, making the
symmetry anomalous.
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C. Properties of IBP- and DE-generating vectors

IBP-generating vectors defined by Eq. (2.4) and DE-generating vectors defined by Eq. (2.8) satisfy the following
properties:

First, if an IBP-generating vector (or DE-generating vector) is multiplied by a polynomial in Lorentz-invariant
dot products of external and loop momenta, it is still a valid IBP-generating vector (or DE-generating vector).
Furthermore, the linear combination of two IBP-generating vectors (or DE-generating vectors) is still a valid vector.
Therefore, IBP- and DE-generating vectors form modules over the ring of polynomials.

Second, by applying Eq. (2.8) twice, it can be seen that the composition of two DE-generating vectors still does
not raise the power of any propagator. Furthermore, the components χµ

i remain independent of the loop momenta.
This can be used to compute higher-order differential equations [36, 37] without generating doubled propagators.

Third, it follows from the second property above that IBP- and DE-generating vectors form a closed Lie algebra.
The action of the DE vector Eq. (2.7) in Eq. (2.6) is, in the language of differential geometry, the Lie derivative action
on the form

L∏

A=1

ddlA
N∏
j ρj

. (2.11)

It is well known that the Lie derivative action of vectors commutes with the Lie bracket of vectors, i.e. the Lie algebra
structure extends to the action of IBP- and DE-generating vectors. This is essentially the observation of Ref. [38] in
the slightly different context of IBP reduction with doubled propagators. As in the aforementioned reference, the Lie
algebra structure allows us to reduce the redundancy of IBP relations—all the necessary IBP relations arise from the
action of a minimal generating set of IBP vectors on the possible tensor integrals.

Fourth, given the unitarity-compatible conditions Eq. (2.4) and (2.8), the IBP- and DE-generating vectors are valid
on unitarity cuts and can be used to generate relations between cut integrals [39].

D. Dual conformal symmetry

If the Feynman integral Eq. (2.1) is planar and only has massless propagators, we can write each inverse propagator
as either

(yA − yB)2, (A 6= B) , (2.12)

or

(yA − xj)
2 , (2.13)

where A and B are loop-momentum labels, and xj are the vertices of a coordinate-space polygon whose edge (xi+1−xi)
is equal to the external momenta pi. We will refer to xj as external momentum points and yA as loop-momentum
points. This is known as the dual-space version of planar Feynman integrals, as each yA and xj may be considered as
coordinate-space points in a dual SO(d− 1, 1) “spacetime” (not to be confused with ordinary spacetime).

As a simple example, consider the two-loop planar double-box integral,

I(2) =

∫
ddl1 d

dl2
1

l21(l1 − p1)2(l1 − p1 − p2)2l22(l2 + p4)2(l2 + p3 + p4)2(l1 − l2)2
, (2.14)

illustrated in Fig. 1. We define the dual points implicitly, via

p1 = x2 − x1 , p2 = x3 − x2 , p3 = x4 − x3 , p4 = x1 − x4 ,

l1 = y1 − x1 , l2 = y2 − x1 . (2.15)

These variables automatically enforce momentum conservation on the pi. Performing the change of variables (2.15)
in the double box, gives,

I(2) =

∫
ddy1 d

dy2
1

(y1 − x1)2(y1 − x2)2(y1 − x3)2(y1 − y2)2(y2 − x1)2(y2 − x3)2(y2 − x4)2
. (2.16)
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p1

p2 p3

p4
x1

x2

x3

x4y1 y2

l1 l2

FIG. 1: The double box integrals. Differences of the dual points give momenta flowing in the diagram. The xi and yi are dual
coordinates the double box. The dual diagram is given by the dashed (blue) diagram.

The dual conformal transformations include scalings zi → azi and inversions zµi → zµi /z
2
i , where zi may be either an

external xi or internal yA dual point. Under the inversion, we have

(xi − xj)
2 →

(xi − xj)
2

x2
i x

2
j

, (yA − xj)
2 →

(yA − xj)
2

y2Ax
2
j

, (yA − yB)2 →
(yA − yB)2

y2Ay
2
B

. (2.17)

From the perspective of planar N = 4 super-Yang-Mills theory, dual conformal transformations are interesting because
they formally leave the amplitude invariant, ignoring regulator issues. From our perspective, what makes them
interesting is that they leave the unitarity cut surface (yA − xj)

2 = 0 invariant. These considerations suggest that
we can generate IBP relations and differential equations that are automatically compatible with unitarity. This is
true whether or not the integrals are invariant. Indeed, the noninvariance is precisely what we will use to generate
nontrivial IBP relations and differential equations.

To generate IBP relations and differential equations we should phrase the conformal transformation as infinitesimal
transformations. Under an infinitesimal conformal boost defined by an SO(d − 1, 1) vector bµ, a dual coordinate zµ

transforms as

∆zµ =
1

2
bµz2 − (b · z)zµ . (2.18)

Under an infinitesimal scaling (i.e. dilatation) transformation with parameter β,

∆zµ = βzµ . (2.19)

(Throughout this paper, ∆ will be understood as a differential operator or a symmetry generator, so the right hand side
of the above equation is not multiplied by an explicit infinitesimal parameter.) Finally, under Lorentz transformations
parametrized by an antisymmetric Ωµν ,

∆zµ = Ωµρηρνz
ν = Ωµ

ν z
ν , (2.20)

where ηρν is the metric. Combining the conformal boost, scaling, and Lorentz transformations, we have

∆zµ =
1

2
bµz2 + (β − b · z)zµ + Ωµ

ν z
ν . (2.21)

In terms of the infinitesimal transformations, if two points zµ1 and zµ2 both transform according to Eq. (2.21), then a
simple calculation gives

∆(z1 − z2)2 = [2β − b · (z1 + z2)] (z1 − z2)2 , (2.22)

which is proportional to (z1 − z2)2. Therefore, under an infinitesimal dual conformal transformation for yµA and xµ
j ,

the variation of any inverse propagator is proportional to the inverse propagator itself. This immediately echoes the
condition Eq. (2.8) for the lack of propagators raised to higher powers, and implies that dual conformal transformations
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generate unitarity-compatible differential equations [29]. The dual-spacetime integration measure transforms as the
trace of the infinitesimal deviation of the Jacobian matrix from the identity matrix,

∆
(
ddz
)

= ddz
∂∆zµ

∂zµ
= ddz (β − b · z)d . (2.23)

As discussed in Subsection II B, IBP-generating vectors arise if we impose the further condition that the infinitesimal
dual conformal transformations do not shift the external points,

∆xj = 0 , (2.24)

for each external point xj . We will give examples in subsequent sections for explicitly solving this constraint.

E. Embedding formalism

A convenient means for carrying out conformal transformations is via the embedding formalism of Refs. [22, 27]. In
this construction, the system is embedded in a space with two extra dimensions. This allows us to reformulate dual
conformal transformations as Lorentz transformations in the higher-dimensional space.

The embedding formalism maps each dual point zµ in the SO(d− 1, 1) dual space to a point in SO(d, 2) invariant
space. Following the conventions of Ref. [22], we introduce

Za =



Zµ

Z−

Z+


 =




zµ

−z2

1


 . (2.25)

These vectors are defined modulo the identification

Z ∼= αZ, α 6= 0 , (2.26)

which is referred to as a GL(1) “gauge freedom”. The inverse map is

zµ =
Zµ

Z+
. (2.27)

The SO(d, 2) invariant contraction is defined by the inner product

(XY ) = XaXa ≡ 2XµYµ + X+Y − + X−Y + . (2.28)

Thus the point defined in Eq. (2.25) is on the lightcone,

(ZZ) = 0 . (2.29)

We introduce the point at infinity, I, which is the limit of Eq. (2.25) with all components of xµ uniformly tending to
infinity, with an appropriate scaling using the gauge freedom in Eq. (2.26),

Ia = lim
|z|→∞

(
−

1

z2

)


zµ

−z2

1


 =




0
1
0


 . (2.30)

This has the effect of compactifying the loop-momentum space [40]. Using Eq. (2.25), we map the loop-momentum
points yµA to

Y a
A =




yµA
−y2A

1


 , (2.31)

and map the dual kinematic points xµ
j to

Xa
j =




xµ
j

−x2
j

1


 . (2.32)
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The inverse propagators are now represented by SO(d, 2) inner products between these points,

(yA − yB)2 = −
(YAYB)

(YAI)(YBI)
, (2.33)

(yA − xj)
2 = −

(YAXj)

(YAI)(XjI)
, (2.34)

where GL(1) invariance is ensured by the denominators involving the point at infinity. The denominators are unity in
the gauge of Eq. (2.31). The factor (XjI) in the denominator of the right hand side of the second line can be omitted,
because we will always choose the gauge (XjI) = 1, as in Eq. (2.32).

The integration measure for each loop becomes, suppressing the loop label,

ddy →
dd+2Y δ(Y 2/2)

(Y I)d Vol(GL(1))
, (2.35)

where Y 2 is a shorthand for (Y Y ) = Y aYa and the expression is formally divided by the volume of the GL(1) gauge
orbit.

We define SO(d, 2) Lorentz transformations acting on some function f(Z) using two reference vectors Zi and Zj ,
as

∆f(Z) = (Z[i Z)

(
Zj]

∂

∂Z

)
f(Z) = Za

[i Za Z
b
j]

∂

∂Zb
f(Z)

=

(
Za
i Za Z

b
j

∂

∂Zb
− Za

j Za Z
b
i

∂

∂Zb

)
f(Z) , (2.36)

where a and b are SO(d, 2) indices. Notice that the factor δ(Y 2/2) in Eq. (2.35) is invariant under these transforma-
tions. The square-bracket notation in the first line indicates antisymmetrization over i and j, as explicitly implemented
in the second line.

Integration-by-parts relations follow from Lorentz invariance identities [22],

0 =

∫
dd+2Y δ(Y 2/2)

Vol(GL(1))
u(Zi, Zj)I , (2.37)

where

u(Zi, Zj) ≡ (Z[i Y )

(
Zj]

∂

∂Y

)
= (Zb

i YbZ
a
j − Zb

jYbZ
a
i )

∂

∂Y a
, (2.38)

is a one-loop IBP-generating vector. In Eq. (2.37) it acts on some general loop integrand I. The factor 1/(Y I)d from
the integration measure in Eq. (2.35) is absorbed into I. Concrete examples of such IBP relations will be given in
subsequent sections.

The SO(d, 2) Lorentz transformations exactly correspond to conformal transformations in Minkowski space with
SO(d − 1, 1) invariant metric, which can be checked using the inverse map formula Eq. (2.27). For example, in
Eq. (2.38), a d-dimensional translation ∆zµ = eµ is equivalent to setting

Zi = I =




0
1
0


 , Zj =



eµ

0
0


 . (2.39)

A d-dimensional conformal boost Eq. (2.18) with parameter bµ is equivalent to setting

Zi = −
1

2




0
0
1


 , Zj =



bµ

0
0


 . (2.40)

Finally, a scaling transformation Eq. (2.19) is equivalent to setting

Zi = I =




0
1
0


 , Zj = −




0
0
β


 . (2.41)
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Therefore the IBP relations from SO(d, 2) Lorentz invariance arise from infinitesimal conformal transformations of
the d-dimensional loop momenta. Following the logic of the previous subsection, such IBP relations will not have
propagators raised to higher powers if the SO(d, 2) Lorentz transformations in Eq. (2.36) leaves the external momenta
invariant, i.e. leaves the Xj points invariant up to GL(1) gauge scaling.

More generally, we can consider any IBP-generating vector in the embedding space,

V a ∂

∂Y a
. (2.42)

The above expression can be identified with an IBP-generating vector vµ∂µ in ordinary SO(d−1, 1) space if it satisfies
the following two conditions: (i) it must be GL(1) gauge-invariant, and (ii) it must commute with the measure factor
δ(Y 2/2), i.e.,

V aYa = 0 . (2.43)

The resulting IBP relation is, again showing the one-loop case for illustration,

0 =

∫
dd+2Y δ(Y 2/2)

Vol(GL(1))

∂

∂Y a
(V aI)

=

∫
dd+2Y δ(Y 2/2)

Vol(GL(1))

(
I
∂V a

∂Y a
+ V a ∂I

∂Y a

)
, (2.44)

consisting of a divergence term proportional to an integrand I and a second term involving derivatives of I. For
an IBP-generating vector as in Eq. (2.38) from Lorentz invariance, the divergence term vanishes, so Eq. (2.37) only
involves derivatives of I.

