
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Deep learning beyond Lefschetz thimbles
Andrei Alexandru, Paulo F. Bedaque, Henry Lamm, and Scott Lawrence

Phys. Rev. D 96, 094505 — Published 10 November 2017
DOI: 10.1103/PhysRevD.96.094505

http://dx.doi.org/10.1103/PhysRevD.96.094505

Deep Learning Beyond Lefschetz Thimbles

Andrei Alexandru,1, 2, 3, ∗ Paulo F. Bedaque,2, † Henry Lamm,2, ‡ and Scott Lawrence2, §

1Department of Physics, The George Washington University, Washington, D.C. 20052, USA
2Department of Physics, University of Maryland, College Park, MD 20742, USA

3Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics,
University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland

The generalized thimble method to treat field theories with sign problems requires repeatedly
solving the computationally-expensive holomorphic flow equations. We present a machine learning
technique to bypass this problem. The central idea is to obtain a few field configurations via the flow
equations to train a feed-forward neural network. The trained network defines a new manifold of
integration which reduces the sign problem and can be rapidly sampled. We present results for the
1 + 1 dimensional Thirring model with Wilson fermions on sizable lattices. In addition to the gain in
speed, the parameterization of the integration manifold we use avoids the “trapping” of Monte Carlo
chains which plagues large-flow calculations, a considerable shortcoming of the previous attempts.

I. INTRODUCTION

Monte Carlo methods are widely used in the study of
field theoretical and many-body systems. They can be
understood as a way of computing a large dimensional
integral encoding the physics of the system through the
importance sampling of the integrand. In field theories,
this integral is a discretized version of the Feynman path
integral. The Monte Carlo method is essentially the only
general purpose method capable of dealing with strongly
interacting field theories. Unfortunately, many systems
of great interest are defined by path integrals where the
integrand oscillates wildly, making a direct stochastic es-
timation impossible in practice. This situation is referred
to as the “sign problem”. The class of systems with a
severe sign problem includes most finite-density systems,
among them QCD, condensed matter models (e.g. the
Hubbard model away from half-filling), and all real-time
calculations. In the context of QCD, many ideas aiming
at solving the sign problem have been developed through
the years, among them the complex Langevin method [1],
the density of states method [2], canonical methods [3, 4],
reweighting methods [5], series expansion on the chemical
potential [6], fermion bags [7] and analytic continuation
from imaginary chemical potentials [8].

In the last few years the thimble approach [9, 10] has
received a lot of attention. The main idea of this method
is to deform the region of integration of the path integral
from the original real fields to some other manifold, M,
embedded in the space of complexified fields. This defor-
mation, if care is exercised, does not change the value of
the integral, thanks to a multidimensional generalization
of the Cauchy theorem of complex analysis. IfM is prop-
erly chosen, the sign problem can be solved or, at least,
substantially reduced.

∗ aalexan@gwu.edu
† bedaque@umd.edu
‡ hlamm@umd.edu
§ srl@umd.edu

In the first attempts, M was chosen to be the set of
Lefschetz thimbles, which are the multidimensional gen-
eralization of the “steepest descent” or “constant phase”
paths of complex analysis [11–16]. The phase of the (Eu-
clidean) action, and consequently of the Boltzmann factor
e−S , is constant over one thimble1, so the sign problem
is ameliorated. Two complications immediately appear.
The first is that the thimbles cannot be found analyti-
cally in non-trivial models so an algorithm to compute
them is necessary to perform the integral. This is a non-
trivial task, but a few proposals have been put forward
[11, 15, 16]. The second complication is that it is very
hard to determine which combination of thimbles equals
the original integral over real fields. It has been conjec-
tured that one thimble dominates the path integral in the
thermodynamic and/or continuum limits [9] while, at the
same time, the importance of multiple thimbles has been
demonstrated in finite volume systems [17, 18].

A new method, inspired by the thimble approach, was
suggested in [17]. The deformation of the manifold of
integrationMT is chosen to be the result of evolving every
point ζ of the original integration region (the set of real
fields, identified with RN ⊂ CN) through the holomorphic
flow equations by a “time” T :

dφi
dt

= ∂S

∂φi
, φi(0) = ζi, (1)

where S is the (Euclidean) action of the model and the
bar denotes complex conjugation. The point φ̃ in MT

corresponding to ζ is given by φ̃(ζ) = φ(T). As the
flow time T increases, the set of all points thus obtained
(MT) approaches the right combination of thimbles which
equals the original integral over RN . At intermediate val-
ues of flow time T , MT differs from the thimbles and
the sign problem is not completely solved but amelio-
rated. For this reason, the method introduced in [17] is

1 An additional contribution to the integral from the curvature of
the thimble can be nonzero, but this “residual phase” is typically
found to be small.

mailto:aalexan@gwu.edu
mailto:bedaque@umd.edu
mailto:hlamm@umd.edu
mailto:srl@umd.edu

2

sometimes called the “generalized thimble” approach [19].
This approach has the advantage that neither a priori
information about the correct combination of thimbles
equivalent to the integration over real fields, nor their
location and shape, is required. This method was demon-
strated in two dimensional models both in Euclidean time
[20] and in real time (Minkowski space) [20]. However, as
the method was applied to larger systems two complica-
tions became apparent. They are a consequence of the
fact that, in some models and parameter values, the sign
problem is alleviated only after considerable flow. The
first problem is that large flow times are computationally
expensive. The second is that the probability distribution
over RN — induced by the probability distribution over
MT and the parameterization φ(ζ) — typically becomes
strongly multimodal, with wide barriers of low probability
separating isolated regions of high probability. Such a
distribution is difficult to properly sample through local
updates. Although methods to deal with the multimodal-
ity have been proposed [21, 22], they significantly increase
the computational cost of the calculation.

