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Abstract

The isovector bottomoniumlike exotic resonances Zb(10610) and Zb(10650) are very

close to the thresholds of heavy meson pairs BB̄
∗ (B̄B

∗) and B
∗
B̄

∗, and are naturally

understood as ‘molecular’ states made of the corresponding meson-antimeson pairs.

The picture with a full separation of the two channels cannot be exact and a cross-

feed between the states necessarily takes place. A simple model is considered here

describing the mixing between the channels in terms of one parameter. The model rea-

sonably describes the current data on the decays of the Zb resonances to bottomonium

plus a pion and predicts the rate and a distinctive interference pattern for the decay

Zb(10650) → BB̄
∗ (B̄B

∗) as well as excess of the mass splitting between the resonances

over the mass difference between B
∗ and B mesons.



The twin bottomoniumlike resonances Zb(10610) and Zb(10650) found [1] by the Belle

experiment in the decays Υ(5S) → Zbπ necessarily contain a light quark-antiquark pair

in addition to the heavy bb̄ pair since they come in full isotopic triplets with electrically

charged, Z±

b and neutral [2], Z0
b , states. Furthermore, their masses coincide within few MeV

with the corresponding thresholds for pairs of heavy mesons, BB̄∗ and B∗B̄∗, and are thus

interpreted [3] as ‘molecular’ [4] S wave threshold states in the respective meson-antimeson

channels with the quantum numbers IG(JP ) = 1+(1+), which quantum numbers are also

established by the experiment [5, 6]. The molecular picture is strongly favored by the data 1.

In particular, it explains the apparent breaking of the heavy quark spin symmetry (HQSS)

in the processes with the Zb resonances. Namely, these resonances decay to the states of

bottomonium plus pion, with a comparable rate for the bottomonium bb̄ pair being in the

ortho- spin state (Sbb̄ = 1), Zb → Υ(nS) π, n = 1, 2, 3, and in the para- spin state (Sbb̄ = 0),

Zb → hb(kP ) π, k = 1, 2. In the BB̄∗ (B̄B∗) and B∗B̄∗ pairs the spin of the b quark is

correlated with that of the light antiquark q̄ in the meson, while the spin of b̄ is correlated

with that of q. As a result the spin state of the bb̄ pair in a molecular state is generally mixed.

In particular, for the spin structure of the relevant S wave states of the meson-antimeson

pairs one finds [3] in terms of the total spin of the bb̄ and qq̄ pairs

Zb ∼
∣

∣

∣B∗B̄, BB̄∗
〉

IG(JP )=1+(1+)
∼

1√
2

(

0−
bb̄
⊗ 1−qq̄ − 1−

bb̄
⊗ 0−qq̄

)

,

Z ′

b ∼
∣

∣

∣B∗B̄∗
〉

IG(JP )=1+(1+)
∼

1√
2

(

0−
bb̄
⊗ 1−qq̄ + 1−

bb̄
⊗ 0−qq̄

)

, (1)

which explains the presence of bb̄ states with both possible values of the total spin in the

decay products of the resonances, if the states Zb and Z ′

b are identified as the observed peaks

Zb(10610) and Zb(10650). The purpose of the present paper is to consider a deviation from

the ideal mixing structure described by these relations and to discuss a model where all such

deviation is parametrized in terms of one mixing angle θ:

Zb(10610) = cos θ Zb − sin θ Z ′

b ,

Zb(10650) = sin θ Zb + cos θ Z ′

b . (2)

Such simplified approach is well known to be helpful in discussion of e.g. the isospin violation

in terms of ρ − ω mixing, or of the flavor SU(3) violation, η − η′ and ω − φ mixing. This

simple mixing description is certainly an approximation, since the amount of mixing between

1It should be mentioned that alternative descriptions of the Zb resonances are discussed in the literature,

in particular based on a diquark-antidiquark model [7, 8, 9]. A discussion can be found in the review [10].
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the spin states is likely to be a function of other variables in the wave functions of the

states, e.g. of the distance. In other terms, there may be many more states involved in

the mixing, such as e.g. the continuum of the heavy meson pairs, BB̄∗ (B̄B∗) and B∗B̄∗,

with the amount of the mixing depending on the excitation energy. Generally, the scattering

dynamics in coupled channels is determined by interaction between mesons and involves more

parameters (a somewhat general discussion can be found in e.g. Refs. [11, 12] and the recent

review [10]). The discussed approximation in terms of one overall mixing angle is applicable

if the near-threshold dynamics in the IG(JP ) = 1+(1+) meson-antimeson channels is strongly

dominated by the Zb resonances. This may indeed be the case since the observed [13] spectra

in the processes Υ(5S) → B(∗)B̄(∗)π are apparently fully given by the Zb resonances with no

significant nonresonant contribution.