We can extend the above discussion to include internal masses [40, 41] by modifying Eq. (2.32) to map the external
momentum point xµ

j to

Xa
j =




xµ
j

−x2
j + m2

j

1


 . (2.45)

This changes Eq. (2.34) to

(xj − yA)2 −m2
j = −

(YAXj)

(YAI)
. (2.46)

Since Eq. (2.46) contains a mass mj that is independent of the loop label A, the formula only allows arbitrary masses
at the one-loop level, and at higher loops, the masses of some propagators must be correlated or vanishing.

III. IBP FOR ONE-LOOP TRIANGLE INTEGRALS

To illustrate the ideas of the previous section, we present some simple one-loop examples. It is well known that by
Passarino-Veltman or OPP reduction[4, 5, 26], triangle tensor integrals can all be reduced to triangle scalar integrals
and daughter integrals (i.e. bubble and tadpole integrals from collapsing certain propagators of the triangle diagram).
In the language of unitarity-compatible IBP reduction, this is accomplished by IBP-generating vectors which are
rotation generators in the spacetime directions orthogonal to all external momenta [12]. However, under special
kinematic configurations, scalar triangle integrals can be further reduced to bubble integrals using IBP reduction. As
will be shown in Section VIII near the end of the paper, these special kinematic configurations are exactly those which
allow leading Landau singularities. The necessary IBP-generating vectors will be the main topic of this section.

First we show directly how dual conformal transformations can be used to generate unitarity-compatible IBP
relations without higher-power propagators. We then streamline the procedure using the embedding formalism [22, 27]
that reduces conformal transformations to simpler Lorentz transformations in higher dimensions.

A. One-external-mass triangle: direct treatment

Consider the one-loop triangle shown in Fig. 2. For illustrative purposes, we specialize to the simple case of all
internal and external legs being massless, with the exception of the right-most leg of the figure. The three inverse
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p1

p2

l
l − p2

l + p1

x2

x3

x1

y

FIG. 2: The one-loop triangle with outgoing external momenta p1, p2, −p1 − p2 and dual points x1, x2, x3. All internal
propagators are massless, and the single massive external leg has mass (p1 + p2)

2 = s, shown as a thick (red) line. The dashed
(blue) lines indicate the dual diagram.

propagators are

ρ1 = (l + p1)2, ρ2 = l2, ρ3 = (l − p2)2 . (3.1)

The external kinematic invariants are

p21 = p22 = 0, (p1 + p2)2 = s . (3.2)

We introduce dual coordinates xj , 1 ≤ j ≤ 3 and y, such that

p1 = x2 − x1, p2 = x3 − x2, l = y − x2 . (3.3)

The external points xj completely fix the external momenta, while y is an internal point corresponding to shifted loop
momentum. Since pj and l are expressed as differences between dual coordinates xj and y in Eq. (3.3), we are free to
apply the same translation to all the dual coordinates. We choose to fix the translation “gauge freedom” by taking,

x2 = 0 , (3.4)

so the explicit expressions for the dual coordinates are

x1 = −p1 , x2 = 0 , x3 = p2 , y = l . (3.5)

With this gauge choice, in terms of these dual coordinates, Eqs. (3.1) and (3.2) become

ρ1 = (y − x1)2 , ρ2 = y2 , ρ3 = (y − x3)2 , (3.6)

and

x2
1 = x2

2 = x2
3 = 0, (x2 − x1)2 = (x3 − x2)2 = 0, (x3 − x1)2 = s . (3.7)

Eqs. (3.6) and (3.7) imply that

y · x1 =
1

2
(ρ2 − ρ1), y · x2 = 0 , y · x3 =

1

2
(ρ2 − ρ3) . (3.8)

As discussed in Section II, the key property of the dual conformal transformations (2.21) is that when acting on
inverse propagators, they return results proportional to the inverse propagator itself, as shown in Eq. (2.22). In
order to use dual conformal transformations to generate IBP relations, we restrict to the subset (2.24) where the
transformations do not shift the external points.

The shift under the transformation of the loop momentum gives an IBP-generating vector

∆yµ
∂

∂yµ
= ∆lµ

∂

∂lµ
= vµ

∂

∂lµ
, (3.9)

that satisfies the key condition of Eq. (2.4) that it does not raise the power of propagators in the IBP identity.
Applying Eq. (2.21) to xµ

j , and using x2
j = 0 from Eq. (3.7), Eq. (2.24) becomes

0 = (β − b · xj)xj , j = 1, 2, 3 . (3.10)
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One solution to Eq. (3.10) is

β = s , b = −2(x1 + x3) , (3.11)

where we used Eq. (2.3). This gives, using Eq. (2.21),

∆l = v = −l2(x1 + x3) + [s + 2 l · (x1 + x3)] l . (3.12)

The IBP-generating vector vµ∂µ satisfies

vµ
∂

∂lµ
ρi = Wiρi, 1 ≤ i ≤ 3 , (3.13)

where Wi follows from Eq. (2.22),

Wi = 2β − b · (l + xi) . (3.14)

The divergence of the vector follows from Eq. (2.23),

Wmeasure =
∂vµ

∂lµ
= (β − b · l)d . (3.15)

We obtain the IBP relation

0 =

∫
ddl

∂

∂lµ
vµ

ρ1ρ2ρ3

=

∫
ddl (Wmeasure −W1 −W2 −W3)

1

ρ1ρ2ρ3

=

∫
ddl
[
(d− 6)β + b · (x1 + x2 + x3) − (d− 3)b · l

] 1

ρ1ρ2ρ3

=

∫
ddl
[
(d− 4)s + 2(d− 3)(x1 + x3) · l

] 1

ρ1ρ2ρ3
. (3.16)

In the last line above, we have used the explicit solution for β and bµ in Eq. (3.11). Simplifying the result using
Eqs. (3.5) and (3.8), the final IBP relation is

0 =

∫
ddl
[
(d− 4)s + (d− 3)(2ρ2 − ρ1 − ρ3)

] 1

ρ1ρ2ρ3

= (d− 4)sItri + 2(d− 3)I
(s)
bub , (3.17)

where Itri is the scalar triangle integral in Fig. 2 and I
(s)
bub is the scalar bubble integral obtained from the term

proportional to ρ2 which cancels the propagator 1/ρ2 = 1/l2, so that the mass of both external legs is s. The
terms proportional to ρ1 and ρ3 in the second line of Eq. (3.17) give bubble integrals with massless external legs,
which vanish in dimensional regularization and are discarded in the last line. Eq. (3.17) corresponds to a well known
relation between the one-external-mass triangle and the bubble integral (see e.g. the fourth appendix of Ref. [42]).
The coefficient of the triangle integral in Eq. (3.17) vanishes as d → 4 while the coefficient of the bubble integral does
not. This is due to infrared singularities of the triangle integral. In fact, the triangle integral allows a leading Landau
singularity, whose connection with IBP-generating vectors will be explored in Section VIII. This simple example
illustrates the basic principle behind using dual conformal symmetry to generate useful IBP relations.

B. Embedding-space treatment of one- and two-external-mass triangle

To streamline dual conformal transformations and the construction of IBP-generating vectors we use the embedding
formalism [22, 27] summarized in Section II E. This reduces d-dimensional conformal transformations to simpler
(d + 2)-dimensional Lorentz transformations. The algorithm involves solving for all (d + 2)-dimensional Lorentz
transformations that leave the external momenta invariant. This is used to construct a matrix that encodes the
action of the IBP vector, so that the IBP relations can be conveniently constructed. We will use the above one-
external-mass triangle as an example, before explaining the generalization. Here we apply Lorentz rotations that act
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in the subspace of external points. One can also consider Lorentz rotations in the embedding space that only act in
the space orthogonal to the external points, as we do in Section IV B.

Using Eqs. (2.34) and (2.35), the scalar triangle integral in Fig. 2 is written in the SO(d, 2) embedding space,

Itri =

∫
dd+2Y δ(Y 2/2)

(Y I)d−3 Vol(GL(1))

(−1)3

(Y X1)(Y X2)(Y X3)
, (3.18)

where Y and Xj are as defined in Eqs. (2.31) and (2.32) and as in Eq. (2.35) Y 2 is a shorthand for (Y Y ) = Y aYa.
The factor (−1)3 comes from the minus sign on the right hand side of Eq. (2.34).

We define a subset of infinitesimal d+ 2 dimensional Lorentz transformations ∆ω by an antisymmetric 4× 4 matrix
ωij , acting on a (d + 2) dimensional point Za as

∆ωZ
a =

∑

1≤i,j≤4

(ZXi)ω
ijXa

j , (3.19)

where X1, X2, X3 are the three external points in Eq. (3.18) and X4 = I, where I is defined in Eq. (2.30). We will
choose the ωij such that the above Lorentz transformation leaves X1, X2, X3 invariant up to a GL(1) gauge scaling.
This means that under the transformations only the loop-momentum shifts by an infinitesimal amount, captured by
the IBP vector,

1

2
ωiju(Xi, Xj) = ωij(XiY )Xa

j

∂

∂Y a
. (3.20)

The summation over 1 ≤ i, j ≤ 4 is implicit, and we have used the definition of u(Xi, Xj) in Eq. (2.38).
The Lorentz transformations in Eq. (3.19) acts on Xk as

∆ωX
a
k = gki ω

ijXa
j

≡ ω̄ j
k Xa

j , (3.21)

where we defined the “embedding space gram matrix” as,

gij = (XiXj) =




0 0 −s 1
0 0 0 1
−s 0 0 1
1 1 1 0


 , (3.22)

where we identify X4 with I and the last row and column contain entries of unity due to the gauge choice (XjI) = 1
in Eq. (2.32). We then impose the condition that X1, X2, X3 but not X4 = I, are left invariant by the Lorentz
transformation:

∆ωX
a
k = αk X

a
k , if k = 1, 2, 3, (3.23)

where αk can be absorbed into the GL(1) invariance of the integrand (2.26) which takes (d + 2)-dimensional vectors
to be equivalent if they are scaled. The second line in Eq. (3.21) defines the “IBP matrix”, and depends on the free
parameters ωij which we determine below,

ω̄ ≡ g ω =




sω13 − ω14 sω23 − ω24 −ω34 −sω34

−ω14 −ω24 −ω34 0
−ω14 −sω12 − ω24 −sω13 − ω34 −sω14

−ω12 − ω13 ω12 − ω23 ω13 + ω23 ω14 + ω24 + ω34


 . (3.24)

Eq. (3.23) implies

ω̄ j
k = 0 if k = 1, 2, 3, j 6= k, 1 ≤ j ≤ 4 , (3.25)

i.e., the non-diagonal entries have to vanish in all but the last rows. This gives four independent homogeneous linear
constraints on the six possible components of the antisymmetric matrix ω,

ω14 = ω34 = 0 ,

−sω12 − ω24 = 0 ,

sω23 − ω24 = 0 . (3.26)
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The two independent solutions are

ω(1) =




0 −1 0 0
1 0 1 s
0 −1 0 0
0 −s 0 0


 , ω(2) =




0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0


 , (3.27)

under which the IBP matrix in Eq. (3.24) becomes

ω̄(1) =




0 0 0 0
0 −s 0 0
0 0 0 0
1 −2 1 s


 , ω̄(2) =




s 0 0 0
0 0 0 0
0 0 −s 0
−1 0 1 0


 , (3.28)

respectively. To compute IBP relations, the IBP vector Eq. (3.20) acts on (Y Xk) as

∆ω(Y Xk) =
1

2
ωiju(Xi, Xj)(Y Xk) = ωij(XiY )(XjXk) = −gkjω

ji(Y Xi)

= −ω̄ i
k (Y Xi), (3.29)

where we used the antisymmetry of ω, and u(Xi, Xj) is defined in Eq. (2.38). In terms of matrix components ω̄i
j

that are nonvanishing for either solution, the resulting IBP relation is,

0 =

∫
dd+2Y δ(Y 2/2)

Vol(GL(1))
∆ω

(
(−1)3

(Y I)d−3(Y X1)(Y X2)(Y X3)

)

=

∫
dd+2Y δ(Y 2/2)

Vol(GL(1))

(−1)3

(Y I)d−3(Y X1)(Y X2)(Y X3)

{[( 3∑

i=1

ω̄ i
i

)
+ (d− 3)ω̄ 4

4

]

+
1

(Y I)

[
(d− 3)

3∑

i=1

ω̄ i
4 (Y Xi)

]}

=

∫
ddl

1

ρ1ρ2ρ3

{[( 3∑

i=1

ω̄ i
i

)
+ (d− 3)ω̄ 4

4

]
− (d− 3)(ω̄ 1

4 ρ1 + ω̄ 2
4 ρ2 + ω̄ 3

4 ρ3)

}

=

∫
ddl

1

ρ1ρ2ρ3

{[( 3∑

i=1

ω̄ i
i

)
+ (d− 3)ω̄ 4

4

]
− (d− 3)ω̄ 2

4 ρ2

}
, (3.30)

where on the last line we dropped the contributions proportional to ρ1 and ρ3 because those generate scaleless bubble
integrals that vanish in dimensional regularization.

