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Abstract

Recently, spin-one wavefunctions in four dimensions that are conformal primaries of

the Lorentz group SL(2,C) were constructed. We compute low-point, tree-level gluon

scattering amplitudes in the space of these conformal primary wavefunctions. The

answers have the same conformal covariance as correlators of spin-one primaries in a

2d CFT. The BCFW recursion relation between three- and four-point gluon amplitudes

is recast into this conformal basis.



1 Introduction

The 4d Lorentz group acts as the global SL(2,C) conformal group on the celestial sphere at

null infinity. This implies that the 4d massless quantum field theory (QFT) scattering am-

plitudes, recast as correlators on the celestial sphere, share some properties with those of 2d

CFTs. When gravity is included, the plot thickens: the global conformal group is enhanced

to the infinite-dimensional local group [1–4],1 suggesting an even tighter connection with 2d

CFT. This 4d-2d connection is of interest both for the ambitious goal of a holographic refor-

mulation of flat space quantum gravity, as well as for its potentially strong yet unexploited

mathematical implications for the rich subject of QFT scattering amplitudes.

A perhaps-not-too-distant goal is to find out whether or to what extent there is any set of

QFT scattering amplitudes that can be approximately2 generated by some kind of 2d CFT.

It has been clear from the outset that such CFTs would not be of the garden variety with

operators in highest weight representations. Recently it has emerged [10] from the study of

two-point functions, that the unitary principal continuous series (which has appeared in a

variety of CFT studies [11–14]) of the Lorentz group plays a central role. Beyond that it is

not clear what to expect, and concrete computations are in order. In this paper we compute

and explore some basic properties of amplitudes - in particular the three- and four-point

tree-level gluon amplitudes - presented as 2d conformal correlators on the celestial sphere.

This case is of special interest both because it has been shown that soft gluons generate

a 2d current algebra [15, 16] and because of the plethora of beautiful results about these

amplitudes in the momentum-space representation. In principle, one may hope to find a

2d CFT of some kind that generates the 4d tree amplitudes. Indeed several constructions

including the scattering equations [17] and twistor space [18–20] seem close to achieving this

goal.

The SL(2,C) conformal presentation of 4d QFT scattering amplitudes was discussed

long ago by Dirac [21]. Recently, soft photon and gluon theorems were recast as 2d Kac-

Moody-Ward identities [15, 16, 22–24]. Massless [3] and massive [25] scalar wavefunctions

in four-dimensional Minkowski spacetime that are primaries of the Lorentz group SL(2,C)

were constructed. Such solutions, called conformal primary wavefunctions, are labeled by a

point z, z̄ in R2 and a conformal dimension ∆, rather than the three independent components

1Up to IR divergences at one loop [5–9].
2Exact CFTs are expected only with the inclusion of gravity. What we have in mind here is something

like a large N approximation.
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of an on-shell four-momentum. The massless spin-one conformal primary wavefunctions in

four dimensions were also constructed in [3]. A comprehensive survey of conformal primary

wavefunctions with or without spin in arbitrary spacetime dimensions was performed in

[10]. In particular, it was shown there that conformal primary wavefunctions in R1,d+1 with

conformal dimensions on the principal continuous series ∆ ∈ d
2
+ iR of SO(1, d+ 1) form a

complete set of delta-function-normalizable solutions to the wave equation. The factorization

singularity of amplitudes in the conformal basis is studied in [26, 27].

In this paper we study low-point 4d tree-level gluon scattering amplitudes in the space of

conformal primary wavefunctions. We find that the tree-level color-ordered MHV four-point

amplitude 1−2− → 3+4+ takes the form

Ã−−++(zi, z̄i) = I(zij, z̄ij) δ(

4∑

i=1

λi)δ(|z − z̄|) z
5

3

(z − 1)
1

3

, 1 < z, (1.1)

where z, z̄ are the cross ratios, I(zij , z̄ij) is a product of powers of zij , z̄ij that is fixed by

conformal covariance, and 1 + iλi are the conformal dimensions of the four primaries. The

delta-function for the imaginary part of the cross ratio is shown to be implied by 4d transla-

tion invariance (which is generally obscured in the conformal basis). As an important check

on this formula, we show that is has a BCFW representation in a factorization channel

involving the product of three-point functions.

