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We determine the nucleon neutral weak electromagnetic form factors G
Z,p(n)
E,M by combining results

from light-front holographic QCD and lattice QCD calculations. We deduce nucleon electromagnetic
form factors from light-front holographic QCD which provides a good parametrization of the ex-
perimental data of the nucleon electromagnetic form factors in the entire momentum transfer range
and isolate the strange quark electromagnetic form factors GsE,M using lattice QCD. From these
calculations, we obtain precise estimates of the neutral weak form factors in the momentum transfer
range of 0 GeV2 ≤ Q2 ≤ 0.5 GeV2. From the lattice QCD calculation, we present Q2-dependence
of the strange quark form factors. We also deduce the neutral weak Dirac and Pauli form factors

F
Z,p(n)
1,2 of the proton and the neutron.

I. INTRODUCTION

In the electron elastic scattering from a hadron, parity-violating asymmetry arises from the interference of weak and
electromagnetic amplitudes where the neutral weak current scattering is mediated by the Z-boson exchange. Because
the weak current contains both vector and axial vector contributions, it violates parity and this property of the neutral
weak current has been the main interest of the parity-violating (PV) experiments [1–13]. These PV experiments are
important as they allow measurements of the Standard Model parameters related to Z-boson couplings and search
for new PV interactions beyond the Standard Model. When electroweak (EW) radiative corrections [14, 15] are taken

into account, the neutral weak electric and magnetic form factors GZ,pE,M of the nucleon, under the assumption of

isospin symmetry, can be expressed in terms of nucleon electric (G
γ,p(n)
E ) and magnetic (G

γ,p(n)
M ) form factors and a

contribution from the strange (s) quarks as [3, 16–18],

G
Z,p(n)
E,M (Q2) =

1

4

[
(1− 4 sin2 θW )(1 +R

p(n)
V )G

γ,p(n)
E,M (Q2)− (1 +R

n(p)
V )G

γ,n(p)
E,M (Q2)− (1 +R

(0)
V )GsE,M (Q2)

]
, (1)

where the subscript E(M) stands for the electric(magnetic) form factor (FF) and the superscript p(n) stands for
the proton(neutron). Under the isospin symmetry, the strange electromagnetic form factor (EMFF) is the same for

the proton and neutron, i.e. Gs,pE,M = Gs,nE,M = GsE,M . R
p(n)
V and R

(0)
V are radiative corrections to the vector form

factors calculated in Ref. [14] and translated into the MS-scheme in Ref. [15]. The updated analysis of these radiative
corrections can be found in Ref. [19] and we use the values listed in Ref. [20] for the subsequent calculations.

The first measurement of the proton neutral weak magnetic form factor GZ,pM from PV asymmetry in the po-
larized ~e − p scattering experiment was performed by the SAMPLE collaboration. Performed at a momentum

transfer of Q2 = 0.1 GeV2, the neutral weak magnetic form factor was found to be GZ,pM (Q2 = 0.1 GeV2) =

0.34(11) nucleon magneton (n.m.) which corresponds to a value of GsM (Q2 = 0.1 GeV2) = 0.23(44) n.m [1]. In
an updated analysis Ref. [21] of the SAMPLE data, one of the authors from Ref. [1] obtained PV asymmetry
A = (−5.22 ± 2.24 ± 0.62) × 10−6 compared to the A = (−6.34 ± 1.45 ± 0.53) × 10−6 at Q2 = 0.1GeV2 reported

in Ref. [1]. Both of these PV asymmetries agree within uncertainties. While extracting GZ,pM using Eq. (1), the
author in Ref. [21] used radiative corrections from Ref. [15] instead of the radiative corrections [22] that were

used in Ref. [1]. The author in Ref. [21] obtained GZ,pM (Q2 = 0.1 GeV2) = 0.29(16) n.m. which corresponds to

GsM (Q2 = 0.1 GeV2) = 0.49(65) n.m.. More technical details of this updated analysis, such as the inclusion of
shutter closed asymmetries in the experiment, scintillation measurements, etc. are beyond the scope of this work
and interested readers are referred to Ref. [21] for more discussion. Another re-analysis [2] of the SAMPLE data
with three major modifications implemented, such as a developed Monte-Carlo simulation of the full experimental
geometry, consideration of background associated with the threshold photo-pion production which was not included in
Ref. [1], and a different way of analyzing background coming from charged particles resulted in a measured asymmetry
A = (−5.61± 0.67± 0.88)× 10−6 which corresponds to GsM (Q2 = 0.1 GeV2) = 0.37(33) n.m.. A large positive value