This paper introduces a substantial add-on to the gen-
eralized thimble method which addresses the two short-
comings described above. The main idea is to use a
parameterized form of the manifold MT obtained by in-
terpolating between some (complex) fields obtained from
evolving real configurations by Eq. (1). This multidimen-
sional interpolation is a complex non-linear regression
problem, a very non-trivial task. We approach it using
machine learning techniques. More precisely, we will use
a feed-forward network which inputs a real configuration
φR and outputs the corresponding imaginary part on the
integration manifold:

φR → φ̃ = φR + if̃(φR), (2)

where the function f̃ is implemented using the feed-
forward network. The network is “trained” in such a
way that the set of complex fields φ̃ obtained by running
all real φ, the “learnifold” LT , approximates the flowed
manifold MT . The advantage of using the network to
generate the configurations is that it bypasses the compu-
tationally expensive, repeated solution of Eq. (1) (and the
even more expensive computation of a Jacobian, see be-
low). In addition, the parameterization φ̃ = φR + if̃(φR)
has better properties compared to the one used previously
regarding the multimodality problem, as explained below.

We will review the generalized thimble method in Sec. II
and the use of feed-forward network methods in Sec. III.
The specifics of the learnifold will be covered in Sec. IV.
In Sec. V we discuss the 1+1 dimensional Thirring model,
which we will the use to test and demonstrate our method.
The details of the simulations are presented in Sec. VI
and results are presented in Sec. VII. Conclusions are
summarized in Sec. VIII.

II. GENERALIZED THIMBLE METHOD

The expectation value of an observable in field theory
can be cast in the form of a path integral

〈O〉 =
∫
RN Dφ e

−S[φ]O[φ]∫
RN Dφ e

−S[φ] , (3)

where S[φ] is the (Euclidean) action. The stochastic
evaluation of this ratio is accomplished by approximating
it by

〈O〉 ≈ 1
Ns

∑
φ(s)

O[φ(s)], (4)

where the configurations φ(s) are sampled randomly from
the distribution p[φ] ∼ e−S[φ]. The exact value is ap-
proached as the number of configurations Ns grows.

This method works if S[φ] is real; otherwise the sam-
pling can be done with respect to ∼ e−ReS[φ] and the
phase of the integrand included when computing observ-
ables by reweighting

〈O〉 =
∫
RN Dφ e

−S[φ]O[φ]∫
RN Dφ e

−S[φ]

=
∫
RN Dφ e

−SR[φ]O[φ]e−iSI [φ]∫
RN Dφ e

−SR[φ]

∫
RN Dφ e

−SR[φ]∫
RN Dφ e

−SR[φ]e−iSI [φ]

= 〈Oe
−iSI 〉SR

〈e−iSI 〉SR
. (5)

with SR = ReS, SI = ImS. This procedure is practical
only if the average phase 〈e−iSI 〉SR is large. Otherwise
the calculated expectation value will result from a ratio
of small numbers, each resulting from detailed cancella-
tions among configurations. In most theories the average
sign is expected to vanish exponentially as the volume
increases and/or the temperature decreases. This is the
sign problem.

The idea of the generalized thimble method is to deform
the domain of integration from RN toMT , a submanifold
of CN of (real) dimension N :

〈O〉 =
∫
MT

Dφ̃ e−S[φ]O[φ]∫
MT

Dφ̃ e−S[φ̃]

=
∫
RN Dζ det J(ζ) e−S[φ(ζ]O[φ(ζ)]∫

RN Dζ det J(ζ) e−S[φ̃]
(6)

where S[φ̃] is the analytic continuation of the action to
complex values of the field, φ̃i(ζj) is a parameterization
of the manifold MT by the N real variables ζj and Jij ≡
(∂φ̃i/∂ζj) is the Jacobian relating φ̃i to ζj .

For our purposes, there are three conditions sufficient
to ensure the equality of Eqs. (5) and (6). First, the
integrand should be holomorphic (i.e., complex analytic
with no poles in the complexified domain), which is the

3

case for most observables in quantum field theories. Sec-
ond, the original and final manifolds must be homotopic

— that is, there should be a continuous family of man-
ifolds connecting them. Lastly, the domain of integra-
tion should be compact2. In the particular case of the
Thirring model, all degrees of freedom are periodic, so
that the original domain of integration is not RN but
(S1)N = TN (an N-torus) which, upon complexification,
becomes (S1 × R)N = TN × RN .

The calculation of the integral over MT requires a
parameterization of the manifold. Previously the pre-
image ζ of the point φ̃ onMT was used [20]. In this case,
the corresponding Jacobian can be calculated by solving

dJij
dt

= ∂2S

∂ζi∂ζk
J̄kj , J(0) = 11. (7)

Evolving J according to Eq. (7) is the most computation-
ally expensive part of the whole method. Since det J and
S over MT are complex, reweighting is done using:

〈O〉 =
∫
RN Dζ det J(ζ)e−SO∫
RN Dζ det J(ζ)e−S

=
∫
RN Dζe

−SR+Re log(det J)e−iSI+i Im log(det J)O∫
RN Dζe

−S+Re log(det J)

×
∫
RN Dζe

−SR+Re log(det J)∫
RN Dζ e

−SR+Re log(det J)e−iSI+i Im log(det J)

= 〈Oe
−iSI+i Im log(det J)〉Seff

〈e−iSI+i Im log(det J)〉Seff

, (8)

where Seff = SR − Re log(detJ). The phase e−iSI is
constant over each thimble so it typically fluctuates little
over MT for large enough flow time. Experience shows
that ei Im log(det J) also fluctuates little for problems of
interest.

The parameterization of a point φ̃(ζ) of MT by its
pre-image ζ is problematic. This is because the regions
in ζ-space with large probability shrink with increasing
flow time while the distance between their centers stay
fixed. The resulting probability distribution is strongly
multimodal and difficult to sample via a Monte Carlo
chain with small updates. The difficulty arises because a
single Metropolis proposal is unlikely to “tunnel” between
such regions and therefore is “trapped”.

