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Abstract

Models of Asymmetric Dark Matter (ADM) with a sufficiently attractive and long-range force

gives rise to stable bound objects, analogous to nuclei in the Standard Model, called nuggets.

We study the properties of these nuggets and compute their profiles and binding energies. Our

approach, applicable to both elementary and composite fermionic ADM, utilizes relativistic mean

field theory, and allows a more systematic computation of nugget properties, over a wider range

of sizes and force mediator masses, compared to previous literature. We identify three separate

regimes of nugget property behavior corresponding to (1) non-relativistic and (2) relativistic con-

stituents in a Coulomb-like limit, and (3) saturation in an anti-Coulomb limit when the nuggets

are large compared to the force range. We provide analytical descriptions for nuggets in each

regime. Through numerical calculations, we are able to confirm our analytic descriptions and also

obtain smooth transitions for the nugget profiles between all three regimes. We also find that over

a wide range of parameter space, the binding energy in the saturation limit is an O(1) fraction

of the constituent’s mass, significantly larger than expectations in the non-relativistic case. In a

companion paper, we apply our results to synthesis of ADM nuggets in the early Universe.
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I. INTRODUCTION

The last decade has seen a radical shift in the dominant paradigm for dark matter. The

weakly interacting massive particle (WIMP) paradigm, where the dark matter is a single

stable and weakly interacting particle, is being surpassed by a wider view, where the dark

matter is part of a larger dark sector. These dark sectors generically feature dark forces,

strongly or weakly coupled, and may contain dynamics that shape its behavior throughout

the history of the Universe. The dark matter itself may either be a fundamental state, or a

composite particle. As a consequence of the new dark force dynamics, the dark matter mass

range is greatly enlarged, with masses from a keV to well above the weak scale.

The implications for the dark sector—cosmologically, astrophysically and experimentally—

are far-reaching. The dark matter is generically self-interacting, implying changes in the

structure of halos from dwarf galaxies to clusters of galaxies (see e.g. [1–4]). Unlike the

WIMP paradigm, the dynamics of the dark sector often do not freeze out early in the

Universe. Instead dark sector interactions continue to shape the evolution of our Universe.

In addition, the mechanisms for setting the relic abundance are many fold, from utilizing a

particle asymmetry as in Asymmetric Dark Matter (ADM), to freeze-in and freeze-out and

decay.

In this paper, we explore the structure of large bound states of DM, which we refer to

as “nuggets” [5]. Nuggets, like nuclei in the Standard Model, arise in the presence of an

attractive dark force, and where the dark matter density is asymmetric such that particle and

anti-particle do not annihilate when bound together. As long as the mediator is sufficiently

light, such that cold fusion is possible, large nuggets can be synthesized efficiently in the

early Universe [6–8].

These nuggets are a qualitatively different kind of DM candidate, with an impact on DM

cosmology, constraints and search techniques, from the early Universe until today. First,

as we study in a companion paper, when nuggets are synthesized in the early Universe,

their size distribution is typically very broad [8]; many DM particles remain in small-sized

bound states, while some nuggets can be very large and easily have masses close to the GUT

scale or beyond. Second, the presence of an attractive force implies an impact on structure

formation from DM self interactions. Third, dark disks and dark stars may form, leading to

new observational signatures late in the Universe. Lastly, detection of these objects directly
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in a laboratory setting implies a diverse range of signatures from small bound states to very

large ones.

A UV complete model to describe nugget formation and evolution opens the ability to

gain a unified and consistent understanding of the cosmology, constraints and relevant search

techniques for such DM from the early Universe until today. We employ a simplified model

featuring fermionic DM with both a scalar and vector mediator of DM self interactions.

While our simplified model features fundamental degrees of freedom, we emphasize that

it can describe the phenomenology of both elementary and composite DM. In particular,

such an elementary model, under the name of the “σ-ω” 1, or the Walecka model [9], has

been shown to describe many of the bulk properties of SM nuclei, including density and

binding energy. Our goal, in a series of companion papers, is to study each aspect of the

properties and cosmology of large bound states of ADM, from early Universe synthesis

through structure formation.

The first step of this journey is to map the UV complete model onto the IR properties of

the DM nuggets. We use relativistic mean field theory (RMFT) and existing techniques from

nuclear physics to solve the Walecka model and obtain the structure of the nuggets over a

range of mediator masses, accounting for the presence of both attractive and repulsive forces.

We note that Refs. [5, 6] also studied the properties (binding energy and density profile) of

nuggets in the weakly coupled Coulombic limit, where the mass of the force mediator can be

neglected. They also assumed an ansatz for the fermi momentum profile in order to obtain

a solution numerically, which potentially causes inaccuracy and prevents generalizations to

other regimes of interest. Utilizing techniques for solving the Walecka model in the context

of nuclear physics, we are able to obtain solutions to the equations generally, for a wide

range of force masses, and including both attractive and repulsive forces. We reproduce the

results of Refs. [5, 6] in the relevant limit.