Going forward, more might be learned from a 2d conformal block expansion of the four-

point function (1.1). Interestingly, the BCFW relation resembles the OPE expansion of a 2d

CFT four-point correlator. We leave these directions to future work.

The paper is organized as follows. In Section 2 we review the massless vector conformal

primary wavefunction in four spacetime dimensions. The change of basis from plane waves

to the conformal primary wavefunctions is implemented by a Mellin transform. In Sections

3 and 4, we compute Mellin transforms of the tree-level three- and four-point amplitudes,

and show that the answers transform as spin-one 2d conformal correlators. In Section 5,

we write the BCFW recursion relation for the MHV four-point amplitude in the conformal

primary wavefunction basis. In Appendix A we set up our conventions for the spinor helicity

variables. In Appendix B, we review Mellin transforms on inner products of two gauge boson

one-particle states.
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2 A Conformal Basis for Gauge Bosons

In this section we review the massless vector conformal primary wavefunctions in R1,3 [3,10],

i.e. solutions to the four-dimensional Maxwell equation that transform as two-dimensional

spin-one conformal primaries. In particular, the transition from momentum space to confor-

mal primary wavefunctions is implemented by a Mellin transform. Later sections will derive

and study low-point amplitudes in the new conformal basis.

Let us begin by setting up the notations. We will restrict ourselves to four-dimensional

Minkowski space R1,3 with spacetime coordinates Xµ (µ = 0, 1, 2, 3). We use z, z̄ to denote

a point in R
2. We will sometimes use ∂+ (∂−) to denote ∂z (∂z̄).

2.1 Massless Vector Conformal Primary Wavefunctions

Scattering problems of gauge bosons are usually studied in the plane wave basis which, in

Lorenz gauge ∂µAµ = 0, consists of

ǫµℓ(p) e
∓i|~p|X0±i~p· ~X , ℓ = ±1 . (2.1)

Here ǫµℓ(p) are the polarization vectors for the helicity ℓ one-particle states. They satisfy

ǫℓ(p) · p = 0, ǫ±(p)
∗ = ǫ∓(p), and ǫℓ(p) · ǫℓ′(p)∗ = δℓℓ′. Plane wave solutions are labeled by

three continuous variables and two signs:

• a spatial momentum ~p,

• a 4d helicity ℓ = ±1,

• a sign distinguishing an incoming solution from an outgoing one.

To make the two-dimensional conformal symmetry manifest, an alternative set of solu-

tions for the Maxwell equation, called massless vector conformal primary wavefunctions

V ∆±
µJ (Xµ; z, z̄) , (2.2)

were constructed in [3, 10]. These solutions are again labeled by three continuous variables

and two signs:

• a point z, z̄ in R2 and a conformal dimension ∆,

• a 2d spin J = ±1,
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• a sign distinguishing an incoming solution from an outgoing one.

The defining properties of the massless vector conformal primary wavefunction V ∆±
µJ (Xµ; z, z̄)

are:

1. It satisfies the Maxwell equation,

(
∂

∂Xρ

∂

∂Xρ

δµν −
∂

∂Xν

∂

∂Xµ

)
V ∆±
µJ (Xµ; z, z̄) = 0 . (2.3)

2. It transforms as a four-dimensional vector and a two-dimensional (quasi-)conformal

primary with spin J = ±1 and has dimension ∆ under an SL(2,C) Lorentz transfor-

mation:

V ∆±
µJ

(
Λµ

νX
ν ;
az + b

cz + d
,
āz̄ + b̄

c̄z̄ + d̄

)
= (cz + d)∆+J(c̄z̄ + d̄)∆−J Λ ρ

µ V ∆±
ρJ (Xµ; z, z̄) , (2.4)

where a, b, c, d ∈ C with ad− bc = 1 and Λµ
ν is the associated SL(2,C) group element

in the four-dimensional representation.3

By construction, scattering amplitudes of conformal primary wavefunctions transform co-

variantly as a two-dimensional conformal correlators of spin-one primaries with conformal

dimensions ∆i.