of GsM corresponds to a GZ,pM < 0.40 n.m. at Q2 = 0.1 GeV2. Recent lattice QCD calculations favor a negative
and small value of GsM (0) [23, 24]. To date, no individual experiment provides high precision measurements of the
nucleon neutral weak FFs in a wide range of Q2. By considering the weak axial vector form factor GeA as an input,
it is possible to separate the Sachs electric and magnetic FFs by combining PV asymmetry measurements from the
experimental data. However, because of the complexity of the experiments, rather sizable uncertainties in the value of
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GeA and the lack of knowledge of its Q2 behavior, the extracted value of nucleon strange EMFFs from PV-asymmetry
data vary widely in different experiments and global fits [20, 25, 26]. Although the typical EW radiative corrections
are expected to be O(α), the tree-level suppression of the interaction in the PV ~e− p scattering makes the radiative
corrections to GeA more significant and radiative corrections involving the strong interaction are not clearly known [27],

extraction of G
Z,p(n)
E,M from the PV scattering experiments is a tremendous challenge. One anticipates that with a

reliable first-principles estimate of GsE,M , one can also give a prediction to the neutral weak FFs of the proton and

the neutron without a prior knowledge of GeA(Q2) according to Eq. (1).

The main goal of this article is to calculate the neutral weak FFs of the proton and the neutron G
Z,p(n)
E,M , F

Z,p(n)
1,2

by combining results of the strange quark EMFFs from the lattice QCD calculation in Ref. [24] and nucleon EMFFs
calculated from the light-front holographic QCD in Ref. [28]. From the lattice QCD calculation, we isolate the s-quark
contributions to the nucleon EMFFs and obtain the Q2-dependence of the s-quark Sachs electric and magnetic FFs
in the momentum transfer range of 0 ≤ Q2 ≤ 0.5 GeV2. In principle, one can use a parametrization of the strange
quark EMFF to calculate GsE,M (Q2) in Eq. (1), for example, a parametrization given in Ref. [31]. However, one has

to have a prior knowledge of the strange quark magnetic moment GsM (0) and the Q2 behavior of GsE,M (Q2) in the
nonperturbative region, which with a proper estimate of uncertainties, are not accurately known from phenomenolog-
ical models at this moment. Also, three different global analyses of the experimental data give GsM (Q2 = 0.1 GeV2)
consistent with zero within their uncertainties and differ in sign in their central values [20, 25, 26]. Therefore, we
only use the GsE,M (Q2) determined from the first-principles lattice QCD calculation in a momentum transfer range

of 0 ≤ Q2 ≤ 0.5 GeV2 where the statistical and systematic uncertainties can be estimated in a reliable way.

It has been shown in Ref. [28] and in Sec. (II) that light-front holographic QCD (LFHQCD) can describe an
extensive set of experimental data of the nucleon EMFFs in any momentum transfer range with high precision.
The higher Fock-states probabilities in the following LFHQCD calculation of the nucleon EMFFs are obtained by
fitting the experimental data. One can alternatively use the experimental data summarized in Refs. [32, 33] or
parametrization to the experimental data, such as Kelly’s parametrization [34] of the nucleon FFs, or lattice QCD
calculations of the nucleon EMFFs. Neutron FF measurements are challenging and the experimental data are not
still up to the desired level of precision compared to the experimental measurements of proton EMFFs. On the other
hand, lattice QCD calculations of the neutron EMFF is also very challenging, especially the neutron Sachs electric
FF. From lattice QCD simulation at the physical pion mass, in Refs. [35, 36], it is seen that neutron Sachs EFF is
particularly noisier than the other Sachs form factors and undershoots the experimental data points in the momentum
transfer region of Q2 < 0.5 GeV2. Tremendous improvements have been achieved in calculating nucleon EMFF from
lattice QCD calculations over the past years and more statistics is required to reproduce the experimental data with
controlled systematics. A development toward such a calculation using physical pion mass and several lattice volumes
is underway and needs more computer resources at this stage to include both the valence and disconnected light-sea
quarks contribution to the nucleon EMFFs calculations. Since the LFHQCD predictions of nucleon EMFFs describe
the experimental data very well, at this stage, instead of using experimental data of the nucleon EMFFs or lattice
QCD calculation of nucleon total EMFFs, we use LFHQCD formalism to calculate nucleon EMFFs in Eq. (1), which,
in a sense is just a parametrization of the average of the world experimental data. As we will discuss below, the
nucleon EMFFs calculated from LFHQCD has a model uncertainty of about 10% based on the value of the emerging
confinement scale and systematic uncertainties associated with the free parameters used in the calculation. While
extracting neutral weak FFs of the neutron, along with different sources of model uncertainties associated with this
LFHQCD calculation and the statistical and systematic uncertainties of the lattice QCD calculation of GsE,M (Q2),

we also include the uncertainty coming from SU(6) symmetry breaking associated with the free parameter r used to
calculate neutron electric FF in the following calculation.

