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Motivated by understanding the background to Chiral Magnetic Effect in proton-nucleus collisions
from first principles, we compute the three particle correlation in the projectile wave function. We
extract the correlations between two quarks and one gluon in the framework of the Color Glass
Condensate. This is related to the same-charge correlation of the conventional observable for the
Chiral Magnetic Effect. We show that there are two different contributions to this correlation
function. One contribution is rapidity-independent and as such can be identified with the pedestal;
while the other displays rather strong rapidity dependence. The pedestal contribution and the
rapidity-dependent contribution at large rapidity separation between the two quarks result in the
negative same charge correlations, while at small rapidity separation the second contribution changes
sign. We argue that the computed initial state correlations might be partially responsible for the
experimentally observed signal in proton-nucleus collisions.

I. INTRODUCTION

Topological fluctuations in the early time Glasma state [1, 2] or thermal sphaleron transitions [3, 4] during later
stages of heavy-ion collisions may lead to the Chiral Magnetic Effect (CME) [5], the generation of the electromagnetic
current along the magnetic field [6-8]. Experimentally, the associated charge separation can be measured by three
particle angular average [9], v = (cos(da + @5 — 2¢)), where ¢ is the azimuthal angle of a trigger particle defining the
reaction plane ! and ¢, s are azimuthal angles of associate particles carrying electric charge. The averaging is usually
taken over a range of transverse momenta of the charged particles. The observable « is also often considered as a
function of relative rapidity separation between the charge particles An and the multiplicity /centrality of the collision.
The charge of the particles & and 8 can be either same or opposite. For more information about the experimental
measurements, see Ref. [9-14].

The CME prediction for the observable v can be understood as follows. In the presence of the strong magnetic field,
B, and initial axial charge 5, the CME builds an electric current along the magnetic field [5], which in non-central
heavy-ion collisions points in the out-of-plane directions, see Refs. [6, 7]. The current results in the transport of the
charges and subsequent formation of a dipole moment in the charge distribution, which can be described by

dNy

dp

where 1rp is the reaction plane angle (neglecting the fluctuations, the magnetic field is perpendicular to the reaction
plane), v; is the directed flow, vy is the elliptic flow and o = +, — denotes the charge of the particles. The parameters
a+ describe the formation of the electric dipole a1 = —a_ o pusB. The sign of us fluctuates on event by event basis

rendering (ay) = 0. Nevertheless, the parity-even fluctuations, (aqaq), can still be measured in experiment. The
observable « suppresses the background [9] and is approximately equals to the fluctuations, that is

N (14 2v; cos(¢p — Prp) + 2vs cos(2][¢ — Yrp]) + 2a4 sin(¢ — Yrp) +...), (1)

Y A (—alar)- (2)

1 Originally the CME observable, that is the charge separation, was introduced with respect to the reaction plane. Due to the difficulties
in reconstructing the reaction plane, the three-particle correlator method is used for nuclear and proton-nucleon collisions. See Ref. [10]
for more information on the three-particle correlator method.



From this expression one can draw conclusions on the CME predictions for . For the same charges o/ = «, ay = aq
and thus one expects v ~ —(a?) < 0; for opposite charges o’ = —a, ao’ = —a, and thus v ~ (a?) > 0. Additionally, if
the backgrounds effects are negligible, the same-charge correlator v should be opposite in sign but equal in magnitude
to opposite-sign correlator.

In collision with heavy-ions, the first measurement of v were performed at RHIC [10, 11]; it was observed that
opposite-charge correlations were very close to zero or even negative, while the same-charge were negative and larger
in the amplitude. The observation of close to zero opposite-charge correlations was not immediately consistent with
CME, as it was predicted to have the same amplitude as same-charge. However, the observable v might be potentially
contaminated by large charge-independent backgrounds, that shift the values of both the same-charge and opposite-
charge correlations.

In order to test CME, a few other measurements and observables were explored, for details see Ref. [13, 15].
Nevertheless, the status of the CME in heavy-ion collisions remains inconclusive due to background correlations that
may be responsible for the entirety of the observed signal [16-19].

Recently, the CMS collaboration performed measurements of the tree particle correlations in proton-nucleus col-
lisions [12] at /s = 5 TeV. The CME predicts virtually absent signal in p-A collisions due to small values of the
magnetic field and its decorrelation with the event plane. However, it was observed that the differences between the
same and opposite sign correlations, as functions of multiplicity and rapidity gap between the two charged particles,
are of a similar magnitude in proton-nucleus and nucleus-nucleus collisions at the same multiplicities. This does not
necessarily pose an immediate challenge to the CME interpretation of the charge dependent azimuthal correlations in
heavy ion collisions, as the results coincide only in peripheral bins of Pb-Pb collisions, where the background effects
are expected to play a dominant role [14].

Nevertheless, the CMS measurements make it clear that without microscopic understanding of the background
contributions to the observable =y, any interpretation of the data will be unsatisfactory. Motivated by the data of the
CMS collaboration, in this paper, we address one of the possible sources of this background; we concentrate on the
same-charge correlations, which usually fall outside the scope of the conventional background models [16, 20] except
for the global transverse momentum conservation. We work in the framework of the Color Glass Condensate; which
was successful in predicting the “ridge” correlations and is often utilized to address the systematics of the azimuthal
anisotropy in the initial state, see Refs. [21-37].