Let us write down the explicit expression for the massless vector conformal primary

wavefunctions. We define a “unit” null vector qµ associated to z, z̄ as

qµ(z, z̄) = (1 + |z|2, z + z̄,−i(z − z̄), 1− |z|2) . (2.5)

Under an SL(2,C) transformation z → z′ = (az + b)/(cz + d), z̄ → z̄′ = (āz̄ + b̄)/(c̄z̄ + d̄),

the null vector qµ transforms as a vector up to a conformal weight,

qµ → qµ′ = (cz + d)−1(c̄z̄ + d̄)−1Λµ
νq

ν . (2.6)

The derivative of qµ with respect to z and z̄ are respectively the polarization vectors of

helicity +1 and −1 one-particle states propagating in the qµ direction:

∂zq
µ =
√
2 ǫµ+(q) = (z̄, 1,−i,−z̄) , ∂z̄q

µ =
√
2 ǫµ−(q) = (z, 1, i,−z) . (2.7)

3For an explicit expression for Λµ
ν in terms of a, b, c, d, see [25].
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Bases Plane Waves Conformal Primary Wavefunctions

Notations ǫµℓ(p) exp
[
∓i|~p|X0 ± i~p · ~X

]
V ∆,±
µJ (X ; z, z̄)

Continuous Labels ~p ∆, z, z̄
Discrete Labels 4d Helicity ℓ 2d Spin J

Incoming vs. Outgoing Incoming vs. Outgoing

Table 1: A comparison between the plane waves and the massless vector conformal primary
wavefunctions. The two set of solutions are labeled by some continuous labels and discrete
labels. The continuous labels for the former are a spatial momentum ~p, while those for the
latter are ∆, z, z̄. The discrete labels consist of a sign distinguishing between incoming and
outgoing wavefunctions, and a sign for the 4d helicity or the 2d spin.

They satisfy q · ∂zq = q · ∂z̄q = 0, ∂zq · ∂zq = ∂z̄q · ∂z̄q = 0 and ∂zq · ∂z̄q = 2.

The explicit expression for the conformal primary wavefunctions was given in terms

of the spin-one bulk-to-boundary propagator in the three-dimensional hyperbolic space H3

in [3, 10]. To compute gauge invariant physical observables such as scattering amplitudes,

we can choose a convenient gauge representative for the conformal primary wavefunction.

In [3, 10] it was shown that, for ∆ 6= 1, the vector conformal primary wavefunction is gauge

equivalent to

V ∆,±
µJ (Xµ; z, z̄) = N ∂Jqµ

(−q ·X ∓ iǫ)∆
, ∆ 6= 1 , (2.8)

where N = (∓i)∆Γ(∆)/
√
2 is a normalization constant chosen for later convenience. From

now on we will assume ∆ 6= 1. (When ∆ = 1, the conformal primary wavefunction itself is a

total derivative in Xµ, so is a pure gauge. We have put in an iǫ-prescription to circumvent

the singularity at the light sheet where q ·X = 0.) There is another set of conformal primary

wavefunctions that are shadow to (2.8) [10]. We leave the study of scattering amplitudes in

the shadow basis for future investigation.

Finally, we need to determine the range of the conformal dimension ∆. It was shown in

[10] that the conformal primary wavefunctions are a complete and delta-function-normalizable

basis if ∆ ranges over the one-dimensional locus

C = {∆ ∈ 1 + iR} , (2.9)

on the complex plane. See also [3,28] for an alternative argument via the hyperbolic slicing

of Minkowski space. For a given spin, this range of ∆ is known as the principal continuous

series of unitary representations of SL(2,C).
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2.2 Mellin Transform

The gauge representative (2.8) for the conformal primary wavefunction has the advantage

that it is simply related to the plane wave (2.1) by a Mellin transform4

N ∂Jqµ
(−q ·X ∓ iǫ)∆

=
∂Jqµ√

2

∫ ∞

0

dω ω∆−1 e±iωq·X−ǫω , ∆ = 1 + iλ , (2.12)

with the plus (minus) sign for an outgoing (incoming) wavefunction. ∆ is the scaling dimen-

sion under the Lorentz boosts which preserve the particle trajectory while rescaling q ·X .

