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Quasi-parton distribution functions have received a lot of attentions in both perturbative QCD and
lattice QCD communities in recent years because they not only carry good information on the parton
distribution functions, but also could be evaluated by lattice QCD simulations. However, unlike the
parton distribution functions, the quasi-parton distribution functions have perturbative ultraviolet
power divergences because they are not defined by twist-2 operators. In this paper, we identify all
sources of ultraviolet divergences for the quasi-parton distribution functions in coordinate-space,
and demonstrate that power divergences, as well as all logarithmic divergences can be renormalized
multiplicatively to all orders in QCD perturbation theory.

PACS numbers: 12.38.Bx, 13.88.+e, 12.39.-x, 12.39.St

I. INTRODUCTION

Parton distribution functions (PDFs), fi/h(x, µ
2), are

defined as the probability distributions to find a quark,
an antiquark, or a gluon (i = q, q̄, g, respectively) in a
fast moving hadron h to carry the hadron’s momentum
fraction between x and x+dx, probed at the factorization
scale µ [1]. They are fundamental and important nonper-
turbative functions in QCD quantifying the relation be-
tween a hadron and the quarks and gluons within it, and
playing an essential role to connect colliding hadron(s) to
short-distance QCD dynamics in high energy scattering
processes [2]. However, calculation of PDFs from the first
principle, both analytically or from lattice QCD (LQCD),
is a challenge, if it is not impossible, due to the fact that
PDFs contain the dynamics at long-distance scales and
of nonperturbative in nature, and are defined in terms
of time-dependent operators. Traditionally, PDFs have
been extracted from high energy scattering data by QCD
global analysis in the framework of QCD factorization [3–
7].

Recently, Ji introduced a set of quasi-PDFs for a
hadron of momentum pz, say along z-direction, and ar-
gued that they are equal to corresponding PDFs when
the hadron momentum pz goes to infinity [8]. Without
setting pz → ∞, the quasi-PDFs could be factorized to
PDFs to all orders in QCD perturbation theory so long
as quasi-PDFs can be multiplicatively renormalized [9].
Like PDFs, the quasi-PDFs are defined by hadronic ma-
trix elements of two-field correlators with a straight line
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gauge link between the two fields to ensure the gauge
invariance,

f̃q/p(x̃, µ̃
2, pz) ≡

∫

dξz
2π

eix̃pzξz〈h(p)|ψq(ξz)
γz
2

×Φ(f)
nz

({ξz , 0})ψq(0)|h(p)〉 (1)

for quasi-quark distribution with ξ0 = ξ⊥ = 0, and

f̃g/p(x̃, µ̃
2, pz) ≡

1

x̃pz

∫

dξz
2π

eix̃pzξz 〈h(p)|F ν
z (ξz)

×Φ(a)
nz

({ξz , 0})Fzν(0)|h(p)〉 (2)

for quasi-gluon distribution with ν summing over trans-

verse directions. In Eqs. (1) and (2), Φ
(f,a)
nz ({ξz , 0}) =

exp[−ig
∫ ξz
0 dηz A

(f,a)
z (ηz)] are the gauge links with “f”

and “a” representing fundamental and adjoint represen-
tation, respectively. Unlike PDFs, the two-field correla-
tors of the quasi-PDFs are defined to be off the light-
cone and have an equal time separation, which makes it
possible to calculate the quasi-PDFs in LQCD [10–14].
However, since the hadron momentum in LQCD calcu-
lation is effectively bounded by the lattice spacing, the
pz → ∞ limit is hard to achieve in LQCD calculation,
and it is a challenge to control the corrections due to
the finite pz [15, 16]. Nevertheless, with the potential to
calculate the PDFs from the first principle in QCD by
using LQCD and the challenges in doing so, the concept
of the quasi-PDFs has generated a lot of interests and ac-
tivities in both perturbative QCD (PQCD) and LQCD
community [17–33]. Besides of the corrections due to
the limited range of pz, the key to derive PDFs from
the LQCD calculated quasi-PDFs is of two-folds: (1) be-
ing able to renormalize all ultraviolet (UV) divergences
of quasi-PDFs nonperturbatively, and (2) ensuring the
renormalized quasi-PDFs and PDFs to share the same
collinear (CO) divergences.
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It was demonstrated in Ref. [9] by two of the present
authors that quasi-PDFs and corresponding PDFs share
the same leading logarithmic CO perturbative diver-
gences to all orders in QCD perturbation theory, if the
quasi-PDFs can be multiplicatively renormalized. With
this fact, instead of deriving the PDFs from quasi-PDFs
by taking the hadron momentum pz → ∞, two of the
present authors proposed in Ref. [9] to extract PDFs
by using the PQCD factorization approach from LQCD
calculated quasi-PDFs or other LQCD calculable single-
hadron matrix elements, so long as these matrix elements
could be factorized into the desired PDFs with perturba-
tively calculable coefficients. In this PQCD factorization
approach, the hard scale is of x̃pz ∼ 1/ξz ∼ GeV, and the
corrections are power suppressed by the hard scale and
characterized by the hadronic matrix elements of high
twist operators, just like how experimentally measurable
and perturbative factorizable hadronic cross sections are
connected to PDFs via PQCD factorization.

Therefore, understanding the renormalizability of the
operators defining the quasi-PDFs is the most critically
important challenge for extracting PDFs from LQCD
calculated quasi-PDFs, reliably. Since the quasi-PDFs
are not defined by twist-2 operators, PDFs and quasi-
PDFs have different perturbative UV behavior. Instead
of the logarithmic perturbative UV divergence of PDFs,
quasi-PDFs have power UV divergences [9, 34]. Although
LQCD calculations of quasi-PDFs are naturally regular-
ized by the lattice spacing a, the perturbative power di-
vergence in 1/a makes it difficult to take the continuous
limit of lattice results to extract the correct PDFs [35–
39]. Under the UV renormalization, it is also possible
that the operators defining the quasi-PDFs might mix
with other operators, for example, the quark PDFs can
mix with gluon PDF. Therefore, it is very important to
find out that not only if the operators defining quasi-
PDFs are renormalizable, and but also if the operator
mixing under the renormalization, if there is any, could
be limited to a closed set of operators. In this paper, we
address the issues concerning the renormalizability of the
operators defining quasi-PDFs.

The rest of this paper is organized as following.
In Sec. II we will show that quasi-PDFs defined in
Eqs. (1) and (2) have bad short-distance behavior,
while coordinate-space quasi-PDFs are better candidates
for extracting PDFs. We also define quasi-PDFs in
coordinate-space and explain why its renormalization is
difficult. We then study the one-loop expansion of quasi-
PDFs in coordinate-space in Sec. III. Using the UV power
counting derived in Sec. IV, we identify all perturbative
UV divergent regions for the quasi-PDFs. We find that,
once subdivergences are subtracted off, all UV diver-
gences are originated from the integration regions where
all loop momenta are large, which is significantly differ-
ent from the behavior of PDFs. Based these observa-
tions and findings, we prove in Sec. V that quasi-PDFs
in coordinate-space can be multiplicatively renormalized.
Most importantly, we found that quasi-PDFs do not mix

with other quantities under the running of the renormal-
ization scale, which completes our proof of the renor-
malizability of coordinate-space quasi-PDFs. Finally, we
give our summary in Sec. VI.