As was shown in Ref. [33] the Bose-Einstein enhancement (BSE) of soft gluons in the projectile provides the physical
interpretation of the glasma-graph calculation of the “ridge” correlations. In a follow up paper the authors of Ref. [38]
also explored the consequences of quark’s Pauli blocking in the projectile wave function. Mindful of these studies,
we consider the observable v and explore possible nontrivial contribution to this observable, and therefore the CME
background stemming from the quantum correlations in the initial state. In practice, we consider the angular average
v defined as a projectile average v = (cos(¢p + ¢q — 2¢y,,)) where p and ¢ are the transverse momenta of two same-
charge/same-flavor quarks in the light cone wave-function of the projectile, and m is the transverse momentum of
the gluon. We will demonstrate that there are two distinct contributions to this quantity: the pedestal, the rapidity-
independent contribution, with a negative v, and the rapidity-dependent and sign changing contribution originating
from Pauli blocking.

The paper is organized as follows. In Sec. II we briefly review the relevant results of Ref. [38] for quark-quark
correlations, originating from two quark-antiquark pairs in the wave function. In Sec. III we extend this calculation
to include three particle correlations, computing contribution of an additional gluon thus bringing up the relevant
Fock state component to 5 particles. In this paper we limit ourselves to the calculation of correlations in the wave
function of the incoming hadron, and do not attempt to calculate three particle production, which we leave for future
work. Nevertheless, as demonstrated in [33, 38] such initial state correlations within the CGC approach have a direct
effect on production of particles, and thus can serve as a basis for qualitative understanding of the effect. In Sec. IV
we discuss and summarize our findings.

II. PRELIMINARIES: QUARK CONTRIBUTION TO THE PROJECTILE WAVE-FUNCTION

Let d' and d denote quark creation and annihilation operators, while df and d are those of the antiquark. Addi-
tionally for gluons, we introduce a* and a.

First we formulate, two particle, quark-antiquark, content of the light-cone wave function. This will allow us to
introduce the notation we use when considering a more complicated case of two quark-two antiquark and gluon. In
perturbative calculations, the quarks and antiquarks appear in the light-cone wave function of a valence charge via
soft-gluon splitting or instantaneous interaction, see details in Ref. [38], Appendix A and the review [39-41]. The



quark-antiquark component of the light cone wave function of a “dressed” color charge density is given by?

[0)7 = (1 = g"ra) |v)
+ g2 /dk+dad2pd2q
(2m)?

where |v) denotes a valence state characterised by a distribution of charge densities p of valence (fast) partons. The
subscript “2” in |v)9 counts the perturbative order in the Yang-Mills coupling denoted as g. k4 is a constant ensuring
the correct normalisation of the dressed state, 7,6 =1,2,..., N, are fundamental color indices, and s; 2 stand for the
spinor indices. The value of k4 is irrelevant for the problem at hand. We define the longitudinal momentum fraction
« as

¢, (kT p,q,) d (g™, q) d% (p*,p) |v), (3)

pt=ak™, ¢" =akT, a=1-q, (4)

with &£ the momentum of the parent gluon that splits into a quark and an antiquark. The splitting amplitude ( is
given by

d*k
G i) =735 [ G 00 Gl )
where 7% are the generators of SU(N,.) in the fundamental representation. Here,
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Thus,
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The ¢() term comes from the instantaneous interaction, while ¢(2) from the soft gluon splitting.

However, |v)? is not the state we are interested in, as it provides information about quark-antiquark content of
the light cone wave function only. To probe quark-quark-gluon correlations we have to consider the two quark—two
antiquark and gluon component of the dressed state, that is the state with 5 particles. We will adopt the same
strategy as was used in the glasma graph calculation. That is, we focus on terms enhanced by the charge density in
the wave-function; similar approach was also used in Ref. [24]. At the lowest order the relevant component of the
wave function is given by

|U>51)) = virtual
4 + 20" 29" dkt 2 1 g2~
g dkTdad?p' d°p’ dkTdpBd ¢ &°q ., ~ 5 - )
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g

X

2 The state to this order in perturbation theory contains one-gluon and two-gluon components. We do not indicate those explicitly, as
they do not contribute to correlated quark-gluon production. These contributions were studied, e.g. in Refs. [33].
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FIG. 1: The diagrammatic representation of two distinct contributions in Eq. (13). The black blobs denote the gluon sources,
p. The grey blob in the gluon splitting vertex accounts for the instantaneous interaction too.

where we explicitly showed the part corresponding to the pair of quark-antiquark and the soft gluon. In the following
section, we will use this dressed state to find the average number of two quark and a gluon triplets in the wave
function.

III. TWO-QUARK-GLUON CORRELATIONS

In this section we compute the correlations between the quarks and the gluon in the CGC wave function of the
projectile. To be able to make definitive statements about correlations between produced particles this calculation
has to be supplemented by the analysis of particle production, as in principle momentum distribution of produced
particles is affected by momentum transfer from the target. Also scattering is not equally efficient in putting on shell
all partons in the incoming wave function. In particular partons with large transverse momentum are emitted into
the final state with smaller probability. Thus correlations between emitted particles are not identical to correlations
between the partons in the projectile wave function. However as was observed in Ref. [33, 38, 42] this change mostly
affects the quantitative features preserving the qualitative pattern of the correlation. In this exploratory study we
only compute the correlation in the projectile wave function and consider this to be a proxy to correlation between
produced particles, at least if the transverse momenta of these particles are not too large. Already on this level, as
we will demonstrate below, the calculations are non-trivial and require numerical integration.