Notice that the spin +1(−1), outgoing conformal primary wavefunction A∆,+
µ+ (A∆,+

µ− ) has

nontrivial projections to the 4d helicity +1(−1) sector. It follows that a 4d helicity +1 (−1)
outgoing one-particle state is mapped to a 2d spin +1 (−1) conformal operator under Mellin

transform. By CPT, a 4d helicity +1 (−1) incoming one-particle state is mapped to a 2d

spin −1 (+1) conformal operator under Mellin transform.

When considering scattering amplitudes in the plane wave basis, it is often convenient

to take all particles to be outgoing but some of them carrying negative energy. In the

basis of conformal primary wavefunctions, however, we need to keep track of which particles

are incoming and outgoing, and different crossing channels have to be treated separately.

Nonetheless, we will label the helicity of an external gauge boson as if it were an outgoing

particle.

This change of basis can be immediately extended to any gauge boson scattering ampli-

tude. Consider a general n-point gauge boson scattering amplitude, which is a function of

the ωi, zi, z̄i and helicities ℓi,

Aℓ1···ℓn(ωi, zi, z̄i) , (2.13)

with the momentum conservation delta function δ(4)(
∑n

i=1 p
µ
i ) included. We can perform a

Mellin transform on each of the external particles to go to the basis of conformal primary

4The Mellin transform of a function f(ω) is defined by

f̃(∆) =

∫
∞

0

dω ω∆−1f(ω) , (2.10)

while the inverse Mellin transform of f̃(∆) is

f(ω) =
1

2πi

∫ c+i∞

c−i∞

d∆ω−∆f̃(∆) , c ∈ R . (2.11)
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wavefunctions,

ÃJ1···Jn(λj , zj, z̄j) =
n∏

i=1

∫ ∞

0

dωi ω
λi

i Aℓ1···ℓn(ωj, zj, z̄j) , (2.14)

where the 2d spin Ji is identified as the 4d helicity ℓi, i.e. Ji = ℓi. From the defining proper-

ties of the conformal primary wavefunction (2.4), the resulting function ÃJ1···Jn(λi, zi, z̄i) is

guaranteed to transform covariantly as a two-dimensional conformal correlators of spin-one

primaries with dimensions ∆i = 1 + iλi, i.e.

ÃJ1···Jn

(
λj,

azj + b

czj + d
,
āz̄j + b̄

c̄z̄j + d̄

)
=

n∏

i=1

[
(czi + d)∆i+Ji(c̄z̄i + d̄)∆i−Ji

]
ÃJ1···Jn(λj , zj, z̄j) . (2.15)

We will sometimes use the inverse Mellin transform to convert an amplitude in the con-

formal primary wavefunction basis back to the plane wave basis,

Aℓ1···ℓn(ωj, zj , z̄j) =

n∏

i=1

∫ ∞

−∞

dλi

2π
ω−1−iλi ÃJ1···Jn(λj , zj, z̄j) . (2.16)

To sum up the above discussion, the change of basis from plane waves to the massless

vector conformal primary wavefunction is implemented by a Mellin transform (2.11) with

conformal dimension ∆ = 1 + iλ lying on the principal continuous series. The 4d helicity of

an one-particle state is identified as the 2d spin for the primary operator.

We now discuss some general properties of Mellin transforms of low-point gluon ampli-

tudes. They scale homogeneously under uniform rescaling of the frequencies as

Aℓ1···ℓn(Λωi, zi, z̄i) = Λ−nAℓ1···ℓn(ωi, zi, z̄i) . (2.17)

The momentum conservation delta function is included in A and contributes a factor of Λ−4

in (2.17). (Note this scaling also holds true for tree-level φ4 theory, so that the analysis

in the rest of this subsection carries over to that case as well.) It is convenient to change

the integration variables to an overall frequency s ≡∑i ωi and a set of “simplex variables”

σi ≡ s−1ωi ∈ [0, 1] with
∑n

i=1 σn = 1,

n∏

i=1

∫ ∞

0

dωi ω
iλi

i [...] =

∫ ∞

0

dss
n−1+i

∑
i

λi
n∏

i=1

∫ 1

0

dσi σ
λi

i δ(
∑

i

σi − 1)[...] . (2.18)

Let Aℓ1···ℓn denote the stripped amplitude with the delta function and an overall power of s
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factored out:

Aℓ1···ℓn(ωj, zj, z̄j) = s−n Aℓ1···ℓn(σj , zj , z̄j)δ
(4)(
∑

i

εiσiqi) , (2.19)

where qi(zi, z̄i) is given in (2.5) (or its (−+−+) signature analog which will be discussed in

Section 3) and εi = +1 (−1) for an outgoing (incoming) external particle. Then, using (2.17)

and

∫ ∞

0

dω ωiλ−1 = 2π δ(λ) , (2.20)

we can rewrite the amplitude in the conformal basis (2.14) as:

ÃJ1···Jn(λj, zj, z̄j) = 2πδ(
∑

i

λi)
n∏

i=1

∫ 1

0

dσi σ
iλi

i Aℓ1···ℓn(σj , zj , z̄j)δ
(4)(
∑

i

εiσiqi)δ(
∑

i

σi − 1) .

(2.21)

We thus have a total of 5 delta functions inside the integral of (2.21), which localize the σi

integrals for up to five-point scattering amplitudes.

We can then compute ÃJ1···Jn(λj , zj, z̄j) for n ≤ 5 easily in two steps. In the first step,

we rewrite the delta functions as

δ(4)(
∑

i

εiσiqi)δ(
∑

i

σi − 1) = C(zi, z̄i)

n≤5∏

i=1

δ(σi − σ∗i) , (2.22)

for some function C(zi, z̄i). Here σ∗i(zj , z̄j)’s are the solutions of σi’s fixed by the momentum

conservation delta functions. For n = 3, 4, the momentum conservation equations are over-

constraining, and the function C(zi, z̄i) will contain delta functions in zi, z̄i, restricting the

angles of the external particle trajectories. For example, as we will see in Section 4, for

n = 4, C(zi, z̄i) ∼ δ(|z − z̄|) where z, z̄ are the cross ratios.

In the second step, all the simplex integrals in σi can be done by simply evaluating the

integrand at σi = σ∗i(zj , z̄j). The final result for the Mellin transform of the amplitude (2.21)

is then:

ÃJ1···Jn(λj , zj, z̄j) = 2πδ(
∑

i

λi)

(
n≤5∏

i=1

σiλi

∗i

)
Aℓ1···ℓn(σ∗j , zj, z̄j)C(zi, z̄i)

∏

i

1[0,1](σ∗i) , (2.23)
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where the indicator function 1[0,1](x) defined as

1[0,1](x) =

{
1 , if x ∈ [0, 1] ,

0 , otherwise ,
(2.24)

comes from the restricted range of σi between 0 and 1 in their definitions. In Sections 3

and 4, we will give explicit expressions for the tree-level color-ordered three- and four-point

amplitudes in the conformal basis.

3 Gluon Three-Point Amplitudes

In this section we derive the Mellin transforms of the tree-level MHV and anti-MHV three-

point amplitudes. In the (−+++) signature, the kinematics of massless scatterings forces the

gluon three-point amplitude to vanish. To circumvent this issue, we will instead be working

in the (− + −+) signature in this section, in which (z, z̄) as well as the spinor helicity

variables (|p], |p〉) are not related by complex conjugation, and the three-point function need

not vanish. In particular (2.5) becomes:

qµ(z, z̄) = (1 + zz̄, z + z̄, z − z̄, 1− zz̄) . (3.1)

The Lorentz group in the (− +−+) signature is SL(2,R)× SL(2,R), which acts on z and

z̄ separately.

Let us start with the tree-level color-ordered MHV three-point amplitude. Letting the

first and the second particles have negative helicities and the third particle have positive

helicity, the momentum space amplitude is (see Appendix A for our conventions on the

spinor helicity variables),

A−−+(ωi, zi, z̄i) =
〈12〉3
〈23〉〈31〉 δ

(4)(pµ1 + pµ2 + pµ3 )

= −2ω1ω2

ω3

z312
z23z31

δ(4)(
∑

i

εiωiq
µ
i ) . (3.2)

The 2d spins of the corresponding conformal primaries are J1 = J2 = −1 and J3 = +1. In

writing down the above expression, we have assumed zij 6= 0, while z̄ij , which are independent

real variables in the (−+−+) spacetime signature, are allowed to vanish. The sign εi is +1

(−1) for an outgoing (incoming) particle when we rotate back to the (− + ++) signature.