III. FEED-FORWARD NETWORKS

In this section we summarize the use of feed-forward
networks for interpolation purposes. In the next one

2 This condition can be relaxed for non-periodic variables if the
deformation is such that the asymptotic behavior of the integrand
guarantees the existence of the integral at all intermediate steps
of the deformation.

sin(Re(A0))

cos(Re(A0))

sin(Re(A1))

cos(Re(A1))

Im(A0)

Im(A1)

FIG. 1. Graphical representation of a feed-forward network
as used in the paper. The input layer is on the left, the output
layer on the right.

we will detail the application of it to constructing the
“learnifold”. Feed-forward neural networks provide a family
of functions particularly amenable to non-linear regression,
and we use them to represent an approximation to the
flowed manifold MT . A feed-forward network may be
thought of as a directed graph organized into several
layers which we sketch in Fig. 1. All edges point from
a node in one layer to a node in the next layer. The
first layer, termed the “input layer”, has exactly as many
nodes as the function has inputs. Similarly, each node of
the last layer, termed the “output layer”, corresponds to
a different degree of freedom in the output of the function.
There are no restrictions on the number of nodes in the
intermediate (“hidden”) layers, although for simplicity,
the networks we use in this paper have the same number
of nodes in each hidden layer. To the edge from node i
to node j is assigned the weight wij , and to each non-
input node j is assigned a bias bj . For a fixed topology

— number of layers and nodes — the weights and biases
parameterize a family of functions. It is these weights
and biases that will be adjusted when performing the
non-linear regression.

Given a fixed assignment of weights and biases, the
network represents a function ~f(~x), where ~x has as many
components as the network has input nodes, and ~f has
as many components as the network has output nodes.
This function is evaluated in the following manner. The
input values ~x are fed into the network at the input
nodes. Each node j in the first hidden layer computes
a linear combination of these values, weighted by wij
and shifted by the bias bj , and then applies a certain
nonlinear function σ. The result becomes the output of
that particular node that is then taken as the input in
the nodes of the next layer. This process is repeated for
each hidden layer and then the output layer, as values
are “fed forward” through the network. Thus the value
at node j is given by

vj = σ

(
bj +

∑
i

wijvi

)
(9)

where the sum is taken over all nodes i that have an
edge leading to node j (that is, all nodes in the previous
layer). The values at the output nodes are taken to be

4

the outputs of the function ~f(~x). The computation time
required for ~f(~x) is linear in the number of nodes in the
network.

There is considerable freedom in the choice of the non-
linear function σ. We adopt the common choice of the
“SoftPlus” function:

σ(x) = log (1 + ex) (10)

which asymptotically behaves like the integral of the step
function, but is smoothly differentiable (making training
easier). Because this function is bounded from below, but
the function we wish to approximate may not be, we do
not apply any nonlinear function at the output layer. The
output values are a simple (shifted) linear combination of
the values at the last hidden layer.

Our goal is to use the feed-forward network to inter-
polate a “training set”, that is, a set of vectors x(h) and
their corresponding ~y(h) = ~f(~x(h)) that are assumed to
be known. For that we minimize a “cost function”

C(w, b) = 1
N

N∑
h=1

∣∣∣~fw,b (~x(h)
)
− ~y(h)

∣∣∣ . (11)

in relation to the biases and weights (N is the size of the
training set). The minimization procedure is a simple
gradient descent algorithm. For a network with NI inputs,
K hidden layers, NH nodes in each hidden layer, and NO
outputs, there are NH(NI+NO)+(K−1)N2

H+KNH+NO
weights and biases to be adjusted, and therefore that
many dimensions to be explored during gradient descent.
The gradient of the cost function is efficiently calculated
through repeated use of the chain rule. Starting at the
output end of the network, we compute the gradient of
the cost function with respect to the output of each node.
This step is known as backpropagation.

∂C

∂vi
=
∑
j

∂C

∂vj
wijσ

′(vj) (12)

Once backpropagation is complete, the gradient of the
cost function with respect to the weights and biases is
immediately determined:

∂C

∂wij
= ∂C

∂vj
viσ
′(vj) and ∂C

∂bj
= ∂C

∂vj
σ′(vj) . (13)

Like the evaluation of the function itself, the determina-
tion of the gradient of the cost function (once the gradient
with respect to the values of the output nodes is known)
is linear in the number of nodes in the network.

The minimization of C(w, b) is a tricky problem due
to the existence of many local minima and an extensive
literature is dedicated to this problem (a good review of
modern gradient-descent methods is given in [23]). We use
the Adaptive Moment Estimate algorithm (Adam) [24],
which was found to perform best among the methods
tried. In Adam, the weights and biases are repeatedly
updated according to the descent rule

ws+1 = ws −
η̃s

1− αs (∇̃C)s, (14)

where ws collectively denotes the weights and biases at
iteration s of the algorithm, ∇̃C is a modified gradient of
the cost function with respect to w, and η̃ is the dynamical
learning rate that determines how far along the gradient
to progress. The difference in ∇̃C is the inclusion of
“momentum” by a decaying average of previous gradients
which decreases the steps needs to reach a minima by
encouraging the descent to follow the largest gradient:

(∇̃C)s =
[
(1− α)(∇C)s + α(∇̃C)s−1

]
. (15)

We set the weighting between the current and previous
gradient to be α = 0.9 following the suggestion of [23].
The prefactor of (1− αs)−1 in Eq. (14) corrects for the
bias where since w0 is initialized to 0, ws is biased towards
remaining there. Once s is sufficiently large, this term goes
to 1 and has negligible effect. At long times, stochastic
gradient methods can oscillate around a minima, so it is
useful to decrease the learning rate to reach the minima.
To decrease the learning rate, we use a dynamical learning
rate is defined as

η̃s = η√
ṽs

(1−βs) + ε
(16)

where η = 5× 10−4 is a base learning rate, and ε = 10−8

is a regulator to prevent numerical instability. Further
dynamical improvement comes from using ṽs which is
the variance of ∇C, correcting for bias and including a
momentum:

ṽs = (1− β) |∇C|2s + βvs−1 (17)

where the weighting between current and previous terms
is β = 0.999 and we have again introduced into Eq. (16)
a bias-correction factor (1− βs)−1. Thus, at iteration s
of Adam, we compute the gradient of the cost function
∇wC, update the estimates (∇̃C)s and vs, and finally
update the weights and biases. We perform 106 iterations
to train a learnifold.