The aim of this section is to compute the average number of two quark and a gluon “triplets” in the wave function
that is formally defined, see e.g. Ref. [43], as

dN B
dptd?pdgtd?qdm+d®m

1
(Pl 0 )b 0, (07 0) do.sa (47.0) davs, (PF,p) @l (™ m)al (")) ) - (12)

(2m)°

i.e. first, we need to calculate the expectation value of the “number of quark-gluon triplets” in our dressed state |v)
and then, average over the color charge densities in the projectile. For the latter we use the McLerran-Venugopalan
(Gaussian) model [44, 45]. This choice is somewhat restrictive and might potentially affect the result in a non universal
way, especially at lower collision energies, where the odderon component becomes stronger. As it will be clear below,
the observable we are computing has six powers of the charge density p and thus might be sensitive to the odderon.
In principle the model can be extended along the lines of Ref. [46] where the odderon is included in the averaging
weight on the classical level.

A similar problem was addressed in Ref. [38] for two-quark correlations, see Appendix B of Ref. [38]. We need
to extend this to include a gluon. This is, thankfully quite straightforward. The extra gluon is created in the wave
function independently of the quark pair from the valence charge density. The resulting expression for the correlator

D
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is, see also Fig. 1,
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where p®(k), p?(k) and one of pf(m) are the color charge densities in the amplitude and p°(l), p?(I) and the other
pf(—m) are the color charge densities in the complex conjugate amplitude. The rapidities are defined as 7; =
In(m™*/pT) and 1y = In(m™*/q"), with m™ the gluon +-momentum. Note that the average number, Eq. (13), is
independent of the gluon rapidity, 7. The functions ®; and ®4 are defined respectively as [38]
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2k ip) = / da/ =S sy (b, 730) 62y s (9,5 0) (14)
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and
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The integrals with respect to prime momenta represent “inclusiveness” over the antiquarks. The integrals over p’, ¢’
reduce the number of d-functions to two, so that in general we can write

o dadp
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Lets comment on the origin of different terms in Eq. (13). First, the particle density is proportional to g'*: two
powers of the coupling constant come from the gluon production, and the leftover ¢® originate from production of
two quark-antiquark pairs, as each is proportional to g* owing to production of a gluon and its splitting into a quark-
antiquark pair. The gluon component of Eq. (13) is trivial and proportional to g?p(m)p(—m)/m?, or the square of
the Weizsiicker-Williams field igp, (m)m?/m? . The quark contribution coincides with that of Ref. [38]. It contains
two distinct contributions in the curly brackets of Eq. (13): (A) the term proportional to ®5 corresponds to two quark
loops and thus contributes with the positive sign, while the term (B) proportional to ®4 has one quark loop resulting
in the minus sign, see Fig. 1. The latter term manifests the Pauli blocking; with the minus sign leading to the dilution
of the correlation!

The Pauli blocking term

As it is clear from Eq. (13) the correlations between the gluon and quarks originates only from the averaging over
the projectile color densities. In a Gaussian model for the projectile, thus we will not consider the terms involving
the contraction (pf (m)pf (—m))p, since this contraction leads to uncorrelated gluon production. Additionally, we will
postpone the consideration of the first term in the curly brackets of Eq. (13). This term contributes to the correlated
quark production only in subleading order at large N.. Nevertheless compared to the second term of Eq. (13) it is
enhanced by factor of 2 due to the trace over spin. Naively it is also proportional to the number of flavours Ny. This
is however not the case since we are interested in production of two quarks of a given flavour. In the real world, the
ratio 2/N, is not a particularly small number, and thus one should not neglect this term off hand. However, as it is
clear from the definition of @5, this term does not depend on the rapidity separation 7; — 772 and thus manifests itself
as a pedestal in the three-particle correlation. In what follows we focus on the second term (B).

In the large N, limit, the second contribution, proportional to ®4, dictates that there are only 8 leading N,

contractions for the correlated production. To understand this consider the trace tr(7%7°7¢7%). The color indices



are contracted pairwise. Due to Gaussian averaging of p, there are two distinct contractions: between the nearest
neighbours, e.g.
N2 -1

tr (T“T“T“Td) AN

—— (17)
and the contraction between two matrices separated by the other

1
tr(rerlrer?) = —Wébd. (18)

Obviously the latter is suppressed by 1/N,; and thus the corresponding contractions of the color densities will be
ignored. This leaves us with 8 possible contractions: there are 4 possible ways to contract a p/ with one of p®, p®, p°,
p?%: and there are 2 possible ways to pick a neighbour to get the leading N, contribution.