II. COORDINATE-SPACE QUASI-PDFS

The interest and excitement of studying quasi-PDFs is
based on the potential of extracting PDFs and hadron
structure from the first principle calculation of LQCD.
Consequently, the value for studying quasi-PDFs de-
pends on the reliability and accuracy of the matching
between quasi-PDFs and PDFs, as proposed in Eq. (11)
of Ref. [8],

q̃(x, µ2, P z) =

∫ 1

x

dy

y
Z

(

x

y
,
µ

P z

)

q(y, µ2) , (3)

with Z(x, µ/P z) = δ(x − 1) + (αs/2π)Z
(1)(x, µ/P z) +

· · · → δ(x−1) as P z → ∞ for quark distribution. This is
equivalent to require the reliability and accuracy of the
PQCD factorization of the quasi-PDFs,

f̃i/p(x̃, µ̃
2, pz) ≈

∑

j

∫ 1

0

dx

x
Cij(

x̃

x
, µ̃2, µ2, pz)

×fj/p(x, µ
2) +O

(

1

µ̃2

)

, (4)

where i, j = q, q̄, g, C’s are IR safe and perturbatively
calculated matching coefficients, µ̃ is the renormaliza-
tion scale of quasi-PDFs, µ(∼µ̃) is the factorization scale
of PDFs, and the power correction, O(1/µ̃2), is char-
acterized by the size of high-twist quark-gluon correla-
tion functions, like in all collinear PQCD factorization
formalisms. We found that if the perturbative UV di-
vergences of quasi-PDFs in the left-hand-side (LHS) of
Eq. (4) are regularized by a momentum cutoff, the fac-
torized convolution in the right-hand-side (RHS) is well
behaved. However, the momentum cutoff regulator is
hard to implement consistently at higher order calcu-
lations in perturbative expansion. On the other hand,
we noticed that if we regularize the perturbative UV di-
vergences of quasi-PDFs by dimensional regularization
(DR), the integration over the momentum fraction x on
the RHS of the Eq. (4) will be divergent. This is because
sea-quark and gluon PDFs, fj/p(x, µ

2) → x−α as x→ 0,
with 1 < α < 2, and the calculated matching coefficient,

C
(1)
ij (x̃/x, µ̃2, µ2, pz), evaluated in using DR, has a term

proportional to 1/(x̃/x) as x → 0 [9, 34]. As a result,
the lower end of the x-integration in Eq. (4) leads to the
divergence,

∫

0 dx/x (x/x̃)x
−α → ∞.

By applying the factorization formula in Eq. (4) to an
asymptotic parton state, “j”, and expanding the both
sides of the factorized equation to the first order in

power of αs, we have C
(1)
ij (y, µ̃2, µ2, pz) = f̃

(1)
i/j (y, µ̃

2, pz)−
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f
(1)
i/j (y, µ

2). As f
(1)
i/j (y, µ

2) vanishes as y → ∞, the asymp-

totic behavior of C
(1)
ij (x̃/x, µ̃2, µ2, pz) as x → 0 is fully

determined by the large x̃ behavior of f̃
(1)
i/j (x̃, µ̃

2, pz).

As x̃ → ∞, the large momentum behavior of quasi-
PDFs, defined in Eqs. (1) and (2), is closely related to
the asymptotic behavior of the hadronic matrix elements
as the separation of the two fields, ξz → 0. The diver-
gence in the x-convolution of the factorized formalism in
Eq. (4), found above, indicates that hadronic matrix ele-
ments could be ill-defined when ξz → 0, which is indeed
the case as we will demonstrate in the next section. As
pointed out in Ref. [9], the coordinate-space quasi-PDFs
are better quantities for the calculation in LQCD, for the
discussion of renormalization, and for the extraction of
PDFs.
We define coordinate-space quasi-PDFs as following,

F̃q/p(ξz , µ̃
2, pz)

=
eipzξz

pz
〈h(p)|ψq(ξz)

γz
2
Φ(f)

nz
({ξz , 0})ψq(0)|h(p)〉,

(5)

and

F̃g/p(ξz , µ̃
2, pz)

=
eipzξz

p2z
〈h(p)|F ν

z (ξz)Φ
(a)
nz

({ξz , 0})Fzν(0)|h(p)〉,
(6)

where µ̃ is a renormalization scale, and Φ
(f,a)
nz ({ξz, 0})

are gauge links, defined in Sec. I. We also define nµ
z =

(0, 0⊥, 1) with gµν = diag(1,−1,−1,−1), and v · nz =
−vz for any vector vµ, and we have n2

z = −1.
We will demonstrate in the next section that

coordinate-space quasi-PDFs are well defined for finite
ξz , while they are divergent when ξz → 0. if one wants
to have a well defined momentum-space quasi-PDFs, one
has to properly and consistently subtract off the diver-
gence at ξz → 0. From the definitions of quasi-PDFs, we
have

F̃i/p(−ξz, µ̃
2, pz) = F̃ ∗

i/p(ξz, µ̃
2, pz). (7)

To take the advantage of this relation and simplify the
discussion, we assume ξz > 0 in the following calculation.
For the final result, we will then express it in the form
that is correct for arbitrary value of ξz .
Before going into the details of proving the renormal-

izability of quasi-PDFs, we first briefly explain the com-
plexity of quasi-PDFs’ renormalization:
1) Lorentz symmetry is broken. Because of the
explicitly “z”-direction dependence of quasi-PDFs, to
identify all possible UV divergences, we need to study
both four-dimensional loop momentum integration and
three-dimensional loop momentum integration (with “z”-
direction fixed)1 for each individual loop. This amounts

1 Note that these are the only two cases that we need to study.

to 2n different cases for a n-loop Feynman diagram, which
is hard to handle.
2) Renormalizaiton of composite operators is
needed. As an example, let’s choose an Az = 0 axial
gauge, and the quasi-quark PDFs become

F̃q/p(ξz , µ̃
2, pz) =

eipzξz

pz
〈h(p)|ψq(ξz)

γz
2
ψq(0)|h(p)〉 .

(8)

For the renormalization of the quasi-quark PDFs, we
need to renormalize the individual quark field, ψq(ξz)
and ψq(0) in Eq. (8), as well as the bi-local composite
operator as a whole if it generates UV divergence. The
renormalization of the fields can be naturally taken care
of by using the renormalized QCD Lagrangian in Az = 0
gauge. It is the renormalization of the bi-local compos-
ite operators that is not covered by the renormalization
of QCD. This is effectively the same procedure for prov-
ing the renormalizability of PDFs, for example, for quark
PDFs in A+ = 0 gauge, one has to verify the multiplica-
tive renormalization of the bi-local composite operators
defining the quark-PDFs to prove their renormalizability.
It is the renormalization of the bi-local composite opera-
tors that mixes quark PDFs with gluon PDF [40]. That
is, the renormalizability of QCD Lagrangian itself is not
enough to guarantee the renormalizability of quasi-PDFs,
which are defined by composite operators.

In our explicit calculation and discussion in the rest
of this paper, we choose the Feynman gauge since the
renormalization of QCD Lagrangian in Feynman gauge
is well known. Since the renormalization of individual
quark and gluon field is well defined, we will focus on
the renormalization of the composite operators defining
the quasi-PDFs. We will mainly discuss coordinate-space
quasi-PDFs, and thus whenever we mention quasi-PDFs,
we mean the coordinate-space quasi-PDFs. We will first
concentrate on quasi-quark PDFs, and then generalize
our study to quasi-gluon PDF at the end.