It should be mentioned that a similar model based on mixing of just two states might be

applicable to the charmoniumlike Zc(3900) and Zc(4020) resonances at the respective DD̄∗

and D∗D̄∗ thresholds. However, the data on the properties of these states to charmonium

plus pion and also on the behavior in the DD̄∗(D̄D∗) channel near the Zc(4020) peak are

currently insufficient to draw a conclusion on the relevance of the discussed model in the

charmonium sector.

The spin structure in Eq.(1) is that of free non-interacting meson pairs and it would be

preserved if the interaction between the mesons did not depend on the spin of either heavy or

light quark-antiquark pair [14]. The suppression of the dependence on the spin of the heavy

quarks is equivalent to HQSS. On the other hand generally there is no light quark spin

symmetry (LQSS), and one would expect deviations from the ‘ideal’ spin structure given by

Eq.(1) and other predictions from such symmetry. One of the consequences of the ideal spin

structure is absence of decays of the heavier state Z ′

b to the lighter meson pairs BB̄∗ (B̄B∗).

Indeed, the only reason for suppression of this decay, fully allowed otherwise, is the spin

orthogonality of the states in Eq.(1). Furthermore, in the limit of the spin independence of

the interactions the Zb and Z ′

b are dynamically the same state, one made of BB̄∗ (B̄B∗) and

the other of BB̄∗, merely shifted in mass by ∆ = M(B∗)−M(B). Thus one should expect

the relation M(Z ′

b)−M(Zb) = ∆, and that the partial decay rates as well as the total widths

of the two resonances should be the same, modulo a difference in the phase space caused

by the mass difference. Some of these predictions are close to the experimentally observed

properties and some are less so, or unknown. In particular, an analysis [13] of the spectra

of the B∗B̄ (BB̄∗) and B∗B̄∗ pairs in the decays Υ(5S) → B(∗)B̄(∗) π shows no significant

features (above the uncertainties) in the spectrum of invariant mass in the channel B∗B̄+BB̄∗
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at the mass of Zb(10650) that would indicate a presence of a coupling of this channel to

the latter higher resonance. The current uncertainty in the splitting between the measured

values of the masses [6] 10652.2±1.5MeV and 10607.2±2.0MeV is too large to see a possible

deviation from the meson mass splitting ∆ = 45.18±0.23MeV. The measured total widths of

the two peaks, Γ[Zb(10610)] = 18.4±2.4MeV and Γ[Zb(10650)] = 11.5±2.2MeV, also suffer

from a considerable uncertainty preventing one from concluding whether considering them

approximately equal would be a good starting approximation. The most apparent indication

of a breaking of the ideal symmetry in the Zb resonances is provided by the observed pattern

of the relative, between the two resonances, decay rates to ortho- and para- bottomonium.

Namely, the data [13, 6] strongly suggest that the decays of the heavier resonance Zb(10650)

to the ortho- bottomonium states, Υ(nS) π are somewhat weaker than the corresponding

decays of the lighter Zb(10610), while in the decays to the para- states, hb(kP ) π the relative

yield from the two peaks is reversed. A violation of the ideal symmetry limit should not

come as a surprise, since neither a LQSS can be justified in QCD, nor a separation of the

spin structures in Eq.(1) is likely to be sustainable for reasons based on unitarity. Indeed,

the states Zb and Z ′

b have common decay channels, and can thus mix with each other, and

the absorptive part of the mixing through a given (on-shell) channel X can be estimated as

θX ∼
1

∆

√

Γ(Zb → X)Γ(Z ′

b → X). (3)

Using the data [13, 6] for the decays of the Zb resonances to bottomonium plus pion, one

readily finds that the largest contributing decay channel is hb(2P ) π, giving θhb(2P )π ≈ 3 ×
10−2, with other intermediate channels contributing significantly less. In what follows it

will be argued that the current data suggest that the mixing angle is significantly larger

(although can still be considered as small), θ ≈ 0.2, so that the mixing arises dominantly

from off-shell intermediate states and its absorptive part can be neglected.