Computing the gradient of the cost function is computa-
tionally expensive due to the size of the training set. For
example 100 configurations of 10× 10 lattices generate by
translation a set of 104 configurations (see the discussion
below). Instead, we use a stochastic gradient descent: we
approximate the gradient at each step by a sum over a
small, randomly-selected batch of the configurations. We
use a batch size of 25 to begin the gradient descent, and
then switch to a batch size of 200 after 2×105 steps. This
increase in batch size decreases the amount of stochastic
noise, and the second half of the gradient descent is able
to perform more fine-tuned optimizations.

IV. THE LEARNIFOLD

In order to avoid having to solve Eq. (1) and Eq. (7) at
every step of the Monte Carlo chain, we will find another
manifold LT (the “learnifold”) that approximates MT ,

5

FIG. 2. Pictorial representation of parameterizations of mani-
folds. The standard generalized thimble method parameterizes
(left) the manifoldMT by its preimage on the real plane. This
results in a large Jacobian because most regions flow into the
singularities and a small region stretches. The learnifold LT is
parameterized (right) by its real part, so the region on the real
plane is larger and the barrier between thimbles are narrower.

but can be more readily computed (using a feed-forward
network). Points φ̃ on the learnifold are parameterized
by points φ on the real plane:

φ̃i(φ) = φi + if̃i(φ) (18)

where the function f̃ will be constructed using the kernel
function f represented by a feed-forward network (see
below).

Besides the gain in speed from the use of a feed-forward
network in place of evolution of Eq. (1), our method
differs from the one in [16, 17, 20, 22, 25, 26] by the use
of a different manifold parameterization: a point in the
manifold of integration is parameterized by the real part
of its coordinates instead of its pre-image under the flow
in Eq. (1). This new parameterization is portrayed in
Fig. 2: the left-hand panel shows the parameterization
arrived at from a pure-flow algorithm, and the right panel
shows the parameterization from the learnifold.

This parameterization choice suffers from one drawback.
Since a point φ̃ on the learnifold is parameterized by the
real part φ ≡ Re φ̃, the learnifold will necessarily have
exactly one point with any given real part. In other
words, the function f̃ defining the LT is single-valued.
This is a restriction on the set of manifolds that can be
represented by this scheme: if the flowed manifold is such
that multiple points share the same real coordinates, the
class of learnifolds described here may not contain a good
approximation. In practice, we find that the parts of the
MT that are of interest (those parts with comparatively
low actions) do not behave in this way.

Despite this mild caveat, the advantages are substantial.
Firstly, the parameterization of MT by the pre-image
of the flow causes a small region of parameter space
(shaded blue in the figure) to map to a large region of
the manifold. This results in large fluctuations of |det J |,
which is expensive to compute. The parameterization
of LT by the real coordinates should not lead to large
stretchings. In fact, we find that det J ≈ 1 in practice,
so that this contribution may be accounted for after-the-
fact in reweighting. The second advantage is that the
parameterization reduces the multimodality problem. In
φ-space, regions of large probability do not shrink with

the flow, and so no large gaps are created between regions
that contribute significantly to the integral. A Monte
Carlo chain can therefore more easily explore the relevant
regions of the integration domain.

Field theoretic models of interest often have a discrete
group of translational symmetries on the lattice. These
symmetries are respected by the flowed manifold, and
therefore should be impose on the learnifold which ap-
proximates it. Translation symmetry can be implemented
in our setup in a simple way. Let Ti be the lattice transla-
tion that places lattice site i at the origin. We want that
φ̃(Tiφ) = Tiφ̃(φ) which requires that f̃(Tiφ) = Tif̃(φ).
A kernel function f : RN → R can be used to define a
translational invariant function f̃ : RN → RN by:

f̃i(φ) = f(Tiφ) (19)

When multiple degrees of freedom are associated with
each lattice site (for the model of interest to us, there
are 2), f will have that many components. For our case
we train the kernel function f to match the values of
the imaginary component of the flowed configuration at
origin, that is f(Re φ̃) ≈ (Im φ̃)0, where φ̃ are the config-
urations from the training set generated by flowing from
RN . The procedure to get φ̃ on the learnifold is to start
with a configuration φ in the real plane, and evaluate
f(φ) to determine the imaginary part of the degrees of
freedom associated to the lattice site at the origin. Then,
translate the lattice so that site i is moved to the origin,
and evaluate f(Tiφ) again to get the imaginary part of
the degrees of freedom associated to lattice site i. This
procedure is then repeated for all possible translations of
the lattice.

The inputs to the network represent the real degrees
of freedom φ at each lattice site; however, in our model,
these degrees of freedom are periodic. We impose this
periodicity by passing to the network not φ, but sinφ and
cosφ separately — for a model with N degrees of freedom,
the network will take 2N inputs. This is not simply an
optimization: if the learnifold lacks this periodicity, it will
generically belong to a different homology class from RN ,
that is, it will describe a manifold of integration that is
not equivalent to the original domain RN .

Implementing translation invariance as described above,
a point φ̃ on the learnifold, parameterized by its real
coordinates φ = Re φ̃, is given by

φ̃i(φ) = φi + if(Tiφ), (20)

where f(φ), computed by a feed-forward network, outputs
the imaginary parts of the degrees of freedom associated
to a single lattice point.

