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Hagedorn Temperature in Superstring Bits and SU(N) Characters

Sourav Raha∗

Department of Physics, University of Florida

We study the simplest superstring bit model at finite N using the characters of the

SU(N) group. We obtain exact, analytic expressions for small N partition functions

and Gaussian approximations for them in the high temperature limit for all N .

We use numerical evidence to identify two temperature regimes where the partition

function has different limiting behaviors. The temperature at which this transition

takes place is identified as the Hagedorn temperature.

I. INTRODUCTION

The string bit model was first introduced as a microscopic theory of the lightcone quan-

tized relativistic string [1]. In this model the string is seen as a polymer of more fundamental

units called string bits. To be more specific, each string bit carries an infinitesimal unit of

the + component of momentum, P+ = P 0+P 1√
2

of the string. As for P−, it can be identified as

the Hamiltonian of a polymer of string bits. As the number of bits, M , becomes large with a

fixed P+, the excitations of this polymer of bits resemble those of a string with P+ = mM,

where m is the unit of P+ carried by each bit and M is the bit number operator. These bits

are created from the vacuum state |0〉 by N ×N matrix creation operators, φ̄σ
ρ , that impose

a U(N) color symmetry. Studying the large N expansion [2] of the string bit dynamics,

then, is equivalent to doing string perturbation theory [3]. Although initially formulated

to describe bosonic strings, this formulation was soon extended to superstrings [4]. The

bit creation operator was made completely antisymmetric in an additional set of p “spinor”

indices [u1 · · ·up] where p ∈ {0, s} and uq ∈ {1, s} with s denoting the number of Grassmann

worldsheet fields in the emergent superstring. Depending upon the number of spinor indices

it has, a bit can be either bosonic or fermionic in nature. The superstring bit model that

we shall analyze is the simplest possible one: where s = 1. Recently, it was realized that

the matrix creation operator of superstring bits need not be a function of transverse coor-
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dinates. Instead it is sufficient to devise another set of two-valued internal “flavor” degrees

of freedom, v1 · · · vd, where vq ∈ {1, 2} with d denoting the number of transverse dimensions

[5]. In this article we work with space-less superstring bits: they have no space dependence.

It is important to realize that the string bits do not even have the longitudinal dimension:

that arises in the string theory limit. For large M , P+ becomes effectively a continuous

momentum, giving rise to its conjugate: the longitudinal coordinate.

The (canonical) partition function of a system at a thermal equilibrium with a heat bath

is defined as

(1)Z(β) =

ˆ ∞

0

dE g(E)e−βE

where β is the reciprocal of the product of the Boltzmann constant and the temperature

and g(E) is the density of microstates, i.e. the number of states whose energies lie between

E and E+ dE. The partition function can also be regarded as the Laplace transform of the

density of states of the system. Also if the density of states increases exponentially with E,

the partition function can be seen to diverge above a certain temperature (or, equivalently,

below a certain value of β). In statistical mechanics, partition functions can only be singular

in the thermodynamic limit. In first order phase transitions, it is the first derivative of the

free energy (∝ log(Z)) that is discontinuous. This discontinuity that occurs at the critical

temperature, can be attributed to a latent heat in the system. One way to think about a

diverging partition function is to imagine an infinite latent heat of the system: it requires

adding infinite heat to change the temperature. Phase transitions usually involve liberation

of more degrees of freedom in the system under consideration. Hagedorn was studying a

thermodynamic model of strongly interacting particles when he found out that for his model

to be consistent, the density of states of the system must grow exponentially with energy [6].

This suggested that there is a highest temperature that can be attained by matter (or more

specifically, hadrons). Later, dual resonance models were shown to have such exponential

dependence of the density of states by Fubini and Veneziano [7]. This dual resonance model

has evolved into what is today known as string theory. In [8] the Hagedorn transition is seen

as liberating the underlying degrees of freedom in string theory.

This Hagedorn phenomenon was studied in the context of the superstring bit model in [9].

The superstring bit model used there has s = 1 and d = 0. This is the simplest superstring

bit model: there are only two kinds of creation operators:
(
φ̄
)σ
ρ
and

(
φ̄1

)σ
ρ
. The former is

bosonic (Grassmann-even) and the latter is fermionic (Grassmann-odd) in nature. Since
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there are only two kinds of bits, we can suppress the spinor indices on the operators, and

instead use the symbol ‘a’ for bosonic bits and ‘b’ for fermionic bits. Thus, the only indices

that are left are the color indices. The Hamiltonian used in [9] can be expressed as

(2)H =
T0

2mN
tr[(ā2 − ib

2
)a2 − (b̄2 − iā2)b2 + (āb̄+ b̄ā)ba+ (āb̄− b̄ā)ba]

where, T0 denotes the rest tension of the emergent string, ‘tr’ denotes the trace of the

operators over color indices and other symbols denoting the usual quantities we have already

defined. The bosonic annihilation operators are defined as aρσ = (āσρ)
† and these have the

following commutation relation:
(3)[aνµ, ā

ρ
σ] = δνσδ

ρ
µ

b̄σρ have similar definition for annihilation operators, but they follow anti-commutation rela-

tion:
(4){bνµ, b̄ρσ} = δνσδ

ρ
µ

In this paper we have investigated the onset of the Hagedorn phase transition in our

superstring bit model. One important feature of the energy spectrum of string bits under

H is that, in the large N limit, the ground state energies of color singlet states and color

adjoint states are separated by a finite (and, in the limit M → ∞, constant) gap. However,

the energy scale of string excitations is of O(1/M) [10]. One way of interpreting this is that

for the singlet states, Heff is finite and, relatively speaking, for the adjoint states, Heff = ∞.