One important general feature of our results is that fermionic ADM bound through a

scalar mediator can form very large, stable, nuggets that saturate at some (possibly quite

large) size determined by the coupling and ratio of mediator and constituent masses. At

saturation, the nugget number density and binding energy per constituent are constant

as a function of size, similar to the behavior of SM nuclei. In this limit, the nuggets’

1 σ (ω) refers to the scalar (vector) meson mediating spin- and isospin-independent attractive (repulsive)

forces among nucleons in SM nuclei. These mesons are also known as f0(500) and ω(782).
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constituents are relativistic and the attractive force is balanced by fermi pressure (and also

repulsive forces if they are present). Saturation was not explicitly seen in [5], as their weakly

coupled descriptions become invalid for large bound states. We explicitly demonstrate the

approach to saturation analytically and numerically, where the mediator mass becomes

important and the attractive force becomes short ranged. A second important feature is

that, in substantial parts of parameter space, the binding energy is an O(1) fraction of the

mass energy of the nugget, providing the possibility for large energy release during fusion.

Beyond saturation, we derive approximate analytic formulae for non-saturation behaviors in

the massless mediator limit, which also apply to the general massive mediator case before

saturation. Solving the Walecka model numerically, we are able to confirm our analytic

results, and also recover the Coulomb-like limit for weakly bound small nuggets.

The outline of this paper is as follows. In Sec. II we describe an elementary and composite

model of DM and dark forces that form the basis for our analysis. Then in Sec. III, we solve

the equations of motion to obtain various physical properties for the ADM nuggets. In

Sec. IV, we conclude with an eye toward future work exploring the synthesis and impact of

ADM nuggets on stellar and structure formation. In App. A, we detail the techniques used

for solving the equations of motion, while highlighting numerical challenges and solutions.

II. MODELS OF INTERACTING ASYMMETRIC DARK MATTER

In this section we consider a class of viable models that can accommodate multi-DM

bound states. In order to have a substantial number of large ADM nuggets, the DM should

carry a particle-anti-particle asymmetry. There are two natural classes of models to consider:

an elementary model where the DM is a fundamental particle carrying a global symmetry,

and a composite model where the DM is a dark baryon. We restrict ourselves to fermionic

DM for simplicity. We consider a DM, X, interacting through a scalar mediator φ and vector

mediator Vµ, with a Lagrangian given by

L = X̄
[
i/∂ − gV /V − (mX − gφφ)

]
X +

1

2

[
(∂φ)2 −m2

φφ
2 − V (φ)

]
− 1

4
VµνV

µν +
1

2
m2
V V

2
µ .

(1)

The presence of φ is necessary, as an attractive force is required for bound state formation.

While Eq. (1) contains many parameters, many salient features of dark nuclear physics can
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be obtained by restricting ourselves to specific examples. To this end, we will focus mostly

on two cases: the elementary case where Vµ is absent, and a composite case where mV /mX

is relatively large. We will solve the model taking V (φ) = 0 and then comment on the effect

of adding V (φ) back in.

We do not address the source of asymmetry for the DM, which could come from other

higher dimensional interactions [10]. It is convenient for the mediators to be light, such that

the process X + X̄ → φφ/V V can efficiently remove the thermal symmetric component of

the DM through annihilations, allowing for efficient fusion at later times. This is analogous

to the way that e+e− → γγ effectively depletes positrons in the early universe to leave only

electrons, and so that hydrogen formation can proceed later on. In the elementary model,

the scalar mediator can naturally arise from a dark Higgs mechanism that sets the mass

scales of our Lagrangian. The φs can either be cosmologically stable, or decay to either SM

states (e+e−, γγ, νν̄), and/or to other light hidden sector particles such as dark radiation.

This elementary model has a strongly coupled dual, where X is interpreted as a baryon

and φ (Vµ) the scalar (vector) meson. Given that the σ-ω model is relatively successful at

describing bulk properties of SM nuclei, and that it is difficult to systematically include all

possible composite states, we will use the Lagrangian in Eq. (1) as a effective parameteri-

zation that captures the main qualitative features of DM nuggets. In the language of the

composite model, φ is the lightest, parity-even and flavor-neutral scalar meson, and it func-

tions as the dark glue binding dark composites together. The vector meson Vµ effectively

mediates a repulsive interaction, but will generally be heavier and/or less strongly coupled

than φ, thus still allowing a net attractive force. The couplings are expected to be large and

of O(1). One notable omission is the pseudoscalar meson, but because of the axial nature

of its interaction (which mediates spin-dependent interactions), it does not play a leading

role in the large bound state limit. It is important to keep in mind the parameters in our

composite model do not easily map onto fundamental parameters, and the validation of

such a description requires comparisons with data and/or lattice simulation. The detailed

spectroscopy of a general composite hidden sector can get very complicated and is beyond

the scope of this paper.

For either the composite or fundamental model, we expect some large nugget states to

have large spin; if the shell model for nuclei is any guide, up to order N1/3 for some odd-N

ground states, where N is the dark number of the nugget. Though large spin could impact
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the dynamical properties of nuggets, the bulk properties roughly scale as the volume, which

allows us to ignore spin effects as a leading order approximation.