III. QUASI-QUARK PDFS AT ONE-LOOP

ORDER

In this section, we study the quasi-quark PDFs at
one-loop and its renormalization. Feynman diagrams for
quasi-quark PDFs of an asymptotic quark of momentum
p at one-loop order in the Feynman gauge are shown in

Other cases of loop momentum integration cannot generate new
UV divergences.
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Fig. 1. The diagram (a) in Fig. 1 gives

M1a =
eipzξz

pz

1

Nc
Trc[T

aT a]

∫ ξz−2a

a

dr1

∫ ξz−a

r1+a

dr2

×

∫

d4l

(2π)4
e−ipzξz eilz(r2−r1)

(

−igµν
l2

)

× (−igsn
µ
z )(−igsn

ν
z)Tr

[

1

2
/p
1

2
γz

]

=
αsCF

4iπ3

∫ ξz−2a

a

dr1

∫ ξz−a

r1+a

dr2

∫

d4l
eilz(r2−r1)

l2

(9)

where we introduced a cutoff “a” between fields along
the gauge link to regularize potential linear UV diver-
gence2. The upper limit of r1-integration in Eq. (9) is
ξz − 2a because it needs a separation a from the upper
limit of r2-integration. We will show that this cutoff is
enough to regularize all UV divergence in this diagram,
and thus we do not introduce DR here. For the following
calculation, we introduce a vector l̄µ, which is the same
as lµ except that it does not have the z-direction compo-
nent: lµ = l̄µ + lzn

µ
z and l2 = l̄2 − l2z . We will refer the

integration of l̄µ as three-dimensional (3-D) integration
and the integration of lµ as four-dimensional (4-D) inte-
gration. With d4l = d3 l̄ dlz, let’s consider the following
phase space integration,

∫

d3 l̄

l2
=

∫

d3 l̄

l̄2 − l2z

=

∫

d3 l̄

(

1

l̄2
+

l2z
(l̄2 − l2z)l̄

2

)

. (10)

The first term in Eq. (10) is linear divergent, but its co-
efficient is proportional to

∫

dlze
ilz(r2−r1) = 2πδ(r2−r1),

which vanishes because r2 and r1 cannot be at the same
point. Thus, effectively, the 3-D integration above is fi-
nite. On the other hand, it is easy to see that, if keeping
l̄µ finite, the integration of lz is also finite even if a→ 0.
Therefore, the Eq. (9) can be UV divergent only in the
region where all components of lµ go to infinity. As a re-
sult, the spacing “a” can regularize all UV divergences,
which gives

M1a
div
= −

αsCF

π

|ξz |

a
+
αsCF

π
ln

|ξz |

a
, (11)

where we have included the situation when ξz < 0.

From Fig. 1, we have the contribution from the dia-

2 Although explicit result of UV divergence depends on UV regu-
lators, our conclusions, like power counting rules and renormal-
ization structure, are independent of them.

FIG. 1: Feynman diagrams for quasi-quark PDFs of an
asymptotic quark of momentum p at one-loop order.

gram (b) as

M1b =g
2
sCF

∫ ξz−a

a

dr

∫

d4l

(2π)4
eilzr

l2(p− l)2

×
1

pz
Tr

[

1

2
/p
1

2
γz(/p− /l)γz

]

,

(12)

where we again use the spacing “a” as a regulator. For
the 3-D integration, it has potential logarithmic diver-
gence from the term proportional to /l ,

∫

lµ d3 l̄

l2(p− l)2
. (13)

However, the above integration is finite because, to ex-
tract the potential logarithmic divergence, we can set the
external physical scale p → 0 in the above integration
and thus it becomes an odd function in l̄µ, which van-
ishes under integration. This explains why the spacing a
can regularize the UV divergence of Eq. (12). The UV
divergence of the diagram (b) is

M1b
div
= −

αsCF

2π
ln

|ξz |

a
, (14)

where we again included the situation when ξz < 0.
Similarly, we have from the diagram (c) in Fig. 1,

M1c =
ig2sµ

2ǫ
r

2pz
(1− ǫ)CF

∫

ddl

(2π)d
Tr[/pγz/p(/p− /l)]

p2l2(p− l)2

=ig2sµ
2ǫ
r CF (1 − ǫ)

∫

ddl

(2π)d
1

l2(p− l)2
,

(15)

where space-time dimension is defined as d = 4 − 2ǫ.
It is clear that the integral in Eq. (15) vanishes in DR
when p2 = 0, due to the apparent cancelation between
the UV and IR poles in 1/ǫ. The UV divergence from
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this diagram is logarithmic only if all components of lµ

go to infinity, and is given in DR by

M1c
div
= −

αsCF

4π

1

ǫ
. (16)

It is well-known that, at this order and higher orders, UV
divergence of massless quark self-energy diagrams can be
removed by the renormalization of quark field.
The diagram (d) in Fig. 1 gives

M1d =− ig2sCF e
ipzξz

∫

d4k

(2π)4
e−ikzξz

1

k4(p− k)2

×
1

4pz
Tr[/pγµ/kγz/kγ

µ]

(17)

where k = p− l. Because of the oscillation factor e−ikzξz ,
contribution from the region where kz goes to infinity
is highly suppressed. Thus, it is UV finite at finite ξz,
although it is divergent as ξz → 0,

M1d
div
= −

αsCF

2π
ln(|ξzpz|). (18)

In summary, the total one-loop contribution to the UV
divergence of quasi-quark PDFs of a quark of momentum
p at an arbitrary ξz is

M (1) div
= M1a + 2×M1b + 2×

1

2
M1c +M1d

=
αsCF

π

(

−
|ξz|

a
−

1

4ǫ
−

1

2
ln(|ξzpz|)

)

,
(19)

where the ln(|ξzpz|) term is not UV divergent, but di-
vergent as ξz → 0 3. We find that, at this order, UV
divergences only come from the region where all loop mo-
menta go to infinity, thus UV divergences are localized
in coordinate space. We will show in the next section
that this behavior remains true up to all orders in QCD
perturbation theory.

3 If we take ξz → 0, what we calculated is an one-loop correction
to a local vector current. The finite ξz in Eq. (19) effectively
regularizes the UV divergence of the one-loop vertex diagram
Fig. 1(d), while UV divergence of the self-energy diagram in
Fig. 1(c) is regularized by the dimensional regularization. From
Fig. 1(d), we obtained the ln(|ξzpz|) term after we took ǫ → 0
with ξz fixed. If we need to take ξz → 0 to mimic the local
current, we should keep ǫ finite to regularize the one-loop UV
divergence, which changes ln(|ξzpz|) to − 1

2ǫ
. As a result, we

find from Eq. (19) that UV divergences of the vector current
vanish at one-loop level if we take ξz → 0 with fixed ǫ and a,
which is consistent with the expectation of current conservation.

FIG. 2: Feynman diagram for quasi-quark PDFs of an asymp-
totic gluon of momentum p at one-loop order.