V. THIRRING MODEL

The model we use to illustrate our method, the 1 + 1
dimensional Thirring model at finite chemical poten-
tial, has been studied before by the generalized thim-
ble method [20]. It is defined in the continuum by the

6

Euclidean action

S =
∫
d1+1x [ψ̄α(/∂+µγ0+m)ψα+ g2

2NF
ψ̄αγµψ

αψ̄βγµψ
β],

(21)
where the flavor indices take values α, β = 1, . . . , NF , µ
is the chemical potential and the Dirac spinors ψ̄, ψ have
two components. It is convenient to treat the four-fermion
interaction by introducing an auxiliary vector field Aµ.
We use the Wilson discretization given by

S =
∑
x,ν

NF
g2 (1− cosAν(x)) +

∑
x,y

ψ̄α(x)DW
xy(A)ψα(y) ,

(22)
with

DW
xy = δxy − κ

∑
ν=0,1

[
(1− γν)eiAν(x)+µδν0δx+ν,y

+ (1 + γν)e−iAν(x)−µδν0δx,y+ν

]
,

(23)

and κ = 1/(2m+ 4).
The integration over the fermion fields leads to

S = NF

(
1
g2

∑
x,ν

(1− cosAν(x))− log detD(A)
)
. (24)

For µ 6= 0 the determinant detD(A) is not real so this
model has a sign problem. In this work we use NF = 2.
Notice that the variables Aν(x) are periodic so the original
(real) domain of integration of the path integral is (S1)N
with N = nLtL

n
s , Lt, Ls being the temporal and spatial

sizes of the lattice, respectively.

VI. SIMULATION DETAILS

Our procedure begins by using the flow-based algo-
rithm of [17] to generate a training set, that is, a set of
points on MT . A quality training set need not sample
the probability distribution e−SR but should provide in-
formation about all of MT , or at least the region likely
to be sampled by a long Monte-Carlo run. A small set of
training configurations sampled with e−SR turns out to
be insufficient. The learnifold generated this way develops
“pockets”, that is the distribution on it is multimodal and
the Metropolis process becomes trapped. It is then crucial
to provide additional information about MT .

Much freedom exists in generating this additional set:
configurations normally thrown away during thermaliza-
tion can be kept, and they can be generated in parallel.
To cure the multimodality problem we need to include
configurations on MT that have large SR. For that we
include in the training set configurations from an ensem-
ble sampled from the distribution e−SR/τi , with τi ≥ 1.
Sets with τi > 1 sample higher-SR regions of MT than
τi = 1. We use τi = 1, 2. It should be emphasized that the

−4
−2
0
2
4

0 50 100 150 200

R
e(
lo
g
d
et
J
)

nc

−4
−2
0
2
4

0 50 100 150 200

Im
(l
og

d
et
J
)

nc

−4
−2
0
2
4

0 50 100 150 200

R
e(
lo
g
d
et
J
)

nc

−4
−2
0
2
4

0 50 100 150 200

Im
(l
og

d
et
J
)

nc

FIG. 3. The Jacobian for the learnifold for the 10×10 ensemble
(above) and for the 40×10 lattice at µ/mf = 2.33 (below). The
left panels indicate the real part of the Jacobian and the right
one its phase. In the row above we compare the fluctuations of
the Jacobian of the learnifold (blue) with the Jacobian induced
by the flow (red). Note the dramatic reduction in the size of
the fluctuations.

ensemble generated for training is not sufficient for proper
evaluation of any observable. They are not thermalized,
they are highly correlated and the ones obtained with
τi 6= 1 are not distributed correctly.

Since, as discussed above, the action is translationally
invariant, a single flowed configuration can be used as
a total of V training points, where V is the space-time
volume of the lattice. Thus each flowed configuration
sampled is translated to V other configurations. Since, in
practice, the most time-consuming step of the algorithm
is the generation of configurations onMT , this multiplica-
tion of the training set is critical in making this algorithm
practical.

Once the training configurations are obtained, the feed-
forward network is trained by minimizing the cost function.
We use a network with 3 hidden layers, each consisting of
10 nodes. This choice is somewhat arbitrary and we have
not yet fully investigated the behavior of the algorithm as
the number of nodes and layers is changed. The training
is accomplished by performing stochastic gradient descent
to minimize the weights wij and biases bi with respect to
the cost function. Specializing Eq. 11 to our specific case:

C(w, b) =
∑
k

[∑
ν

(
Im Ãν(0, 0)− ImAν(0, 0)

)2]1/2

(25)

where the sum over k is taken over all training points, and
the sum over ν is over the Lorentz indicies. By minimizing
the C(w, b), we minimize the distance between the LT
and MT .

Once the gradient descent is complete, f is used to de-
fine LT through Eq. (20). This manifold is parameterized
by the real plane, and so we can perform an importance
sampling on this manifold in the same manner as for a
flowed manifold.

The previous parameterization, based on deforming the
domain of integration via flow, required computing the
Jacobian when performing importance sampling. The LT
parameterization is found to result in Jacobians that have
small fluctuations as can be seen from Fig. 3. Comput-
ing the Jacobian is expensive, but since its fluctuations

7

are small it is preferable to ignore it when performing
importance sampling, and include it in observables via
reweighting. The Jacobian may be computed by direct
application of the chain rule. In practice, it is sufficient
to compute the Jacobian via finite differencing, that is,
computing ∂f(φi)/∂φj ≈ (f(φi + ∆δij) − f(φi))/∆ for
small ∆ by feeding the values φi + ∆δij and φi through
the network. We take this approach here.

After the network is trained and the manifold LT de-
fined by it is specified, we use the Metropolis algorithm
applied to the (real) parameterizing variables φi and the
effective action Seff(φ) = ReS[φ̃(φ)], the real part of the
Euclidean action. The Jacobian and the phase of the
Euclidean action are included through reweighting:

〈O〉 =
〈
Oe−iSI+log det J〉

Seff

〈e−iSI+log det J〉Seff

, (26)

where in contrast to Eq. (8), the real part of the Jacobian
is also included in the reweighting. The minimum number
of configurations from MT required for training must be
empirically determined and we find it to be roughly set
by the number of degrees of freedom in the fit to be per-
formed: if the network has more degrees of freedom than
the number of training points available, a long training
process will overfit the data, and the final product will
be unusable.