Substituting the first solution for ω̄ in Eq. (3.28) ,

ω̄
(1)
1

1 = ω̄
(1)
3

3 = 0 , ω̄
(1)
4

4 = −ω̄
(1)
2

2 = s, ω̄
(1)
4

2 = −2 , (3.31)

into Eq. (3.30) yields,

0 = s(d− 4)Itri + 2(d− 3)I
(s)
bub , (3.32)

reproducing Eq. (3.17).
For the second solution in Eq. (3.27), we have

ω̄
(2)
1

1 = −ω̄
(2)
3

3 = s , ω̄
(1)
2

2 = ω̄
(1)
4

4 = 0 , ω̄
(1)
4

2 = 0 , (3.33)

so the IBP relation (3.30) is trivial because it involves only integrals that vanish in dimensional regularization.
As another example, consider the triangle with two external masses shown in Fig. 3. Following the same procedure

as in the one-external-mass case, we introduce dual coordinates as usual

p1 = x2 − x1 , p2 = x3 − x2 , l = y − x2 . (3.34)
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p1
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l
l − p2

l + p1
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x3

x1

y

FIG. 3: The one-loop triangle with outgoing external momenta p1, p2, −p1 − p2. All internal propagators are massless, and
the massive external legs, shown as thick lines, have masses p22 = t and (−p1 − p2)

2 = s. The dashed (blue) line indicates the
dual diagram.

Following a similar analysis as for the single-external-mass case, we find only a single solution that leaves all the
external momenta invariant. The associated IBP matrix is

ω̄ =



−(s− t) 0 0 0

0 −(s− t) 0 0
0 0 s− t 0
2 −2 0 s− t


 , (3.35)

which encodes the action of the IBP-generating vector through Eq. (3.29). The resulting IBP relation, expressed in

terms of the non-vanishing matrix components ω̄ j
i , is

0 =

∫
ddl

1

ρ1ρ2ρ3

{[ 3∑

i=1

ω̄ i
i + (d− 3)ω̄ 4

4

]
− (d− 3)ω̄ 1

4 ρ1 − (d− 3)ω̄ 2
4 ρ2 − (d− 3)ω̄ 3

4 ρ3

}

= (d− 4)(s− t)I
(s,t)
tri − 2(d− 3)I

(t)
bub + 2(d− 3)I

(s)
bub , (3.36)

where I
(s)
bub is the bubble diagram obtained by canceling the propagator l−q2, and I

(s)
bub is the bubble diagram obtained

by canceling the propagator l−q1. When t = 0, I
(t)
bub is a scaleless integral which vanishes in dimensional regularization,

so the above IBP relation Eq. (3.36) becomes the same as the previous IBP relation Eq. (3.32) found for the triangle
with only one massive external leg.

C. The Higgs to bb̄ decay triangle

As a more sophisticated example to illustrate the use of dual conformal transformations in the presence of a mass,
consider the one-loop triangle integral involved in the decay of the Higgs to a bb̄ quark pair, with the bottom quark
mass appearing in both internal and external lines, as depicted in Fig. 4. Internal masses are included in the embedding
formalism, as described at the end of Section II E.

Introducing dual coordinates as usual, the three propagators are written as squared differences between dual coor-
dinates,

ρ1 = (y − x1)2, ρ2 = (y − x2)2, ρ3 = (y − x3)2 , (3.37)

with gauge choice x2 = 0, while the kinematic invariants are written as

x2
2 = 0, x2

1 = x2
3 = m2

b , (x2 − x1)2 = (x3 − x2)2 = m2
b , (x1 − x3)2 = m2

H , (3.38)

involving three massive external legs and two massive internal propagators. Eqs. (3.37) and (3.38) imply that

y · x1 =
1

2
(ρ2 − ρ1 + m2

b) , y · x2 = 0 , y · x3 =
1

2
(ρ2 − ρ3 + m2

b) . (3.39)
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p1

p2

l
l − p2
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x3

x1

y

FIG. 4: The one-loop triangle that appears in the decay of a Higgs boson to a bb̄ quark pair. The outgoing external momenta
are p1, p2, −p1 − p2. The Higgs leg, shown as a thick (red) line on the rightmost part of the figure, has squared mass
(−p1 − p2)

2 = m2

H . The bottom-quark lines, appearing in both external legs and internal propagators, are shown as thick
(blue) lines with squared mass m2

b .

The embedding space Gram matrix is, using the mapping Eq. (2.45) for the massive case and identifying I with X4,

gij = (XiXj) =




2m2
b 0 2m2

b −m2
H 1

0 0 0 1
2m2

b −m2
H 0 2m2

b 1
1 1 1 0


 . (3.40)

Using the general algorithm illustrated in Subsection III B, there is only one solution to the antisymmetric matrix ωij

such that the IBP vector

1

2
ωiju(Xi, Xj) , (3.41)

leaves all external momenta invariant. The solution is

ω =




0 −1 0 0
1 0 1 m2

H − 4m2
b

0 −1 0 0
0 −(m2

H − 4m2
b) 0 0


 , (3.42)

which gives the IBP matrix,

ω̄ =




0 0 0 0
0 −(m2

H − 4m2
b) 0 0

0 0 0 0
1 −2 1 (m2

H − 4m2
b)


 , (3.43)

which encodes the action of the IBP-generating vector through Eq. (3.29). The resulting IBP relation, expressed in

terms of the matrix components ω̄ j
i , is

0 =

∫
ddl

1

ρ1ρ2ρ3

{[( 3∑

i=1

ω̄ i
i

)
+ (d− 3)ω̄ 4

4

]
− (d− 3)ω̄ 1

4 ρ1 − (d− 3)ω̄ 2
4 ρ2 − (d− 3)ω̄ 3

4 ρ3

}

= (d− 4)(m2
H − 4m2

b)IHbb̄
tri + 2(d− 3)I

(H)
bub − 2(d− 3)I

(b)
bub , (3.44)

where IHbb̄
tri is the scalar triangle diagram, I

(H)
bub is the bubble sub-diagram obtained by canceling the propagator with

momentum l, and I
(b)
bub is the bubble sub-diagram obtained by canceling either the propagator with momentum l + p1

or the one with momentum l− p2. The IBP relation for the one-external-mass triangle, Eq. (3.32) can be reproduced
from the above IBP relation Eq. (3.44) by setting m2

H = s, m2
b = 0.

For higher-loop planar integrals with up to four external legs of any topology, the algorithm presented above can
be adapted to find nontrivial dual conformal transformations that leaves all the external momenta invariant. We
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start with the embedding-space Gram matrix for the specific integral topology as in Eq. (3.22), with XN+1 defined
to be equal to I. Then we repeat the subsequent calculations to produce the IBP matrix as in Eq. (3.24), leading to
homogeneous linear constraints as in Eq. (3.25). Solving the linear constraints gives the IBP vectors and relations.
As discussed in the previous subsection, for any solution of the antisymmetric matrix ω that has a vanishing last
column, we will obtain IBP relations that only involve integrals with canceled propagators, therefore such solutions
may be discarded if we are interested in the IBP reduction of top-level integrals. In the next section we will describe
another class of useful dual conformal transformations orthogonal to all external momenta, which will be useful at
higher loops.

IV. IBP FOR PLANAR TWO-LOOP INTEGRALS

In this section we discuss the more interesting case of higher-loop integrals. With generic mass configurations (e.g.
with all external and internal masses being different from each other), a complete set of IBP-generating vectors is
tabulated in Ref. [12]. Here we apply dual conformal symmetry to uncover extra IBP-generating vectors for planar
two-loop integrals with massless lines. In Section VI we will extend this to the nonplanar case.

A. Conformal transformations in transverse dimensions

In the direct treatment of Section III A, the parameter of the conformal boost in Eq. (3.11), with xµ
i given in Eq.

(3.5), is a linear combination of external momenta. However, another interesting possibility is a conformal boost in
a direction orthogonal to all external momenta, which gives unitarity-compatible IBP-generating vectors for every

planar integral at any loop order.
Consider a general L-loop N -point diagram. For a planar N -point diagram at L loops, we take the dual coordinates

to be x1, x2, . . . , xN . It is easy to fix the translation gauge freedom such that every xµ
i is written as a linear combination

of the external momenta pµi . (For example, if we fix x1 = 0, then xi =
∑i−1

j=1 pj .) In Eq. (2.22), we choose the
conformal-boost parameter bµ to be any vector that is orthogonal to all external momenta, and do not include a
scaling transformation (i.e. setting β = 0). This gives ∆(xi−xj)

2 = 0 for all pairs of i, j, which means all Mandelstam
variables are left invariant. Therefore it is always possible to keep each individual external momentum invariant by
adding a compensating Lorentz transformation.

In the planar case, the SO(d, 2) embedding formalism gives a convenient way of proceeding. This eliminates the
need to fix a gauge for the translation degrees of freedom of the dual coordinates. For illustration, we focus on
d = 4 − 2ǫ dimensional loop integrals with N external momenta, where N ≤ 5. Generally, the embedding-space
reference points X1, X2, . . . , XN and the point at infinity I together span N + 1 “physical” dimensions, leaving an
orthogonal “transverse” space of dimension (d+2)− (N +1) = d− (N −1). This directly corresponds to the subspace
of ordinary SO(d−1, 1) spacetime orthogonal to the N−1 dimensions spanned by the external momenta.1 In addition,

in the (N + 1)-dimensional “physical” space spanned by X1, X2, . . . , XN , I, one can always find one vector Ĩ that
satisfies the N conditions,

(ĨXi) = 0, 1 ≤ i ≤ N . (4.1)

In particular, if the top-left N ×N sub-block g̃ij = (XiXj) of the embedding-space Gram matrix is non-singular, then

the above Ĩ can be found by projecting I onto the space orthogonal X1, X2, . . .XN ,

Ĩa = Ia − (IXi)(g̃
−1)ijX

a
j . (4.2)

We can also define a set of vectors that span the transverse space. Let Nk, with 1 ≤ k ≤ d + 1 − N , be an
orthonormal basis of this orthogonal space. The SO(d, 2) Lorentz transformations in Eq. (2.36), with Zi = Ĩ and
Zj = Nk for any 1 ≤ k ≤ d+ 1−N , leaves all Xj (1 ≤ j ≤ N) invariant, since it only acts in the transverse space. So
we obtain a valid unitarity-compatible IBP-generating vector

u(Ĩ , Nk) =
∑

A

[
(Ĩ YA)

(
Nk

∂

∂YA

)
− (Nk YA)

(
Ĩ

∂

∂YA

)]
, (4.3)

1 For example, for a five-point diagram, with dimensional regularization the transverse space has dimension 4− 2ǫ − (5 − 1) = −2ǫ.
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following the notation of the one-loop version in Eq. (2.38). However, the IBP relation from the multi-loop version of
Eq. (2.37),

0 =

∫ (∏

A

dd+2YA δ(Y 2
A/2)

Vol(GL(1))

)
u(Ĩ , Nk) I , (4.4)

breaks the Lorentz symmetry in the d − (N + 1) dimensional transverse space, since it introduces vectors Nk not
present in the original problem, so it is not ideal. A remedy is to contract the Lorentz indices to give IBP-generating
vectors that are invariant under the Lorentz symmetry of the transverse directions. We can write down the following
L different vectors,

1

(−YBI)
(NkYB)u(Ĩ , Nk) = u

(
Ĩ ,

ỸB⊥

(−YBI)

)
, (4.5)

where the index k is summed and 1 ≤ B ≤ L specifies one of the independent loop momentum. The label B is not
summed in Eq. (4.5). The contraction over the index k ensures Lorentz invariance in the transverse directions, while
the normalization factor 1/(−YBI) ensures GL(1) gauge invariance. YB⊥ is the projection of YB onto the transverse
space, using the inverse of the (N + 1) × (N + 1) Gram matrix gij = (XiXj) with XN+1 ≡ I,

Y a
B⊥ = (NkYB)Na

k = Y a
B − (YBXi)g

−1
ij Xa

j . (4.6)

This results in the IBP relations (see Eq. (2.44) for the one-loop analog),

0 =

∫ (∏

A

dd+2YA δ(Y 2
A/2)

Vol(GL(1))

)∑

A

[
(Ĩ YA)

(
Nk

∂

∂YA

)
− (Nk YA)

(
Ĩ

∂

∂YA

)](
(NkYB)

(−YBI)
I

)
, (4.7)

where there is implicit summation over k, and B is a fixed loop label 1, 2, . . . , L.
The right hand side of Eq. (4.5) is an example of an IBP-generating vector defined using reference vectors with

dependence on loop momenta. The IBP relation from such a vector is a superposition of familiar SO(d, 2) Lorentz
symmetry identities, as in Eq. (4.7). IBP relations are obtained from the vector in explicit components,

u

(
Ĩ ,

ỸB⊥

(−YBI)

)
=

(
(ĨYA)

(−YBI)
Ỹ a
B⊥ −

(ỸB⊥YA)

(−YBI)
Ĩa
)

∂

∂Y a
A

, (4.8)

then calculating the total divergence, as in Eq. (2.44). As before, in this expression A is summed over but B is not.
Since the IBP relations we derived earlier already suffice to reduce the triangle integrals to bubble integrals, we

do not need the additional IBP relations coming from the transverse space.2 But these relations are needed at the
two-loop level.