However, in the (−+−+) signature, there is no invariant distinction between an incoming
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and an outgoing wavefunction. Indeed, under SL(2,R)×SL(2,R), the sign εi is not invariant

and transforms as εi → εisgn((czi + d)(c̄z̄i + d̄)), where a, b, c, d, ā, b̄, c̄, d̄ ∈ R with ad− bc =

ād̄− b̄c̄ = 1.

We will follow the route of Section 2.2. The delta function in (2.21) on the support of

zij 6= 0 can be written

δ(4)(
∑

i

εiσiqi)δ(
∑

i

σi − 1)

∣∣∣∣∣
zij 6=0

=
δ(z̄12)δ(z̄13)

4σ1σ2σ3D
2
3

δ(σ1 −
z23
D3

)δ(σ2 + ε1ε2
z13
D3

)δ(σ3 − ε1ε3
z12
D3

) ,

≡ δ(z̄12)δ(z̄13)

4σ1σ2σ3D2
3

3∏

i=1

δ(σi − σ∗i) , (3.3)

where the denominator is

D3 = (1− ε1ε2)z13 + (ε1ε3 − 1)z12 . (3.4)

There is a similar term with support at z̄ij 6= 0 relevant for the anti-MHV three-point

amplitude, which by symmetry of the left hand side is just the above expression with the

substitution zij ↔ z̄ij . Thanks to the delta functions in (3.3), all the Mellin integrals collapse

to evaluating the integrand on the solutions of σi:

Ã−−+(λi; zi, z̄i) = −π δ(
∑

i

λi)
sgn(z12z23z31)δ(z̄13)δ(z̄12)

|z12|−1−iλ3 |z23|1−iλ1 |z13|1−iλ2

3∏

i=1

1[0,1](σ∗i), zi, z̄i ∈ R (3.5)

where σ∗i are given in (3.3). The indicator function 1[0,1](x) is defined in (2.24). Importantly,

in the (−+−+) signature, zi, z̄i are independent real variables and the notation |zij | stands
for the absolute value of a real variable, rather than

√
zij z̄ij. Note that the sign function

sgn(z12z23z31) is SL(2,R)× SL(2,R) invariant.

Note that the three-point MHV amplitude has a factor of
σiσj

σk
for i, j, k distinct. This

means that the denominator D3 of σ∗i drop out except for the indicator function constraints

coming from the domain of integration of the simplex variables σi. In particular, the Mellin

transform depends on the choice of the crossing channel (i.e. dependence on εi) only through

the ranges of support for zi’s constrained by the indicator functions
∏3

i=1 1[0,1](σ∗i).

Let us decode the indicator functions
∏3

i=1 1[0,1](σ∗i). Their physical origin is that, given

a crossing channel, not every possible direction, parametrized by zi, z̄i, is allowed by the four-

dimensional massless kinematics. For example, the three-point function obviously vanishes

if the three particles are all incoming or all outgoing. We therefore only need to consider the
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two-to-one or one-to-two decay amplitudes, which will be denoted by ij −−→←−− k, correspond-

ing to εi = εj = −εk. The two arrows of opposite directions are related by time reversal.

The indicator functions
∏3

i=1 1[0,1](σ∗i) constrain the three real zi’s to be in the following

orderings for different crossing channels:

3∏

i=1

1[0,1](σ∗i) :

a) 12 −−→←−− 3 ⇒ z1 < z3 < z2 or z2 < z3 < z1
b) 13 −−→←−− 2 ⇒ z1 < z2 < z3 or z3 < z2 < z1
c) 23 −−→←−− 1 ⇒ z3 < z1 < z2 or z2 < z1 < z3 .

(3.6)

For each crossing channel, there are two possible orderings of the zi’s. Note that the ordering

of two points z1 and z2 is not SL(2,R) × SL(2,R) invariant but depends on the sign of

(cz1 + d)(cz2 + d). On the other hand, the crossing channel is also not invariant in the

(−+−+) signature. The indicator functions are nonetheless SL(2,R)× SL(2,R) invariant

if we take into account of the sign flip of εi mentioned above, i.e. εi → εisgn((czi+d)(c̄z̄i+d̄)).