VII. RESULTS

Although our calculations are not done particularly
close to the continuum limit, we choose the bare pa-
rameters of the action so that the (renormalized) particle
masses are somewhat below the lattice scale. Two particle
masses have been measured: a fermion and a boson. The
dimensionless masses of these particles, amf and amb (a is
the lattice spacing) respectively, are determined via fitting
the large time behavior of the correlators 〈Oα(t)Oα(0)†〉
where Of = ψ1 and Ob = ψ̄iγ5(τ3)ijψj , where the sub-
scripts indicate flavor. In a free theory, mb/mf = 2 and
we use this ratio to gauge the strength of interactions,
where mb/mf � 2 implies a strongly interacting theory.
The parameters used for the simulations in this paper are
g = 1.0 and m = −0.25, which lead to amf = 0.30(1)
and amb = 0.44(1) [20]. We have then mb/mf = 1.5(2).
Therefore we are studying a strongly coupled theory.

The flow time used to generate training points and a
range for the size of each partition of the training set is
given for each lattice in Table I. During the generation of
the training set we use an estimator of the Jacobian that
has been shown to track accurately the full Jacobian [27].
Even using the estimator the generation of the training set
is computationally expensive. For example the ensemble
used for training the 20× 10 learnifold at µ/mf = 3.83
we use 380 configurations with τ = 1 and 225 with τ = 2.
To generate these configurations we use no thermalization
and save a configuration after 200 Metropolis steps. This

takes about 90 CPU-hours. The training of the network
takes 24 CPU-hours. To generate the ensemble of 7220
measurements with 800 Metropolis steps between on the
learnifold takes about 140 CPU-hours. Taking the train-
ing set time as an proxy (which neglects computing the
Jacobian), this set would have taken about 4100 CPU-
hours using flow. More details about the measurements
can be found in Table I. It should be noted that for larger
lattices at larger µ/mf , to achieve the same statistics
more configurations are needed due to the smallness of
average sign, which is reflected by a range being reported
for the number of measurements.

In Fig. 4, we show for lattices of size Nt×Nx = 10×10,
20× 10, and 40× 10 the average sign 〈e−iSI+i Im log det J〉
in the left column, and in the right column the average
fermion density (per flavor) 〈n〉. The results obtained by
standard reweighting techniques on RN are shown with
black circles. As may be anticipated, the average sign
drops to 0 as µ ≈ mf and reweighting becomes unfeasible.
We further plot with red triangles the results obtained by
choosing as a manifold of integration the tangent plane
to the main thimble (which is computationally as cheap
as integration over RN). For this manifold, the average
sign drops more slowly to zero, but for sufficiently large
lattices is still inadequate. The final set of results, the
blue squares, are obtained from the learnifold. We find
that the average sign decrease even more slowly, extending
the reach in µ/mf . As a check, we include in these figures
the analytic result for the free fermion gas (with the
renormalized fermion mass) with a dashed line. We find
that for values of µ/mf > 2.5, the free gas approximation
becomes a poor description of the Thirring model.

As explained in [20] the sign problem is greatly im-
proved by simply shifting the domain of integration:
A0(x) → A0(x) + iA, Ai(x) → Ai(x) for a certain real
value of A. This simple shift is enough in 1 + 1 dimen-
sions to allow for calculations in lattices of size up to
Lt × Ls = 40× 10 if a staggered fermion action is used.
However, the Wilson fermion action has a worse sign prob-
lem and systems of these sizes require longer flow times
which make the calculation more expensive. More impor-

Lattice T nτ ntherm ncor nmeas

1 2
10× 10 0.4 1000 1000 15000 800 2000
20× 10 0.2, 0.4 300-600 100-700 15000 800 2000-8000
40× 10 0.2 50-170 30-150 20000 800 800-1000

TABLE I. Training set generation and Metropolis sampling
parameters. T is the flow time. Different values of µ/mf

generate flowed configurations at different rates, so for brevity
we quote the size of the training set as a ranges. nτ is the size
of the training set for each τi, the Metropolis “temperature”.
ntherm, ncor, and nmeas are the thermalization, decorrela-
tion lengths and number of measurements respectively in the
Metropolis sampling.

8

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5

〈 e
−
iS

I
+
i
Im

lo
g
d
et

J
〉

µ/mf

RN

M = A0(x) + iA
LT

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3 3.5

〈n
〉/
m

f

µ/mf

RN

M = A0(x) + iA
LT

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5

〈 e
−
iS

I
+
i
Im

lo
g
d
et

J
〉

µ/mf

RN

M = A0(x) + iA
LT

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3 3.5

〈n
〉/
m

f

µ/mf

RN

M = A0(x) + iA
LT

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5

〈 e
−
iS

I
+
i
Im

lo
g
d
et

J
〉

µ/mf

RN

M = A0(x) + iA
LT

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3 3.5

〈n
〉/
m

f

µ/mf

RN

M = A0(x) + iA
LT

FIG. 4. 〈e−iSI+i Im log det J〉 and 〈n〉/mf as a function of µ/mf

for Wilson fermions on lattices of size (top) 10× 10, (center)
20× 10, (bottom) 40× 10 with amf = 0.30(1). The dashed
curve represents the free fermion gas with the same mass. The
darker points in the 20× 10 graphs (middle row) correspond
to a learnifold trained on MT with Tflow = 0.4 whereas the
lighter use Tflow = 0.2.

tantly, the large flow times lead to the trapping of the
Monte Carlo chain as discussed above. For these reasons,
Ref. [20] only contains simulations of the Wilson action in
10×10 lattices. The use of the Wilson fermion model here
demonstrates the utility of machine learning in applying
the generalized thimble method to larger lattices.

On the 20×10 lattice, the sign problem for µ/mf ≤ 2.66
is sufficiently improved for a flow time of T = 0.2 that
reliable results can be obtained. For µ/mf > 2.66, by
simply flowing longer (T = 0.4) we were able to again
raise the average sign to viable levels again.