Therefore in the leading N., we get

(p"(k)p"(1)p° (k) p (1) p” (m) p! (—m)) p
~ (p"(k)p! (m))p (0" (1)p (=m)) p (0" (k) p* (D)) p + (p* (D) p? (—m)) p(p°(1)p° (K)) p)
+ ("W (M) p(p°(k)p! (=m)) p(p*(1)p" (k) p + (p° (k) p” (m)) p(p* (D! (—m))p (" (1)p" (k) p + (m — —m).  (19)

The final result is symmetric with respect to the reversal of the transverse gluon vector m. To simplify the equations
we will keep only the terms we explicitly show, the complete expression can be constructed by symmetrizing with
respect to m. Using a Gaussian model for the projectile

(p"()p"(p)) p = (21)° (k) 6°° 63 (k + p). (20)
we obtain

(271r)6 (" (k)" (Dp° (R)p" (Dp! (m)p! (=m)) p
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+ 659216 (1 + m) P (k)6P (k — m)p®(k)6@ (I + k) + 6°46° 12 (16D (I — m)p? (k)6 (k + m)p? (k) 0D (1 + k)
+ (m — —m). (21)

Multiplying by the trace and summing with respect to the color indices we arrive at
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t(wa)@”@fmf%wﬂmﬂmmﬁﬂm»=(ﬁg;>

x (W2 (0) 2 @2 6 (k + m)o® (1 = m)8@ ( + 1) + 12 (B2 D)0 (ke + m)o@ (T = m)s> (1 + F)
+ 2 (k) (1) (k)P (14 m)5P (k= m)6®) (1 + k) + (1) (k) (k)5P) (T = m)3®) (k +m)5 (I + k)
+ (m— fm).> (22)

Therefore the correlated piece defined by the second term of Eq. (13)
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which eventually results in
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As expected, this exhibits a weakening of the correlation when the momenta of the quarks are the same (mind the
minus sign in front of the integral). Another prominent feature of this expression is that it is invariant under the
reversal of the gluon momentum m.

The combination ¢(—m, p;a)¢’(—m,p;«) is proportional to the unit matrix,

(.1 0)67 (m.910) = gy {(@m -+ cm - (m =) +4(m x )%} (26)

while the other relevant combination is given by
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The integrals I; and Iy are matrix valued in the spin indices which are traced over in Eq. (28). Explicitly, the
definitions of the integrals I; and I read

Y da 1 _ 2 2
Il(An’m7p) - /0\ Ck-’-@Anéé m4(64p2+04(m—p)2)2 {(amp+am (m_p)> +4<m Xp) }’ (31)
da 1

1
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(= (@m-p—am-(m+p)(@m-(p+2m) - am - (m+p)) - 4(m x p)’
+ diosam? m x p) ; (32)

The integrals can be computed analytically and the key ingredients are presented in Appendix B.
Recall that our goal is to obtain the average of cos(¢q + ¢p — 2¢,,), that is

AN ?
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FIG. 2: The sign of the correlator as a function of ¢, and An. The curves illustrate the sign change, or the zeroes of the
corresponding contributions. The shaded region show the negative values of the corresponding contributions.

Here we have fixed the magnitude of the gluon momentum, while the integral over the quark momenta p and ¢ should
performed inside a prescribed momentum bin. Ideally we should choose the size of the two momentum bins to be the
same. This can in principle be done numerically, but would involve performing multi dimensional integrals. To get a
qualitative idea of the behavior of the average we choose a simplified averaging procedure which reduces the problem
to a simple two dimensional integral. We integrate with respect to the absolute value of the momentum of one of the
quarks (e.g. ¢) from zero to infinity, while keeping the ratio of the other quark momentum to the gluon in a finite
range. Defining A¢, = ¢, — ¢, and ¢, = p/m we obtain

(v2 -1
2N,
< [ desey [ a6, cos(286, /T — m,—m.p) s (= 2sm, )|
Lo cos(2A¢,) + 2 cos(Agy)
\/012J + 4y, cos(Apy) + 4

’chaorr = _N(Qﬂ-)’?glolu’e‘(m)

H{IQ(nQ _n17m7p)‘lg(nl _7727m7p)} (34)

The normalization A includes no angular dependence; it is defined through uncorrelated production and thus is
irrelevant for our qualitative study 2.
At large An = 15 — 11, both terms are proportional to An? exp(—An), as was shown in Appendix B

. ~[n - (m4p)® +4(m xp)?] [(m-p)* +4(m xp)*] = 5 A,
A}’,lgloo Il (A’I’], _m7p)11(_AT]a mvp) - m8p4 (m + p)4 AT} € A (35)
and
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An?e 81,
m8p2(m + p)4(p — 2m)? e

(36)

lim 12(772 - nlamap)jg(nl - 7727m’p) =
An—oo

This shows that the rapidity correlations in the projectile wave functions are quite wide with an exponential decay in
rapidity difference moderated by a power (An)? exp(—An). We stress again that this result cannot be immediately

3 Nevertheless, we want to briefly note that the normalization factor, A is proportional to ((Nf —1)g%u?S, /mQ)3 g*m*, where the factor
in the brackets is simply given by the single-gluon production, while the extra factor of g* comes from two quark production and m*

from the integration over the quark transverse momentum about the gluon one.
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FIG. 3: The correlator as a function of An. The black solid line is the sum, the red dashed line is the contribution proportional

5 . 9 .. . 1 _ 7 10,6 (NZ-1)?
to from I7 and the blue is the part from I3. The normalization coefficient C~' = N'(27) ¢ u’(m) N

confronted to the experiment, as the rapidity dependence may be modified by scattering and may potentially be
further affected by the high energy evolution. Let us further analyze both contributions at large rapidity separation,
in particular we will focus on a more differential observable and fix ¢,. Although the angular average of the contribution
proportional to I? can be performed analytically by the residue analysis, the second term in Eq. (34) has a branch

point singularities and a cut originating from the square root in the denominator cf, + 4cp cos Agp + 4 and its

analytic analysis is complicated. We performed numerical studies of both contributions as a function of ¢, and An
concentrating our attention on the sign change. This is illustrated in Fig. 2. In the figure, the shaded regions show
where the corresponding contributions are negative. We see that the sum has negative values concentrated around
cp ~ 1.