Coming back to the full three-point function, under an SL(2,R)× SL(2,R) action, the

Mellin transform Ã−−+(λi; zi, z̄i) of the color-ordered MHV amplitude indeed transforms as

a conformal three-point function of spin-one primaries with weights,

h1 =
i

2
λ1 , h̄1 = 1 +

i

2
λ1 ,

h2 =
i

2
λ2 , h̄2 = 1 +

i

2
λ2 ,

h3 = 1 +
i

2
λ3 , h̄3 =

i

2
λ3 .

(3.7)

Note that it is important to use the conformal covariance of the delta function as in (B.4).

Next, consider the color-ordered anti-MHV amplitude where the first and second particles

have positive helicities and the third particle has negative helicity,

A++−(ωi, zi, z̄i) =
[12]3

[23][31]
δ(4)(pµ1 + pµ2 + pµ3 )

= 2
ω1ω2

ω3

z̄312
z̄23z̄31

δ(4)(
∑

i

εiωiq
µ
i ) . (3.8)

The 2d spins of the corresponding conformal primaries are J1 = J2 = +1 and J3 = −1. In

writing down the above expression, we have assumed z̄ij 6= 0. Its Mellin transform is given
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by

Ã++−(λi; zi, z̄i) = π δ(
∑

i

λi)
sgn(z̄12z̄23z̄31)δ(z13)δ(z12)

|z̄12|−1−iλ3 |z̄23|1−iλ1 |z̄13|1−iλ2

3∏

i=1

1[0,1](σ
′
∗i), zi, z̄i ∈ R (3.9)

where σ′
∗i are related to σ∗i in (3.3) by zij ↔ z̄ij .

Under an SL(2,R) × SL(2,R) action, Ã++−(λi; zi, z̄i) transforms as a conformal three-

point function of spin-one primaries with weights,

h1 = 1 +
i

2
λ1 , h̄1 =

i

2
λ1 ,

h2 = 1 +
i

2
λ2 , h̄2 =

i

2
λ2 ,

h3 =
i

2
λ3 , h̄3 = 1 +

i

2
λ3 .

(3.10)

4 Gluon Four-Point Amplitudes

Let us move on to the tree-level color-ordered four-point MHV amplitude. It is convenient

to work in the (− + ++) spacetime signature in this section. We take particles 1 and 2 to

have negative helicities and particles 3 and 4 to have positive helicities.5 We focus on the

amplitude with color order (1234) [29],

A−−++(ωi, zi, z̄i) =
〈12〉3

〈23〉〈34〉〈41〉δ
(4)(

4∑

i=1

εiωiqi) , (4.1)

where εi is +1 (−1) if the particle is outgoing (incoming). The 2d spins of the corresponding

conformal primaries are J1 = J2 = −1 and J3 = J4 = +1.

Again following the route of Section 2.2, the four-point delta function in (2.21) can be

5Recall that we label the helicity of an external gluon as if it were an outgoing particle.
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written as

δ(4)(

4∑

i=1

εiσiqi)δ(

4∑

i=1

σi − 1) =
1

4
δ(|z12z34z̄13z̄24 − z13z24z̄12z̄34|)

× δ

(
σ1 +

ε1ε4
D4

z24z̄34
z12z̄13

)
δ

(
σ2 −

ε2ε4
D4

z34z̄14
z23z̄12

)
δ

(
σ3 +

ε3ε4
D4

z24z̄14
z23z̄13

)
δ

(
σ4 −

1

D4

)

≡ 1

4
δ(|z12z34z̄13z̄24 − z13z24z̄12z̄34|)

4∑

i=1

δ(σi − σ∗i) , (4.2)

where the denominator D4 is defined as

D4 = (1− ε1ε4)
z24z̄34
z12z̄13

+ (ε2ε4 − 1)
z34z̄14
z23z̄12

+ (1− ε3ε4)
z24z̄14
z23z̄13

. (4.3)