In other words, this interaction gives rise to color confinement: effectively, only the color

singlet states are significant in the appropriate limits. This means that instead of using the

full Hamiltonian and studying all the states of the system, one may study the Hagedorn

phenomenon in a system in which the only dynamics is singlet restriction. This is like

imposing color confinement by hand, instead of letting it emerge on its own. As we shall

see, this drastically simplified system is still rich enough to support a Hagedorn phenomenon.

The thermal perturbation scheme developed in [9] is well defined for arbitrary large values

of temperature, and yet the density of singlet states at large N [11] suggest a finite limiting

temperature. This suggests that the Hagedorn phenomenon is an artifact of the large N

limit. In this paper we study the superstring bit model at finite N with H = 0 and singlet

restrictions in order to understand the source of the Hagedorn phenomenon at N → ∞.

We present some exact results for low N partition functions and approximations in the

high temperature limit. We also obtain numerical data and analyze them to identify and
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establish the difference in the behavior of superstring bits below and above the Hagedorn

temperature.

II. COUNTING OF SINGLETS AT LARGE N

Let us set up the problem that we are studying in this paper. We have already described

the model that we are studying. We have also explained that we are using H = 0 and

restricting ourselves to the singlet sector. As we are studying the thermal properties of the

system, we shall be working with the canonical partition function for a system of superstring

bits. In terms of light-cone parameters,

P− = H = 0

=⇒ P 0 =
P+ + P−

√
2

=
m√
2︸︷︷︸

= ω

M = ω tr(āa + b̄b) (5)

Our partition function would then be defined as Z = Tr exp(−βP 0) where ‘Tr’ denotes the

thermal trace, i.e. the trace over all the singlet eigenstates. Since, H ∝ T0 (Eq. 2), the

H = 0 limit can also be regarded as the tensionless limit of the emergent string.

A. Only bosonic bits

Let us derive the large N partition function when there is only one bosonic oscillator.

For this, a basis element for color singlets can be written, up to a normalization constant,

as:

|singlet〉bos = tr(ā)l1tr(ā2)l2 · · · |0〉 =
( ∞∏

r=1

tr(ār)lr

)
|0〉

where each l can be any non-negative integer. In fact, there is a one-to-one correspondence

between the set of all such singlets and the set of sequences (l1, l2, · · ·). Then, energy of such

a state is given by:

P 0|{lr}〉bos = ω

( ∞∑

r=1

rlr

)
|{lr}〉bos

=⇒ e−βP 0|{lr}〉bos =
( ∞∏

r=1

e−βωrlr

)
|{lr}〉bos (6)
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where ω is defined as in Eq. 5. In the large N limit all these states form an orthogonal

eigenbasis of the system. Hence, in that limit, the singlet partition function for pure bosons

is:

(7)

lim
N →∞

Zbos(β) =
∑

{l1,l2,···}

∞∏

r=1

e−βωrlr

=

∞∏

r=1

1

1− e−βωr

B. Only fermionic bits

For one fermionic oscillator, one has to be careful, because some of the single trace

operators are simply zero. This is because of the cyclic property of the matrix trace and the

anti-commutativity of the b̄s. E.g.

tr(b̄2) = −tr(b̄2) = 0

In fact, all trace operators with an even number of bits are zero. Hence, a basis element for

fermion singlets looks like

|singlet〉fer = tr(b̄)k1tr(b̄3)k3 · · · |0〉

=

( ∞∏

r=1

tr(b̄2r−1)k2r−1

)
|0〉

where, each k can take only two values: 0 and 1. Hence, for the large-N partition function,

we have:

(8)

lim
N →∞

Zfer(β) =
1∑

{k1,k3,···}=0

∞∏

r=1

e−βω(2r−1)k2r−1

=

∞∏

r=1

{1 + e−βω(2r−1)}

C. Supersymmetric case

One may verify that neither Zbos nor Zfer diverges at a finite temperature. However, in

the supersymmetric case, it can be shown that there is an exponential degeneracy in the

number of singlets [11], and thereby a finite Hagedorn temperature. Naively, this can be

understood as follows: each bit can be either bosonic or fermionic, hence there are roughly

2M/M possibilities for a single trace operator of M supersymmetric bits (multi trace states
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are singlets as well). Of course, some of these combinations don’t correspond to physical

states because of the arrangement of anti-commuting fermionic operators in them. E.g.

tr(b̄ā2b̄ā2) = tr(b̄b̄ā2ā2) = −tr(b̄ā2b̄ā2) = 0

However, in the large M limit, this doesn’t harm the exponential degeneracy of eigenstates.