Summing all the terms and integrating numerically in the range 0.9 < ¢, < 1.1 we get the result illustrated in
Fig. 3 4.

Where do the quarks go?

Although our main goal is to calculate 72, it is instructive to visualize the actual configurations in the wave
function that lead to this result. To this end we plot the different contributions to the correlation function Eq. (28)
for different rapidity differences and different vales of the ratio c,.

Figure 4 presents the sum of the first and last terms in Eq. (28). Recall that in this contribution the transverse
momentum of the second quark ¢ (not shown in the figure) is parallel to p. The figure illustrates that at small rapidity
differences An = 0, the Pauli blocking most efficiently suppresses configurations where the momenta of the two quarks
are perpendicular to the momentum of the gluon. The wave function is thus dominated by the configurations where
both quarks are either parallel or anti parallel with the gluon, naturally leading to positive contribution to 8 .. At
larger rapidity difference the fortunes flip, and the Pauli blocking becomes stronger for quarks parallel and anti parallel
with the gluon. The wave function becomes dominated by the states where the two quarks move perpendicular to the
gluon in the transverse plane, a configuration typical of CME. Indeed the sign of 42 flips at large rapidity difference.

4 For a very crude estimate, by taking into account the parametric dependence of the normalization factor A' we obtain ~Z,., o
(NeS1m?)™3. For S ~ 1/A(2;20D and the gluon momentum m =~ 1 GeV we obtain 72, ~ 107%. To compare this to the experi-
mental data we have to divide this number by vs which is of order 10~!. This lands us in the right ballpark of numbers as observed
in CMS data. We caution the reader that this is very crude estimate and should not be taken for granted unless the calculations are
performed after scattering.
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FIG. 4: The trace f%élTrIl (An,—m, p)[1(—An,m,p) + m — —m as a function of the angle between the momentum of quark
p and the momentum of the gluon m for |p| = |m| and different An.

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Agy/2m Ay /21 A¢y/2m

FIG. 5: The trace —%TrIQ(An,m,p)Ig(—An, m,p) as a function of the angle between the momentum of quark p and the
momentum of the gluon m for ¢, = |p|/|m| = 0.2 (left), ¢, = |p|/|m| =1 (center), ¢, = |p|/|m| =5 (right), and different An.

Figure 5 depicts the second contribution to Eq. (28). Again we can follow the evolution of the dominant configu-
rations as the function of rapidity difference and also of the ratio of the momenta.

First consider the left panel. Here the magnitude of momentum p is small, and thus the second quark momentum
q is parallel to the gluon momentum m due to the d-function in the second term in Eq. (28). At An =0, the quark p
is mostly parallel or anti parallel with the gluon, however there is also a significant component of the wave function
where the quark is perpendicular to the gluon. One also observes a symmetry A¢, — 7 —A¢,. Due to this symmetry
the contribution to 72 vanishes. As the rapidity difference grows, the maximum at A¢, = m/2 becomes dominant,
but still 48 . = 0 due to the above mentioned symmetry. In this regime the dominant configuration is that of a higher
momentum quark parallel to the gluon, and the lower momentum quark perpendicular to the gluon direction. Finally
at very large rapidity difference the distribution becomes flat in the angle.

The centre panel refers to the value ¢, = 1. At An = 0 the momentum p is predominantly either parallel or anti
parallel to m. The momentum ¢ remains parallel to m. The contribution to 72, ., again is very small due to symmetry.
At large An there is also a sharp maximum in the distribution around A¢,, = 7/2. In this regime 72 is nonvanishing
and negative, since q is not strictly parallel to m anymore, but points at acute angle to it.

Finally the right panel is generic for the case ¢, > 1. Here ¢ and p are approximately parallel. Here at all An there
exist three preferred configurations: the two quarks are either parallel, anti parallel or perpendicular to gluon. The
sign of 45, here depends on the relative magnitude of the three maxima.

We do not illustrate the third term in Eq. (28), as it is equivalent to the second with m — —m.

To summarize, we observe that in the regime where we find negative 72 the dominant configurations in the wave
function are very similar to the ones expected due to CME in non-central and peripheral A-A collisions: the momenta
of the same charge quarks are parallel to each other and perpendicular to the momentum of the gluon, which in our
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calculation and experimental analysis using the three-particle correlator is a proxy to the direction of the reaction
plane.