Feynman diagrams for quasi-quark PDFs of an asymp-
totic gluon of momentum p at one-loop order in the Feyn-
man gauge are shown in Fig. 2, plus the complex conju-
gate diagram of (b). A general argument in the next
section will show that UV divergences of all diagrams
of quasi-PDFs can only come from the 4-D integration,
and thus localized in coordinate space. If we keep ξz to
be finite, all one-loop diagrams in Fig. 2 cannot be local,
just like the diagram (d) in Fig. 1, and therefore, all these
one-loop diagrams in Fig. 2 must be UV-finite. But, they
can be divergent as ξz → 0. To demonstrate this feature,
let’s take the diagram (a) in Fig. 2 as an example. The
Fig. 2(a) gives

M2a ∝

∫ ξz

0

dr1

∫ ξz

r1

dr2

∫

d4l e−ilzξz
lz
l2

=
ξ2z
2

∫

dlz e
−ilzξz lz

∫

d3 l̄

(

1

l̄2
+

l2z
(l̄2 − l2z)l̄

2

)

,

(20)

which seems to be linearly UV divergent for the 3-D in-
tegration. However, similar to the case of diagram (a)
in Fig. 1, the linear divergent term is proportional to
δ′(ξz), which vanishes for finite ξz . The second term is
finite under integration of l̄, which gives

ξ2z
2

∫

dlz e
−ilzξz lz

∫

d3 l̄
l2z

(l̄2 − l2z)l̄
2

∝
ξ2z
2

∫

dlz e
−ilzξz

l3z
|lz|

=
2i

ξz
,

(21)

where the proportional relation can be simply obtained
by dimensional counting. We therefore find that Fig. 2(a)
is UV finite, but behaves as 1/ξz when ξz → 0. Similarly,
we found that Figs. 2(b,c) are also UV finite, which in-
dicates that at one-loop, the quasi-quark PDFs get no
mixing from a gluon under the UV renormalization.
Before continue, we want to note that the UV behavior

found above is significantly different from that of PDFs.
UV divergences of PDFs come from the region of loop

momentum (l+, l−,~l⊥) ∼ (1, λ2, λ) when λ → ∞. Thus,
with the momentum component l+ ∼ O(1), the UV di-
vergence for the normal PDFs is nonlocal in the “−”
direction in coordinate space. It is this fact that the
renormalization of PDFs is a convolution, mixed with
all twist-2 PDFs with operators along the “−” direction,
while the renormalizaiton of quasi-PDFs is a multiplica-
tive factor as we will show.
We further note that, even if UV divergences (1/a,

ln(a) or 1/ǫ) are renormalized, the ln(|ξz |) dependence
(see Eq. 18 as an example) and 1/ξz dependence (see
Eq. 21 as an example) of one-loop diagrams signal the
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FIG. 3: Some loop diagrams, with an additional gluon (de-
noted as dotted curves) attachments, that could contribute to
the quasi-PDFs at higher loop orders.

divergence of quasi-PDFs as ξz → 0, which causes the dif-
ficulty in getting a well-defined momentum-space quasi-
PDFs if one simply Fourier transforms the coordinate-
space quasi-PDFs, as mentioned in the last section. This
behaviour will certainly remain true to higher orders in
QCD perturbation theory.

IV. POWER COUNTING

A. Superficial UV divergences

In order to identify all UV divergences from any Feyn-
man diagram contributing to the quasi-PDFs, we start
with a set of general diagrams constructed from the lower
order Feynman diagrams by adding one more gluon to
them. We will then examine how this additional gluon
could change the UV divergence of the original diagrams.
Specifically, we introduce and study the change of di-
vergence index ∆ω3 and ∆ω4 corresponding to the 3-D
integration and 4-D integration of corresponding loop,
respectively. A sufficient condition for quasi-PDFs to be
renormalizable is that ∆ω3 ≤ 0 and ∆ω4 ≤ 0 are satisfied
for all cases, but it is not necessary as we will argue. We
divide our discussions into five distinctive cases:
Case I:Only one end of the gluon is attached to parton

lines of a loop, like Fig. 3(a). In this case we have one
more propagator and one more QCD vertex in the loop,
which results in ∆ω3 = −1 and ∆ω4 = −1. Thus a linear
divergence can be changed to a logarithmic divergence,
and a logarithmic divergent diagram is changed to be
finite.
Case II: Only one end of the gluon is attached to

gauge link of a loop, like Fig. 3(b). In this case, we have
one more z−direction integration in coordinate space,
which does not change the degree of divergence of 3-D
integration but reduce the degree of divergence of 4-D

integration by 1, such that ∆ω3 = 0 and ∆ω4 = −1.
Case III: Both ends of the gluon are attached to par-

ton lines of a loop, like Fig. 3(c). In this case we have
three more propagators, two more QCD vertexes, and
four more momentum integrations for the loop, which
results in ∆ω3 = −1 and ∆ω4 = 0.
Case IV: One end of the gluon is attached to parton

lines of a loop, and the other end of the gluon is attached
to gauge link of the loop, like Fig. 3(d). In this case we
have two more propagators, one more QCD vertex, one
more z−direction integration in coordinate space, and
four more momentum integrations for the loop, which
results in ∆ω3 = 0 and ∆ω4 = 0.
Case V: Both ends of the gluon are attached to gauge

link of a loop, like Figs. 3(e,f). In this case we have one
more propagator, two more z−direction integration in
coordinate space, and four more momentum integrations
for the loop. This results in ∆ω3 = 1 and ∆ω4 = 0.
A few comments for the above power counting rules

are in order. 1) We only concentrated on overall di-
vergences but not on subdivergences, because subdiver-
gences can be taken care by forest subtraction in the
step of renormalization. 2) The change of divergence in-
dexes discussed here are only for superficial divergence.
It means that even if the power counting indicates that a
diagram is divergent, it may not be really divergent due
to other considerations. But, on the other hand, if the
power counting indicates that a diagram is finite, it must
be UV finite.
The Case V is dangerous for renormalization, because

∆ω3 > 0 means that the number of potentially UV di-
vergent topologies is not finite, and thus a finite number
of renormalization constants may not be enough to re-
move all UV divergences. However, as we pointed out,
the above power counting rules are only for superficial
divergence. We will show in the next subsection that
all Feynman diagrams of quasi-PDFs do not have overall
UV divergence if only the 3-D integration is considered
for any of its loop momenta. As a result, only ∆ω4 is
relevant for identifying real UV divergent topologies.

B. Finiteness of the 3-D integration

To demonstrate that the 3-D integration of Feynman
diagrams contributing to the quasi-PDFs cannot gener-
ate a real UV divergence, we consider the “gauge-link-
irreducible” (GLI) diagrams. Similar to the concept of
one-particle-irreducible (1PI) diagrams, a GLI diagram is
a diagram that is still connected even if all gauge links are
cut (or removed). For example, the diagrams (a), (b) and
(c) in Fig. 1 are not the GLI diagrams, while the diagram
(d) is. Similarly, the diagrams (a), (c) and (d) in Fig. 3
are the GLI diagrams, while the diagrams (b), (e) and
(f) are not. For studying the renormalization of quasi-
PDFs, since the renormalizaiton of QCD Lagrangian is
well known, we only need to study the UV properties of
the general GLI diagrams as shown in Fig. 4, where the
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dashed lines connecting to gauge link can be either gluon
or quark (if it is at the end point of the gauge link).

FIG. 4: A general “gauge-link-irreducible” (GLI) diagram,
where l0 = q − l1 − · · · − ln.