B. Global and loop-by-loop conformal transformations

Now consider Lorentz transformations in the embedding space that affect the external momenta. To simplify the
discussion we focus on two loops. We trivially extend the definition of the infinitesimal Lorentz transformation in Eq.
(2.38) to simultaneously transform both Y1 and Y2,

u12(Zi, Zj) =

2∑

A=1

uA(Zi, Zj) =

2∑

A=1

(Z[i YA)

(
Zj]

∂

∂YA

)
. (4.9)

Similarly, we will define loop-by-loop Lorentz transformations, namely

u1(Zi, Zj), u2(Zi, Zj) (4.10)

2 These additional IBP relations in fact vanish on the maximal cut, for the three different triangle integrals considered in the previous
section.
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acting only on Y1 and only on Y2, respectively. For appropriate Zi and Zj, u12(Zi, Zj) can be considered a global
SO(d, 2) transformation (instead of acting only on the loop momentum points) that leaves all the external momenta
invariant, so that Eq. (4.9) is a two-loop IBP-generating vector that does not lead to propagators raised to higher
powers. The situation is entirely analogous to the one-loop case, and allows one-loop IBP-generating vectors to be
reused at higher loops. A difference from the one-loop case is that we need the IBP-generating vectors arising from
transverse directions, as explained in Subsection IV A, which may be considered as loop-momentum-dependent global
conformal transformations.

For some of the more complicated two-loop integral topologies such as the penta-box discussed in Subsection IV E,
IBP-generating vectors from global conformal transformations are not sufficient. To deal with this, we construct a
class of loop-by-loop unitarity-compatible IBP-generating vectors. Consider the inverse propagators,

−
(Y1Xi)

(Y1I)
, −

(Y2Xj)

(Y2I)
,

(Y1Y2)

(Y1I)(Y2I)
, with i ∈ σ1, j ∈ σ2 , (4.11)

where σ1 and σ2 are both subsets of {1, 2, . . . , N}. If an SO(d, 2) transformation parametrized by the antisymmetric

matrix ωij

(1) leaves all the Xi points (i ∈ σ1) invariant, the action of the transformation on Y1 alone gives the IBP-

generating vector

V a
1

∂

∂Y a
1

=
1

2
ωij

(1)u1(Xi, Xj) , (4.12)

which does not raise the power of any propagator denominator of the form −(Y1Xi)/(Y1I). The vector also does not
raise the power of any propagator denominator of the form −(Y2Xj)/(Y2I) because the vector does not involve deriva-
tives w.r.t. the second loop momentum. However, the vector may double the power of the propagator denominator
ρc ≡ −(Y1Y2)/(Y1I)(Y2I), so this is not yet a valid unitarity-compatible vector.

Similarly, if a conformal transformation parametrized by ωij

(2) leaves all the Xj points with j ∈ σ2 invariant, we can

write down an IBP-generating vector

V a
2

∂

∂Y a
2

=
1

2
ωij

(2)u2(Xi, Xj) , (4.13)

which again does not increase the power of any propagator denominator except for ρc. Our final IBP-generating
vector, to be denoted by cross(V1, V2), is

cross(V a
1 ∂1 a, V

a
2 ∂2 a) =

1

(Y1I)(Y2I)

{[
V b
1

∂

∂Y b
1

(Y1Y2)

]
V a
2

∂

∂Y a
2

−

[
V b
2

∂

∂Y b
2

(Y1Y2)

]
V a
1

∂

∂Y a
1

}

=
1

(Y1I)(Y2I)

{
(V1Y2)V a

2

∂

∂Y a
2

− (V2Y1)V a
1

∂

∂Y a
1

}
, (4.14)

where the overall prefactor 1/((Y1I)(Y2I)) is needed for GL(1) gauge invariance. This is designed to annihilate (Y1Y2).
As a result, this IBP-generating vector does not raise the power of the propagator denominator ρc. To see this, in
Eq. (2.4) we have

Wc =
cross(V a

1 ∂1 a, V
a
2 ∂2 a)ρc

ρc
= −

cross(V a
1 ∂1 a, V

a
2 ∂2 a)

(
(Y1I)(Y2I)

)

(Y1I)(Y2I)
, (4.15)

which evaluates to an expression with polynomial dependence on loop momenta, because the gauge (Y1I) = (Y2I) = 1
eliminates the denominators.

C. The triangle-box

As an explicit example, consider the two-loop triangle-box diagram shown in Fig. 5. The inverse propagators are

ρ1 = (l1 + p1)2, ρ2 = l21, ρ3 = (l1 − p2)2,

ρ4 = (l2 + p1)2, ρ5 = (l2 − p2)2, ρ6 = (l2 − l1)2 , (4.16)

while an “irreducible numerator”, which cannot be written as a linear combination of inverse propagators, is

ρ7 = l22 . (4.17)
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FIG. 5: The triangle-box diagram.

Notice that l2 is not the momentum of any propagator, due to our choice of momentum routing. The external
kinematic invariants are identical to those of the one-loop triangle with one external mass in Section III,

p21 = p22 = 0, (p1 + p2)2 = s . (4.18)

Introducing dual coordinates as usual, the six inverse propagators and one irreducible numerator becomes

ρ1 = (y1 − x1)2, ρ2 = (y1 − x2)2, ρ3 = (y1 − x2)2,

ρ4 = (y2 − x1)2, ρ5 = (y2 − x3)2, ρ6 = (y2 − y1)
2, ρ7 = (y2 − x2)2 , (4.19)

with the kinematic invariants written as

(x2 − x1)2 = (x3 − x2)2 = 0, (x3 − x1)2 = −s . (4.20)

The triangle-box integral, with the irreducible numerator ρ7 raised to the m-th power, is written as

Itri - boxm =

∫
ddl1

∫
ddl2

ρm7
ρ1ρ2ρ3ρ4ρ5ρ6

=

∫
dd+2Y1 δ(Y 2

1 /2)

Vol(GL(1))

∫
dd+2Y2 δ(Y 2

2 /2)

Vol(GL(1))

×
(−1)6+m(Y2X2)m

(Y1I)d−4(Y2I)d−3+m(Y1X1)(Y1X2)(Y1X3)(Y2X1)(Y2X3)(Y1Y2)
. (4.21)

Since the external momenta are identical to those for the one-loop triangle, the same subgroup of conformal transfor-
mations in dual space leaves the external momenta invariant. Therefore, we can reuse the IBP-generating vectors for
the one-loop triangle. The IBP generating vector is parametrized as

1

2
ωiju12(Xi, Xj) =

2∑

A=1

ωij(XiYA)Xa
j

∂

∂Y a
A

, (4.22)

which differs from the corresponding one-loop expression Eq. (3.20) only by an additional summation over the loop
label A. We reuse the first solution ω(1) for the antisymmetric matrix ωij in Eq. (3.27) found at one loop. The action
of the IBP-generating vector is a straightforward generalization of the one-loop expression Eq. (3.29),

∆ω(1)(YAX1) = ∆ω(1)(YAX3) = 0,

∆ω(1)(YAX2) = s(YAX2),

∆ω(1)(YAI) = − [(YAX1) − 2(YAX2) + (YAX3)] − s(YAI),

∆ω(1)(Y1Y2) = 0 . (4.23)
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Other than the appearance of the loop label A which may be either 1 or 2, the only difference from the one-
loop expression is the last line, namely the trivial statement that (Y1Y2) is invariant under simultaneous Lorentz
transformations of Y1 and Y2.

IBP relations can be computed in a way similar to how it is done at one loop in Eq. (3.32), in terms of the
non-vanishing components of the first solution for ω̄ in Eq. (3.28),

0 =

∫
dd+2Y1 δ(Y 2

1 /2)

Vol(GL(1))

∫
dd+2Y2 δ(Y 2

2 /2)

Vol(GL(1))

× ∆ω(1)
(−1)6+m(Y2X2)m

(Y1I)d−4(Y2I)d−3+m(Y1X1)(Y1X2)(Y1X3)(Y2X1)(Y2X3)(Y1Y2)

=

∫
dd+2Y1 δ(Y 2

1 /2)

Vol(GL(1))

∫
dd+2Y2 δ(Y 2

2 /2)

Vol(GL(1))

×
(Y2X2)m

(Y1I)d−4(Y2I)d−3+m(Y1X1)(Y1X2)(Y1X3)(Y2X1)(Y2X3)(Y1Y2)

×

{
(−1)6+m

[
−ω̄ 2

2 (m− 1) + (d− 4)ω̄ 4
4 + (d− 3 + m)ω̄ 4

4

]

+(−1)5+m

[
−

(d− 4)

(Y1I)

(
3∑

i=1

ω̄ i
4 (Y1Xi)

)
−

(d− 3 + m)

(Y2I)

(
3∑

i=1

ω̄ i
4 (Y2Xi)

)]}
. (4.24)

It is illuminating to look at Eq. (4.24) on the maximal cut of the triangle-box, which sets

(Y1X1) = (Y1X2) = (Y1X3) = (Y2X1) = (Y2X3) = (Y1Y2) = 0 . (4.25)

After translating Eq. (4.24) back to SO(d− 1, 1) loop-momentum space, imposing the maximal cut, and substituting

ω̄ j
i for their explicit values, we obtain

0 = 2(d− 4 + m)s Itri-boxm + 2(d− 3 + m)Itri-boxm+1 + daughter integrals, (4.26)

using the notation of Eq. (4.21) and “daughter integrals” refer to integrals where some of the triangle-box propagators
are canceled. This is a recursion relation which reduces all the triangle-box integrals to the scalar integral Itri - box0

and integrals with canceled propagators.
We will further show that the scalar triangle-box integral is also reducible to integrals with canceled propagators,

by constructing another IBP relation using transformations in the transverse directions as explained in Subsection
IV A. We define

Ĩ = X2 , (4.27)

which satisfies Eq. (4.1) and also define Y1⊥ according to Eq. (4.6) with B set to 1,

Y a
1⊥ = Y a

1 − (Y1Xi)g
−1
ij Xa

j , (4.28)

which is the projection of Y1 onto the transverse space orthogonal to X1, X2, X3, I. Using the IBP-generating vector
Eq. (4.5) with B = 2,

−1

(Y1I)
u12(Ĩ , Ỹ1⊥) , (4.29)

the IBP relations can be written down as a total divergence as in Eq. (2.44) (but generalized to more than one loop
by trivially adding a summation over loop labels 1 and 2), with I set to

I =
(−1)6s

(Y1I)d−4(Y2I)d−3(Y1X1)(Y1X2)(Y1X3)(Y2X1)(Y2X3)(Y1Y2)
. (4.30)

Explicit calculation gives the IBP relation, again dropping terms that vanish on the maximal cut for the purpose of
illustration,

0 = −(d− 3)s Itri - box0 + daughter integrals . (4.31)

Combined with the recursion relation Eq. (4.26), this shows that all triangle-box integrals can be reduced to zero
on the maximal cut. In other words, all these integrals can be reduced to integrals with canceled propagators, if we
retain all terms proportional to inverse propagators in the calculation of the IBP relations.
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D. The double box