In fact, the degeneracy of single trace states goes as 2M−1/M for large M [11–13]. One may

calculate an approximation to the partition function starting from this degeneracy. It turns

out that the exact supersymmetric partition function,

lim
N→∞

Z(β) =

∞∏

n=1

1

1− 2 exp{−βω(2n− 1)} (9)

A complete derivation of the generalized result and some interesting sub-cases will appear

in [14]. As is evident from Eq. 9, Z diverges at exp{−βω} = 1/2 (it also diverges at

other, larger values of temperature). Hence, as anticipated, the supersymmetric case has a

Hagedorn temperature at TH = ω/log(2). We shall come back to this result in section V.

All the results quoted in this section are applicable in the large N limit. In this paper we

wish to study finite N partition functions. Hence, we have to develop a systematic method

of counting the eigenstates (i.e. singlets that are linearly independent) for this model at

finite N . This is what we shall do in the next section.

III. FROM CHARACTERS TO PARTITION FUNCTIONS

Imposing the singlet restriction on the Fock space of all physical states is a purely group

theoretic exercise. In our case, the group under consideration is SU(N), the gauge group of

the model. A bit creation operator has two color indices and transforms under the adjoint

action of SU(N). Given a number of such adjoint operators we shall count the number of

ways in which one may obtain states that transform trivially under SU(N). This is very

similar to decomposing a direct product of representations into a direct sum of irreps.

Before proceeding with the supersymmetric case, let us examine the pure bosonic and

pure fermionic cases at finite N . The partition functions are

Zbos(N, β) =

N∏

r=1

1

1− e−βωr
(10)

Zfer(N, β) =

N∏

r=1

{1 + e−βω(2r−1)} (11)
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As one can see, these expressions are similar to N → ∞ ones, except that the product

over r has been truncated at r = N . This is because when N is finite, for L > N , āL is

linearly dependent on ācs for c ∈ {1, 2, · · · , N}. One can obtain the exact dependence from

the Cayley-Hamilton theorem, which also gives trace identities for different powers of any

square matrix over a commutative ring. For the fermionic case, one has to use a generalized

version of the Cayley-Hamilton theorem in order to obtain the cutoff. However, there is

another explanation for the fermionic result: it is the Poincaré polynomial for SU(N) (see,

for example, ch VII sec 11 of [15]). The coefficients of powers of e−βω in this polynomial count

the number of invariants that are linear but completely antisymmetric in the infinitesimal

elements of SU(N).

Now that we have stated the special cases, let us focus on the task at hand. For this

purpose, we shall use group characters. We shall make use of the orthogonality of characters

of different irreps of a group. More specifically, the idea is to obtain the representational

content of a physical state by writing down its character. Given this character, one may

extract the multiplicity of an irrep within it by taking its product with the conjugate of the

character of the said irrep, integrating this over the entire group and then normalizing the

integral:

(12)gRR′ =

´

G
{
∏

i dθi} h({θi}) χ∗
R({θi}) χR′({θi})

´

G
{
∏

i dθi} h({θi})
where gRR′ denotes the multiplicity of the irrep R in the reducible representation R′, h({θi})
denotes the Haar measure on the group G and χR({θi}) represents the character of the

representation R. All these quantities are parametrized in terms of {θi}; the rotation angles

corresponding to the Cartan subalgebra of the group G. This is very much like using a

projection operator to extract out the subspace of irrep R. Instead of the character for only

one state, one can use a suitable character generating function and obtain the corresponding

multiplicity generating function. In [16] such a generating function was derived to obtain

multiplicities at arbitrary mass levels of strings.

For SU(N), the Haar measure is given by

(13)
∏

16i <j6N

|eiθj − eiθi |2 =
∏

16i<j6N

4 sin2

(
θi − θj

2

)

Also, the character for a singlet, the irrep we seek, is simply 1. Let us figure out how

to write down the character for a given state. As mentioned earlier, a creation opera-

tor, āµν or b̄µν , transforms in the adjoint representation of SU(N). As such, its upper and
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lower indices can be regarded as transforming in the fundamental and the anti-fundamental

representations, respectively. The character of an operator transforming in the fundamental

(anti-fundamental) representation is just exp{iθk} (exp{−iθk}) where θk is the rotation angle

corresponding to it. Hence, the character for a state āµν |0〉 or b̄µν |0〉 is given by exp{i(θµ−θν)}.
In doing this exercise, we have made an oversimplification: the adjoint irrep isn’t strictly the

direct product of the fundamental and the anti-fundamental irreps. We shall compensate

for this error in a moment.