The pedestal

We now turn to the other term in the correlation function, i.e. the first term in Eq. (13).

dN A
dny d?pdnzd?qdngd*m

10
(2;) - /dzkd?kdzldQH “(k)p°(k)p" (1)p (Dp? (m)p! (=m)) ptr(r7°)tr(7o7%) @a (k, 1 p) @2 (k, L q). (37)

The correlated part in this term comes from eight contractions:

(p ()b(l)c(k) YD)p! (m)p! (—m)) p
= (p*(k)p’ (m)) p(p° (k) p” (—=m)) p(p® D (D) p + (p°(1)p7 (m)) p (p° (k) p! (—m)) p (p™ (K)o (1)) p
+ (p*(k)p” (m)) p(p*(1)p" (—m)) p(p"(1)p°(k)) p + (0" (D) p? (M) p{p* (D) p! (—m)) p(p" (k)p°(k)) p
+ (m — —m). (38)

Therefore the color summation for this correlators leads to

tr(rer0)er(r7?) (o (k) p" (1) p° (k) p (D) p” (m) p (=m)) p
_NZ-1

(2m)® (u4(m)u2(l)6(2)(k +m)d® (k= m)sP 1+ 1) + p (m)p* ()6 (1 + m)6® (k — m)s® (k + 1)

+ u(m) (1)@ (k +m)s@ ([ — m)s@ (1 + k) + p*(m)p2(k)6@ (1 +m)6@ ([T — m)s® (1 + /%)) + (m — —m). (39)
Realizing the §-functions in the color charge correlators we find

dN b @n)2gtut(m) (N2 - 1)
dm d?pdnd?gdngd?m m2 4

corr

X /dQZMQ(l){ [%(—m, L;p)®2(m, —1; q) + ®o(—1, —m; p)®2(m, I; q)

+ (I)Z(_mv l;p)@2(_lv m; q) + (I)Q(lv _m;p)q)2(_lv m; q)] } + (m - _m) : (40)
Taking into account that

Dy (k, 1;p) = (2m)263) (k L/ da ¢(k,p; )¢’ (k, p; o) = (2m)26) (k — 1)11(0, k, p) (41)

and realizing the momentum delta functions we arrive to

dN :|A (27T)4910M6

(m) o
=—"T—2(N;-1)S8
dm d?pdnad?qdngd?m 2 (Ve )S1L

m
corr

1 1
X{ﬁ'A<mM—mnaWWﬂmn® ﬁ'/twﬂmnﬁMWWmﬁ)+0n%—m%

0
L
1:(0,—m,p) 1, (0,m,q)

(42)

where we introduced the transverse area of the projectile, S| = (27)26®) (k — k). As before, we are interested in the
following observable

(cos(dp + @g — 20m)) = (cos(Ad, + Ady)) = (cos(Agp) cos(Ady)) — (sin(Agy) sin(Ag,)) (43)
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FIG. 6: m*Tr I1(A¢,) as a function of Ag, for three values of |p|/|m| = ¢, = 0.5,1, 1.5.

To compute the angular average of Eq. (42), it is sufficient to compute

/dA¢q I (0,m, q) cos(A¢y) (44)

because of the symmetry [ dAg¢, I1(0,m, q)sin(A¢,) = 0 and the factorization of the angular integrals with respect
to Ag, and A¢,. Before we proceed, we notice that the integral

/dAgbq I (0, —m, q) cos(Ag¢,) = /quSq I (0,m, q) cos(A¢y + ) = —/quSq (0, m, q) cos(A¢y) (45)

Therefore we get

v > o dN ! -
Wcorr - N/d qd p/d¢m |:d771d2pd772d2qd77gd2m:| corr COS(¢p + ¢q 2¢m)
2
— CON(2m)g O (m) (N2 — 1)S1m? ( [deyes [ a6, it 0.0, cos<A¢p>) . (46)

Note that naively one might think that the last expression should be multiplied by the number of flavors Ny; this is
however incorrect, as we are interested in the production of same-charge quarks. Equation (46) demonstrates that
there is a negative and rapidity-independent contribution to the observable ~.

To understand the origin of this correlation, it is instructive to consider the dependence of I; on the angle between
the gluon and the quark. This dependence is demonstrated in Fig. 6. As seen from the figure, the momentum of one
of the quarks always tends to align with the momentum of the gluon. This alignment is most favorable for ¢, =1
and is only approximate otherwise. The momentum of the other quark on the other hand is anti aligned with that
of the gluon, and therefore with the momentum of the first quark. The correlation generating the negative pedestal
therefore arises via anti correlation between the momenta of the two quarks mediated by the gluon.

IV. DISCUSSIONS AND SUMMARY

In this note we computed three particle (¢qg) correlations in the projectile wave-function within the McLerran-
Venugopalan model. In particular we considered the angular average of v = (cos(¢p+ g —2¢,)) where p and ¢ are the
momenta of the quarks, and m is the momentum of the gluon. We showed that there are two distinct contributions
to this quantity: the pedestal, the rapidity-independent production, with a negative , and the rapidity-dependent
contribution originating from Pauli blocking, which is characterized by positive v for small Ay = 1, — 72 and negative
~ for An > 1. The sign change happens at rather large values of An which is not consistent with the experimentally
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FIG. 7: The leading order contribution to the three particle correlation involving quark, anti-quark and gluon. The black blobs
denote the gluon sources, p. The grey blob in the gluon splitting vertex accounts for the instantaneous interaction too.

observed value of An ~ 1.5 — 2. Nevertheless, qualitatively the rapidity dependence is similar to the experimentally
observed one for the same charge v. We have also seen that in certain kinematics, where 78 is negative, the dominant
qqg configurations in the hadronic wave function have very similar pattern in terms of the direction of their momenta
as expected from CME, even though the physics producing this pattern is completely different. At the very least this
underscores the necessity to better understand the background for the CME.