III. NUGGET PROPERTIES

We now turn to computing the characteristic size, density, and other physical properties

of ADM nuggets utilizing relativistic mean field theory. The physics of bound states can

be very rich in general, as evidenced by the SM. For clarity, we will first consider the

simplest scenario with an elementary X and scalar mediator only; and for simplicity, we

will set V (φ) = 0 in Eq. (1), though we will later parameterize the effects of nonzero V (φ).

The simplification allows us to explore interesting features of nugget bound states without

the complications of a large parameter space. In Sec. III A, we consider small N bound

states and briefly discuss unique properties that may exist for specific N . In Sec. III B we

study larger N nuggets and their average properties, while ignoring N -specific features. In

Sec. III C we provide analytic formulae for very large nuggets that have hit saturation and

then discuss the effect of a scalar potential on saturation properties in Sec. III D. Finally,

in Sec. III E we include the vector mediator, focusing on the composite scenario where mV

is heavy, and discuss important differences from the scalar mediator only case. Throughout

our discussions, the ADM nugget states are assumed to be in the ground state.

A. Few Body Bound States

For bound states involving a small number of constituents, the overall nuclear density is

not very large, and one typically does not expect the constituents to be relativistic as long as

the interactions remain perturbative. The non-perturbative case requires more complicated

calculations and we refer the reader to Ref. [11] for an example. In the weakly-coupled case,

the wave functions of the DN can be obtained via a non-relativistic Schrödinger’s equation.

The case of two-body bound states has already been treated extensively in Refs. [6, 12], and

we summarize their main results here. In order for a bound state to form, the range of the

force, m−1
φ , should exceed the size of the wave function (typically set by the Bohr radius

r−1
B = αφmX/2, where αφ ≡ g2

φ/(4π)). More precisely, it has been shown that as long as

m−1
φ > 0.84 r−1

B , a 1s two-body bound state exists [12]. In the small mediator mass limit,
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mφ � αφmX , the force is close to Coulombic, and the two particle binding energy is simply

BE2 = α2
φmX/4. The ground state has zero spin, which maintains the antisymmetry of the

total wave function.

For N > 2, Schrödinger’s equation becomes highly nontrivial, and analytic solutions for

the bound states are not available. One useful simplification, at moderate N , is to assume

that on average, each individual constituent is under the influence of an emergent potential.

This is the shell model, which enjoys phenomenological success in standard nuclear physics

(see [13] for a detailed introduction). In the shell model, each individual constituent is

treated as non-interacting, and the constituents simply fill up the available states from low

to high energy according to Pauli’s exclusion principle. There are typically many (approxi-

mately) degenerate eigenstates for the potential, which results in large energy gaps between

specific states. This leads to local maxima in binding energy per constituent as a function

of size, N ; the sizes corresponding to local maxima are so-called “magic numbers”. The

existence of local maxima in binding energy per constituent can lead to the instability or

metastability of nearby states, and is especially important to the story of nucleosynthesis.

At larger N , the occurrence of magic numbers becomes sparse, and their effects become

subdominant. This is the case we study next.

B. Many Body Bound States

When the number of constituents becomes large, one can employ relativistic mean field

theory instead of computing many-body wave functions. This is the basic idea behind the

σ-ω or Walecka model used to describe bulk properties of SM nuclei and nuclear matter in

e.g. neutron stars.2 Here we will largely follow the formalism and derivations presented for

the Walecka model in Refs. [9, 15] and apply them to ADM nuggets; we refer the reader to

these references for more detail.

In the limit as the number of constituents becomes large, the ground state is expected to

be approximately rotationally invariant. The occupancy for the bosonic fields is expected

to be large, and can thus be treated classically. In particular, the scalar field is replaced by

2 See [14] for a pedagogical introduction to the σ-ω model in the context of describing the equation of state

for neutron stars.
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its expectation value. For the fermions, we have the equations of motion

[
i/∂ − (mX − gφφ(x))

]
X(x) = 0, (2)

where φ(x) = 〈φ〉 is a spatially varying classical field. The scalar field equation of motion is,

∇2φ = m2
φφ− gφ〈X̄X〉. (3)

Assuming that the variation of φ is small over the compton wavelength of X, φ then acts

as a locally varying effective mass m∗(x) ≡ mX − gφφ. At each spatial location, X can then

be treated as a non-interacting degenerate fermi gas with a locally constant mass m∗(x).