Given a pair of color indices, (i, j), an arbitrary multiplet can be represented as

(
āij
)lij (b̄ij

)kij |0〉

where lij can be any non-negative integer and kij can be either 0 or 1. From this, one may

construct a character generating function for the all states with colors (i, j):

(14)
1 + xei(θi−θj)

1− xei(θi−θj)
=
(
1 + xei(θi−θj)

) (
1 + xei(θi−θj) + x2e2i(θi−θj) + · · ·

)

The numerator above counts the contribution from the fermionic bits while the denominator

refers to the contributions coming from the bosonic bits. Hence, the character generating

function of any multiplet of any number of superstring bits is given by the expression

(15)
∏

16i,j6N

1 + xei(θi−θj)

1− xei(θi−θj)
=

(
1 + x

1− x

)N ∏

16i<j6N

1 + x2 + 2x cos(θi − θj)

1 + x2 − 2x cos(θi − θj)

So far in this derivation we have approximated the adjoint irrep as a direct product of

fundamental and anti-fundamental irreps. However, this product includes an additional

irrep: the U(1) singlet. Eq. 15, technically speaking, gives the U(N) character of our model.

In order to obtain the generating function for SU(N) we have to remove the tr(ā) from each

āµν and tr(b̄) from each b̄µν .
(
1 + x

1− x

)N−1 ∏

16i<j6N

1 + x2 + 2x cos(θi − θj)

1 + x2 − 2x cos(θi − θj)

The coefficient of xM in the expression above gives the correct SU(N) character of the

subspace of states with bit number M . If we cast this character generating function into

Eq. 12 we obtain the generating function for multiplicities of singlet states

(16)

∞∑

M =0

gM xM =

(
1 + x

1− x

)N−1
´ π

−π

(∏N
k=1 dθk

)∏
16i<j6N 4 sin2

(
θi−θj

2

)
1+x2+2x cos(θi−θj)

1+x2−2x cos(θi−θj)

´ π

−π

(∏N
k=1 dθk

)∏
16i<j6N 4 sin2

(
θi−θj

2

)
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The R.H.S. of this equation has the following properties:-

1. The integrand in the denominator is the x → 0 (low temperature) limit of the integrand

in the numerator. It can also be interpreted as the “volume” of the SU(N) group and

evaluates to N ! (2π)N .

2. The integrand is completely symmetric in the {θk}s.

3. It is also periodic in each θk. Hence, the domain of integration is TN , i.e. the N -torus.

4. The integrand is a function of differences of θk’s; in fact it includes all the NC2 dif-

ferences among the θk ’s. This tells us that the integral is translation-invariant in the

θk’s.

5. The integrand (or rather, the Haar measure) vanishes if θi = θj for any i 6= j.

This generating function gives the multiplicities of singlets at any bit number. In our

model, E = ωM since, H = 0. If we identify x in this function with exp{−βω}, the L.H.S.

of Eq. 16 becomes the (canonical) partition function.

∞∑

M=0

gM exp{−βωM} = Z(N, β)

Thus, all partition functions mentioned so far (Eqs. 7, 8, 9, 10, 11), are just different gener-

ating functions of U(N) characters. In order to obtain the corresponding SU(N) characters,

one must multiply them with 1−x
1+x

. From here onwards, whenever we mention partition func-

tions we shall be referring to generating functions of SU(N) characters. Also for simplicity,

we shall express Z as a function of x(= βω) as opposed to β.

IV. HIGH TEMPERATURE LIMIT OF Z

The partition functions for some values of N have been tabulated in TAB. I and plotted in

FIG. 1. Beyond N = 2, the character integral becomes too involved to be done analytically

by hand. We used a computer to obtain results for N > 2. Beyond N = 3, it is useful

to employ a change of variables eiθj → zj , in order to turn this integration problem into a

problem of calculating (multidimensional) residues:
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Z(N, x) =
1

N !

(
1 + x

1− x

)N−1∑

TN

Res

(
∏

16i<j6N

−(zi − zj)
2(xzi + zj)(xzj + zi)

(xzi − zj)(xzj − zi)

∏

16k6N

1

(zk)N

)

(17)

However, even calculating these residues is prohibitively time-consuming for N > 6.

N Z(x)

2 (1− x+ 2x2)/(1 − x)

3 (1 + x)(1− 2x+ 4x2 − 3x3 + 4x4 + 2x5 + 4x7)/
[
(1− x)2(1 + x+ x2)

]

4
(1 + x)(1− 3x+6x2 − 7x3 +9x4 − 6x5 +10x6 − 2x7 +12x8 +8x9 +8x10 +16x11 +8x12 +

8x13 + 8x14)/
[
(1− x)3(1 + x+ x2)

]

5

(1 + x)2(1− 4x+ 10x2 − 17x3 + 26x4 − 31x5 + 40x6 − 36x7 + 49x8 − 18x9 + 42x10 +

52x11 + 38x12 + 148x13 + 108x14 + 240x15 + 244x16 + 344x17 + 376x18 + 392x19 +

448x20 + 352x21 + 360x22 + 272x23 + 176x24 + 144x25 + 64x26 + 32x27 +

16x28)/
[
(1− x)4(1 + x+ x2)(1 + x+ x2 + x3 + x4)

]

6

(1 + x)2(1− 4x+ 10x2 − 18x3 + 30x4 − 41x5 + 59x6 − 68x7 + 98x8 − 84x9 + 140x10 −

41x11 + 206x12 + 128x13 + 442x14 + 572x15 + 1130x16 + 1764x17 + 2824x18 + 4468x19 +

6616x20 +9712x21 +13688x22 +18656x23 +24488x24 +31152x25 +38016x26 +44632x27 +

50640x28 + 54792x29 + 57120x30 + 57056x31 + 54368x32 + 49632x33 + 43232x34 +

35776x35 + 28160x36 + 21088x37 + 14816x38 + 9824x39 + 6144x40 + 3488x41 + 1856x42 +

896x43 + 352x44 + 128x45 + 32x46)/
[
(1− x)5(1 + x+ x2)2(1 + x+ x2 + x3 + x4)

]

...
...