Light-front holographic QCD developed in Refs. [37–39] provides new insights into the quantitative determination
of hadron mass spectra and FFs within a relativistic frame-independent first-approximation to the light-front QCD
Hamiltonian. This new approach to hadronic physics follows from an approximate mapping of the Hamiltonian equa-
tions in the Anti-de Sitter (AdS) space to the relativistic semiclassical bound-state equations in the light front [38, 39].
This connection gives an exact relation between the holographic variable z of the AdS space and the invariant im-
pact light-front variable ζ in the physical space-time [37, 38]. The LFHQCD approach incorporates superconformal
quantum mechanics and captures the relevant aspects of color confinement based on a universal emerging single mass
scale κ =

√
λ [29, 30, 40–44]. In the LFHQCD approach baryons correspond to Nc = 3 [45]. Nucleon FFs determined

within this nonperturbative framework incorporate vector dominance [46] at small Q2 and correct leading twist-τ
scaling or power law fall-off for hard scattering independent of the specific dynamics at large Q2 [47, 48]. The most
recent analysis of the nucleon EMFFs and their flavor-decomposition in the spacelike region from LFHQCD shows
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remarkable agreement with the experimental data when effects of the pion cloud and SU(6) spin-flavor symmetry
breaking for the neutron are considered [28]. With the confinement scale fixed by hadron spectroscopy and the
anomalous magnetic moments of proton and neutron fixed by experiment, only three additional free parameters are
necessary to describe an extensive set of data of the nucleon EMFFs. It is important to note that, a central goal of
hadron physics is to not only successfully predict these dynamical observables but to also accurately account for the
spectroscopy of hadrons. This new approach to hadron physics predicts universal linear Regge trajectories and slopes
in both orbital angular momentum and radial excitation quantum numbers, the appearance of a massless pion in the
limit of zero-mass quarks, and gives remarkable connections between the light meson and nucleon spectra [29, 30, 40].

Conventionally, we omit the unit nucleon magneton (n.m.) for the form factors in the rest of the paper. We also

use the simple notations G
γ,p(n)
E,M ≡ Gp(n)E,M and F

p(n)
1,2 to describe the parity-conserving nucleon EMFFs in the following

calculations and figures.

II. NUCLEON ELECTROMAGNETIC FORM FACTORS IN LIGHT-FRONT HOLOGRAPHIC QCD

We now present calculation of the nucleon EMFFs in the framework of light-front holographic QCD. The details
of the calculation can be found in our recent work [28]. Considering pion cloud effect and breaking of SU(6) spin-
flavor symmetry for the neutron Dirac FF, we write proton and neutron Dirac and Pauli FFs in terms of a different
combination of twist operators following Ref. [28] as,

F p1 (Q2) = Fτ=3(Q2) (2)

F p2 (Q2) = χp[(1− γp)Fτ=4(Q2) + γpFτ=6(Q2)], (3)

for the proton, with χp = 1.793 the proton anomalous moment, and

Fn1 (Q2) = −1

3
r
[
Fτ=3(Q2)− Fτ=4(Q2)

]
, (4)

Fn2 (Q2) = χn
[
(1− γn)Fτ=4(Q2) + γnFτ=6(Q2)

]
, (5)

for the neutron, with χn = −1.913 and r = 2.08 a free-parameter required to properly match to the experimental data
as discussed in [28]. γp and γn in Eqs. (3) and (5) are the probabilities associated with the inclusion of the higher
Fock components |qqqqq̄〉 in the proton and neutron spin-flip EM transition amplitude, respectively. This additional
|qq̄〉 contribution to the nucleon wave function from higher Fock components is relevant at larger distances and is
usually interpreted as a pion cloud. The twist-τ of a particle is defined here as the power behavior of its light-front
wave function near ζ = 0: Φ ∼ ζτ . For ground state hadrons the leading twist is the number of constituents. When
computing nucleon FFs one has to constrain the asymptotic behavior of the leading fall-off of the FFs to match the
twist of the nucleon’s interpolating operator, i.e. τ = 3, to represent the fact that at high virtualities the nucleon is
essentially a system of 3 weakly interacting quarks. For a given twist τ , the FFs on the right-hand side in Eqs. (2)-(5)
can be written by shifting the vector meson poles to their physical locations as

Fτ (Q2) =
1(

1 + Q2

M2
ρn=0

)(
1 + Q2

M2
ρn=1

)
· · ·
(

1 + Q2

M2
ρn=τ−2

) , (6)

where

−Q2 = M2
ρn = 4κ2

(
n+

1

2

)
, n = 0, 1, 2, ... . (7)

This shift of the poles of the conserved AdS current form is completely ad-hoc and motivated by adjusting to the
observed poles of the EM current in the strong sector. The ground-state mass of the rho(ρ) meson, Mρn=0