To perform more rigorous quantitative studies, one would have to improve on our calculations in several ways.
Most importantly one needs to compute the scattering with a reasonable model for the target fields. It would also be
desirable to include more effects of finite density in the projectile wave function by taking into account the Bogoliubov
operator contribution to the energy evolution [42]. It is not inconceivable that scattering effects can limit the rapidity
range of the Pauli blocking contribution. Similar effect was observed in Ref. [38], where the correlated contribution in
the wave function was found to decrease at large rapidity differences as (n; — 12)* exp{|n2 — 71|}, while in the particle
production the decrease was faster - (9, —12)? exp{|n2 —n1|}. An effect of this type could shorten the rapidity interval
where the quantity -y is positive bringing it closer to the experimental observations.

Nevertheless we can comment on the quantitative behavior of the two contributions, namely on their dependence
on the number of colors, the gluon momentum and the projectile transverse area. In particular, by comparing the
contributions, see Eq. (34) and Eq. (46), we conclude that the term originating from Pauli blocking is enhanced by
an additional power of N, and suppressed by the projectile transverse area and the gluon momentum squared S| m?.
Parametrically, both contributions are of the same order if S;m? ~ N,. The pedestal-like correlations dominate at
large gluon momentum.

Our focus in this paper was on production of same sign (in fact same flavor) quarks, which upon hadronization are
likely to produce same charge pions. CME also predicts the behavior of the same charge correlation. In our approach
a reasonable proxy to this quantity should be the ¢gg correlator. The behavior of such correlator in the CGC approach
is easy to understand qualitatively. The dominant contribution to such correlator comes from the diagram in Fig. 7,
where one of the CGC gluons fluctuates into a quark - anti quark pair. The momenta of the quark and anti quark are
opposite to each other in the frame where the parent gluon has vanishing transverse momentum. On the other hand
we know from the calculation of two gluon correlations that the momenta of the two gluons are mostly parallel or anti
parallel. We thus expect the ¢qgg component of the wave function to be dominated by configurations where the quark
and anti quark have momenta which are roughly anti parallel to each other, and perpendicular to the momentum of
the gluon. Such configurations are again very similar to the ones expected from CME, and would lead to positive
~B ., for opposite charge particles.

Our calculations can be extended to study charge-blind correlations (i.e. without the restriction of the same charge).
The experimental data in Au-Au collisions at RHIC shows that, the average (cos(¢1 + ¢ — 2¢3)) is negative in a wide
range of centralities including very peripheral events, see Ref. [47]. From the initial state and the CGC perspective,
an obvious candidate responsible for the explanation of this data would be the three gluon correlation in the projectile
wave function. However, as it is very well known, see e.g. Ref. [22], at the leading order the corresponding number
density is symmetric under the reversal of any gluon momentum k& — —k; this results in vanishing {cos(¢1 + @2 — 2¢3))
at the leading order. Beyond the leading order, as it was demonstrated in Refs. [29, 42], there is no symmetry k — —k.
At the same order there is also contribution from quarks, which was partially computed in this paper. By combining
these pieces together one will be able to extract (cos(¢1 + ¢2 —2¢3)) and confront it with the experimentally observed
one. This is a subject for a separate study.
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Appendix A: Light Cone Hamiltonian

In this Appendix we present the Light Cone Hamiltonian calculation of the dressed perturbative state used in Section
II. In our notation, see Ref. [48], the light-cone components of four-vectors read p* = (p™,p~,p), so p represents the
transverse momentum. The free part of the Light Cone Hamiltonian (LCH, see [39-41]) is

dkt &2k k2
Hy = - 2 etk R a% (kT kR Al
’ /k+>0 2m (2m)? 2k* a;" (K7, k) ai (k™ k) (A1)

dptd®p p* s + 7 (ot o) d. (pt
+ Z/+>O @rp 2pt [dl, (0" p) das(pT,p) + d, .(p",p) das(pt,p)]

where a,al are gluon annihilation and creation operators, a and a are color indices in the adjoint and fundamental
representations, respectively, and ¢ and s polarisation and helicity. This defines the standard free dispersion relations:
k.2 p2
E,=k" = , Eg=p7 = —.

okt PeTP T ous
To zeroth order the vacuum of the LCH is simply the zero energy Fock space vacuum of the operators a, d and d:

aql0) =0, dpl0) =0, dpl0) =0, Ey=0.

(A2)

The full Hamiltonian contains several types of perturbations,
0H = §H? + H999 + ... . (A3)

By --- we denote terms that include the soft gluon sector, which is of no relevance for the present work. p denotes
the color density of the background field, corresponding to the valence or hard degrees of freedom and depending on
transverse coordinates only.