This is the Thomas-Fermi approximation, which has many applications to electronic many-

body systems. The profile for X is characterized by a local fermi density kF (x) (assuming

zero temperature), and the energy for a given nugget profile is given by

E(φ(x), kF (x)) =

∫
dr 4πr2

{
1

2

[
(∇φ)2 +m2

φφ
2
]

+
gdof

2π2

∫ kF

0

dk k2
√
k2 + (mX − gφφ)2

}
,

(4)

where gdof is the number of degrees of freedom for the fermion field (gdof = 2 for a single spin-

1/2 Dirac fermion). Note that using kF (x) to model the X density captures only average

bulk behavior, which is valid in our case as long as local variations (of order N1/3) are small

compared to bulk contributions (of order N). Thus we expect our approximation to be fairly

accurate as long as N & 100, analogous to standard nuclear physics. In the ground state,

the physical profiles φ(x) and kF (x) are those that minimize the energy functional for fixed

dark number; this is the equilibrium condition. Assuming an abrupt cutoff for the fermi

momentum (kF (r) = 0 for r ≥ R) introduces an additional parameter, R, or the radius of

the nugget. Variation with respect to R will be proportional to kF (R), which vanishes and

will be neglected. To minimize energy while holding dark number fixed, one introduces a

Lagrange multiplier µ, such that δE − µδN = 0. Physically, µ is the chemical potential,

or the minimum energy change when an extra DM particle is added to a nugget. Using

N =
∫
d3~r〈X̄γ0X〉 =

∫
d3~r

(
gdof

∫ kF (r) d3~k
(2π)3

)
= 2gdof

3π

∫
dr r2 k3

F , and given that Eq. (3) is

equivalent to δE/δφ = 0, the equilibrium condition then reduces to

µ =
δE/δkF (r)

δN/δkF (r)
=

√
k2
F (r) + [mX − gφφ(r)]2. (5)
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FIG. 1. Sample fermi-momentum profile, kF (r), for αφ = 0.1 (left) and αφ = 0.01 (right), and with

varying N ∈ (102, 103, 104). The solid (dotted) line shows the profile for mφ = 0 (mφ = 10−3mX).

Note that µ does not have any spatial dependence, and as a result Eq. (5) yields a simple

relationship between kF (r) and φ(r). In general µ still has a complicated dependence on N

and other parameters of the theory.

Since the scalar density is given by 〈X̄X〉 = gdof
2π2

∫ kF (φ)

0
dk

k2(mX−gφφ)√
k2+(mX−gφφ)2

the scalar field

equation of motion reads

∇2φ = m2
φφ−

gφgdof

2π2

∫ kF (φ)

0

dk
k2(mX − gφφ)√
k2 + (mX − gφφ)2

, (6)

where kF can be written as a function of µ and φ using Eq. (5). There are also additional

boundary conditions for φ, which is given by the requirement that it is continuous and

differentiable at the boundary r = R, and that φ follows the equation of motion beyond the

nugget boundary (i.e. φ(r) = φ(R)e−mφ(r−R)R/r for r ≥ R). Together with the requirement

that φ is well behaved at the origin, the boundary conditions are,

∂rφ(0) = 0, gφφ(R) = mX − µ, gφ∂rφ(R) = (µ−mX)
1 +mφR

R
. (7)

In general, there are no closed form solutions and Eqs. 6-7 must be solved numerically. Fig. 1

shows a few sample profiles for αφ ∈ {0.1, 0.01} (αφ ≡ g2
φ/(4π)) and N ∈ {102, 103, 104},

and for different scalar masses mφ/mX ∈ {0, 10−3}; we have also fixed gdof = 2. The scalar

mass, mφ, typically does not significantly impact nugget properties until N becomes large,

where, as mφ increases, the nuggets become denser and smaller.

For a fixed αφ and mφ, there can be as many as three distinct regimes for the nugget

profiles depending on N :
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i) Small N : The nugget density is small and the constituents are largely non-relativistic.

The density for the mediator remains relatively small, and the effective mass remains

close to mX . The nugget is small enough that R . m−1
φ , and the effect of the mediator

mass, mφ, is insignificant. Using the non-relativistic formula for a fermi gas, and

assuming a Coulomb-like potential, a behavior R ' 3

√
81π2/(4Ng2

dofα
3
φm

3
X) can be

derived (see [6] for details).

ii) Medium N : The nugget is small enough, R . m−1
φ , that mφ is largely unimportant,

but the mediator density is large enough that m∗ is significantly different from mX .

The constituents become relativistic, leading to large fermi presssure that extends the

nugget sizes. A scaling R ∼ N2/3 can be obtained (see text).

iii) Large N (Saturation): R becomes much larger than m−1
φ . The binding energy, medi-

ator density and m∗ all approach a constant. The nugget reaches a geometric limit

where R ∼ N1/3.

For a fixed αφ and mφ, one of the above regimes may be absent. The possibilities can be

seen in Figs. 2-3, where R(N) and its logarithmic derivative are shown for couplings αφ ∈
{0.1, 0.01} and mediator masses mφ/mX ∈ {0, 10−4, 10−3, 10−2}. For most of the benchmark

cases, the scaling N ∼ R−1/3 at small N is visible, though deviations from this scaling occur

when the Coulomb-like approximation breaks down (when rB ∼ (αφmX)−1 & m−1
φ ); this

can be seen for the case αφ = 0.01 and mφ/mX = 10−2. In the massless limit, saturation is

never reached, and the asymptotic behavior scales as R ∼ N2/3 . For light mediator masses

mφ/mX � 1, R(N) follows the massless limit closely until R & m−1
φ , when the nugget

approaches saturation and the transition to a R ∼ N1/3 scaling occurs.