In Fig. 4, we assume that the momentum flows into
the blob is q, l1, · · · , ln are n loop momenta, and l0 =
q − l1 − · · · − ln is determined by the momentum con-
servation. Note that this assignment of momentum is
always possible for a GLI diagram. Then, the general
diagram in Fig. 4 can be expressed as

eiqzr0
n
∏

j=1

∫ rmax−a

rj−1+a

drj

∫

d4lj
(2π)4

eiljz(rj−r0)M(q, l1, · · · , ln),

(22)

where M(q, l1, · · · , ln) denotes the blob combined with
propagators of the n+1 lines connecting to the gauge link.
Since the GLI diagrams can be constructed from one-
loop diagrams in Figs. 1 or 2 combined with insertions in
Cases I, III and IV in the last subsection, their overall
superficial UV divergence index ω ≤ 1, no matter we
apply the 3-D integration or 4-D integration to each loop
momentum.
Now let us study the case in which only the 3-D in-

tegration is performed for lj , while carrying out either
3-D or 4-D integration for other loop momenta. The
M(q, l1, · · · , ln) has two kinds of dependence on lj . One
is the polynomial dependence in the numerator, for which
we can simply decompose lj to l̄j and ljz . The other is in
the propagator like 1/(lj + k)2 where k can be vanishing
or depending on other loop momenta. We can decompose
the propagator as

1

(lj + k)2
=

1

∆− 2kzljz − l2jz

=
1

∆
+

2kzljz
∆2

+
(∆ + 4k2z + 2kzljz)l

2
jz

(∆− 2kzljz − l2jz)∆
2
,

(23)

where ∆ = (l̄j+ k̄)
2−k2z independent of ljz. Based on di-

mensional counting, each additional ljz in the numerator
will suppress the divergence index ω of the 3-D integra-
tion by one unit. Thus the last term in Eq. (23) can be
safely ignored as we are considering UV divergence from
the 3-D integration of lj . Since the other terms factorize
out the ljz dependence from M(q, l1, · · · , ln), potential
UV divergences of these terms are proportional to

∫

dljze
iljz(rj−r0)lmz ∝ δ(m)(rj − r0), (24)

with m being non-negative integer. As rj cannot equal

to r0 as defined in Eq. (22), δ(m)(rj − r0) in Eq. (24)
vanishes before we take a → 0 limit. Therefore, UV
divergences of Fig. 4, obtained by integrating out l̄j and
other loop momenta but fixing ljz , eventually vanish after
the integration of ljz.
In summary, the overall UV divergences of GLI dia-

grams only come from the region where all loop momenta
are large. Furthermore, the third term in Eq. (23) is re-
sponsible for real UV divergences from the 4-D integra-
tion of the GLI diagrams.

FIG. 5: A diagram made of two “gauge-link-irreducible”
(GLI) sub-diagrams.

Now let us study a diagram made of two GLI sub-
diagrams as shown in Fig. 5. This non-GLI diagram
can be generated either from the diagram in Fig. 6 or
by the insertion of Cases II and V in the last subsec-
tion. Based on the power counting rules, this diagram has
overall superficial UV divergence index ω ≤ 2. When ex-
tracting overall UV divergences, we can follow the above
discussion for each GLI sub-diagram, and found that the
overall UV divergence of the combined diagram vanishes
if we fix the z-component of any loop momentum. This
conclusion can be easily generalized to any diagrammade
of more GLI sub-diagrams.

FIG. 6: A two-loop diagram that might give UV divergent
contribution to quasi-quark PDF based on the power counting
rules and building blocks in Figs. 1 and 2.

We thus conclude that overall UV divergences of any
diagram that contributes to quasi-PDFs can only come
from the region where all loop momenta are large. An
immediate consequence of this finding is that to identify
UV divergent topologies, we only need to consider the
value of ∆ω4 when we are evaluating the five case inser-
tions discussed in the last subsection. Since we found
that ∆ω4 ≤ 0 for all cases, there should be only finite
number of topologies of UV divergent Feynman diagrams
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FIG. 7: Three topologies of diagrams that could give UV
divergent contributions to the quasi-quark PDFs.

that could contribute to the quasi-PDFs, which we will
present in the next subsection.
Let us conclude this subsection by explaining the

key difference in UV behavior between quasi-PDFs and
PDFs, which have UV divergence from the 3-D integra-
tion. As pointed out at the end of Sec. III, UV diver-
gences of PDFs are obtained from a different 3-D inte-

gration of loop momentum, say l− and ~l⊥. We can cer-
tainly do a similar decomposition of propagators as that
in Eq. (23),

1

(l + k)2
=

1

∆̂ + 2l+(l− + k−)

=
1

∆̂
−

2(l− + k−)l+

∆̂2
+

4(l− + k−)
2l2+

(∆̂ + 2l+(l− + k−))∆̂2
,

(25)

where ∆̂ = 2k+(l− + k−)− (~l⊥ +~k⊥)
2, which is indepen-

dent of l+. We can also argue that, because l+ is fac-
torized out, the first two terms do not contribute after
the integration of l+. However, the last term in Eq. (25)
can still generate the UV divergence from the 3-D inte-
gration. This is because the UV divergence for PDFs
comes from the region where any loop momentum l be-

haves as (l+, l−,~l⊥) ∼ (1, λ2, λ) as λ → ∞, and thus
l−l+ ∼ l2⊥ ∼ λ2. The boost invariance ensures that each
l+ in the numerator will be either accompanied with a
“−” momentum component in the numerator or a “+”
momentum component in the denominator, and neither
of these cases suppresses UV divergence index of the loop
momentum integration.

C. Divergent diagrams for quasi-quark PDFs

Based on the above strategy and power counting rules,
we can find out all UV divergent Feynman diagrams be-
gin with a complete set of building blocks. To identify all
UV divergent Feynman diagrams for quasi-quark PDFs,
we need one more diagram in Fig. 6 to form the set of

building blocks in addition to the one-loop diagrams in
Figs. 1 and 2, because the superficial UV divergence of
this two-loop diagram does not agree with that obtained
from Fig. 1(b) by inserting one more gluon like in Case
IV. Because we only need to consider 4-D integrations,
non-vanishing ξz in Fig. 6 ensures that this diagram is
UV finite.
Using the above building blocks, we can generate all

possible higher order Feynman diagrams. Among them,
there are only three types of topologies that could give
UV divergent contribution to the quasi-quark PDFs as
shown in Fig. 7, in addition to those from the renormal-
izaiton of QCD Lagrangian. From the above discussion,
we know that all of these three topologies can be UV di-
vergent only in the region where all loop momenta go to
infinity, thus UV divergent contributions are localized in
coordinate space. An immediate consequence is that to
make the diagrams in Fig. 7 divergent, r2 − r1 must go
to 0. This finding also explains the result of the two-loop
calculation in Ref. [41], where one finds that UV diver-
gence of quasi-quark PDF under DR is proportional to
δ(1− z) in momentum space.
In addition to these three UV divergent topologies in

Fig. 7, we also show some topologies that are UV finite
in Fig. 8. Especially, the last diagram in Fig. 8 indicates
that quasi-quark PDFs do not mix with quasi-gluon PDF
under the renormalization to all orders in QCD pertur-
bation theory.

FIG. 8: Sample topologies of diagrams that give UV finite
contributions to the quasi-quark PDFs.

FIG. 9: Contributions to the general diagrams in Fig. 7(a)
with all loop diagrams reorganized in terms of 1PI diagrams.