≡ Mρ =

0.775 GeV gives the value of κ = Mρ/
√

2 = 0.548 GeV, where κ =
√
λ is the emerging confinement scale [44]. Eq. (6)

is expressed as a product of τ − 1 poles along the vector meson Regge radial trajectory in terms of the ρ vector meson
mass Mρ and its radial excitations. The expression for the FF (6) contains a cluster decomposition: the hadronic FF
factorizes into the i = N −1 product of twist-2 monopole FFs evaluated at different scales [49] (N is the total number
of constituents of a given Fock state):

Fi(Q
2) = Fτ=2

(
Q2
)
Fτ=2

(
1
3Q

2
)
· · · Fτ=2

(
1

2τ−1Q
2
)
. (8)
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The nucleon Sachs EMFFs are written as linear combinations of the Dirac and Pauli FFs as the following:

G
p(n)
E (Q2) = F

p(n)
1 (Q2)− Q2

4m2
N

F
p(n)
2 (Q2),

G
p(n)
M (Q2) = F

p(n)
1 (Q2) + F

p(n)
2 (Q2), (9)

These expressions of the Sachs electric and magnetic form factors will be used to obtain nucleon neutral weak Sachs
EMFFs in Eq. (1).

One can now obtain the asymptotic values of Fτ , F
p(n)
1,2 and Rp(n) = µp(n)G

p(n)
E /G

p(n)
M using Eqs. (6,7) and the

following results:

lim
Q2→∞

(
Q2
)τ−1

Fτ (Q2) = M2
n=0 · · ·M2

n=τ−2 = κ2τ−2
τ−2∏
n=0

(2 + 4n),

lim
Q2→∞

Q4F p1 (Q2) = M2
n=0M

2
n=1 = 12κ4,

lim
Q2→∞

Q4Fn1 (Q2) = −1

3
rM2

n=0M
2
n=1 = −4r κ4,

lim
Q2→∞

Q6FN2 (Q2) = χNP
γ
qqq/NM

2
n=0M

2
n=1M

2
n=2 = 120χNP

γ
qqq/N κ

6,

lim
Q2→∞

Rp(Q
2) = µp

(
1− 5

2
(µp − 1)P γqqq/p

κ2

m2
p

)
,

lim
Q2→∞

Rn(Q2) = µn

(
1 +

15µnP
γ
qqq/n

2r

κ2

m2
n

)
, (10)

where P γqqq/N = (1 − γN ), N = p, n, is the valence probability for the spin-flip EM transition amplitude. Possible

logarithmic corrections are, of course, not predicted in this semiclassical model. Keeping in mind that the gauge-
gravity duality does not determine the spin-flavor structure of the nucleons, this one is conventionally included in the
nucleon wave function using SU(6) spin-flavor symmetry. The departure of the free-parameter r from unity may be
interpreted as a SU(6) symmetry breaking effects in the neutron Dirac FF. Eqs. (2) and (4) are the SU(6) results
for the spin non-flip nucleon FFs in the valence configuration [45, 50]. Eqs. (3) and (5) correspond to the extension
of the phenomenological spin-flip nucleon FFs described in Refs. [45, 50] and which incorporate the effect of twist-6
Fock components, i.e. the contribution of |qqqqq̄〉 components in the nucleon Pauli FFs. We obtain the probabilities
γp = 0.27 ± 0.03 in Eq. (3) and γn = 0.38 ± 0.05 in Eq. (5) by fitting the world experimental data presented in
the review article [33] and the references therein. An attempt to include higher Fock component contribution in the
proton or neutron Dirac FF results in a zero probability in the fits of the experimental data as discussed in Ref. [28].
The additional parameter r accounts for the SU(6) symmetry breaking effects in the neutron and r = 2.08 ± 0.09
gives a proper match to the experimental data. In the fits of the experimental data of the nucleon EMFFs, we use
γp, γn and r as free parameters by keeping κ = 0.548 GeV fixed and obtain the values of the fit parameters with the
quoted uncertainties. We make sure that the χ2/d.o.f. for the fits of proton and neutron experimental data are in the
vicinity of 1.0. We include the uncertainties associated with these fit parameters and a model uncertainty associated
with the value of κ, which we discuss in Sec. II A.

A. LFHQCD Model Uncertainties

LFHQCD, constrained by superconformal quantum mechanics [29], yields a semiclassical description of QCD that
can be regarded as a first approximation to the full QCD. Therefore, for example, logarithmic terms due to quantum
loops are absent in the model. This is reflected by the fact that the fitted values of the universal confinement scale
κ =

√
λ differ by about 10% for different trajectories [30]. We obtain from the ρ -trajectory the value κ = 0.537

GeV, from the nucleon trajectory κ = 0.499 GeV, and from a fit to the ρ -mass alone κ = Mρ/
√

2 = 0.548 GeV.
Since the ρ -pole is dominant for the nucleon FFs, we take this last value of κ = 0.548 GeV as the default value in
our calculation. However, for the low Q2-region, the form of the nucleon wave function is important. Therefore we
estimate the uncertainty in this region from the difference of the results obtained with the default value of κ = 0.548
GeV and the result obtained with κ = 0.499 GeV from the nucleon trajectory. We also consider the uncertainty
of the nucleon FF by using the zero-probabilities (γp = γn = 0) of the higher Fock components in the Pauli FFs
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when calculating neutral weak FFs. In the low-energy domain of our calculation, i.e. for Q2 ≤ 0.5 GeV2, the largest
uncertainty comes from the difference in κ-values and the uncertainty due to higher Fock components are very small.