Clearly, a mixing described by Eq.(2) tilts the bb̄ spin structure in the resonances, so that

at a small positive θ the resonance Zb(10610) gets a larger 1−
bb̄
spin component, while the 0−

bb̄

para- component is enhanced in the Zb(10650) resonance, which qualitatively agrees with the

data on the relative rates of decays to Υ(nS) π and hb(kP ) π. In order to take into account

the kinematical differences between the decays from the two resonances one can write the

decay amplitudes according to the parity and the current algebra requirements [3]:

A[Zb → Υ(nS)π] = C[Zb → Υ(nS)π] (~Zb · ~Υ)Eπ ,

A[Zb → hb(kP )π] = D[Zb → hb(kP )π] ([~Zb ×~hb] · ~pπ) , (4)
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where ~Zb, ~Υ and ~hb are the polarization amplitudes of the spin-1 resonances, ~pπ is the pion

momentum and Eπ is its energy. One can then expect that the coefficients C and D are

largely free of kinematical differences between Zb and Z ′

b resonances, and in fact that in the

limit of the ideal symmetry the coefficient for each particular decay amplitude is the same

between the Zb and Z ′

b resonances with the relative sign given by that of the corresponding

spin component in Eq.(1). Then in the first order in the mixing in Eq.(2) the ratio of the

coupling strengths of the Zb(10610) and Zb(10650) states is found as

Γ[Zb(10610) → Υ(nS)π]/(E2
πpπ)

Γ[Zb(10650) → Υ(nS)π]/(E2
πpπ)

=

(

cos θ + sin θ

cos θ − sin θ

)2

(5)

for each n, and

Γ[Zb(10650) → hb(kP )π]/p3π
Γ[Zb(10610) → hb(kP )π]/p3π

=

(

cos θ + sin θ

cos θ − sin θ

)2

(6)

for each k.

The data [13, 6] correspond to the values of the ratios in Eq.(5) 3.6 ± 1.8, 3.2 ± 1.4

and 2.3 ± 1.15 for n = 1, 2 and 3 respectively in units of Γtot[Zb(10610)]/Γtot[Zb(10650)],

and to those in Eq.(6) equal to 2.0 ± 0.9 at k = 1 and 2.2 ± 0.9 at k = 2 in units of

Γtot[Zb(10650)]/Γtot[Zb(10610)]. Assuming that the total widths are the same, a fit to these

data gives approximately θ ≈ 0.2± 0.1.

Within the discussed approach, and in the first order in the mixing, the total decay rates

of the physical resonances are expected to be the same, which agrees with the data only if

the experimental errors are taken into account. One can attempt to allow for a different

overall decay rate between the resonances by assuming that the rates of all the decays of the

lower resonance Zb(10610) are enhanced by a common factor F . [In other words, the r.h.s.

in Eq.(5) is multiplied by F , while that in Eq.(6) receives the factor 1/F .] Then a fit to the

data with two parameters F and θ produces the central value F = 1.17 and an essentially

the same central value for the mixing angle θ. A one-sigma contour for the two parameter

fit is shown in Fig. 1.

The fitted value of the mixing angle provides an estimate for the scale of the (yet to

be observed) decay Zb(10650) → BB̄∗(B̄B∗): Γ[Zb(10650) → BB̄∗(B̄B∗)]/Γ[Zb(10650) →
B∗B̄∗] ∼ θ2 ∼ 0.04. This result however requires further specification, given the kinematical

differences in the compared decay channels in a specific experimental setting. Namely the

yield of the heavy meson pairs at the Zb resonances is observed [13] by studying the final

states BB̄∗π (B̄B∗π) and B∗B̄∗π at the energy of the Υ(5S) resonance in e+e− annihilation.