Fig. 4 shows the nugget binding energy per constituent as a function of the nugget number

for the same benchmark points. For the massless case, the binding energy approaches the

rest mass of the individual constituent, while for non-zero mφ, the binding energy approaches

a constant at large N . These figures also mark an estimate when saturation happens, which

is defined by N & (r0mφ)−3 where r0 is the saturation length scale; in particular R = r0N
1/3

and the number density is nsat =
(

4
3
πr3

0

)−1
in the saturation limit. At large N , the binding

energy is well described by a formula analogous to the semi-empirical mass formula for SM
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FIG. 2. Nugget radius versus N for αφ = 0.1 (left) and αφ = 0.01 (right). At small N , R ∼ N−1/3,

at moderate N , R ∼ N2/3, until saturation is reached (marked by an ×), where R ∼ N1/3. See

text for detailed discussion and derivation of the scalings.
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αφ = 0.01 (right). The transition to saturation, defined as N ≥ 4π
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m3
φ

, is marked by an “×”.

nuclei,

MN = NmX − BEN ' µ0N + εsurfN
2/3, (8)

where µ0 is the bulk rest energy coefficient, equivalent to chemical potential energy in the

infinite matter limit (as we will see), and εsurf is the surface term rest energy coefficient. Near

saturation the nugget surface area scales as N2/3; the surface term accounts for the lack of

close-range interactions between constituents near the surface that would otherwise reduce

the energy of the configuration. By fitting the curves in Fig. 4 to Eq. (8) for N > Nsat,

where

Nsat ≡ (r0mφ)−3 ≡ 4

3
πnsat/m

3
φ (9)
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with the saturation length scale r0 calculated in the N →∞ limit (see below), we obtained

the bulk and surface contribution to the binding energy for our benchmark cases, as shown

in Table I. In the next section, we obtain an analytic expression for the bulk contribution

by examining the N →∞ (infinite matter) limit; the bulk parameters obtained through the

fit match the analytic values to within less than 1%, indicating that our characterization of

the “saturation limit”, encapsulated in Eq. (8) and Eq. (9), is self consistent.

αφ mφ/mX µ0/mX εsurf/mX

0.1

10−2 0.26 3.2

10−3 0.083 3.8

10−4 0.026 4.2

0.01

10−2 0.46 7.8

10−3 0.15 11

10−4 0.046 13

TABLE I. Numerical values of µ0 and εsurf for our benchmark nugget models; these parameters

are obtained by fitting Eq. (8) to the curves in Fig. 4 at large N > Nsat.
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C. Saturation

Thus far our discussion of the large N behavior has been descriptive. However it is

possible to obtain explicit analytic formulae in the large R,N limit, as is standardly done

within the σ-ω (Walecka) model in nuclear physics (see e.g. [15] or [16]). One can solve

Eq. (6) by simply replacing kF (x) and φ(x) with constants kF0 and φ0, though an extra

equation is needed to solve for the two unknowns. This can be obtained by considering

the chemical potential, µ, which should approach a constant as well, µ = dE/dN → µ0.

This in turn implies that E = Nµ0, which serves as the second equation. Since pressure is

p = −
(
∂E
∂V

) ∣∣
N

= (µ − E/N)/V , where V is volume, the second (equilibrium) condition is

equivalent to setting the pressure to zero. These two equations can be recast in terms of the

variables m∗/mX = 1 − gφφ0/mX and kF/mX , with the physical parameters entering only

in the combination

C2
φ =

2gdof

3π
αφ
m2
X

m2
φ

, (10)

such that

1− m∗
mX

= 3C2
φ

(
m∗
mX

)∫ kF0
mX

0

dx
x2√

x2 + (m∗/mX)2

p

(
gdofm

4
X

6π2

)−1

= − 1

2C2
φ

(
1− m∗

mX

)2

+

∫ kF0
mX

0

dx
x4√

x2 + (m∗/mX)2
= 0. (11)

A solution to Eq. (11) with p = 0 and with positive binding energy exists only for large

enough C2
φ, implying a threshold for stability of (infinitely) large bound states. We find the

threshold to be C2
φ & 1.1. Larger C2

φ corresponds to a larger attractive force, which requires

a larger kF0/m∗ to balance the total pressure. Since m∗ is the effective X mass, large kF0/m∗

also corresponds to effectively relativistic constituents. In the limit of large kF0/m∗ one can

show that Eq. (11) implies,

m∗
mX

→ 1

3

√
2

C2
φ

, (12)

kF0

mX

→

√√√√√ 2

C2
φ

(
1− 1

3

√
2

C2
φ

)
. (13)