Consider now the two-loop double-box integral in Fig. 1. The inverse propagators with the assigned momentum
labels are

ρ1 = l21 , ρ2 = (l1 − p1)2 , ρ3 = (l1 − p1 − p2)2 , ρ4 = (l2 − p1 − p2)2 ,

ρ5 = (l2 + p4)2, ρ6 = l22 , ρ7 = (l2 − l1)2 , (4.32)

while a choice of irreducible numerators is

ρ8 = (l1 + p4)2 , ρ9 = (l2 − p1)2 . (4.33)

To write every inverse propagator in the dual-space form, as either (y1−y2)
2 or (yA−xj)

2, we define the SO(d−1, 1)
dual coordinates xj and yA such that

xµ
2 − xµ

1 = pµ1 , xµ
3 − xµ

2 = pµ2 , xµ
4 − xµ

3 = pµ3 , xµ
1 − xµ

4 = pµ4 ,

yµ1 − xµ
1 = lµ1 , yµ2 − xµ

1 = lµ2 . (4.34)

under which the seven inverse propagators become

ρ1 = (y1 − x1)2 , ρ2 = (y1 − x2)2 , ρ3 = (y1 − x3)2 , ρ4 = (y2 − x3)2 ,

ρ5 = (y2 − x4)2 , ρ6 = (y2 − x1)2 , ρ7 = (y2 − y1)2 , (4.35)

and the two irreducible numerators become

ρ8 = (y1 − x4)2 , ρ9 = (y2 − x2)2 . (4.36)

A convenient visualization of the dual points is shown in Fig. 1. In terms of these quantities, we define the planar
double-box integrand as

ΩP
1 = ddl1d

dl2
st

ρ1...ρ7
. (4.37)

where

s = (p1 + p2)2 = (x1 − x3)2 , t = (p2 + p3)2 = (x2 − x4)2 , (4.38)

are Mandelstam invariants needed to cancel overall conformal weights.
As usual for planar integrals, we map the dual coordinates yµA and xµ

j to SO(d, 2) embedding-space points YA and

Xj , following Eqs. (2.31) and (2.32). If we use the algorithm presented in Section III B to find infinitesimal SO(d, 2)
Lorentz transformations that leave all Xj invariant, we find two such transformations in the notation of Eq. (2.38):

u12(X1, X3), u12(X2, X4) , (4.39)

following the notation of Eq. (4.9). For the one-loop box diagram, both transformations vanish on the maximal cut
because (Y Xi) = 0, 1 ≤ i ≤ 4. But for the two-loop double box topology, (Y1X4) and (Y2X2) are proportional to the
irreducible numerators, so the IBP-generating vector,

u12(X2, X4) , (4.40)

still gives an IBP-generating vector that does not vanish on the maximal cut. Eq. (4.40) is essentially the same as the
first IBP-generating vector for the double box in Ref. [14] obtained using computational algebraic geometry. There
is another IBP-generating vector for the double box following the discussion of Subsection IV A. We define another
SO(d, 2) embedding-space point Y1⊥,

Y a
1⊥ = Y a

1 − (Y1Xi)g
−1
ij Xa

j , (4.41)

where as usual, gij = (XiXj) is the embedding-space Gram matrix, with X5 identified with I. We also define the

SO(d, 2) embedding-space point Ĩ,

Ĩa = s(Xa
2 + Xa

4 ) + t(Xa
1 + Xa

3 ) + st Ia , (4.42)
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FIG. 6: The penta-box integral.

which is the same as Eq. (4.2) but with an extra overall factor st, and satisfies Eq. (4.1). Using the IBP-generating
vector Eq. (4.5) with B = 1 we have,

u12(Ĩ , Y1⊥) . (4.43)

We have checked using computer algebra that the two IBP-generating vectors, Eqs. (4.40) and (4.43), with all
possible choices of numerators in I in the two-loop generalization of Eq. (2.44), generate a complete set of IBP
relations that reduce all double box tensor integrals to two double box master integrals and daughter integrals (i.e.
integrals with canceled propagators). It is worth noting that the two vectors we found are written down in a very
compact form, whereas in Ref. [14] nearly one page is needed to display the vectors found from computational algebraic
geometry.

E. The penta-box

As a more complex example consider the two-loop five-point penta-box shown in Fig. 6, along with dual coordinates
xi and yA introduced as usual. There are five independent kinematic variables, which may be chosen as

s12, s23, s34, s45, s51 , (4.44)

where sij = (pi + pj)
2. The embedding-space Gram matrix is, identifying I with X6,

gij = (XiXj) =




0 0 −s12 −s45 0 1
0 0 0 −s23 −s51 1

−s12 0 0 0 −s34 1
−s45 −s23 0 0 0 1

0 −s51 −s34 0 0 1
1 1 1 1 1 0




. (4.45)

With Ĩ defined as in Eq. (4.2), we obtain two IBP-generating vectors from conformal transformations in transverse
directions, by setting B = 1, 2 in Eq. (4.5),

u

(
Ĩ ,

Ỹ1⊥

(−Y1I)

)
, (4.46)

u

(
Ĩ ,

Ỹ2⊥

(−Y2I)

)
. (4.47)

Next, we examine conformal transformations which do not explicitly involve transverse directions. As in Eq. (3.19),
we write down a conformal transformation parametrized as

∆ωZ
a =

∑

1≤i,j≤6

(ZXi)ω
ijXa

j , (4.48)
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FIG. 7: The one-loop box diagram and its dual diagram.

where ω is a 6 × 6 antisymmetric matrix. Unlike the previous three-point and four-point examples in this paper,
we are not able to find a solution for ωij which leaves all external momenta invariant. However, all is not lost. As
discussed in the latter half of Subsection IV B, we can look for two different conformal transformations for the two
sub-loops, and combine the two to give a unitarity-compatible IBP-generating vector.

We find one solution ωij

(1) which leaves x1, x2, x3, x4, or equivalently p1, p2, p3, invariant, and three solutions

ωij

(2a), ω
ij

(2b), ω
ij

(2c) which leaves x1, x4, x5, or equivalently p4, p5 invariant. These solutions are tabulated in Appendix

A.3 Therefore, the following IBP-generating vectors do not increase the power of any propagator except the vertical
central propagator in Fig. 6,

1

2
ωij

(1)u1(Xi, Xj),
1

2
ωij

(2a)u2(Xi, Xj),

1

2
ωij

(2b)u2(Xi, Xj),
1

2
ωij

(2c)u2(Xi, Xj) . (4.49)

These vectors can be combined to give IBP-generating vectors that do not increase the power of any propagator.
Using the notation of Eqs. (4.12), (4.13) and (4.14), these IBP-generating vectors are

cross

(
1

2
ωij

(1)u1(Xi, Xj),
1

2
ωij

(2a)u2(Xi, Xj)

)
,

cross

(
1

2
ωij

(1)u1(Xi, Xj),
1

2
ωij

(2b)u2(Xi, Xj)

)
,

cross

(
1

2
ωij

(1)u1(Xi, Xj),
1

2
ωij

(2c)u2(Xi, Xj)

)
. (4.50)

We have checked, using computer algebra, that the five IBP-generating vectors in Eqs. (4.46), (4.47) and (4.50) are
sufficient to reduce all penta-box integrals to three master integrals. Again, the five vectors are given by compact
analytic expressions, in contrast to lengthy expressions one generally finds using computational algebraic geometry.

This formalism generalizes straightforwardly, e.g. to the six-point case, although one would need to check that the
IBP relations are complete for each individual diagram topology, which is left to future work.

V. DIFFERENTIAL EQUATIONS FOR PLANAR INTEGRALS

In this section we briefly comment on applications of the ideas described in previous sections to constructing
differential equations for integrals. An infinitesimal dual conformal transformation produces differential equations
when we remove the restriction to the sub-algebra that keeps external legs invariant. We present a treatment in
the embedding space, which simplifies the transformations and has the advantage that there is no need to fix the

3 In quoting the number of solutions, we have ignored the solutions which ultimately do not lead to independent new IBP relations.
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translation gauge for the dual coordinates. In the nonplanar case, covered in Section VI, where the transformations
for some kinematic invariants become less obvious it will be simpler to use a “direct” treatment.

Consider the one-loop box, shown in Fig. 7 which has the same external momenta and the SO(d, 2) points Xi as
the double box in Section IV D. Consider an infinitesimal SO(d, 2) Lorentz transformation ∆Z given by

∆Za = (Z1Z)Za
2 − (Z2Z)Za

1 , (5.1)

with parameters

Z1 = X2, Z2 = s I + (X1 + X3) , (5.2)

which satisfies

(Z1X1) = (Z1X2) = (Z1X3) = 0, (Z1X4) = −t, (Z1I) = 1

(Z2X1) = (Z2X3) = 0, (Z2X2) = (Z2X4) = s, (Z2I) = 2 . (5.3)

The transformation of the SO(d, 2) points are

∆X1 = ∆X3 = 0, ∆X2 = −sX2 ,

∆X4 = −tZ2 − sZ1 = −st I − tX1 − tX3 − sX2 ,

∆Y = (Y X2)(s I + X1 + X3) − s(Y I)X2 − (Y X1)X2 − (Y X3)X2 , (5.4)

which shows X1, X2, and X3 are invariant up to a GL(1) gauge scaling. In other words the d dimensional dual
coordinates xµ

1 , xµ
2 and xµ

3 are left invariant. The factor (Y I), which appears in the integration measure, transforms
as

∆(Y I) = (I∆Y ) = 2(Y X2) − (Y X1) − (Y X3) − s(Y I) . (5.5)

As a result, s = (x1 − x3)2 is invariant, while explicit calculation shows

∆t = 2(s + t)t . (5.6)

So the transformation produces differential equations in the t variable,

2(s + t)t
∂

∂t

(
stIbox

)
=

∫
dd+2Y δ(Y 2/2)

Vol(GL(1))
∆

(
(X1X3)(X2X4)

(Y I)d−4(Y X1)(Y X2)(Y X3)(Y X4)

)

=

∫
dd+2Y δ(Y 2/2)

Vol(GL(1))

(X1X3)(X2X4)

(Y X1)(Y X2)(Y X3)(Y X4)
∆

(
1

(Y I)d−4

)

=

∫
dd+2Y δ(Y 2/2)

Vol(GL(1))

(X1X3)(X2X4)

(Y X1)(Y X2)(Y X3)(Y X4)

1

(Y I)d−4+1

× (−d + 4) [2(Y X2) − (Y X1) − (Y X3) − s(Y I)]

= ǫ
[
−2s

(
stIbox

)
+ 4st Itri,t − 4st Itri,s

]
, (5.7)

where the last line consists of the box, the t-channel triangle, and the s-channel triangle integrals. After summing s
and t channel versions of this equation it immediately reproduces Eq. (4.11) of Ref. [43].

It is noteworthy that the right hand side of the differential equation so derived is proportional to ǫ [30]. It is perhaps
not too surprising that this structure naturally arises in our approach. If we ignore the effect of the regulator, the
combination stIbox is invariant under dual conformal transformations in four dimensions. However, the box integral
is infrared singular so a regulator is required. Dimensional regularization breaks the invariance, so instead of finding
zero on the right-hand-side we find terms proportional to ǫ. Besides leading to simpler differential equations, integrals
with such symmetries are expected to have interesting properties, including uniform transcendentality [44] and d log
forms [45]. It would be interesting to further explore these ideas at higher loops, not only for the planar case, but
also for nonplanar integrals in the context of the approach of Section VI.

We end this section with some discussions about the applicability of this method to more complicated integral
topologies. First, let us look at the number of legs allowed. In this simple example, a conformal boost changes the
dimensionless ratio of Mandelstam variables, s/t, while a scaling transformation rescales both s and t. Together these
two transformations allow the whole phase space of external kinematic invariants to be explored. For massless planar
diagrams, this breaks down when there are six or more external legs, because nontrivial conformally invariant cross
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p1 p2

l1
l2

−(l2 + p1 + p2)

FIG. 8: The crossed triangle-box, with two massless legs p1 and p2, and one massive leg shown as a thick line. We remove the
right-most part of the diagram enclosed in a (red) ellipse, in order to open up the diagram into a one-loop planar diagram.

p1 p2

l1

l2

−(l2 + p1 + p2)

y1

x1 = 0 x2 = l2

x3 = l2 + p2x4 = −p1

FIG. 9: This figure is obtained from Fig. 8 by removing the rightmost part enclosed in the (red) ellipse, including the massive
leg. The result is a planar diagram, allowing dual coordinates xi to be introduced. Each of the dashed (blue) lines corresponds
to one of the six propagators in the integral.

ratios exist [21], and conformal transformations only allow us to explore a subspace of the phase space with the same
cross ratios.