∞ (1− x)/
[
(1 + x)

∏∞
k=1(1− 2x2k−1)

]

TABLE I. Partition functions that are known exactly.

We have already identified the x → 0 limit of Eq. 16 : it is when the R.H.S. becomes 1

as the numerator becomes equal to the denominator. Let us now concentrate on the x→ 1

(high temperature) limit.

(18)Z(N, x→ 1) =

(
2

1− x

)N−1
´ π

−π

∏N
k=1 dθk

∏
16i<j6N 4 cos2

(
θi−θj

2

)

N ! (2π)N
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FIG. 1. Temperature dependence of known partition functions

As before, evaluating this integral analytically isn’t straightforward beyond the first few

values of N . The results for N = 2− 5 can be trivially obtained. Beyond N = 5, one has to

use the corresponding multidimensional residue form
(

2

1− x

)N−1
RN

N !

where

(19)RN = Res

(∏
16i<j6N(zi + zj)

2

∏
16k6N(zk)

N

)

This has only one pole (of order N) enclosed in the domain of integration; it is at the

origin, (0, · · · , 0). For evaluating RN , it can also be interpreted as the coefficient of the

term
∏

16k6N (zk)
N−1 in the Taylor-series expansion of

∏
16i<j6N (zi + zj)

2 about the origin

of the T
N . This term has every zk raised to the same power (N − 1), consequently, its

coefficient is the biggest of all the coefficients in the Taylor series. Here too, beyond N > 7

the computation becomes increasingly time-consuming. A list of the calculated RN values

can be found in TAB. II.

Asymptotic Behavior: Steepest Descent

Since, we don’t have a closed form expression for different coefficients of
∏

16i<j6N (zi +

zj)
2, we turned to its asymptotic analysis. Examining the expression RN we see that it is
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N RN

2 2

3 10

4 152

5 7736

6 1375952

7 877901648

TABLE II. Exact values of RN .

clearly greater than 2N(N−1)/2, as the latter is the coefficient of the term
∏

16k6N(zk)
N−1 in

the Taylor series of
∏

16i<j6N 2zizj. Similarly, 4N(N−1)/2 = 2N(N−1) is a conservative upper

bound on RN , as it is the sum of all coefficients in the expansion of the
∏

16i<j6N(zi + zj)
2.

With these two bounds we can deduce the N dependence of RN : it goes as exp(N2) in

the leading order. This is an important feature and we shall refer to this observation later.

Examining Eq. 18, we see that the integrand attains its maximum value when all the θs are

equal to each other. If one fixes the value of, say θ1, to be ψ; the modified integrand attains

a single, isolated global maximum at θ2 = θ3 = · · · = θN = ψ. While this modification

doesn’t change the value integral (or RN), but it allows for a simpler, more accurate way of

approximating it: by the method of steepest descent.

The method of steepest descent is well known for approximating integrations with a

fixed number of dimensions. In our case, however, the number of dimensions isn’t fixed,

it’s increasing. In fact, N itself is the large parameter in our case. This isn’t obvious as

integrand has an implicit dependence on N .

Let us express the general integrand in Eq. 16 as exp
{
f̂(x, {θk})

}
, where

(20)f̂(x, {θk}) =
∑

16i<j6N

log

{
4 sin2

(
θi − θj

2

)
1 + x2 + 2x cos(θi − θj)

1 + x2 − 2x cos(θi − θj)

}

For large N , one can convert this restricted double sum into the Cauchy principle value of a

double integral. We introduce an integration variable yi such that yi =
i
N

=⇒ dyi =
∆i
N

= 1
N

and a non-decreasing function Θ(y) for y ∈ (0, 1] such that Θ(yi) = θi. While defining Θ

we have taken advantage of the fact that in f̂(x, {θk}), the order of the sequence of θs

doesn’t matter. Hence, one can always redefine the θs such that they form a non-decreasing
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sequence, thereby allowing us to define a unique function in the continuum limit. Now,

f̂(x, {θk}) can re-written as

f̂(x, {θk})
= f̂(N, x)

= N2 lim
ǫ→0

ˆ 1

0

ˆ y−ǫ

0

log

{
4 sin2

(
Θ(y′)−Θ(y)

2

)
1 + x2 + 2x cos(Θ(y′)−Θ(y))

1 + x2 − 2x cos(Θ(y′)−Θ(y))

}
dy′dy

(21)

As can be seen above, going to the continuum limit brings out an overall factor of N2,

thereby making the dependence of f̂(x, {θk}) on N explicit. Now that we have justified

applying the method of steepest descent to our problem, we can see what it yields in the

high temperature limit. It gives

(22)RN =
2N(N−1)