V. RENORMALIZATION

In this section, we present our general arguments for
the renormalization of the three topologies of diagrams
that could give UV divergent contribution to the quasi-
quark PDFs, as identified in the last section.
Let us first consider the power UV divergence from the

general diagram in Fig. 7(a), which could be expressed in
terms of the sum of diagrams made of 1PI diagrams, as
shown in Fig. 9. Since the UV divergence is local in coor-
dinate space, we assign the “i-th” blob in Fig. 9 a specific
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point ri. We express the linear UV power divergence of
the “1st” blob in Fig. 9 as c

∫ r

0
dr1, where perturbative

coefficient c = c(1) + c(2) + · · · where c(1) = −αsCF

π
1
a is

the first order expansion in αs, as derived in Eq. (11).
With the geometric sum of the 1PI diagrams, as shown

in Fig. 9, we can derive all linear UV power divergent con-
tribution to the general diagram in Fig. 7(a) by summing
over contributions of 1PI diagrams located between 0 and
r (r > 0) to all orders as,

1 + c

∫ r

0

dr1 + c2
∫ r

0

dr1

∫ r

r1

dr2 + · · ·

= Pe c
∫

r

0
dr′ = e c r , (26)

with P indicating the path ordering. Therefore, one
could introduce an overall factor e−c |ξz| to remove all
linear power UV divergences of the quasi-quark PDFs.
This overall factor could be thought as the mass renor-
malization of a test particle moving along the gauge link.
Renormalizing power divergence in this way was first pro-
posed in Ref. [42].
Besides power UV divergence, there are also logarith-

mic UV divergences from Fig. 7(a). It is well known [43]
that these divergences can be removed by a “wave func-
tion” renormalization of the test particle, Z−1

wq .
The general diagrams in Fig. 7(b) have only the log-

arithmic UV divergences, effectively from the loop cor-
rections to the gluon coupling to the gauge link. it was
proven in Ref. [43] that these logarithmic UV divergences
can be absorbed by the coupling constant renormaliza-
tion of QCD. Therefore, we do not need to worry about
them if we use the renormalized QCD Lagrangian.
Finally, let us examine UV divergence from the general

diagrams shown in Fig. 7(c). Unlike the general diagrams
in Figs. 7(a) and (b), the loop momentum of diagrams in
Fig. 7(c) go through active quark (or gluon for the case
of quasi-gluon PDF). Since the UV divergence from the
diagrams in Fig. 7(c) effectively comes from high order
loop corrections to the quark-gauge-link vertex, which is
not a fundamental coupling in QCD Lagrangian, using
the renormalized QCD Lagrangian to do the calculation
does not help remove this kind of UV divergences. That
is, the renormalziation of the operators defining quasi-
PDFs is required to remove this kind of UV divergences,
if we want to have renormalizable quasi-PDFs.
The key question is then if the operators defining quasi-

PDFs will mix with other operators under renormaliza-
tion? If it does, there could be a danger that the op-
erators defining quasi-PDFs may not form a closed set
under the renormalization.
The quark-gauge-link vertex at the lowest order is a

simple gamma matrix γz for the quasi-quark PDFs (is
the same for the Az = 0 case). As we demonstrated in
the last section, UV divergence comes only from the re-
gion where all loop momenta are very large, thus we can
set p = 0 if we are only interested in leading UV diver-
gence, which is logarithmic as demonstrated in Sec. IV. In
addition, the logarithmic UV divergence, ln(a) as a→ 0,

is local in coordinate space, and does not have a direct
dependence on ξz . That is, we find that the UV diver-
gent term of Fig. 7(c) only depends on the vector nµ

z , and
consequently, it is proportional to γz with a constant co-
efficient, which is proportional to the quark-gauge-link
vertex at the lowest order. Therefore, a constant coun-
terterm is sufficient to remove this kind of UV diver-
gences. Using bookkeeping forests subtraction method,
it is straight forward to remove the high order divergences
and to show that the net effect is to introduce a constant
multiplicative renormalizaton factor Z−1

vq for the quark-
gauge-link vertex.
In summary, by using renormalized QCD Lagrangian

in Feynman gauge, we find that all remained perturbative
UV divergences of the quasi-quark PDFs can be removed
by introducing a multiplicative renormalization factor,
with the multiplicative renormalization factor calculated
order by order in QCD perturbation theory. We expect
that similar arguments should also apply for quasi-gluon
PDF. We thus can define the renormalized coordinate-
space quasi-PDFs as

F̃R
i/p(ξz , µ̃

2, pz) = e−Ci|ξz |Z−1
wi Z

−1
vi F̃

b
i/p(ξz , µ̃

2, pz), (27)

where Ci, Zwi and Zvi are renormalization constant de-
pending on parton flavor “i” but independent of ξz , and
perturbatively calculable order-by-order in powers of αs.
We conclude that the coordinate-space quasi-PDFs are
renormalizable and they do not mix with each other or
with any other operators under renormalization group
equation.

VI. SUMMARY

We demonstrated that the behavior of UV divergences
of quasi-PDFs is very different from that of PDFs. While
the renormalization of quasi-PDFs is a simple multiplica-
tive factor, the renormalization of PDFs is of a convolu-
tion form, due to the fact that the UV divergences of
PDFs are not completely local, and consequently, PDFs
of different flavors mix with each other under the renor-
malization.
We show that the locality in space-time of the per-

turbative UV divergences of the coordinate-space quasi-
PDFs makes it possible to have the coordinate-space
quasi-PDFs multiplicatively renormalizable, as shown in
Eq. (27), to all orders in QCD perturbation theory.
With the all-order arguments for factorizing all leading
power CO divergences of quasi-PDFs into PDFs, given
in Ref. [9], we conclude that the renormalized quasi-
PDFs could be good candidates for extracting PDFs from
LQCD calculations.
For the LQCD calculation of quasi-PDFs, however, the

introduction of the overall factor, e−Ci|ξz|, with perturba-
tively calculated Ci, is not sufficient to remove all power
divergences, since we cannot calculate the Cj to all or-
ders. That is, we need to renormalize the power UV
divergence of quasi-PDFs, nonperturbatively. As shown
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in Ref. [35], for example, we could introduce an overall
non-perturbative factor to remove this kind of power di-
vergences to all orders, for which we will not get into
the details here. In principle, the choice to renormalize
the power divergences of quasi-PDFs nonperturbatively
is not unique. But, so long as the renormalization is
multiplicative, the renormalization procedure does not
alter the CO properties of quasi-PDFs (so that the quasi-
PDFs could be factorized into PDFs), the difference in
renormalization procedures/choices corresponds to differ-
ent renormalization schemes, which should lead to differ-
ent matching coefficients between quasi-PDFs and PDFs.
In addition, we show that the coordinate-space quasi-

PDFs are well behaved for all values of ξz , except when
ξz = 0. That is, if we want to Fourier transform the
coordinate-space quasi-PDFs to derive momentum-space
quasi-PDFs, we will have to define a consistent subtrac-
tion scheme to remove all divergent terms as ξz → 0,
before the Fourier transformation. Without this subtrac-
tion, the momentum-space quasi-PDFs are ill-defined at
large x̃ region.
Note added: Two independent studies of the renormal-

ization of quasi-PDFs appeared recently [44, 45], in which
the same conclusion is reached although approaches are
very different from ours.

Acknowledgments

We thank Z.Y. Li and F. Yuan for useful discussions.
This work is supported in part by the Department of
Energy, Laboratory Directed Research and Development
(LDRD) funding of BNL, under contract DE-SC0012704
(T.I.), the U.S. Department of Energy, Office of Sci-
ence, Office of Nuclear Physics under Award No. DE-
AC05-06OR23177 (J.Q.), within the framework of the
TMD Topical Collaboration (J.Q.), the U.S. Depart-
ment of Energy, Office of Science under Contract No.
DE-AC52-06NA25396 and the LANL LDRD Program
(S. Y.), and JSPS Strategic Young Researcher Over-
seas Visits Program for Accelerating Brain Circulation
(No.R2411) (S.Y.).

[1] J. C. Collins, D. E. Soper, and G. Sterman,
Factorization of Hard Processes in QCD,
Adv.Ser.Direct.High Energy Phys. 5 (1988) 1–91
[hep-ph/0409313] [InSPIRE].

[2] N. Brambilla et al., QCD and Strongly Coupled Gauge

Theories: Challenges and Perspectives,
Eur. Phys. J. C74 (2014) 2981 [arXiv:1404.3723]
[InSPIRE].