Second, consider the ǫ factorization properties of the differential equations for more general integrals. For any
integrand that is dual conformal invariant, our method automatically leads to differential equations where there is an
explicit factor of ǫ on the right hand side. For more complicated examples beyond the one-loop box, it is generally
necessary to perform unitarity-compatible IBP reduction to bring the right hand side into a linear combination of
master integrals. Assuming that IBP reduction of the right hand side does not introduce singularities, this gives a
symmetry-based understanding of Henn’s ǫ form of differential equations. For planar integrals that are not invariant,
we still obtain differential equations without raised propagator powers. This allows unitarity-compatible IBP reduction
to be used to simplify the differential equations, even though we no longer would have ǫ factorization prior to IBP
reduction. Third, the applicability of our method to nonplanar topologies will be demonstrated in the next section,
where differential equations are derived for the nonplanar double box by identifying a symmetry analogous to dual
conformal symmetry.

VI. NONPLANAR ANALOG OF DUAL CONFORMAL SYMMETRY

In this section we find a nonplanar analog of dual conformal transformations at two loops. We do so by working
out the symmetries of two-loop integrals with three or four external legs.

A. Hidden symmetry of a two-loop nonplanar three-point integral

We start by deriving IBP-generating vectors for a two-loop nonplanar integral topology, the crossed triangle-
box shown in Fig. 8, with two massless outgoing external momenta p1 and p2, and one outgoing massive external
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momentum −(p1 + p2) on the right. The kinematics is given by

p21 = p22 = 0, (p1 + p2)2 = s . (6.1)

Our strategy is to open up the nonplanar diagram by removing vertices in the graph. This strategy has been pursued
in Ref. [23] to find symmetries of leading singularities of nonplanar integrands. Here we will find symmetries of
the complete off-shell integrand, up to anomalies introduced by dimensional regularization of infrared singularities,
similar to the situation in the planar case. A key hint comes from the fact that in the planar case, dual conformal
transformations generate polynomial tangent vectors of unitarity cut surfaces, under which each propagator transforms
with a polynomial weight as in Eq. (2.8). Therefore, we will first find transformations of nonplanar integrands with
this property, before verifying that such transformations are in fact a symmetry of the integrand with appropriate
numerators.

To open up the nonplanar diagram in Fig. 8 into a planar one, we remove the massive external leg and the vertex
attached to it enclosed in the (red) circle, producing a planar one-loop diagram in Fig. 9, in which two “external”
legs depend on the second loop momentum. Dual coordinates may be introduced for this planar one-loop diagram,
as illustrated by the dashed lines in Fig. 9. In this case, we find it more convenient to directly work with conformal
transformations in d dimensions rather than using the embedding formalism. The inverse propagators are expressed
as squared differences between pairs of points in dual spacetime,

ρ1 = l21 = (y1 − x1)2 , ρ2 = (l1 − l2)2 = (y1 − x2)2 ,

ρ3 = (l1 − l2 − p2)2 = (y1 − x3)2 , ρ4 = (l1 + p1)2 = (y1 − x4)2 ,

ρ5 = l22 = (x2 − x1)2 , ρ6 = [−(l2 + p1 + p2)]2 = (x4 − x3)2 , (6.2)

while the only irreducible numerator can be chosen as

ρ7 = (l2 + p1)2 = (x2 − x4)2 . (6.3)

While the external momentum p1 and p2 each can be written as the difference between two dual coordinates, this is
no longer true for the massive external momenta −(p1 + p2), in contrast to the planar case. Choosing a gauge x1 = 0
to fix the translation degree of freedom, the dual coordinates are positioned at

x1 = 0, x2 = l2, y1 = l1, x3 = l2 + p2, x4 = −p1 . (6.4)

Using these variables, the crossed triangle-box integral in Fig. 8, with m powers of the irreducible numerator, is

Ictbm =

∫
ddy1

∫
ddx2

ρm7
ρ1ρ2ρ3ρ4ρ5ρ6

=

∫
ddy1

∫
ddx2

(x2 − x4)2m

(y1 − x1)2(y1 − x2)2(y1 − x3(x2))2(y1 − x4)2(x2 − x1)2(x4 − x3(x2))2
, (6.5)

where x3 is taken to be a function of x2 = l2.
The expression in Eq. (6.5) is in a form where we can conveniently apply conformal transformations. An infinitesimal

transformation, consisting of a conformal boost with parameter bµ, a scaling with parameter β, and a Lorentz
transformation Ωµ

ν , is given by

∆zµ =
1

2
z2 bµ + (β − b · z)zµ + Ωµ

νz
ν . (6.6)

Under the transformation, each inverse propagator of the form (z1 − z2)2 has a weight given by Eq. (2.22),

[2β − b · (z1 + z2)] . (6.7)

For a propagator given by 1/(z1 − z2)2, the weight has an opposite sign. Meanwhile, the integration measures ddy1
and ddx2 have a weight given by Eq. (2.23),

∂∆yµ1
∂yµ1

= (β − b · y1) d ,
∂∆xµ

2

∂xµ
2

= (β − b · x2) d . (6.8)

For the nonplanar integral in Eq. (6.5), the total weight, from the integration measures, irreducible numerators, and
propagators, is

W(m, b, β) =d (β − b · y1) + d (β − b · x2) + m [2β − b · (x2 + x4)]

−

(
4∑

i=1

[2β − b · (y1 + xi)]

)
− [2β − b · (x1 + x2)] − [2β − b · (x3 + x4)] , (6.9)
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p1

p2

l1

p4p3

l1 + p1 + p2

l2

FIG. 10: The two-loop nonplanar crossed box. The part of the diagram enclosed in a red ellipse will later be removed, so that
the diagram is broken up into a one-loop planar diagram.

which, using the explicit expression Eq. (6.4), becomes

W(m, b, β) = 2β(d + m− 6) + b · [−(d− 4)(l1 + l2) + 2p2 − 2p1 −m(l2 − p1)] . (6.10)

We obtain IBP-generating vectors when the transformation Eq. (6.6) leaves both p1 and p2 invariant, i.e.

∆p1 = ∆x1 − ∆x4 = 0 , ∆p2 = ∆x3 − ∆x2 = 0 . (6.11)

A solution for such a transformation is

b = p2 , β = −
p1 · p2

2
= −

s

4
, Ωµ

ν =
1

2
p1 νp

µ
2 −

1

2
p2 νp

µ
1 . (6.12)

The weight (6.10) is then (using p22 = 0),

W(m, p2,−
s

4
) = −

s

2
(d + m− 6) + p2 · [−(d− 4)(l1 + l2) − 2p1 −m (l2 − p1)]

=
1

2
(d− 4 + m)s +

(
d− 4 +

m

2

)
(ρ7 − ρ6) +

1

2
(d− 4)(ρ3 − ρ2) . (6.13)

Remarkably, the above expression vanishes when d = 4 and m = 0. This shows the integrand of the scalar integral
Ictb0 is invariant under a nontrivial infinitesimal transformation.4

The IBP relation obtained from Eq. (6.13) is

0 =

∫
ddl1

∫
ddl2

ρm7 W(m, p2,−
s
4 )

ρ1ρ2ρ3ρ4ρ5ρ6
=

1

2
(d− 4 + m)s Ictbm +

(
d− 4 +

m

2

)
Ictbm+1

+ daughter integrals , (6.14)

which reduces all integrals of this topology to the scalar master integral Ictb0 and daughter integrals with canceled
propagators. We checked that Eq. (6.14) agrees with maximal-cut IBP relations obtained from computational alge-
braic geometry. Since this is a single scale integral, differential equations are not useful unless additional scales are
introduced [31]; in any case its value is given in Ref. [46].

B. Hidden symmetry of two-loop four-point nonplanar integrals

Consider now the two-loop four-point nonplanar integral with massless external legs displayed in Fig. 10. In this case,
if we follow the same procedure as for the nonplanar triangle-box, we find no solution for a generalized dual conformal
transformation that leaves the external points invariant, so the construction does not generate IBP relations. However,

4 By “nontrivial”, we mean that the transformation is not a Lorentz transformation (of both external and loop momenta) which trivially
leave the integral invariant.
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x4 = l1 − p4

p1

−l1

l2

p4p3

l1 + p1 + p2

l1 + p2

x1 = 0

x2 = p3

x3 = p1 + p3

x5 = l1

y= l2

FIG. 11: The planar one-loop diagram obtained by removing the bottom left part of Fig. 10. This allows one to introduce dual
coordinates xi. Each of the dashed lines corresponds to one of the six propagators in the integral.

by relaxing this condition, we have no difficulty finding an invariance of the integrals with appropriate numerators.
We use it to construct differential equations along the lines of Section V, implying that the symmetry determines the
analytic structure. As we emphasize in the subsequent section, this implies that the nonplanar sector of the two-loop
four-point N = 4 super-Yang–Mills amplitude has a hidden symmetry analogous to dual conformal symmetry.

In order to define an analog of dual conformal symmetry we open the diagram by removing the part of the diagram
in Fig. 10 enclosed by a red ellipse, including the leg with external momentum p2. This opens up the two-loop
diagram into a one-loop diagram with “fake”, loop-momentum-dependent external legs as shown in Fig. 11. With this
construction every propagator momentum is expressed as the difference between two dual-space points. Each of the
external momenta p1, p3, and p4 is also expressed as the difference between two dual coordinates, though the same
is not true for p2 (in contrast to the planar case). Although one might worry that this may cause problems with the
construction, we shall see that it does not.

We take the inverse propagators as,

ρ1 = l21 = (x1 − x5)2, ρ2 = (l1 + p2)2 = (x4 − x3)2 , ρ3 = (l1 + p1 + p2)2 = (x4 − x2)2 ,

ρ4 = (l1 − l2)2 = (y − x5)2 , ρ5 = l22 = (y − x1)2 ,

ρ6 = (l2 − p3)2 = (y − x2)2 , ρ7 = (l2 − l1 + p4)2 = (y − x4)2 , (6.15)

and we have chosen the gauge

x1 = 0 , x2 = p3 , x3 = p1 + p3 , x4 = l1 − p4 , x5 = l1 , y = l2 . (6.16)

We can define two numerators (which are not independent irreducible numerators, nevertheless are convenient for
notational purposes),

ρ8 = (l1 − p3)2 = (x5 − x2)2, ρ9 = (l1 − p4)2 = (x4 − x1)2 . (6.17)

We also note that

u = (p1 + p3)2 = (x3 − x1)2 . (6.18)

Refs. [32, 33] expressed the two-loop four-point amplitude in terms of integrals that have only logarithmic singu-
larities, reflecting a property of the full amplitude. In this representation the two nonplanar integrands that appear
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x4 = l1 − p4

x1 = 0

x2 = p3

x3 = p1 + p3

x5 = l1

y = l2

FIG. 12: Weight diagram for the integrand (6.19) under the conformal boost (6.23).

x4 = l1 − p4

x1 = 0

x2 = p3

x3 = p1 + p3

x5 = l1

y = l2

FIG. 13: Weight diagram for the integrand (6.20) under the conformal boost (6.23).

in the amplitude (up to relabelings) are,

ΩNP
1 = ddl1d

dl2
suρ8
ρ1...ρ7

, (6.19)

ΩNP
2 = ddl1d

dl2
stρ9
ρ1...ρ7

. (6.20)

The normalization of each is chosen so it has unit leading singularity [33]. Our task will be to find a hidden symmetry
responsible for the simple analytic properties after integration.