There however may potentially be a tension between the discussed picture of the mixing
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Figure 1: The one-sigma contour for the fit to the available data of the mixing angle θ and

the relative enhancement factor F for the decay rates of Zb(10610).

and the Υ(5S) data. Namely, the relative strength of the coupling of this resonance to

the channels Zb(10610) π and Zb(10650) π comes out approximately equal after taking into

account the kinematical differences [15]. On the other hand, if the Υ(5S) was a JPC = 1−−

state of a pure bb̄ (ortho-) quark pair, its coupling to Zb(10610) π would be enhanced relative

to Zb(10650) by the mixing in the way described by Eq.(5). However, unlike for the pure

bottomonium states, the bb̄ spin structure of the Υ(5S) is not protected and in fact can be

modified by the near threshold enhancement of the HQSS breaking [16], e.g. by mixing with

P wave meson-antimeson pairs. The observed sign of the interference between the Zb(10610)

and Zb(10650) resonances in the processes Υ(5S) → Υ(nS)ππ and Υ(5S) → hb(kP )ππ

suggests that even though the absolute values of the amplitudes can be modified by the

possible HQSS breaking in Υ(5S), the relative signs of the amplitudes still agree with those

for a pure 1−
bb̄
spin state. Within the sign convention used in Eq.(1) this corresponds to an

opposite sign of the coupling of the Υ(5S) to Zbπ and Z ′

bπ. The spectrum of the invariant

mass of the BB̄∗(B̄B∗) pairs with the interference between the two Zb resonances is then

given as

dσ

dW
∝
∣

∣

∣

∣

∣

1

W −M1 + iΓ1/2
−

θ

W −M2 + iΓ2/2

∣

∣

∣

∣

∣

2

pE2
π pπ , (7)
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where M1 and M2 (Γ1 and Γ2) are the masses (widths) of the Zb(10610) and Zb(10650)

resonances and p is the c.m. momentum of each of the heavy mesons. The interference

behavior described by this expression is illustrated in Fig. 2. Naturally, the effect is most

prominent at the energy near the mass of Zb(10650), where the c.m. momentum of mesons

is p ≈
√
MB∆ ≈ 0.5GeV. Thus the mixing angle θ at such energies is effectively determined

by the interaction at characteristic distances ∼ 2GeV−1. In the discussed simple model this

angle should be the same as in the relations (5) and (6) for the decays into bottomonium

plus pion. The actual behavior is not known at present. If future more detailed studies find

substantially different values of theta from the spectra of heavy meson pairs and from the

pion transitions to different states of bottomonium, the discussed simple model would be

invalidated and a more elaborate description in terms of distance dependent effects of spin

symmetry violating interaction would be required.

10.60 10.62 10.64 10.66 10.68 10.70
W GeV0.0

0.2

0.4

0.6

0.8

1.0
dΣ�dW arbitrary units

Figure 2: The expected spectrum of the invariant mass W of the BB̄∗(B̄B∗) pairs across the

Zb(10610) and Zb(10650) in the discussed mixing model with θ = 0.2 (solid). Also shown

for illustration is the spectrum (dashed) for the case where the sign of the mixing angle is

opposite as well as the curve for θ = 0 (thin dot dashed).

The discussed two-state mixing scheme is well known to produce a definite mass shift

of the eigenstates: the splitting ∆ is increased by 2θ2∆, so that one can expect the mass

difference between the Zb(10650) and Zb(10610) to be

M2 −M1 = (1 + 2θ2)∆ . (8)
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At θ ≈ 0.2 this yields approximately 48.8MeV. Given the uncertainty in θ this specific

number may change. However the mass difference should be necessarily larger than ∆ if the

simple mixing model is of any relevance to the discussed resonances. It can be noted that

in a general potential model with a mixing potential between the BB̄∗ and B∗B̄∗ channels

the sign of the shift of the mass splitting from ∆ is not fixed and depends on the details of

the potential. Indeed, as is well known, a mixing lowers the mass of the lowest state, the

Zb(10610). Nevertheless, generally (and depending on the details of the mixing potential),

the downward shift of the higher resonance, the Zb(10650), can be even larger, so that

the resulting mass difference may be smaller than ∆, unlike the expected behavior in the

discussed simple mixing model. As previously mentioned, given the current experimental

errors, it is not known at present how the actual mass difference compares to ∆.