[3] S. Dulat, T.-J. Hou, J. Gao, M. Guzzi, J. Huston,
P. Nadolsky, J. Pumplin, C. Schmidt, D. Stump, and
C. P. Yuan, New parton distribution functions from a

global analysis of quantum chromodynamics,
Phys. Rev. D93 (2016) 033006 [arXiv:1506.07443]
[InSPIRE].

[4] A. Martin, W. Stirling, R. Thorne, and G. Watt,
Parton distributions for the LHC,
Eur.Phys.J. C63 (2009) 189–285 [arXiv:0901.0002]
[InSPIRE].

[5] NNPDF , R. D. Ball et al., Parton distributions for

the LHC Run II, JHEP 04 (2015) 040
[arXiv:1410.8849] [InSPIRE].

[6] S. Alekhin, J. Bluemlein, and S. Moch, The ABM

parton distributions tuned to LHC data,
Phys.Rev. D89 (2014) 054028 [arXiv:1310.3059]
[InSPIRE].

[7] J. J. Ethier, N. Sato, and W. Melnitchouk, First
simultaneous extraction of spin-dependent parton

distributions and fragmentation functions from a global

QCD analysis, [arXiv:1705.05889] [InSPIRE].
[8] X. Ji, Parton Physics on a Euclidean Lattice,

Phys.Rev.Lett. 110 (2013) 262002 [arXiv:1305.1539]
[InSPIRE].

[9] Y.-Q. Ma and J.-W. Qiu, Extracting Parton

Distribution Functions from Lattice QCD Calculations,
[arXiv:1404.6860] [InSPIRE].

[10] H.-W. Lin, J.-W. Chen, S. D. Cohen, and X. Ji, Flavor
Structure of the Nucleon Sea from Lattice QCD,
[arXiv:1402.1462] [InSPIRE].

[11] C. Alexandrou, K. Cichy, V. Drach, E. Garcia-Ramos,
K. Hadjiyiannakou, K. Jansen, F. Steffens, and
C. Wiese, Lattice calculation of parton distributions,
Phys. Rev. D92 (2015) 014502 [arXiv:1504.07455]
[InSPIRE].

[12] J.-W. Chen, S. D. Cohen, X. Ji, H.-W. Lin, and J.-H.
Zhang, Nucleon Helicity and Transversity Parton

Distributions from Lattice QCD,
Nucl. Phys. B911 (2016) 246–273 [arXiv:1603.06664]
[InSPIRE].

[13] J.-H. Zhang, J.-W. Chen, X. Ji, L. Jin, and H.-W. Lin,
Pion Distribution Amplitude from Lattice QCD,
Phys. Rev. D95 (2017) 094514 [arXiv:1702.00008]
[InSPIRE].

[14] K. Orginos, A. Radyushkin, J. Karpie, and
S. Zafeiropoulos, Lattice QCD exploration of

pseudo-PDFs, [arXiv:1706.05373] [InSPIRE].
[15] X. Ji, Parton Physics from Large-Momentum Effective

Field Theory,
Sci.China Phys.Mech.Astron. 57 (2014) 1407–1412
[arXiv:1404.6680] [InSPIRE].

[16] X. Ji, J.-H. Zhang, and Y. Zhao, More On

Large-Momentum Effective Theory Approach to Parton

Physics, [arXiv:1706.07416] [InSPIRE].
[17] X. Ji, P. Sun, X. Xiong, and F. Yuan, Soft factor

subtraction and transverse momentum dependent parton

distributions on the lattice,
Phys. Rev. D91 (2015) 074009 [arXiv:1405.7640]
[InSPIRE].

[18] L. Gamberg, Z.-B. Kang, I. Vitev, and H. Xing,
Quasi-parton distribution functions: a study in the

diquark spectator model,

http://arxiv.org/abs/hep-ph/0409313
http://inspirehep.net/record/25808
http://dx.doi.org/10.1140/epjc/s10052-014-2981-5
http://arxiv.org/abs/1404.3723
http://inspirehep.net/record/1290484
http://dx.doi.org/10.1103/PhysRevD.93.033006
http://arxiv.org/abs/1506.07443
http://inspirehep.net/record/1377752
http://dx.doi.org/10.1140/epjc/s10052-009-1072-5
http://arxiv.org/abs/0901.0002
http://inspirehep.net/record/810127
http://dx.doi.org/10.1007/JHEP04(2015)040
http://arxiv.org/abs/1410.8849
http://inspirehep.net/record/1325552s
http://dx.doi.org/10.1103/PhysRevD.89.054028
http://arxiv.org/abs/1310.3059
http://inspirehep.net/record/1258127
http://arxiv.org/abs/1705.05889
http://inspirehep.net/record/1599958
http://dx.doi.org/10.1103/PhysRevLett.110.262002
http://arxiv.org/abs/1305.1539
http://inspirehep.net/record/1232221
http://arxiv.org/abs/1404.6860
http://inspirehep.net/record/1292807
http://arxiv.org/abs/1402.1462
http://inspirehep.net/record/1280317
http://dx.doi.org/10.1103/PhysRevD.92.014502
http://arxiv.org/abs/1504.07455
http://inspirehep.net/record/1365095
http://dx.doi.org/10.1016/j.nuclphysb.2016.07.033
http://arxiv.org/abs/1603.06664
http://inspirehep.net/record/1431989
http://dx.doi.org/10.1103/PhysRevD.95.094514
http://arxiv.org/abs/1702.00008
http://inspirehep.net/record/1511678
http://arxiv.org/abs/1706.05373
http://inspirehep.net/record/1605575
http://dx.doi.org/10.1007/s11433-014-5492-3
http://arxiv.org/abs/1404.6680
http://inspirehep.net/record/1292804
http://arxiv.org/abs/1706.07416
http://inspirehep.net/record/1606344
http://dx.doi.org/10.1103/PhysRevD.91.074009
http://arxiv.org/abs/1405.7640
http://inspirehep.net/record/1298525


11

Phys. Lett. B743 (2015) 112–120 [arXiv:1412.3401]
[InSPIRE].

[19] Y. Jia and X. Xiong, Quasidistribution amplitude of

heavy quarkonia, Phys. Rev. D94 (2016) 094005
[arXiv:1511.04430] [InSPIRE].

[20] H.-n. Li, Nondipolar Wilson links for quasiparton

distribution functions, Phys. Rev. D94 (2016) 074036
[arXiv:1602.07575] [InSPIRE].

[21] A. Bacchetta, M. Radici, B. Pasquini, and X. Xiong,
Reconstructing parton densities at large fractional

momenta, Phys. Rev. D95 (2017) 014036
[arXiv:1608.07638] [InSPIRE].

[22] A. Radyushkin, Nonperturbative Evolution of Parton

Quasi-Distributions, Phys. Lett. B767 (2017) 314–320
[arXiv:1612.05170] [InSPIRE].

[23] A. V. Radyushkin, Pion Distribution Amplitude and

Quasi-Distributions, Phys. Rev. D95 (2017) 056020
[arXiv:1701.02688] [InSPIRE].

[24] Y. G. Gbedo and M. Mangin-Brinet, Markov Chain

Monte Carlo technics applied to Parton Distribution

Functions determination: proof of concept,
[arXiv:1701.07678] [InSPIRE].

[25] A. Radyushkin, Target Mass Effects in Parton

Quasi-Distributions, Phys. Lett. B770 (2017) 514–522
[arXiv:1702.01726] [InSPIRE].