We show in Fig. 1 and in Ref. [28] that nucleon EMFFs can be calculated very accurately using the above FF
expressions (Eqs. (2)-(5)) and the available experimental data for both the proton and neutron at low and high Q2

are described very well. The uncertainty bands in the Fig. 1 are obtained from the variation of κ in the low and

high Q2 domains. The asymptotic values of Q4F
p(n)
1 and Q6F

p(n)
2 are obtained from Eq. (10) for κ = 0.548 GeV.

Comparison of LFHQCD prediction of the nucleon FFs with other experimental data and flavor decomposition of the
nucleon FFs can be found in Ref. [28].

It is shown in Fig. 2 that the uncertainty in the FFs for the variation in κ does not diverge at very large Q2, e.g.
at Q2 = 200 GeV2, which is guaranteed by the fact that the hard-scattering power law fall-off is ensured for the FFs
in LFHQCD formalism as mentioned earlier. We also show in Fig. 2 that the value of Rp agrees with its asymptotic
value and describes the experimental data in the entire Q2 in a satisfactory way. Therefore, we use the LFHQCD
formalism to calculate nucleon EMFFs in obtaining the nucleon neutral weak FFs in the rest of the calculation which
basically gives a proper description to the average of the existing experimental data.
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(a) Nucleon Dirac FFs from LFHQCD multiplied by Q4
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FIG. 1. Comparison of the LFHQCD results with selected world data [51, 52] for the Dirac and Pauli form factors for the
proton and neutron. The orange line corresponds to the SU(6) symmetry limit for the neutron Dirac form factor. The dotted
lines are the asymptotic predictions of the form factors from LFHQCD. The blue and green uncertainty bands are obtained
from the variation of κ determined by the nucleon and the ρ-trajectories.
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of Rp is obtained from the variation of κ determined by the nucleon and the ρ-trajectories. The uncertainty in the cyan band
of the the asymptotic value Rasymp

p (∞) = −0.309 is obtained form the difference between κ = 0.548 GeV and κ = 0.537 GeV.
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III. STRANGE QUARK FORM FACTORS FROM LATTICE QCD

We have calculated the strange quark contribution to nucleon’s magnetic moment and charge radius in Ref. [24]
using the overlap fermion on the (2 + 1) flavor RBC/UKQCD domain wall fermion (DWF) gauge configurations.
Details of these ensembles are listed in Table I. We use 24 valence quark masses in total for the 24I, 32I, 32ID, and
48I ensembles representing pion masses in the range mπ ∈(135, 400) MeV to explore the quark-mass dependence of
the s-quark FFs.

Ensemble L3 × T a (fm) m
(s)
s (MeV) mπ (MeV) Nconfig

24I [64] 243 × 64 0.1105(3) 120 330 203
32I [64] 323 × 64 0.0828(3) 110 300 309

32ID [65] 323 × 64 0.1431(7) 89.4 171 200
48I [65] 483 × 96 0.1141(2) 94.9 139 81

TABLE I. The parameters for the DWF configurations: spatial/temporal size, lattice spacing [64, 65], the sea strange quark
mass under MS scheme at 2 GeV, the pion mass corresponding to the degenerate light sea quark mass and the numbers of
configurations used in this work.

One can perform the model-independent z−expansion fit [66, 67]

Gs,z−exp(Q2)=

kmax∑
k=0

akz
k, z =

√
tcut +Q2 −

√
tcut√

tcut +Q2 +
√
tcut

, (11)

using the lattice data to extrapolate the s-quark magnetic moment and charge radius as shown in [24] and then use
the fit parameters ak to interpolate GsE,M values at various Q2 for a given valence quark mass on the lattice. The

available Q2 on the 24I and 32I ensembles are Q2 ∈ (0.22, 1.31) GeV2, on the 32ID ensemble are Q2 ∈ (0.07, 0.43) GeV2

and on the 48I ensemble are Q2 ∈ (0.05, 0.31) GeV2. It is a common problem for lattice QCD calculations that the
signal-to-noise-ratio decreases as one reaches the physical pion mass. From our study, we also find that the lattice
results of GsE,M (Q2) near the physical pion mass mπ = 140 MeV for the 48I ensemble [65] is noisier compared to the