Here it is apparent that m∗ falls more rapidly as Cφ grows than does kF , meaning that the

constituents are becoming more relativistic at saturation as Cφ grows even though the fermi
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momentum is simultaneously decreasing. Other properties can then be calculated in this

limit. For example,
(

4
3
πr3

0

)−1
= nsat = gdof

6π2 k
3
F0 so that r0mX =

(
2gdof
9π

)−1/3
(
kF0

mX

)−1

. Also,

µ0

mX

=

(
1− BEN

mXN

)
=

√(
kF0

mX

)2

+

(
m∗
mX

)2

. (14)

The above expressions are quite accurate even at moderate values of C2
φ. For C2

φ � 1,

kF0

mX

,
µ0

mX

→
(

2

C2
φ

)1/4

. (15)

The saturation limit allows a simple geometric interpretation: the addition of constituent

particles is analogous to adding liquid to an incompressible fluid. The binding energy per

particle is simply BEN/N = mX − E/N = mX − µ, and the nugget number scales directly

as the volume of the nugget, i.e. N = 4πnsatR
3/3.

The picture breaks down, however, when the mediator becomes massless, where the

infinite volume limit also forces nsat → 0. In this case, the physics of large R nuggets

depends on a nonlinear differential equation. It is instructive to rewrite Eq. (6), by defining

f(r) = (mX − gφφ(r))/µ, so that

d

dr

[
1

2
f ′2 − 4παφµ

2

∫ f

0

ρ(y)dy +m2
φ

(
mX

µ
f − 1

2
f 2

)]
=

2

r
f ′2, ρ(y) =

gdof

2π2

∫ √1−y2

0

yk2 dk√
k2 + y2

,

(16)

with the boundary conditions: f ′(0) = 0, f(R) = 1 and f ′(R) = (1 +mφR)(mX − µ)/(µR).

When N is large, f ′ is generally small until r becomes large, such that one can ignore the

term f ′2/r and fully integrate the differential equation. Taking the limit mφ = 0, f(0) ∼ 0

and µ� mX , one has the simple relations

1

2

(
mX

µR

)2

' 4παφµ
2

∫ 1

0

ρ(y)dy =
gdofαφµ

2

6π
. (17)

Together with the approximation that N ' 2gdof
9π

R3k3
F (0) ' 2gdof

9π
R3µ3, one obtains

R ' N
2
3
√
αφ

mX

(
243π

16gdof

) 1
6

. (18)

In the limit of finite mφ and R� m−1
φ , the R dependence in Eq. (16) drops out as f ′(R)→

mφ(mX − µ)/µ. Here one finds that Eq. (11), the saturation limit, is recovered.
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D. Inclusion of Scalar Potential Terms

In this section we discuss the effects of additional scalar interactions on the properties of

nuggets in the saturation limit. Specifically we consider a nonvanishing potential V (φ) =

λ4
gdofg

4
φ

4!π2 φ
4 with λ4 > 0 to maintain stability in the UV. The potential modifies the equilibrium

condition and φ field equations, Eq. (11), as follows:

1− m∗
mX

= −C2
φλ4

(
1− m∗

mX

)3

+ 3C2
φ

(
m∗
mX

)∫ kF0
mX

0

dx
x2√

x2 + (m∗/mX)2

p

(
gdofm

4
X

6π2

)−1

= − 1

2C2
φ

(
1− m∗

mX

)2

− λ4

4

(
1− m∗

mX

)4

+

∫ kF0
mX

0

dx
x4√

x2 + (m∗/mX)2
= 0.

(19)

Eq. (14) for the energy per constituent still holds but the equilibrium values for kF0 and m∗

will of course change with the addition of the λ4 term, according to Eq. (19). When m∗/mX

is small, corresponding to large field values, φ, we see that the quartic term is important

when λ4 & 1/C2
φ. It is instructive to consider the case when C2

φ ≫ 1 and λ4 . 1/C2
φ. In

this case, nuggets will still saturate in the relativistic limit, but the equilibrium values for

m∗ and kF will change according to,

m∗
mX

→ 1

3

√
2

C2
φ

(
1 + λ4C

2
φ

)(
1 +

λ4C
2
φ

2

)−1/2

, (20)

kF0

mX

→
(

2

C2
φ

)1/4(
1 +

λ4C
2
φ

2

)1/4

. (21)

The quartic term increases both kF0 and m∗. This leads to an increase in energy per

constituent (decrease in binding energy) and an increase in density. At the same time, note

that kF0/m∗ decreases, meaning the nuggets are less relativistic at saturation. This indicates

that the net effect of the quartic term is to provide an effectively repulsive force. Once λ4C
2
φ

is large enough so that mφ � 1 no longer holds (when 2
√
λ4

3
& 0.1), our approximation breaks

down. At the same time, since increasing m∗ is equivalent to decreasing φ, the quartic term

is self-moderating in the sense that it forces saturation at lower values of φ.