Interaction with the background field

Recall that we are interested in approximate eigenstates of the Hamiltonian in the presence of the background color
charge density due to valence partons. The interaction with the background charge is comprised of three terms

0H? = §H’9 + 6HPI + §HPI9 . (A4)
The last term is of no interest to us since it does not involve quarks. The remaining ones are
< dkt d?k gk;
ore — Gh & h Y Ta + al a1+ a A
s = [ )zyfwk+P/2[az<k ) (R +af (kB ()] (45)
k+d2k dptd?p ¢? o
SHP1 = Z/ e 0T ) T AL = k) o) ] (a6)

Quark-gluon interaction

The quark-gluon interaction responsible for quark production reads

dp™ d*pdk™ d*k
SHY9 = g8, Z /23/2 276 ()12 O(k™ — p")TL (KT, k,pT,p)

81,82

< |at (et k) L, (07, p) L (=Pt k= p) + e (A7)

«, 1
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with the vertex I'* defined as

i k; ag-p iU'(k’—P)
FSlsz(k+’k7p+’p) = XJ5(2 |:2k1+_ p+ a - (k:+—p+) Xer (As)
ks Di ki — ps i Pm km — DPm
_ T R P2 im 3 [ Fm
T e {2“ <p+ +k+—p+) e <p+ Rt —pt )|
ks

_ pi | ki—pi im (Pm km —Dm
= Ja [Qk‘* - (1?* s —p+> e (19* kY —p+)] ’
and the spinors ys—1/2 = (1,0) and x,—_1/2 = (0,1).

Diagonalising the perturbation dH in (A3) perturbatively leads to the wavefunctions (3), (11). More detailed
calculations could be found in [38, 48].

Appendix B: Integrals

Here we list integrals essentials to compute I; and I, defined in Eq. (30). We start from I;.

/1 da 1 _ (m—p)?—p? 1 n eAn — 1 In (m — p)?
o a+aet(ap? +a(m—p)2)?  eAi(m—p)2 —p?p(p—m)? " (eA7(m —p)? - p?)? p?

+ An] (B1)

1
p—m)? )

'_da_(@m-ptam-(m-p)?> _ _(p-m)P’—p* [ N’
AOL—F@&An (ap? + a(m — p)2)? _eAn(p_m)Q_pQ (p (p )) +(6A77(

—m)?
X [p.(pm) {p.(p+m)eA"(pm)'(p2m)}ln(pﬁ)+(M'peA"m'(mp))QeA?iJ (B2)

Using the identity

) (m x p)°
(p (p - m)) =1- p2(p _ m)g (B3)
we obtain
4 9 eAn _1q m— )2
m= Iy (An,m, p) = 4(m X p) (eAn1(m — p)? — p?)? [ln ( pzp) +An| +
(m —p)* —p? (m x p)? )
eAn(m — p)? — p? <1+3p2(pm)2> (eA1(p —m)2 — p2)2

—m)2? A
x [p- (p—m){p-(p+m)—e>"(p—m)- (p—2m)}1n(ppz) +(m-p—e*m- (m—p))QeAnil (B4)
In the limiting case of An — oo
. _ 1 (m-(m=p)*>+dmxp)* 4,
A}ylgloo 11(A7I7 m7p) - m (m _ p)4 Ane (B5)
and
. _ 1 2 2
A%ILHOO Ii(=An, —m,p) = mipt ((m - p)* +4(m x p)?) An. (B6)
The relevant integrals for I, are
/1 da 1
o a+aed (ap? + a(m+ p)?)(alp + 2m)? + a(m + p)?)
_ (27 —1)An
~(€An(p+m)? —p?)(ehn(p +m)? — (p+2m)?)
. 1
((p+2m)? —p?)(p +m)?
2 _ .2 2 2 _ 2 2
" A(m+p) o, etm) A(m+10) (p+2m)° | (p+2m) , (B7)
e21(m + p)? — p? p? eA1(m+p)?—(p+2m)2  (p+m)?



~(p+2m) —am- (m+p))

/1 da (am-p—am-(m+p))
0 Q-+ aedn (ap? + a(m + p)?)
An  (m-p+er(m?+m-p)

@(p +2m)? + a(m + p)?)
(m? + (14 €27)(m? + m - p))

(am
(
_ )

eA—1  (er1(m+p)*>—p°)((p

+

T 2m)? = Bi(m + p)?)
(p2+m-p)(2(m2+m-p)2+m m - p+ p?(3m? + 2m - p))

2
I (p+m)

(eAn(p+m)2 —p?)((p 4 2m)? — p?)(p + m)?

~(p+m)-(p+2m)[(p+2m)*m - (p+m) +m-p(p+m)?

p2
(p +2m)?

(eAn(p +m)? — (p+2m)2)((p + 2m)? — p?)(p + m)?

and, finally,

1 do a
/o a+ aeln (ap? + a(m+p)2)(@p + 2m)2 + a(m +p)2)  (eA1(m +p)?

(p +m)?

An

16

(B8)

1 2
In (p+m)

- (eAn(m + p)? — p?)((p + 2m)? — p?) p?

+

1 I (p+m)?
((p+2m)?2 —et1(m+p)2)((p+2m)2 —p?)  (p+2m)?

—p?)((p+2m)* — e27(m +p)?)

(B9)

Multiplying the integrals by the corresponding factors, one may obtain I». The resulting equation is cumbersome; we
refrain from providing its explicit result here.
Nevertheless, in the limit of large An we obtain

and

.M
M

<<EENrE<UQTEER

1 (m-(m+p))?+4(m xp)?

An—oo - m# (m + p)4

Ane= A7

SRy e— ((m-p)2 +2m? m-p+4(m x p)z) An.
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