GsE,M (Q2) obtained from the lattice ensembles with heavier pion mass. Although the largest available momentum

transfer we have on the 24I and 32I ensemble is Q2 ∼ 1.3 GeV2, the largest momentum transfer available on the 48I
ensemble is Q2 ∼ 0.31 GeV2. We note that the extrapolation of the nucleon strange EMFF starts to break down
after Q2 ∼ 0.4 GeV2 for the 48I ensemble and we therefore constrain the extrapolations of the 48I ensemble EMFF
up to Q2 = 0.5 GeV2. It is important to note that the lattice QCD estimate of GsE,M (Q2) we present here is the most
precise and accurate first-principles calculation of s-quark EMFFs to date. This is the only calculation at the physical
pion mass where we have considered the quark mass dependence, with finite lattice spacing (a), volume corrections,
and partial quenching effect to determine the s-quark EMFFs.

After the Q2-interpolation, for a given Q2 -value, we obtain 24 data points corresponding to different valence quark
masses from 3 different lattice spacings and volumes and 4 sea quark masses including one at the physical point. We
use chiral extrapolation formula following Ref. [68] and volume correction following Ref. [69]. The empirical formula
for the global fit of the strange quark Sachs electric FF at a given Q2 is

GsE(mπ,mK ,mπ,vs, a, L) = A0 +A1m
2
K +A2m

2
π +A3m

2
π,vs +A4a

2 +A5

√
Le−mπL, (12)

where mπ/mK is the valence pion/kaon mass and mπ,vs is the partially quenched pion mass m2
π,vs = 1/2(m2

π +m2
π,ss)

with mπ,ss the pion mass corresponding to the sea quark mass. The χ2/d.o.f. for different Q2 global fit ranges be-

tween 0.7-1.13. For example, in the continuum limit, the global fit for Q2 = 0.25 GeV2 results in the physical value
of GsE |phys = 0.0024(8), A1 = 0.58(30), A2 = −0.29(15), A3 = −0.003(9), A4 = 0.001(2), and A5 = −0.001(3) with
χ2/d.o.f. = 1.1. One can consider the log(mK)-term in the chiral extrapolation of GsE as shown in [68], however
our analysis shows that this term does not have any effect on the global fit for our lattice data. A similar vanishing
difference has been observed if one considers e−mπL instead of

√
Le−mπL term in the volume correction. For ex-

ample, including the factor log(mK) and e−mπL instead of
√
Le−mπL one obtains, GsE |phys = 0.0026 in comparison

with GsE |phys = 0.0024 we get from (12). We include these small effects in the systematics of the global fit results.
We also consider a 20% systematic uncertainty from the model-independent z-expansion interpolation coming from
adding a higher order term a3 while fitting the GsE(Q2) data. These uncertainties from the empirical fit formula and
z-expansion are added to the systematics discussed in [24].
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FIG. 3 shows the Q2-dependence of the s-quark Sachs electric form factor GsE in the continuum limit, i.e. mπ =
mπ,vs → 140 MeV, a → 0, and L → ∞ with the statistical and systematic uncertainties. The nonzero value of the
strange Sachs electric form factor GsE at any Q 6= 0 means that the spatial distribution of the s and s̄ quarks are not
the same in the nucleon. If the distributions of the s and s̄ quarks were the same, their contribution to the nucleon
electric FF would have the same magnitude with opposite signs. Since the net strangeness in the nucleon is zero, we
have GsE = 0 at Q2 = 0.

0.0 0.1 0.2 0.3 0.4 0.5

Q2 (GeV2 )

0.002

0.001

0.000

0.001

0.002

0.003

0.004

0.005

0.006

G
s E
(Q

2
)

  Gs
E ( stat)

  Gs
E ( stat)( sys)

FIG. 3. Q2-dependence of the strange Sachs electric form factor. The blue error bars indicate the statistical uncertainties and
the cyan error bars indicate the statistical and systematic uncertainties added in quadrature.

Similarly, we calculate the strange Sachs magnetic form factor GsM at a particular Q2 using the following global fit
formula