Fig. 5 shows the modification of the saturation number density (left) and energy density

(right) of the nuggets with the inclusion of the φ4 term. Note that the contours start curving

around the point where 2
√
λ4

3
& 0.1; for smaller values of λ4, the estimate Eq. (21) should

hold when C2
φ � 1. In the white regions, no infinite bound matter limit exists.
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FIG. 5. The figure on the left (right) shows the nugget density (nugget energy density) for models

with a non-vanishing quartic term V (φ) = λ4
gdofg

4
φ

4!π2 φ
4 as compared to a zero quartic term. The

uncolored areas indicate regions where no saturation limit exists.

The inclusion of a quadratic term changes the effective scalar mass, and therefore also

the effective force range, according to

mφeff = mφ

√
1 + 2V (〈φ〉)/m2

φ〈φ〉2 = mφ

√
1 + λ4C2

φ(1−m∗/mX)2/2. (22)

With the inclusion of a potential, we expect a good estimate of the saturation size, Nsat, to

be given as in Eq. (9) but with mφ → mφeff.

E. Inclusion of Vector Mediator

So far our treatment has been restricted to the scalar mediator, where the nuclear proper-

ties are controlled by a single function kF (r) or gφφ(r). The introduction of a vector mediator

leads to a repulsive force, and will generally lower the binding energy. In the static, classical

limit, where the field is set to its expectation value and ignoring possible spin effects, only

the temporal component of the classical vector field, V0, is non-vanishing. The equation of

motion for the classical vector field is then

−∇2V0 +m2
V V0 = gV 〈X̄γ0X〉. (23)

Analogous to electromagnetism, the right side of Eq. (23) is simply gV times the nugget

density, 〈X̄γ0X〉 → gdofk
3
F

6π2 . For positive coupling gV , the resulting potential V0 is always

positive. The energy functional receives an additional contribution from the vector field,

EV =

∫
dr 4πr2

{
−1

2

[
(∇V0)2 +m2

V V
2

0

]
+ gV V0

gdofk
3
F

6π2

}
, (24)
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which can be seen to be manifestly positive through integrating by parts and employing

the vector field equation of motion. Carrying out the same computation as before with

µ = dE/dN leads to a modified chemical potential

µ = gV V0 +
√
k2
F + (mX − gφφ)2 . (25)

The presence of V0 effectively increases the local chemical potential, and thus leads to a

lower binding energy for the same nugget number.

With an additional mediator, the saturation condition Eq. (11) is also modified,

1− m∗
mX

= 3C2
φ

(
m∗
mX

)∫ kF0/mX

0

dx
x2√

x2 + (m∗/mX)2

p

(
gdofm

4
X

6π2

)−1

= − 1

2C2
φ

(
1− m∗

mX

)2

+
1

2
C2
V

(
kF0

mX

)6

+

∫ kF0/mX

0

dx
x4√

x2 + (m∗/mX)2
= 0.

(26)

where an additional parameter

C2
V =

2gdof

3π
αV

m2
X

m2
V

, (27)

is introduced. Fig 6 shows the binding energy in the saturation limit as a function of the

vector and scalar couplings and masses, with the SM values marked by a star. The white

area corresponds to αV /m
2
V & αφ/m

2
φ, where no infinite matter limit exists. The lack of

infinite matter limit does not necessarily imply that nuggets with saturation-like behavior

do not exist. For example, in the mV → 0 limit with αV � αφ the vector’s contribution

to energy density and pressure will be a small perturbation for small enough N . But the

impact of a massless vector grows coherently as N2, and will eventually destabilize the

nugget, just as Coulomb repulsion helps to destabilize large nuclei. The calculation when a

light vector field is present is beyond the scope of our work, and will not be considered further

here. We are mostly interested in a composite scenario mirroring nuclear matter but absent

electromagnetism, where both the scalar and vector mediators are heavy, the couplings are

very large, and the absence of an infinite matter (saturation) limit will generically imply

the absence of large nuggets. The marked star in Fig. 6 shows the SM parameters, where

there is a cancellation between the scalar and vector mediator such that the binding energy

is small.

For small N nuggets, one also expects significant deviations from saturation. Again

defining the approach to saturation by Nsat = 4π
3
nsat

m3
φ

, we show in Fig. 7 Nsat as a function of
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lower bound C2
φ & 1.1, marked by the dashed line on the left figure, is required for saturation.

mφ and mV for a benchmark with gdof = 4 and αφ = αV = 0.1. The inclusion of the vector

mediator lowers the saturation density and accelerates the approach to saturation.
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FIG. 7. Estimate for the lower bound N & Nsat in order to reach saturation. The couplings are

fixed αs = αV = 0.1, and gdof = 4

Approximating gV V0 =
(
αV gdofm

2
X

m2
V

)
2gdofk

3
F

3πm2
X

(c.f. Eq. (23)), the nugget profile is again

governed by a single fermi momentum kF (r). Fig. 7 shows sample nugget profiles for αφ =

αV = 0.1, with N = 100 and three different mV . One sees that increasing mV generally

makes the nugget bigger and less dense, as expected.