π(N−1)/2NN/2−1

which is a more stringent upper bound than 2N(N−1). A detailed derivation of this result

may be found in the appendix. All these approximations have been plotted against known

exact values in FIG. 2.
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FIG. 2. Different estimates of RN at infinite temperature. The exact values for N > 7 were

obtained from [17]

Another useful way of expressing f̂(N, x) is:
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f̂(N, x)

= N2 lim
δ→0

ˆ 2π

0

ˆ Θ−δ

0

log

{
4 sin2

(
Θ′ −Θ

2

)
1 + x2 + 2x cos(Θ′ −Θ)

1 + x2 − 2x cos(Θ′ −Θ)

}
ρ(Θ′) dΘ′ρ(Θ) dΘ

(23)

where we have introduced a normalized density function, ρ(Θ) such that dy = ρ(Θ) dΘ

and
´ 2π

0
ρ(Θ) dΘ = 1. Now, the global maxima of f̂(x, {θk}) contribute most to the Gaussian

approximation. Hence, the density function of the global maxima are of particular interest

while doing the integral. The stationarity condition for f̂(x, {θk}), for k ∈ {1, 2, · · · , N}:

(24)
∑

l 6=k

cot

(
θk − θl

2

)
− 4x(1 + x2) sin(θk − θl)

1 + x4 − 2x2 cos{2(θk − θl)}
= 0

If {ψk} is a global maximum, then the density function, ρ(Ψ) must be a solution of:

(25)

 Ψ[max]

−Ψ[max]

{
cot

(
Ψ′ −Ψ

2

)
− 4x(1 + x2) sin(Ψ′ −Ψ)

1 + x4 − 2x2 cos{2(Ψ′ −Ψ)}

}
ρ(Ψ) dΨ = 0

where
ffl

denotes the principal value of the integral and the limits are such that ρ
(
±Ψ[max]

)
=

0 and Ψ[max] 6 π. This technique follows from [18] where the authors study the Hermitian

matrix model. They used this technique to obtain an analytic expression for the density

function of the eigenvalues in the presence of quartic and cubic interactions. We shall come

back to these density functions later in the article.

V. INTERMEDIATE TEMPERATURES AT FINITE N

As we have already mentioned, the large N energy spectrum for superstring singlet states

predicts a divergence in Z at x = 1/2. In order to trace the roots of this phenomena to finite

N partition functions, one has to compare the temperature dependence (or, x dependence)

of Z(N, x) below and above x = 1/2. At finite N , the partition function is smooth over

the entire temperature range (FIG. 1). This observation is confirmed by the exact analytic

expressions obtained for the first few N values (TAB. I). Instead of studying temperature

dependence of the partition functions, one can fix x (or, equivalently, temperature) and

analyze the values of Z(N, x) as a sequence in N . If the method of characters is correct

then this sequence must culminate in the appropriate N → ∞ value (which is known).

In other words, at any temperature below x = 1/2 this sequence must approach the value
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limN→∞ Z(x). And above x = 1/2 this sequence must diverge. This is the aim for our study:

to establish the existence of a low-temperature regime, where log(Z) has a limit point and

a high-temperature regime, where it does not have a limit point.

Having defined our goal, we set out to evaluate log(Z) analytically for finite values of N .

However, as already mentioned before, that exercise is time-consuming on our computer for

N > 5. Thereafter, encouraged by the success of the steepest descent method, we attempted

to extend it beyond x = 1. However, at general x, there are multiple global maxima and

the Hessian matrix develops a complicated dependence on x. Both these factors prevent

an analytic Gaussian approximation of the integral at hand. Numerically, Monte-Carlo

method is the only hope for achieving an acceptable degree of precision and accuracy for

this multidimensional integral. However, beyond N = 7, even Monte-Carlo method is no

longer robust. Numerical methods aren’t feasible for evaluating the Gaussian approximations

either: beyond the first few values of N , calculating the Hessian matrix isn’t simple even

numerically.

Thereafter, we chose to concentrate on the global maxima, and extract as much infor-

mation as we could, rather than continue pushing for the higher order fluctuations. As we

shall show in the following plots and paragraphs, we were able to obtain evidence of the

contrasting behavior of the partition function at different temperatures.

Here is a description of our numerical study:

1. We defined the following function:

(26)f̃(N, x, {θk}) = f̂(x, {θk}) + (N − 1) log

{
1 + x

1− x

}

We performed a global maximization routine on f̃(N, x, {θk}). Since f̃(N, x, {θk}) is
translation-invariant in θs, we were able to simplify this exercise slightly by fixing θ1

to 0. This reduced the search space from (−π, π)N to (−π, π)N−1. This maximization

was repeated for a set of (N, x) pairs, namely, for N ∈ {9, 13, · · · , 101} and x ∈
{0, 1/40, · · · , 39/40}.