GsM (mπ,mK ,mπ,vs, a, L) = A0 +A1mπ +A2mK +A3m
2
π,vs +A4a

2 +A5mπ(1− 2

mπL
)e−mπL, (13)

where we have used a chiral extrapolation linear in mπ and mloop = mK [68, 70–72]. For the volume correction

we refer to Ref. [73]. From the global fit formula (13), for example, in the continuum limit at Q2 = 0.25 GeV2, we
obtain GsM |phys = −0.018(4), A1 = 0.04(3), A2 = −0.18(12), A3 = −1.27(84), A4 = 0.008(6), and A5 = 0.04(5) with
χ2/d.o.f. = 1.13. From the fitted values of the parameters in the global fit formula (13), it is seen that the quark
mass dependencies play an important role in calculating GsM (Q2) at the physical point. A 9% systematic uncertainty
from the model-independent z−expansion and an uncertainty from the empirical fit formula have been included as
discussed in [24]. We obtain systematics from the global fit formula by replacing the volume correction by e−mπL

only and also by adding mπ,vs term in the fit and include the difference in the systematics of the global fit results.
The results of GsM (Q2) in the continuum limit are presented in FIG. 4.
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FIG. 4. Q2-dependence of the strange Sachs magnetic form factor. The blue error bars indicate the statistical uncertainties
and the cyan error bars indicate the statistical and systematic uncertainties added in quadrature.
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IV. CALCULATION OF NEUTRAL WEAK FORM FACTORS

Since the neutral weak Z-boson can have both vector and axial vector interactions, the amplitude of the Z-exchange
can have both parity-conserving and parity-violating components. The parity-conserving and parity-violating Z-
amplitudes in the electron-nucleon scattering can be written as

MPC
Z =

GF

2
√

2
(giV l

µJZµ + giAl
µ5JZµ5), (14)

MPV
Z =

GF

2
√

2
(giV l

µJZµ5 + giAl
µ5JZµ ), (15)

where GF is the Fermi constant, giV (A) the weak vector(axial) charge of the fermions, lµ(lµ5) the leptonic vector(axial)

current, and JZµ (JZµ5) the nucleon vector(axial) current. In the electron-nucleon elastic scattering, the first-order inter-
actions are mediated either by a photon(γ) or a neutral weak Z-boson as shown in FIGs. 5a and 5b. The contributions
to the weak FFs from additional diagrams in FIGs. 5c and 5d should also be considered. Moreover, there can be con-
tributions that involve strong interactions where γ and Z-boson can interact with several quarks and these diagrams
are not shown here. These “many-quark” corrections are target specific and difficult to calculate; the calculations are

model-dependent. We use the LFHQCD predictions of nucleon electromagnetic form factors G
p(n)
E,M (Q2) from Eq. (9)

e
e-
- p

p

(a) Tree-level EM
Feynman diagrams in
elastic electron-nucleon
scattering mediated by

photon

- p

p-
e
e

Z- - - - - 

(b) Tree-level weak
Feynman diagrams in
elastic electron-nucleon
scattering mediated by
neutral weak Z-boson

e
e
-

-
- - -
Z p

p

(c) Feynman diagram
representing “one-quark”

radiative correction:
vacuum polarization

with leptons in the loop

- - - - - 

-

-

e
e Z

p

p

(d) Feynman diagram
representing “one-quark”

radiative correction:
γ − Z box diagram

FIG. 5. Feynman diagrams representing tree-level EM and weak interactions and “one-quark” radiative corrections.

and GsE,M (Q2) from lattice QCD calculation in Eq. (1) to obtain the nucleon neutral weak FFs which are shown in
FIGs. 6 and 7.

We address several sources of systematic uncertainties coming from the LFHQCD model, such as from the variations
in κ-value, from the higher Fock components probability parameters γp(n) and from r to estimate neutral weak FFs
for the proton and neutron. When calculating the systematic uncertainties coming from the inclusion of higher Fock
components, we consider the difference between the FFs calculated with zero higher Fock components probability
γp(n) = 0 and probability γp(n) = 0.27(0.38) calculated by fitting the world average of the experimental data of
nucleon EMFFs. Similarly, a systematic uncertainty in the neutron Dirac form factor is obtained by considering
the SU(6) symmetry breaking parameter r = 2.08 and neutron Dirac FF calculated without this free parameter, i.e.
by considering r = 1. Since, we are estimating neutral weak FFs in the 0 ≤ Q2 ≤ 0.5 GeV2, another systematic
uncertainty comes from the difference of κ = 0.499 GeV calculated from the nucleon trajectory and κ = 0.548
GeV calculated from the ρ-mass. We also include systematic uncertainty from the systematics of the lattice QCD
estimates of GsE,M (Q2) as discussed in Sec. (III). The statistical uncertainties in the neutral weak FFs come from the

lattice QCD analysis of GsE,M (Q2). The total uncertainty of the neutral weak FFs at a specific Q2-value is obtained
by quadratically adding each source of systematic and statistical uncertainties and are shown separately from the
statistical uncertainties in FIGs. 6 and 7. The systematic uncertainties of LFHQCD model give the largest error in
the estimates of neutral weak FFs.

As shown in FIG. 6, our prediction of the proton neutral weak magnetic FF at Q2 ≈ 0.1GeV2 is within the

uncertainty of the experimental measurement by the SAMPLE collaboration GZ,pM (0.1 GeV2) = 0.34(11) [1] but with
better precision and the central value differs significantly. A model-dependent prediction of the proton neutral weak
magnetic form factor can be found in Refs. [74, 75].