In the composite model, the nugget constituent is the dark baryon, and the vector and

scalar mediators are mesons. Generically, we expect the vector and scalar mass to be com-

parable and of the same order as the confinement scale (with possibly a 4π suppression);
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the couplings should also be comparable and large. Analogous to the SM, we expect the

natural parameter space to be not far from the diagonal in Fig. 6. In this scenario, it is

quite possible for the saturation binding energy to be a small fraction of the dark baryon

mass. In this case, a new energy scale—the binding energy scale—can arise and will dictate

the size and interactions of the nuggets.

IV. CONCLUSIONS

We have studied the properties of many-particle bound states of ADM, utilizing rela-

tivistic mean field theory tools developed in nuclear physics. The model that we applied to

this system can be used, in principle, for both elementary and composite models of dark

matter. We solved the equations of motion in relativistic and non-relativistic limits, with

both attractive and repulsive forces, and found a saturation property when the bound state

size exceeds the force length, such that the density of the bound state nugget approaches a

constant. We found that the binding energy of these nuggets is an O(1) fraction of the rest

mass, and only increases with the size of the nugget, and we derived analytic expressions

for both this binding energy and the size of the nugget in the saturation limit.

Our ultimate goal is to understand the cosmology of these many-particle bound states

of ADM—to determine their abundance in the Universe today and their impact on the
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evolution of structure in the dark sector. With the properties of these ADM bound states

in hand, written in terms of the degrees of freedom of a fundamental Lagrangian, we can

follow their evolution through early universe synthesis, and ultimately through late universe

structure formation. This is the subject of our next papers.
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Appendix A: Nugget Profile Computation

Here we discuss difficulties in solving Eq. (6) and numerical methods for circumventing

them. To begin, it is convenient to rewrite Eq. (6) in terms of f ≡ (mX − gφφ(r))/µ, which

leads to

1

r

d2

dr2
(rf) = −m2

φ

(
mX

µ
− f

)
+
µ2αφgdof

2

[
f
√

1− f 2 + f 3 log

(
f

1 +
√

1− f 2

)]
, (A1)

subject to the boundary conditions,

f ′(0) = 0 f(R) = 1 f ′(R) =
(1 +mφR)(mX − µ)

µR
. (A2)

Eq. (A1) is highly nonlinear, but can be solved using standard numerical techniques.

The nontrivial problem is to determine the values (R, µ), which are not known a priori.

Solving the ODE self-consistently with all three boundary conditions amounts to find-

ing a curve in the two-dimensional plane, (R(N), µ(N)), which can be parameterized by

N , the nugget number, which is calculated after the fact through N =
∫
d3~r gdof

6π2 k
3
F =

gdof
6π2 µ

3
∫
d3~r (1− f 2)

3/2
. Naively, one can fix either µ or R, and then scan over the other

variable to solve the ODE backward at r = R to r = 0. A solution is obtained when

f ′(0) = 0. However, as there is a singularity at r = 0, numerical instability can arise here.

One can instead solve the ODE backward to some r0 such that f ′(r0) = 0, and find the

smallest r0 such that this is possible. This approach generally works well for small N away

from saturation.
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Near saturation, another problem emerges. Close to the saturation value f0 = (mX − gφφ0)/µ0,

the right-hand-side of Eq. (A1) approaches zero, and |f − f0| will often be exponentially

small, leading to very large numerical inaccuracies. This behavior is generally expected at

large N , which is important to solve properly in order to get accurate corrections to the

saturation limit. In this regime, it is more fruitful to consider a reparametrization of the

solution space, mapping (R, µ) → (f(0), µ). Then, fixing µ, one can scan over different

values of f(0) and solve the ODE until r = R such that f(R) = 1, and check whether f ′(R)

satisfies the last boundary condition.3 One immediate issue is the singularity at r = 0,

which may be resolved in the near saturation regime. Approximating Eq. (A1), one has

d2

dr2
(rf) ' r

[
κ2(f − f0′)

]
, (A3)

where we have performed a Taylor expansion around the zero on the right-hand-side of

Eq. (A1). f0′ and κ2 both depend on µ, and κ2 is always positive as long as a saturation

limit exists. When µ is close to µ0, f0′ becomes very close to f0 as well. The linearized ODE

in Eq. (A3) can be readily solved to obtain (assuming f ′(0) = 0)

f(r) ' f0′ +
[f(0)− f0′ ] sinh(κr)

κr
. (A4)

Then, using the solution in Eq. (A4), one can replace the boundary condition at r = 0 by

the ones at some intermediate value r = r0, where r0 is of order 1/κ. It is worth noting that

at very large nugget number, |f(r) − f0′ | will typically be extremely small, and it may be

useful to change variable to l(r) ≡ − log(f − f0). It is worth noting that for the massless

mediator limit, f0 → 0. For this special case, and in the large nugget limit, f0′ → 0, and

κ→ µ
√
αφgdof/2. The nugget profile near the origin becomes simply

f(r) ' f(0) sinh(κr)

κr
. (A5)

Note that even though no saturation limit exists, for very small µ, f(r) will stay roughly

constant as long as r � 1/µ.
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