A conformal boost on the xi’s and y with parameter bµ gives

∆p4 ≡ ∆x5 − ∆x4 (6.21)

= (l1 · p4)b− (p4 · b)l1 − (l1 · b− p4 · b)p4 . (6.22)

The appearance of loop momentum in the transformation of external momentum is not surprising, given that once
we cut a nonplanar diagram open internal momenta effectively become “external”. This is, of course, not desirable if
we wish to use the transformations to construct differential equations. To remove the loop-momentum dependence of
this variation, we simply choose

b = p4 . (6.23)
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While this restricts the transformations to a subset of conformal transformations, we shall see that this is sufficient
for constructing differential equations analogous to those of the planar case. Applying the conformal transformation
gives

∆p1 = ∆x3 − ∆x2 =
1

2
(u p4 − t p3 + u p1) ,

∆p3 = ∆x2 − ∆x1 = −
1

2
s p3 ,

∆p4 = ∆x5 − ∆x4 = 0 , (6.24)

so that the masslessness of these three external legs is preserved. In fact, the masslessness of p1, p3, and p4 are trivially
preserved by the properties of conformal transformations, since each of these three momenta is the difference between
two points in dual space. Remarkably, the same is nontrivially true of the second leg, as can be readily checked,

∆p22 = 2p2 · ∆p2 = −2p2 · (∆p1 + ∆p3 + ∆p4) = 0 . (6.25)

This ensures that the transformation preserves the masslessness of all external legs, which is essential for the con-
struction to be useful. In addition we have,

∆s = ∆(2p3 · p4) = 2(p3 · ∆p4 + p4 · ∆p3) = −
s

2
s ,

∆t = ∆(2p1 · p4) = 2(p1 · ∆p4 + p4 · ∆p1) = −
t + 2s

2
t . (6.26)

Note that applying Eq. (2.22) directly gives,

∆u = −b · (x3 + x1)u = −p4 · (p1 + p3)u = −
u

2
(t + s) = −∆s− ∆t , (6.27)

which is consistent with momentum conservation. It will be convenient for later purposes to write down the weights
of s, t, and u under the transformation, as dot products between (−p4) and other momenta,

Ws ≡
∆s

s
= −p4 · p3 ,

Wt ≡
∆t

t
= −p4 · (p1 + 2p3) ,

Wu ≡
∆u

u
= −p4 · (p1 + p3) . (6.28)

Meanwhile, a numerator of the form (zi−zj)
2 has the weight −p4 ·(zi +zj), while an extra minus sign is present in the

weight for a propagator of the form 1/(zi − zj)
2. The weight of the integration measure is given by −d p4 · (x5 + y) =

−d p4 · (l1 + l2). We can now straightforwardly prove that the nonplanar contributions to the N = 4 super-Yang–Mills
amplitudes are invariant under this transformation. Namely, in d = 4, the two integrands Eqs. (6.19) and (6.20) in
the amplitudes transform as,

∆ΩNP
1 = ∆ΩNP

2 = 0 . (6.29)

A pictorial way to derive the above equation is as follows. We have shown that the weights of the Mandelstam
variables, numerators, propagators, and integration measures are each written in the form −p4 ·W for some “weight
vector” Wµ. So it is convenient to represent the weight of the integrand diagrammatically as in Fig. 12 and 13. In
the diagrams, the weight of a propagator of the form 1/(z1 − z2)2 is represented by a dashed line connecting two
points z1 and z2, contributing −(zµ1 + zµ2 ) to the weight vector Wµ. The weight of a numerator of the form (z1 − z2)2

is represented by a wiggly line connecting two points z1 and z2, contributing zµ1 + zµ2 to the weight vector Wµ. The
weight of the Mandelstam variables appearing in the numerator is represented by a coil-like line connecting two points
z1 and z2, again contributing zµ1 +zµ2 to the weight vector Wµ. To reproduce Eq. (6.28), for Ws we choose z1 = 0 = x1

and z2 = p3 = x2, for Wt we choose z1 = p3 = x2 and z2 = p1 + p3 = x3, and for Wu we choose z1 = 0 = x1 and
z2 = p1 + p3 = x3. Finally, the weight of the integration measure is indicated by large black dots at the two points x5

and y. In our notation, a large black dot at any point z contributes d zµ to the weight vector Wµ, with d being the
spacetime dimension. The total weight vector

∑
Wµ can now be read off from the diagram in the following manner:

at each vertex (i.e. a dual space point) zµ, we count the number of wiggly lines and coil-like lines joining the vertex,
subtract the number of dashed lines joining the vertex, and add the spacetime dimension d if a large black dot appears
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FIG. 14: An illustrative multi-loop diagram, where a similar analysis as for the nonplanar double box in Fig. 10 identifies a
hidden symmetry.

at the vertex. The final number is multiplied by zµ and included in
∑

Wµ. For the first integrand ΩNP
1 in Eq. (6.19),

the weight diagram Fig. 12 gives the weight vector

∑
Wµ

1 = (2 − 2)xµ
1 + (2 − 2)xµ

2 + (1 − 1)xµ
3 − 3xµ

4 + (1 − 2 + d)xµ
5 + (−4 + d)yµ

= (d− 4)(lµ1 + lµ2 ) + 3pµ4 . (6.30)

Using this, we arrive at

∆ΩNP
1 =

(
−p4 ·

∑
W1

)
ΩNP

1 = −(d− 4)p4 · (l1 + l2)ΩNP
1 . (6.31)

Since the transformation changes the Mandelstam variables as in Eq. (6.26), we arrive at a differential equation for
the Feynman integral,

(
−
s2

2

∂

∂s
−

t(t + 2s)

2

∂

∂t

)∫
ΩNP

1 = −(d− 4)

∫
p4 · (l1 + l2) ΩNP

1 . (6.32)

Since ΩNP
1 has mass dimension 2(d−4), we trivially obtain another differential equation from the simultaneous scaling

of all Mandelstam variables,

s

2

(
s
∂

∂s
+ t

∂

∂t

)∫
ΩNP

1 =
s

2
(d− 4)

∫
ΩNP

1 . (6.33)

Adding Eqs. (6.32) and (6.33), we obtain the derivative of the integral against t only

tu

2

∂

∂t

∫
ΩNP

1 = ǫ

[
2

∫
p4 · (l1 + l2) − s

]
ΩNP

1 . (6.34)

For the second integrand ΩNP
2 in Eq. (6.20), again we read off the weight vector from Fig. 13. This leads to results

similar to those for ΩNP
1 ,

∆ΩNP
2 =

(
−p4 ·

∑
W1

)
ΩNP

1 = −(d− 4)p4 · (l1 + l2)ΩNP
2 , (6.35)

and

tu

2

∂

∂t

∫
ΩNP

2 = ǫ

[
2

∫
p4 · (l1 + l2) − s

]
ΩNP

2 . (6.36)

If there were no infrared singularities, we would be able to set ǫ = 0 and the symmetry would be exact.
It is interesting that a similar analysis extends to any nonplanar diagram with a single crossed box at any loop order,

as illustrated in Fig. 14. In particular, if we consider this diagram with a numerator obtained from a corresponding
planar dual conformal invariant one, except for the single crossed box which is given a similar factor as in the two-
loop cases (6.19) and (6.20), then the resulting nonplanar integral possesses a higher-loop analog of dual conformal
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symmetry. A way to show the invariance is to remove a three vertex from the crossed box and perform a similar
analysis to the one of the previous section for the two-loop crossed box. In this case, it is convenient to remove a
vertex from the crossed double box, instead of the other parts of the diagram. We have checked that the analog of
dual conformal symmetry is present for this class of nonplanar integrals, at any loop order. As for the two-loop case,
we can use it to generate differential equations to constrain the integrals whose right hand side is proportional to the
dimensional regularization parameter, ǫ.

VII. INVARIANCE OF THE NONPLANAR TWO-LOOP FOUR-POINT N = 4 SUPER-YANG–MILLS

AMPLITUDE

In the previous section we identified a new symmetry of the nonplanar integrands that appear in the two-loop
four-point amplitude of N = 4 super-Yang–Mills theory. In this section we comment on symmetries of the full
amplitude.

From Eq. (3.15) of Ref. [33] we have the full two-loop four-point amplitude of N = 4 super-Yang-Mills theory as

A2-loop
4 = −

g6

4(2π)2D

∑

S4

[
cP1234A

tree(1, 2, 3, 4)

∫
ΩP (7.1)

− cNP
1234

(
Atree(1, 2, 4, 3)

∫
ΩNP

1 + Atree(1, 2, 3, 4)

∫
ΩNP

2

)]
,

where cP1234 and cNP
1234 are the planar and nonplanar color factors obtained by dressing the diagrams in Figs. 1 and 10

with f̃abc color factors at each diagram vertex. The planar integrands are given in Eq. (4.37) while the nonplanar
integrands are given in Eqs. (6.19) and (6.19). The Atree’s are color-ordered tree amplitudes of N = 4 super-Yang–
Mills theory, with the indicated ordering of legs. The overall sum is over all 24 permutations of the external legs; the
permutations act on the external color, polarization and momentum labels. The form in Eq. (7.1) differs from the
one originally given in Ref. [34] by terms that vanish via the color Jacobi identity. In the original form, the individual
nonplanar integrals do not reflect the analytic properties of the final amplitude, such as having only logarithmic
singularities and no poles at infinity.

In order to understand the transformation properties we divide the amplitude into sectors determined by the tree
amplitude prefactors. These tree amplitudes have differing overall weights under the transformations, which are easy
to determine using the identities [47],

stAtree(1, 2, 3, 4) = suAtree(1, 2, 4, 3) = tuAtree(1, 3, 2, 4) . (7.2)

From here we can see that the tree amplitudes transform with different overall weights under Eq. (6.24),

∆

(
Atree(1, 2, 3, 4)

Atree(1, 2, 4, 3)

)
= ∆

( t
u

)
= −

st

2u
, (7.3)

where we used Eqs. (6.26) and (6.27).
In Eq. (7.1), the coefficient of each tree amplitude factor is invariant under the four-dimensional symmetry. In

Refs. [33], the ordering of the tree factors were chosen to adjust the factors of s, t, and u so that the remaining
integrals have unit leading singularities. Not surprisingly, these factors are exactly what is needed to make the
coefficient of each tree invariant under the four-dimensional symmetry.

As a side note, we can adjust the transformations in each sector so that a uniform transformation is applied to the
external momenta in all sectors of the amplitude. In doing so, the transformations on internal momenta necessarily
differ in the various sectors, as expected from the fact that there is no uniform sets of momenta or dual variables in
the nonplanar sector. This may be accomplished by adjusting Lorentz and scaling transformations. However, since
the different sectors transform with a different weight there is no need to do this.

The transformations described in the previous section can be taken as a direct analog of dual conformal symmetry of
planar N = 4 super-Yang–Mills theory, but applicable to the nonplanar sector as well. Like dual conformal symmetry
in the planar case, the infinitesimal generators of the new symmetries can be identified as polynomial tangent vectors
of unitarity cut surfaces.

This opens the possibility of finding numerators of higher-loop integrals with desired properties of having simple
analytic properties and associated DEs, not by detailed studies of the singularity structure of the integrands [30, 32, 33],
but by demanding that given integrands be invariant under symmetries analogous to dual conformal symmetry. For
nonplanar diagrams that can be obtained from a planar one by a single replacement of a box subdiagram by a crossed
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box, as in Fig. 14, the obvious candidate transformations follow those described in the previous section. It would be
very interesting to systematically study these cases, as well as ones with multiple twists. We expect such integrals to
be direct building blocks for nonplanar N = 4 super-Yang–Mills amplitudes. More generally, it seems likely that a
symmetry along the lines described here is responsible for the simple analytic properties [32, 33] of general nonplanar
amplitudes at any loop order.

VIII. IBP-GENERATING VECTORS AND LANDAU EQUATIONS

In previous sections we obtained IBP-generating vectors from the point of view of conformal symmetries. In
the following we will see that the symmetry generators occur with vanishing or degenerate mass configurations.
We will show that the defining relations of the vectors connect directly to Landau equations, which determine the
presence/absence of the exceptional vectors.

For simplicity we consider N -point one-loop integrals in the following. When IBP-generating vectors are expressed
in dual coordinates, they fulfill a number of consistency requirements [22]: (i) They are tangent to a quadric (Y Y ) = 0,
which defines the integration contour, (ii) being vector fields in projective space, they are homogeneous in the variable
Y , (iii) and vectors are defined modulo vectors proportional to Y a which induce a GL(1) scaling and give trivial
identities.

Maintaining propagator powers of the integrals, yields the further conditions,

V a ∂

∂Y a
(XiY ) = Wi(XiY ) , 1 ≤ i ≤ N , (8.1)

and in total we have the linear relations,

(XiV ) − (XiY )Wi = 0 , 2(Y V ) = 0 , (8.2)

for the data of the IBP-generating vector V a and the weight functions Wk. The above relations hold up to terms
proportional to (Y Y ).

It is convenient to write Eqs. (8.2) in matrix form in terms of the vectors in the problem. To this end we expand
the IBP-generating vector in terms of the infinity point, Xj and transverse points Nj, the number of which varies in
dimensional regularization, but do not include Y , i.e.