No experimental or theoretical estimates of the proton neutral weak electric FF and the neutron neutral weak
electric and magnetic FFs have been reported in the literature to be compared with the calculated values in this work.
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While in the EM charge coupling, the electron couples to the proton and neutron with strengths 1 and 0 respectively,
in the weak interaction the Z-coupling with the neutron is larger than the coupling to the proton. This can be seen
from FIG 7: neutron neutral weak electric FF is much larger than the proton neutral weak electric FF. It can be seen

in FIG. 7 that GZ,pE becomes negative around Q2 = 0.25 GeV2.
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FIG. 6. Q2-dependence of the proton and neutron neutral weak magnetic form factor G
Z,p(n)
M . The smaller uncertainties are

from statistics alone of the lattice QCD calculation of GsE,M (Q2). The various systematic uncertainties from the LFHQCD
model and lattice QCD calculation and the statistical uncertainties have been added in quadrature to obtain the final errors in
the neutral weak FFs calculation. The red star is the experimental result from [1] and the orange triangle is from the analysis
of SAMPLE proton data performed in [21] at Q2 = 0.1 GeV2 (with offset Q2 for visibility).
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FIG. 7. Q2-dependence of the proton and neutron neutral weak electric form factor G
Z,p(n)
E . The smaller uncertainties are

from statistics of the lattice QCD calculation of GsE,M (Q2). The various systematic uncertainties from the LFHQCD model
and lattice QCD calculation and the statistical uncertainties have been added in quadrature to obtain the final errors in the
neutral weak FFs calculation.

We now deduce neutral weak Dirac and Pauli FFs from the above calculation of neutral weak Sachs EMFFs using

Eq. (9). The results are shown in FIGs. 8 and 9. Similar to the signal-to-noise ratio of the GZ,pE (Q2), the signal-to-

noise ratio for the proton neutral weak Dirac form factor FZ,p1 (Q2) decreases with Q2 and the precision is about 3σ

at Q2 = 0.5 GeV2 after the systematic uncertainties are added in quadrature with the statistical uncertainties. It is
shown in FIGs. 6 and 7 that the systematic uncertainties from the LFHQCD dominate over the statistical uncertainties
coming from the lattice QCD analysis. Therefore we choose to add the systematic and statistical uncertainties in
quadrature to obtain the final error estimates of neutral weak FFs at each Q2-value and present total uncertainties in
FIGs. 8 and 9. These values of the neutral weak FFs are yet to be compared with future experimental determinations
since currently these values are experimentally unknown.
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FIG. 8. Q2-dependence of the proton and neutron neutral weak Dirac form factor F
Z,p(n)
1 . The FZ,p1 (Q2) plot is shown

separately in FIG. 8b for better visibility in comparison with the FZ,n1 (Q2) data. Statistical and systematic uncertainties are
added in quadrature to obtain the final uncertainty.
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FIG. 9. Q2-dependence of the proton and neutron neutral weak Dirac form factor F
Z,p(n)
2 . Statistical and systematic

uncertainties are added in quadrature to obtain the final uncertainty.

V. CONCLUSIONS

This analysis presents the determination of the Q2-dependence of the neutral weak electromagnetic form factors.
The nucleon neutral weak form factors have been calculated in the momentum transfer range of 0 ≤ Q2 ≤ 0.5 GeV2

by combining results from light-front holographic QCD and lattice QCD calculations. We have presented a first-
principles determination of the Q2-dependence of the strange quark form factors at the physical pion mass mπ = 140
MeV and in the continuum limit. With a model-independent extraction of the Q2-dependence of the strange quark
form factors, 24-valence quark masses including at the physical pion mass have been used to explore the quark mass
dependence and with finite lattice spacing and volume corrections to determine the strange quark form factors from
lattice QCD calculation. Since the strange quark contribution to nucleon electromagnetic form factors are constrained
to be small by the global experimental data, and a similar small contribution has been confirmed by first-principles
lattice QCD calculations, a precise experimental determination of the neutral weak form factors from parity violating
experiments will be challenging. The lattice results of the strange quark form factors at the physical point and
light-front holographic QCD prediction of the nucleon electromagnetic form factors have been used to determine
the nucleon neutral weak form factors precisely. The determination of neutral weak form factors in this way does
not require a prior knowledge of the weak axial form factor and its higher order radiative corrections which are
less accurately constrained. Given our precise predictions for the neutral weak electromagnetic form factors at the
physical point, we anticipate these results will be verified by future precision experiments.
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[43] G. F. de Téramond, “Hadron Physics From Superconformal Quantum Mechanics and its Light-Front Holographic Embed-

ding,” Few Body Syst. 57, no. 10, 925 (2016) [arXiv:1601.05475 [hep-th]].
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