[26] C. E. Carlson and M. Freid, Lattice corrections to the

quark quasidistribution at one-loop,
Phys. Rev. D95 (2017) 094504 [arXiv:1702.05775]
[InSPIRE].

[27] R. A. Briceno, M. T. Hansen, and C. J. Monahan, The
role of the Euclidean signature in lattice calculations of

quasi-distributions and other non-local matrix elements,
[arXiv:1703.06072] [InSPIRE].

[28] S.-i. Nam, Quasi-distribution amplitudes for pion and

kaon via the nonlocal chiral-quark model,
[arXiv:1704.03824] [InSPIRE].

[29] X. Xiong, T. Luu, and U.-G. Meißner, Quasi-Parton

Distribution Function in Lattice Perturbation Theory,
[arXiv:1705.00246] [InSPIRE].

[30] A. V. Radyushkin, Quasi-PDFs, momentum

distributions and pseudo-PDFs, [arXiv:1705.01488]
[InSPIRE].

[31] M. Constantinou and H. Panagopoulos, Perturbative
Renormalization of quasi-PDFs, [arXiv:1705.11193]
[InSPIRE].

[32] B. Yoon, M. Engelhardt, R. Gupta, T. Bhattacharya,
J. R. Green, B. U. Musch, J. W. Negele, A. V.
Pochinsky, A. Schaefer, and S. N. Syritsyn, Nucleon

Transverse Momentum-dependent Parton Distributions

in Lattice QCD: Renormalization Patterns and

Discretization Effects, [arXiv:1706.03406] [InSPIRE].
[33] G. C. Rossi and M. Testa, A note on lattice

regularization and equal-time correlators for parton

distribution functions, [arXiv:1706.04428] [InSPIRE].
[34] X. Xiong, X. Ji, J.-H. Zhang, and Y. Zhao, One-Loop

Matching for Parton Distributions: Non-Singlet Case,
Phys.Rev. D90 (2014) 014051 [arXiv:1310.7471]
[InSPIRE].

[35] T. Ishikawa, Y.-Q. Ma, J.-W. Qiu, and S. Yoshida,
Practical quasi parton distribution functions,
[arXiv:1609.02018] [InSPIRE].

[36] J.-W. Chen, X. Ji, and J.-H. Zhang, Improved quasi

parton distribution through Wilson line renormalization,
Nucl. Phys. B915 (2017) 1–9 [arXiv:1609.08102]
[InSPIRE].

[37] C. Monahan and K. Orginos, Quasi parton distributions

and the gradient flow, JHEP 03 (2017) 116
[arXiv:1612.01584] [InSPIRE].

[38] C. Alexandrou, K. Cichy, M. Constantinou,
K. Hadjiyiannakou, K. Jansen, H. Panagopoulos, and
F. Steffens, A complete non-perturbative

renormalization prescription for quasi-PDFs,
[arXiv:1706.00265] [InSPIRE].

[39] J.-W. Chen, T. Ishikawa, L. Jin, H.-W. Lin, Y.-B.
Yang, J.-H. Zhang, and Y. Zhao, Parton Distribution

Function with Non-perturbative Renormalization from

Lattice QCD, [arXiv:1706.01295] [InSPIRE].
[40] J. C. Collins and D. E. Soper, Parton Distribution and

Decay Functions, Nucl.Phys. B194 (1982) 445
[InSPIRE].

[41] X. Ji and J.-H. Zhang, Renormalization of quasiparton

distribution, Phys. Rev. D92 (2015) 034006
[arXiv:1505.07699] [InSPIRE].

[42] A. M. Polyakov, Gauge Fields as Rings of Glue,
Nucl. Phys. B164 (1980) 171–188 [InSPIRE].

[43] V. Dotsenko and S. Vergeles, Renormalizability of Phase

Factors in the Nonabelian Gauge Theory,
Nucl.Phys. B169 (1980) 527 [InSPIRE].

[44] X. Ji, J.-H. Zhang, and Y. Zhao, Renormalization in

Large Momentum Effective Theory of Parton Physics,
[arXiv:1706.08962] [InSPIRE].

[45] J. Green, K. Jansen and F. Steffens, Nonperturbative

renormalization of nonlocal quark bilinears for

quasi-PDFs on the lattice using an auxiliary field,
[arXiv:1707.07152] [InSPIRE].

http://dx.doi.org/10.1016/j.physletb.2015.02.021
http://arxiv.org/abs/1412.3401
http://inspirehep.net/record/1333669
http://dx.doi.org/10.1103/PhysRevD.94.094005
http://arxiv.org/abs/1511.04430
http://inspirehep.net/record/1404098
http://dx.doi.org/10.1103/PhysRevD.94.074036
http://arxiv.org/abs/1602.07575
http://inspirehep.net/record/1423310
http://dx.doi.org/10.1103/PhysRevD.95.014036
http://arxiv.org/abs/1608.07638
http://inspirehep.net/record/1484292
http://dx.doi.org/10.1016/j.physletb.2017.02.019
http://arxiv.org/abs/1612.05170
http://inspirehep.net/record/1504066
http://dx.doi.org/10.1103/PhysRevD.95.056020
http://arxiv.org/abs/1701.02688
http://inspirehep.net/record/1508491
http://arxiv.org/abs/1701.07678
http://inspirehep.net/record/1510890
http://dx.doi.org/10.1016/j.physletb.2017.05.024
http://arxiv.org/abs/1702.01726
http://inspirehep.net/record/1512318
http://dx.doi.org/10.1103/PhysRevD.95.094504
http://arxiv.org/abs/1702.05775
http://inspirehep.net/record/1514254
http://arxiv.org/abs/1703.06072
http://inspirehep.net/record/1518148
http://arxiv.org/abs/1704.03824
http://inspirehep.net/record/1591333
http://arxiv.org/abs/1705.00246
http://inspirehep.net/record/1597417
http://arxiv.org/abs/1705.01488
http://inspirehep.net/record/1598042
http://arxiv.org/abs/1705.11193
http://inspirehep.net/record/1601910
http://arxiv.org/abs/1706.03406
http://inspirehep.net/record/1604278
http://arxiv.org/abs/1706.04428
http://inspirehep.net/record/1605132
http://dx.doi.org/10.1103/PhysRevD.90.014051
http://arxiv.org/abs/1310.7471
http://inspirehep.net/record/1262353
http://arxiv.org/abs/1609.02018
http://inspirehep.net/record/1485578
http://dx.doi.org/10.1016/j.nuclphysb.2016.12.004
http://arxiv.org/abs/1609.08102
http://inspirehep.net/record/1488113
http://dx.doi.org/10.1007/JHEP03(2017)116
http://arxiv.org/abs/1612.01584
http://inspirehep.net/record/1501937
http://arxiv.org/abs/1706.00265
http://inspirehep.net/record/1602174
http://arxiv.org/abs/1706.01295
http://inspirehep.net/record/1602626
http://dx.doi.org/10.1016/0550-3213(82)90021-9
http://inspirehep.net/record/166064
http://dx.doi.org/10.1103/PhysRevD.92.034006
http://arxiv.org/abs/1505.07699
http://inspirehep.net/record/1373537
http://dx.doi.org/10.1016/0550-3213(80)90507-6
http://inspirehep.net/record/157352
http://dx.doi.org/10.1016/0550-3213(80)90103-0
http://inspirehep.net/record/144525
http://arxiv.org/abs/1706.08962
http://inspirehep.net/record/1607797
http://arxiv.org/abs/1707.07152
http://inspirehep.net/record/1611305