2. We obtained the coordinates, {ψ̃k}N,x and the value, f̃
[max]
N,x of the global maximum

for each (N, x). The {ψ̃k}N,x were sorted; and thereafter, shifted, to obtain a non-

decreasing sequence {ψk}N,x that is centered at 0. The maximum values were redefined
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to obtain

f
[max]
N,x = f̃

[max]
N,x − f̃

[max]
N,0

These f
[max]
N,x resemble the function logZ(N, x) more closely, e.g. f

[max]
N,0 = 0 =

log(Z(N, 0)) for all values of N . We discuss the corrections to this approximation

in the appendix . FIG. 3 shows temperature dependence of f [max] for some values of

N .
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FIG. 3. Dependence of f [max] on temperature.

3. We used f
[max]
N,x to extract the dependence of log(Z(N, x)) to leading order in N . We

did this by fitting this data set onto a model function:

(27)F (N, x) = c1(x)N
2 + c2(x)N log(N) + c3(x)N + c4(x) log(N) + c5(x)

The form of F (N, x) was decided by examining Eq. 16. The presence of the restricted

double sum (Eq. 21) and the leading order behavior of RN imply a N2 dependence

of F (N, x), the presence of N ! leads to the remaining N -dependent terms and the

constant term is there to capture pure temperature dependence of f
[max]
N,x . We studied

how these coefficients change with x (or, temperature). FIG. 4 shows the temperature

dependence of c1.

4. For each (N, x), we used {ψk}N,x to numerically approximate the density function of
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the global maxima, ρ(Ψ) (Eq. 23). For l ∈ {1, · · · , N − 1}, we obtained

(28){ρl}N,x =
1

N − 1

1

{ψl+1 − ψl}N,x

where the 1/(N − 1) is for normalization of the distribution.

Error estimates

f̃(N, x, {θk}) has multiple maxima of different orders in the search space (−π, π)N−1.

Locating a maximum isn’t as difficult as is ensuring that it is also a global maximum. We

examined four different optimization methods and picked the best one for obtaining our final

data set. A (nonlinear) least-squares fit of F (N, x) was obtained to the data set. Of the 40

fits, 38 had an Adjusted R2 value of 1 while two of them had 0.98 and 0.90, respectively.

VI. RESULTS AND CONCLUSIONS

In FIG. 3 we make an important observation: for x < 1/2, log(Z) is independent of N

at leading order. The N -dependence sets in only for x > 1/2. For x > 1/2, the curves are
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concave upwards and diverge at x = 1. Also, as N gets larger, the curve gets steeper. At

N → ∞, the curve is infinitely steep at x = 1/2, and we see the Hagedorn phenomenon.

The most important result of this paper is FIG. 4. This plot shows the dependence of the

leading order coefficient in Eq. 27 on temperature. c1 is negligible below x = 1/2. In fact,

all the coefficients of N -dependent terms; i.e. c1, c2, c3 and c4 are negligible below x = 1/2.

We can actually confirm that there is no N2 term in the expansion of log(Z) [14]. Above

x = 1/2, c1 is positive and increases monotonically with x (or, temperature). However, it

doesn’t keep increasing indefinitely. From Eq. 22 we expect limx→1 c1 = log(2) ≈ 0.69. We

confirmed this limiting behavior by conducting a subsequent search with a finer grid near

x = 1.

FIG. 4 clearly demarcates the two temperature regimes we proposed in the previous

section. At lower temperatures log(Z) has no diverging terms in N . Hence, at N → ∞, it

has a limit point. Above x = 1/2, the leading order terms diverge as N → ∞. It is this

difference in behavior that manifests as the Hagedorn phenomenon as N → ∞. However,

this difference is present only in the leading order in N . As, has been shown earlier, the

finite N partition function; taken in its entirety, is smooth over x ∈ (0, 1). There is no

indication of any discontinuity or non-differentiability at x = 1/2. Its only divergence is at

infinite temperature.

The N2 dependence of logZ is related to the underlying degrees of freedom in the su-

perstring bit system. It signals the liberation of the superstring bits from their singlet,

polymeric states. In other words, there is deconfinement in this model at x = 1/2. The

Hagedorn phenomenon thus has an interpretation as a phase transition between polymeric,

color singlet states and monomeric, color adjoint states. And in this interpretation, c1(x)

plays the role of the order parameter. In order to obtain the form of c1(x) analytically, it is

necessary to find the density of the global maxima,{ψk}N,x, for x > 1/2.

Speaking of {ψk}N,x, this phase transition can also be detected by examining the distri-

bution of the coordinates of the global maxima. In FIG. 5 we have plotted the temperature

dependence of such distributions for N = 45. These plots show a remarkable difference in

the distribution of {ψk}N,x at different values of temperature. At low temperatures, the

integrand is maximized by those regions in the domain where the {ψk}N,x are uniformly dis-

tributed in (−π, π). It is as if the {ψk}N,x, are repelling each other. This uniform distribution

of of the coordinates is seen for all x < 1/2. For x > 1/2, two things happen: the range of
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FIG. 5. Distribution of the coordinates of the global maxima for N = 45.