V =

( N∑

j=1

Xjv
j

)
+ IvN+1 +

( d+2∑

k=N+2

Nkv
k

)
. (8.3)

We obtain the matrix,

C =




(X1X1) (X1X2) · · · 1 0 0 · · · −(X1Y ) 0 0
(X2X1) (X2X2) · · · 1 0 0 · · · 0 −(X2Y ) 0
· · ·

(XNX1) (XNX2) · · · 1 0 0 · · · 0 0 −(XNY )
2(X1Y ) 2(X2Y ) · · · 2(Y I) 2(Y N1) 2(Y N2) · · · 0 · · · 0


 .

(8.4)

which has been simplified using our gauge choice, (XiI) = 1 of the dual conformal embedding, and using the transver-
sality (NiXj) = (NiI) = 0. This matrix acts on the column vector (vi,Wk). The entries of the matrix C are
monomials of either degree 0 or degree 1 in Y , which leads to, in an approach using computational algebraic geometry
(not covered here), simple syzygy equations that could be solved efficiently. The top-left (N + 1)× (N + 1) sub-block
of the above matrix is closely related to the “embedding space Gram matrix” used in Section III. The top-left N ×N
sub-block defines the Cayley determinant ∆C = det({(XiXj)}i,j=1,N ) [40].

From Eq. (8.2) we see that the IBP-generating vectors (vi,Wk) correspond to the kernel of the matrix C. The
generic vectors in the kernel of the matrix C are obtained by applying Cramer’s rule, with vector components being
appropriate minors of the linear system. Cramer’s rule gives,

ca1
(a2, a3, · · · , aN+2) − ca2

(a1, a3, · · · , aN+2) + · · · + (−1)N+1caN+2
(a1, a2, · · · , aN+1) = 0 .

(8.5)
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The expressions cai
stand for columns of the original matrix C and (a1, a2, · · · ) stand for the leading minors of

the matrix C given by the determinants of the matrices composed of the columns (a1, a2, · · · ) ≡ det(ca1
, ca2

, · · · ).5

Eq. (8.5) is a statement that N + 2 vectors in N + 1 dimensions are necessarily linearly dependent.
Interesting solutions are the ones which do not vanish on the cuts, i.e. on the surfaces defined by (XiY ) = 0. The

respective IBP-generating vectors are then obtained by choosing (N + 1) columns, where we distinguish the following
subclasses using the entries of the last row:

1. Two (Y Ni) factors and no (Y I) factor,

V = ∆C (Y N[i|)N|j] . (8.6)

We can factor out ∆C from the above expression, so we still use the transverse-space rotation vector that is left,
when ∆C = 0.

2. One (Y Ni) factor and one (Y I) factor,

V = ∆C (Y Nk)I − (1, 2, · · · , N + 1)Nk

+

N∑

j=1

(−1)N+j+1Xj(1, 2, · · · , ĵ, · · · , N + 1, N + 1 + k) , (8.7)

which matches the vector (4.3) up to normalization by ∆C . The hat-symbol, ĵ indicates that the jth column is
omitted.

The above are the generic IBP-generating vectors. We have omitted the vectors that vanish on the maximal cut.
In addition, exceptional vectors appear for particular kinematic configurations. For one-loop integrals we consider

the case of a vanishing Cayley determinant, ∆C = 0. A maximal-cut analysis predicts a scaling vector in addition to
rotation vectors [12, 48]. The following construction shows how the vector arises from Lie-algebra generators acting
on the Gram-matrix {(XiXj)}i,j=1,N . We consider a generator with the first (N + 1) components non-vanishing and
allow for non-vanishing W ’s. The generator has to give zero when contracted with either of the rows. Starting with
the last row we find the general form,

vi =

N+1∑

b=1

ωijCN+1,j , (8.8)

and an antisymmetric matrix ωij . We attempt to find a solution of minimal degree, thus we assume ωij to be constant.
In the language of computational algebraic geometry, this is the general form to parametrize the principal syzygies of
the first (N + 1) elements of the last row.

An interesting consistency condition appears when considering the (Y I) terms. The argument uses that (Y I) enters
through the last column of ωij , with ωN+1,N+1 = 0 from antisymmetry. Thus, in order for the (Y I) to cancel for
each contraction, we require that the column vector ωN+1,j is in the kernel of the {(XiXj)}i,j=1,N block of the linear
system, confirming that the condition ∆C = 0 is necessary for these types of vectors.

This brings us to a close connection between the C matrix in Eq. (8.4) and the Landau equations [24, 25, 40], whose
embedding-space version is,

N∑

i=1

αiXi + Y = 0 , αj(XjY ) = 0 . (8.9)

(For simplicity we omitted the extension of the Landau equations which in addition capture the singularities at
infinity.) The leading Landau singularity appears for all propagators vanishing, (XjY ) = 0, and requiring that the
points Xi and Y must be linearly dependent. The equations are easiest analyzed when contracted with an independent
set of points {Y,Xj, Nk, I}. The non-trivial conditions then are, setting (XjY ) = 0,

(NiY ) = 0 ,
N∑

j=1

αj(XjXk) = 0 ,

(
N∑

i=1

αi(XiI)

)
+ (Y I) = 0 . (8.10)

5 This notation has been used in e.g. Ref.[45] in the literature.
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Remarkably, this can be re-written, using the transpose of the C matrix, as

CT




α1

...
αN

1


 = 0 . (8.11)

The conditions Eq. (8.10) in turn imply ∆C = 0 while the overall normalization of the α’s is fixed by the last equations
in (8.10) using the gauge conditions (XiI) = (Y I) = 1. In this way the Landau conditions (8.9) determining a singular
point of the on-shell surface relate to the solutions of the IBP-generator equations (8.2).

Thus, we have given the form of the generic IBP-generating vectors in dual coordinates. In addition, we showed that
exceptional vectors appear for degenerate kinematic configurations. We pointed out the close relation between the
defining equations for unitarity-compatible vectors fields and the Landau equations. In this way, Landau equations
signal the appearance of exceptional IBP-generating vectors. This connection between Landau equations and IBP
relations might be expected, given that Landau equations signal a singular kinematic configuration in which the set
of master integrals is reduced and additional integral relations appear.

The minor construction generalizes naturally to higher-loop computations, so that minors of the linear system
of the IBP-generator equations play a central role for constructing IBP-vectors [12]. Additional investigations are
needed to systematize the description of exceptional vectors at higher loops. Here the on-shell surfaces have a more
complicated topology, with the characteristic sizes determined by combinations of the kinematic invariants (like the
Cayley determinant ∆C).

IX. CONCLUSION

In this paper we studied hidden symmetries of N = 4 super-Yang–Mills theory as a means for generating compact
integration-by-parts (IBP) relations [13] and differential equations (DEs) [28] for loop integrals encountered in generic
theories. For the planar case, the hidden symmetry is the well-studied dual conformal symmetry [2]. By exploiting the
connection between dual conformal symmetry and polynomial tangent vectors of unitarity cut surfaces, we were able
to find an analogous symmetry for the nonplanar sector of the two-loop four-point amplitude as well. Besides being
useful for generating IBP relations and DEs, this points to the exciting possibility that dual conformal symmetry can
be generalized to the nonplanar sector of N = 4 super-Yang–Mills theory.

Dual conformal transformations and their nonplanar analogs have the important property that they do not increase
propagator powers, resulting in IBP relations and DEs that are naturally compatible with unitarity [14]. Such IBP
relations had been previously described using computational algebraic geometry [14, 17, 18]. Our approach, based on
exploiting hidden symmetries, provides new analytic insights and on the practical side gives compact expressions for
the IBP-generating vectors and DEs.

In describing the symmetries we found it useful to work with both “direct” dual conformal transformations in d
dimensions and the embedding formalism [27], which linearizes the transformations by going to (d + 2) dimensions.
The Gram matrix defined in the embedding formalism also clarifies the connection to Landau equations.

To illustrate these ideas, we presented a variety of examples at one and two loops. With up to four massless legs
and a small number of mass parameters, it is straightforward to find several dual conformal transformations which
leave the external momenta invariant, and lead to a sufficient number of IBP relations to solve generic cases. For
example, the dual conformal transformations generate a complete set of IBP relations for the planar two-loop double
box integral. We also studied a five-point example, namely the planar penta-box integral. In this case, we need
additional IBP-generating vectors from combining separate conformal transformations for the left loop and right loop,
generalizing the strategy of Ref. [12]. These additional vectors still have a simple analytic form. For illustration,
we also looked at a simpler three-point nonplanar integral, and obtained IBP relations that reduce all integrals to
top-level master integral and daughter integrals.

We also described DEs, where the integrals do not have raised propagator powers, for both planar and nonplanar
cases that arise when external momenta are allowed to change under the transformation. For one- and two-loop
integrals with appropriately chosen numerators that make the transformation weights cancel in four dimensions, the
method directly gives a DEs where the right hand side is proportional to the dimensional regularization parameter
ǫ [30]. This holds before IBP reduction to a basis of master integrals, because the equations follow from a symmetry
that is exact in four dimensions. For massless kinematics, the method is applicable with up to five external legs. At
higher points, when nontrivial conformal cross ratios are present, the method generates a subset of the DEs.

Our results point to promising directions for future studies. In various one- and two-loop examples we showed
the utility of dual conformal invariance for generating both IBP relations and DEs, as well as presented a nonplanar
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symmetry analogous to dual conformal symmetry. An obvious direction for future studies is to try to generalize this
to arbitrary loop orders and for any number of external legs. The unitarity-compatible IBP-generating vectors and
DEs constructed via dual conformal symmetry and its generalizations are particularly simple, making it desirable to
extend these ideas as widely as possible. The ability to generate relatively simple DEs becomes especially attractive
when existing methods suffer from computational bottlenecks that occur in more complicated cases. It is also worth
studying whether the compact expressions generated from our symmetry considerations can improve computational
efficiency in numerical unitarity approaches at two loops and beyond [8]. We also noted an important connection
between IBP-generating vectors and Landau equations, which would be interesting to pursue.

On the more formal side, we know that dual conformal symmetry [2] strongly restricts the analytic properties of
the planar sector of N = 4 super-Yang–Mills theory. In particular, the integrands have no double poles or poles at
infinity [45]. These analytic properties also appear to carry over to the nonplanar sector [32, 33]. Here we took initial
steps to identify a symmetry that can explain this. We explicitly constructed a symmetry of the nonplanar two-loop
four-point N = 4 amplitude, and used it to construct a differential equation for determining its value. As in the
planar case, the symmetry is intimately connected to polynomial tangent vectors of unitarity cut surfaces. As for
dual conformal invariance the symmetry is anomalous due to infrared singularities. We noted that for the class of
integrals with a single crossed box and the remaining part planar, the symmetry extends straightforwardly to all loop
orders with an arbitrary number of external legs. An important next step would be to extend this to more general
nonplanar cases.

We look forward to exploring these ideas for simplifying computations of multi-loop integrals needed for scattering
cross sections at particle colliders, as well as for understanding hidden symmetries of the nonplanar sector of N = 4
super-Yang–Mills theory. These two issues are intertwined, as we found here.
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Appendix A: Sub-loop IBP-generating vectors for the penta-box

In this appendix, we tabulate the antisymmetric matrices in Eq. (4.49) of Subsection IV E, which parametrize
conformal transformations that leave a subset of external momenta invariant. The matrices are,

ω(1) =




0 s34 s51 s34 − s51 s23 s23s34
−s34 0 0 −s34 s12 − s45 −s34s45
−s51 0 0 −s51 s23 − s45 −s45s51

−s34 + s51 s34 s51 0 s12 s12s51
−s23 −s12 + s45 −s23 + s45 −s12 0 −s12s23

−s23s34 s34s45 s45s51 −s12s51 s12s23 0




,

ω(2a) =




0 0 0 0 0 0
0 0 0 0 −s45 0
0 0 0 0 0 0
0 0 0 0 −s23 0
0 s45 0 s23 0 s23s45
0 0 0 0 −s23s45 0




,

ω(2b) =




0 −s34 −s23 + s51 0 0 −s23s34
s34 0 s45 −s12 + s34 0 s34s45

s23 − s51 −s45 0 −s51 0 −s45s51
0 s12 − s34 s51 0 0 s12s51
0 0 0 0 0 0

s23s34 −s34s45 s45s51 −s12s51 0 0




,

ω(2c) =




0 0 0 0 s23 0
0 0 0 0 −s45 0
0 0 0 0 0 0
0 0 0 0 0 0

−s23 s45 0 0 0 0
0 0 0 0 0 0



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