At the colder temperatures, we demonstrate that the
learnifold method is capable of reproducing the indepen-
dence of observables below the threshold µ ≈ mf , the
so-called “Silver Blaze” phenomenon [28]. This is impor-
tant, because other treatments of the sign problem can
fail and wash out the plateau. In particular, we note that
Lefschetz-thimble based approaches in which only the
main thimble is sampled, or generalized thimble methods
where trapping occurs, are likely to fail to produce the cor-

rect features and instead produce straight lines [18]. We
believe this is evidence that while our τ = 1 training sets
are trapped for large flows, the learnifold parameterization
reduces trapping to manageable levels in the Metropolis
sampling such and the higher τ configurations give some
information about the phase on additional thimbles to
keep the sign problem manageable.

VIII. DISCUSSION AND PROSPECTS

We have presented a method, based on machine learning
techniques, to bypass the computationally expensive steps
in the generalized thimble attack on the sign problem.
The idea is that a reduced number of field configurations
obtained from solving the flow equations can be used
to train a feed-forward neural network that can roughly
approximate the full manifold defined by the flow. The
trained network defines a new manifold, the learnifold,
which is equivalent to the real space for the computation
of the path integral, but where the sign problem is ame-
liorated. The manifold defined by the network can be
sampled very fast and a large number of measurements
can be easily made, enough to bypass the sign problems
in models where that was not previously possible.

This paper represents a first, exploratory study of the
possibility of coupling the generalized thimble method and
machine learning to solve the sign problem. Results were
shown for the Wilson fermion version of the 1 + 1 dimen-
sional Thirring model. As a bonus feature of the method,
the parameterization we used avoids the “trapping” of
Monte Carlo chains which plagues some calculations with
large flow times. This method is general and should be
applicable to other theories of interest. The large freedom
in flow time, size and bias of the training set, and number
of layers and nodes in the network together suggest that
this method can be further optimized for efficiency which
would extend the practical range of applicability.

ACKNOWLEDGMENTS

A.A. is supported in part by the National Science Foun-
dation CAREER grant PHY-1151648 and by U.S. De-
partment of Energy grant DE-FG02-95ER40907. A.A.
gratefully acknowledges the hospitality of the Physics De-
partments at the Universities of Maryland and Kentucky,
and the Albert Einstein Center at the University of Bern
where part of this work was carried out. P.F.B., H.L.,
and S.L. are supported by U.S. Department of Energy
under Contract No. DE-FG02-93ER-40762.

[1] G. Aarts and I.-O. Stamatescu, JHEP 09, 018 (2008),
arXiv:0807.1597 [hep-lat].

[2] K. Langfeld and B. Lucini, Proceedings, International

Meeting Excited QCD 2016: Costa da Caparica, Portugal,
March 6-12, 2016, Acta Phys. Polon. Supp. 9, 503 (2016),
arXiv:1606.03879 [hep-lat].

http://dx.doi.org/10.1088/1126-6708/2008/09/018
http://arxiv.org/abs/0807.1597
http://dx.doi.org/10.5506/APhysPolBSupp.9.503
http://arxiv.org/abs/1606.03879

9

[3] A. Alexandru, M. Faber, I. Horvath, and K.-F. Liu,
Phys. Rev. D72, 114513 (2005), arXiv:hep-lat/0507020
[hep-lat].

[4] P. de Forcrand and S. Kratochvila, Hadron physics,
proceedings of the Workshop on Computational Hadron
Physics, University of Cyprus, Nicosia, Cyprus, 14-17
September 2005, Nucl. Phys. Proc. Suppl. 153, 62 (2006),
[,62(2006)], arXiv:hep-lat/0602024 [hep-lat].

[5] Z. Fodor and S. D. Katz, Phys. Lett. B534, 87 (2002),
arXiv:hep-lat/0104001 [hep-lat].

[6] C. R. Allton, S. Ejiri, S. J. Hands, O. Kaczmarek,
F. Karsch, E. Laermann, C. Schmidt, and L. Scorzato,
Phys. Rev. D66, 074507 (2002), arXiv:hep-lat/0204010
[hep-lat].

[7] S. Chandrasekharan, Eur. Phys. J. A49, 90 (2013),
arXiv:1304.4900 [hep-lat].

[8] P. de Forcrand and O. Philipsen, JHEP 01, 077 (2007),
arXiv:hep-lat/0607017 [hep-lat].

[9] M. Cristoforetti, F. Di Renzo, and L. Scorzato (Aurora-
Science), Phys. Rev. D86, 074506 (2012), arXiv:1205.3996
[hep-lat].

[10] M. Cristoforetti, F. Di Renzo, A. Mukherjee, and
L. Scorzato, Proceedings, 31st International Symposium
on Lattice Field Theory (Lattice 2013): Mainz, Germany,
July 29-August 3, 2013, PoS LATTICE2013, 197 (2014),
arXiv:1312.1052 [hep-lat].

[11] M. Cristoforetti, F. Di Renzo, G. Eruzzi, A. Mukherjee,
C. Schmidt, L. Scorzato, and C. Torrero, Phys. Rev.
D89, 114505 (2014), arXiv:1403.5637 [hep-lat].

[12] F. Di Renzo and G. Eruzzi, Phys. Rev. D92, 085030
(2015), arXiv:1507.03858 [hep-lat].

[13] A. Mukherjee, M. Cristoforetti, and L. Scorzato, Phys.
Rev. D88, 051502 (2013), arXiv:1308.0233 [physics.comp-
ph].

[14] H. Fujii, S. Kamata, and Y. Kikukawa, JHEP 12, 125
(2015), [Erratum: JHEP09,172(2016)], arXiv:1509.09141

[hep-lat].
[15] K. Fukushima and Y. Tanizaki, PTEP 2015, 111A01

(2015), arXiv:1507.07351 [hep-th].
[16] A. Alexandru, G. Basar, and P. Bedaque, Phys. Rev.