the distribution shrinks and the density peaks at its median. With increasing temperatures,

the {ψk}N,x begin to attract each other, until at x = 1, their distribution becomes a delta

function. At infinite temperature, the integrand is maximized by those regions where the

coordinates have the same value. This change in distribution of {ψk}N,x can be rationalized

by noting that f̂(0, {θk}) is a function of terms like sin2
(

θi−θj
2

)
and f̂(x→ 1, {θk}) contains

terms like cos2
(

θi−θj
2

)
. However, it is interesting that this transition of the distribution

doesn’t begin until x = 1/2. One can construct the normalized density function from the

{ψk}N,x. FIG. 6 shows these density plots at different temperatures for N = 45. Again, till

x = 1/2, the density function is a constant, with ρ ≈ 1/(2π). Above x = 1/2, there exists a

Ψ[max] < π such that ρ
(
±Ψ[max]

)
= 0 (Eq. 25). Such a cut-off for the density function has

featured in previous studies of matrix models, e.g. the Hermitian matrix model [18].

The change in the distribution of {ψk} in our superstring bit model, bears a resemblance

to the well-known phase transition in the unitary matrix model [19]. While the latter has

a coupling constant g, the parameter in our model is x, or the temperature. Still, there is

a similarity in the transformation of the density functions: from low to high temperature

in superstring bit model and from small to large coupling in the unitary matrix model.
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FIG. 6. Normalized density function of the ψs at different temperatures for N = 45.

Recently, it was pointed out to us that Aharony et al 1 obtained similar results for free

U(N) Yang-Mills theory with adjoint matter on S3 × R [12]. Both Sundborg [13] and [12]

have obtained similar supersymmetric partition functions in the limit of large N . However,

unlike in these models, an exact analytic expression of the high temperature density function

still evades us.
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Appendix: Gaussian approximation at infinite temperature

Let us Taylor-expand f̂ from Eq. 20 in {θk}s about a global maximum at {ψk}:

(A.1)f̂ (x, {θk}) = f̂ (x, {ψk}) +
1

2

∑

r,s

(θr − ψr)
d2

dθrdθs
f̂ (x, {ψk}) (θs − ψs) + · · ·

1 Sundborg [13] had, in turn, already derived most of the results of [12] for N=4 SYM theory on S3.
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=⇒
ˆ π

−π

exp f̂ (x, {θk})
∏

16l6N

dθl

≈ J (N, x) exp
{
f̂ (x, {ψk})

} ˆ ∞

−∞
exp

{
1

2

∑

r,s

(θr − ψr)
d2f̂ (x, {ψk})

dθrdθs
(θs − ψs)

}
∏

16l6N

dθl

= J (N, x) exp
{
f̂ (x, {ψk})

}√ (2π)N

det(H)

(A.2)

where J (N, x) is the number of global maxima in (−π, π)N and

Hrs = − d2

dθrdθs
f̂ (x, {ψk})

As the integrand is translation invariant in the θs, J (N, x) is ∞. As we shall see later,

the correct approximation involves applying steepest descent after removing the zero mode

integral. Once the zero mode is removed, J (N, x) is the number of global maxima in

(−π, π)N−1. J (N, x) in general has a factor of (N − 1)! coming from the symmetry of the

integrand in the θs.

At infinite temperature (x = 1) there is only one global maximum: ψ1 = ψ2 = · · · = ψN .

Hence, J (N, 1) = 1 and from Eq. 18

(A.3)Z(N, 1) ≈
(

2

1− x

)N−1
2N(N−1)

N ! (2π)N

ˆ ∞

−∞
exp




−1

2

∑

r,s

Nδrs − 1

2︸ ︷︷ ︸
=Hrs

θrθs





N∏

k=1

dθk

Here we can see that the formula for the Gaussian integral yields ∞. This is because

we blindly replaced every one dimensional integration
´ π

−π
dθi · · · with

´∞
−∞ dθi · · · when we

took the Gaussian approximation. Hence, instead of obtaining a factor of 2π from the zero

mode, we get ∞. The correct formula is

2π

√
(2π)N−1

det(H ′)

where H ′
rs = Hrs ∀{r, s} ∈ {1, 2, · · · , N − 1}. H ′ is the (N − 1) × (N − 1) matrix one

gets after truncating the N th row and N th column of H . Evaluating det(H ′) we get NN−2

2N−1 .
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Putting everything back into the earlier equation we get

(A.4)
Z ≈

(
2

1− x

)N−1
2N(N−1)

N ! (2π)N
2π

√
2N−1(2π)N−1

NN−2

=

(
2

1− x

)N−1
1

N !

2N(N−1)

π(N−1)/2NN/2−1

We can compare this to Eq. 18 to infer:

(A.5)
RN =

∑

Γ

Res

(∏
16i<j6N(zi + zj)

2

∏
16k6N(zk)

N

)

≈ 2N(N−1)

π(N−1)/2NN/2−1

While searching through mathematics literature, we came to know that RN as defined

above, also counts the number of Eulerian digraphs with N nodes [17]. Also, the author

lists exact values of RN till N = 16, some of which we have used in FIG. 2. A follow up on

our search revealed that the asymptotic expression in Eq. A.5 has already been computed

in [20]. It turns out that multiplying our Gaussian result with an extra factor of e−1/4 is a

more accurate approximation in leading order.
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