In summary. The current status of deviation from the ideal spin structure in Eq.(1) is

not clear due to large experimental uncertainties. Some data, in particular on the relative

strength of pion transitions from the Zb(10610) and Zb(10650) resonances, suggest effects of

such deviation, while the apparent suppression of the coupling of the heavier state Zb(10650)

to the lighter meson channel BB̄∗(B̄B∗) indicates that the deviation is rather small. The

separation of the states in Eq.(1) can not be exact, e.g. due to existence of common decay

channels (with no apparent cancellation between them). It is discussed here that the current

data can be reconciled within a simple model of mixing of two states described by one angle

as given by Eq.(2), with the value of the angle θ ≈ 0.2. This model then predicts a definite

interference pattern in the process Υ(5S) → BB̄∗(B̄B∗) π and the mass splitting between

the Zb resonances that should be larger than the difference between the masses of B∗ and B

mesons.

This work is supported in part by U.S. Department of Energy Grant No. DE-SC0011842.

References

[1] A. Bondar et al. [Belle Collaboration], Phys. Rev. Lett. 108, 122001 (2012)

[arXiv:1110.2251 [hep-ex]].

[2] P. Krokovny et al. [Belle Collaboration], Phys. Rev. D 88, no. 5, 052016 (2013)

doi:10.1103/PhysRevD.88.052016 [arXiv:1308.2646 [hep-ex]].

[3] A. E. Bondar, A. Garmash, A. I. Milstein, R. Mizuk, M. B. Voloshin, Phys. Rev. D84,

054010 (2011). [arXiv:1105.4473 [hep-ph]].

7



[4] M. B. Voloshin and L. B. Okun, JETP Lett. 23, 333 (1976) [Pisma Zh. Eksp. Teor. Fiz.

23, 369 (1976)].

[5] A. Garmash et al. [Belle Collaboration], Phys. Rev. D 91, no. 7, 072003 (2015)

doi:10.1103/PhysRevD.91.072003 [arXiv:1403.0992 [hep-ex]].

[6] C. Patrignani et al. [Particle Data Group], Chin. Phys. C 40, no. 10, 100001 (2016).

doi:10.1088/1674-1137/40/10/100001; 2017 on line update

[7] A. Ali, C. Hambrock and W. Wang, Phys. Rev. D 85, 054011 (2012) [arXiv:1110.1333

[hep-ph]].

[8] A. Ali, L. Maiani, A. D. Polosa and V. Riquer, Phys. Rev. D 91, no. 1, 017502 (2015)

[arXiv:1412.2049 [hep-ph]].

[9] A. Esposito, A. Pilloni and A. D. Polosa, Phys. Lett. B 758, 292 (2016)

doi:10.1016/j.physletb.2016.05.028 [arXiv:1603.07667 [hep-ph]].

[10] F. K. Guo, C. Hanhart, U. G. Mei?ner, Q. Wang, Q. Zhao and B. S. Zou,

arXiv:1705.00141 [hep-ph].

[11] T. Mehen and J. W. Powell, Phys. Rev. D 84, 114013 (2011)

doi:10.1103/PhysRevD.84.114013 [arXiv:1109.3479 [hep-ph]].

[12] F.-K. Guo, C. Hanhart, Y. S. Kalashnikova, P. Matuschek, R. V. Mizuk,

A. V. Nefediev, Q. Wang and J.-L. Wynen, Phys. Rev. D 93, no. 7, 074031 (2016)

doi:10.1103/PhysRevD.93.074031 [arXiv:1602.00940 [hep-ph]].

[13] A. Garmash et al. [Belle Collaboration], Phys. Rev. Lett. 116, no. 21, 212001 (2016)

doi:10.1103/PhysRevLett.116.212001 [arXiv:1512.07419 [hep-ex]].

[14] M. B. Voloshin, Phys. Rev. D 93, no. 7, 074011 (2016) doi:10.1103/PhysRevD.93.074011

[arXiv:1601.02540 [hep-ph]].

[15] M. B. Voloshin, Phys. Rev. D 94, no. 1, 014004 (2016) doi:10.1103/PhysRevD.94.014004

[arXiv:1604.08196 [hep-ph]].

[16] M. B. Voloshin, Phys. Rev. D 85, 034024 (2012) doi:10.1103/PhysRevD.85.034024

[arXiv:1201.1222 [hep-ph]].

8