D93, 014504 (2016), arXiv:1510.03258 [hep-lat].
[17] A. Alexandru, G. Basar, P. F. Bedaque, G. W. Ridg-

way, and N. C. Warrington, JHEP 05, 053 (2016),
arXiv:1512.08764 [hep-lat].

[18] Y. Tanizaki, Y. Hidaka, and T. Hayata, New J. Phys.
18, 033002 (2016), arXiv:1509.07146 [hep-th].

[19] J. Nishimura and S. Shimasaki, JHEP 06, 023 (2017),
arXiv:1703.09409 [hep-lat].

[20] A. Alexandru, G. Basar, P. F. Bedaque, G. W. Ridgway,
and N. C. Warrington, Phys. Rev. D95, 014502 (2017),
arXiv:1609.01730 [hep-lat].

[21] M. Fukuma and N. Umeda, (2017), arXiv:1703.00861
[hep-lat].

[22] A. Alexandru, G. Basar, P. F. Bedaque, and N. C. War-
rington, (2017), arXiv:1703.02414 [hep-lat].

[23] S. Ruder, ArXiv e-prints (2016), arXiv:1609.04747
[cs.LG].

[24] D. P. Kingma and J. Ba, ArXiv e-prints (2014),
arXiv:1412.6980 [cs.LG].

[25] A. Alexandru, G. Basar, P. F. Bedaque, S. Vartak, and
N. C. Warrington, Phys. Rev. Lett. 117, 081602 (2016),
arXiv:1605.08040 [hep-lat].

[26] A. Alexandru, G. Basar, P. F. Bedaque, and G. W. Ridg-
way, Phys. Rev. D95, 114501 (2017), arXiv:1704.06404
[hep-lat].

[27] A. Alexandru, G. Basar, P. F. Bedaque, G. W. Ridgway,
and N. C. Warrington, Phys. Rev. D93, 094514 (2016),
arXiv:1604.00956 [hep-lat].

[28] T. D. Cohen, Phys. Rev. Lett. 91, 222001 (2003),
arXiv:hep-ph/0307089 [hep-ph].

http://dx.doi.org/10.1103/PhysRevD.72.114513
http://arxiv.org/abs/hep-lat/0507020
http://arxiv.org/abs/hep-lat/0507020
http://dx.doi.org/10.1016/j.nuclphysbps.2006.01.007
http://arxiv.org/abs/hep-lat/0602024
http://dx.doi.org/10.1016/S0370-2693(02)01583-6
http://arxiv.org/abs/hep-lat/0104001
http://dx.doi.org/10.1103/PhysRevD.66.074507
http://arxiv.org/abs/hep-lat/0204010
http://arxiv.org/abs/hep-lat/0204010
http://dx.doi.org/10.1140/epja/i2013-13090-y
http://arxiv.org/abs/1304.4900
http://dx.doi.org/10.1088/1126-6708/2007/01/077
http://arxiv.org/abs/hep-lat/0607017
http://dx.doi.org/ 10.1103/PhysRevD.86.074506
http://arxiv.org/abs/1205.3996
http://arxiv.org/abs/1205.3996
http://arxiv.org/abs/1312.1052
http://dx.doi.org/ 10.1103/PhysRevD.89.114505
http://dx.doi.org/ 10.1103/PhysRevD.89.114505
http://arxiv.org/abs/1403.5637
http://dx.doi.org/10.1103/PhysRevD.92.085030
http://dx.doi.org/10.1103/PhysRevD.92.085030
http://arxiv.org/abs/1507.03858
http://dx.doi.org/10.1103/PhysRevD.88.051502
http://dx.doi.org/10.1103/PhysRevD.88.051502
http://arxiv.org/abs/1308.0233
http://arxiv.org/abs/1308.0233
http://dx.doi.org/10.1007/JHEP12(2015)125, 10.1007/JHEP09(2016)172
http://dx.doi.org/10.1007/JHEP12(2015)125, 10.1007/JHEP09(2016)172
http://arxiv.org/abs/1509.09141
http://arxiv.org/abs/1509.09141
http://dx.doi.org/10.1093/ptep/ptv152
http://dx.doi.org/10.1093/ptep/ptv152
http://arxiv.org/abs/1507.07351
http://dx.doi.org/10.1103/PhysRevD.93.014504
http://dx.doi.org/10.1103/PhysRevD.93.014504
http://arxiv.org/abs/1510.03258
http://dx.doi.org/10.1007/JHEP05(2016)053
http://arxiv.org/abs/1512.08764
http://dx.doi.org/10.1088/1367-2630/18/3/033002
http://dx.doi.org/10.1088/1367-2630/18/3/033002
http://arxiv.org/abs/1509.07146
http://dx.doi.org/10.1007/JHEP06(2017)023
http://arxiv.org/abs/1703.09409
http://dx.doi.org/10.1103/PhysRevD.95.014502
http://arxiv.org/abs/1609.01730
http://arxiv.org/abs/1703.00861
http://arxiv.org/abs/1703.00861
http://arxiv.org/abs/1703.02414
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1412.6980
http://dx.doi.org/ 10.1103/PhysRevLett.117.081602
http://arxiv.org/abs/1605.08040
http://dx.doi.org/10.1103/PhysRevD.95.114501
http://arxiv.org/abs/1704.06404
http://arxiv.org/abs/1704.06404
http://dx.doi.org/10.1103/PhysRevD.93.094514
http://arxiv.org/abs/1604.00956
http://dx.doi.org/10.1103/PhysRevLett.91.222001
http://arxiv.org/abs/hep-ph/0307089

	 Deep Learning Beyond Lefschetz Thimbles
	Abstract
	I Introduction
	II Generalized thimble method
	III Feed-forward networks
	IV The learnifold
	V Thirring Model
	VI Simulation details
	VII Results
	VIII Discussion and Prospects
	 Acknowledgments
	 References