Note that due to the first delta function constraint, all of the σ∗i’s are real. The Mellin

integrals in σi all collapse to evaluating the integrand at σi = σ∗i. By repeatedly using

the first delta function constraint in (4.2), we arrive at the following answer for the Mellin

transform of the tree-level, color-ordered MHV four-point amplitude,

Ã−−++(λi, zi, z̄i) =−
π

4
δ(
∑

k

λk)δ

( |z − z̄|
2

) ( 4∏

i<j

z
h
3
−hi−hj

ij z̄
h̄
3
−h̄i−h̄j

ij

)
z

5

3 (1− z)−
1

3

×
4∏

i=1

1[0,1](σ∗i) , (4.4)

where σ∗i are given in (4.2) and the indicator function 1[0,1](x) is defined in (2.24). z and z̄

are the conformal cross ratios,

z ≡ z12z34
z13z24

, z̄ ≡ z̄12z̄34
z̄13z̄24

, (4.5)

and we have written our answer in terms of the weights

h1 =
iλ1

2
, h2 =

iλ2

2
, h3 = 1 +

iλ3

2
, h4 = 1 +

iλ4

2
,

h̄1 = 1 +
iλ1

2
, h̄2 = 1 +

iλ2

2
, h̄3 =

iλ3

2
, h̄4 =

iλ4

2
,

(4.6)

with h ≡ ∑4
i=1 hi and h̄ ≡ ∑4

i=1 h̄i. As conventional in any CFT four-point function, we

write the answer as a product of a (non-unique) prefactor that accounts for the appropriate

13



conformal covariance, and a function of the cross ratios which is conformal invariant. Here,

we chose this prefactor to be
∏4

i<j z
h
3
−hi−hj

ij z̄
h̄
3
−h̄i−h̄j

ij . From (4.4), we find that the Mellin

transform of the color-ordered tree-level four-point amplitude does transform as a CFT four-

point function with the above weights.

From (4.4), we see that the delta function constrains the angular coordinates zi, z̄i on the

celestial sphere such that the cross ratio z is real,

z − z̄ = 0 . (4.7)

This constraint has a simple explanation. Using SL(2,C) Lorentz invariance, we can arrange

for the asymptotic positions of the first three particles (z1, z2, z3) to all lie on the equator of

the celestial sphere. Momentum conservation then clearly implies the fourth must also lie

on the equator. Interestingly, this is exactly the locus where a Lorentzian CFT correlator in

(1 + 1) dimensions is singular as discussed in [30].

Let us decode the indicator functions
∏4

i=1 1[0,1](σ∗i). The indicator functions is only

non-vanishing for two-to-two scattering amplitudes, as the original amplitudes in momen-

tum space vanish otherwise. We will denote a two-to-two crossing channel as ij −−→←−− kℓ,

corresponding to εi = εj = −εk = −εℓ. From (4.4), we see that the four-point function

depends on the crossing channel only through the indicator functions
∏4

i=1 1[0,1](σ∗i), which

constrain the cross ratio to be in the following ranges for different crossing channels:

4∏

i=1

1[0,1](σ∗i) :

a) 12 −−→←−− 34 ⇒ 1 < z

b) 13 −−→←−− 24 ⇒ 0 < z < 1

c) 14 −−→←−− 23 ⇒ z < 0 ,

(4.8)

in the (− + ++) signature. Recall that the cross ratio is already constrained to be real

z = z̄ by the four-dimensional massless kinematics. The indicator functions are manifestly

SL(2,C) invariant since it depends on the positions of the four points only through the cross

ratios z, z̄.

The MHV tree-level four-point amplitudes in other color orders can be obtained immedi-

ately by multiplying the answer (4.4) by a function of zij . For example, the MHV amplitude

in the color order (1324) is given by

〈12〉4
〈13〉〈32〉〈24〉〈41〉δ

(4)(

4∑

i=1

εiωiqi) . (4.9)

Its Mellin transform is simply (4.4) multiplied by −z12z34
z13z24

= −z, so that the Mellin transform
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of the (1324) color-ordered amplitude again transforms as a conformal four-point function

with weights (4.6), as expected.

5 BCFW Recursion Relation of Conformal Correlators

In this section we transform the BCFW recursion relation [31,32] from momentum space to

the space of conformal primary wavefunctions. More explicitly, we perform Mellin transforms

on both sides of the BCFW relation for the MHV four-point amplitude in terms of the three-

point amplitudes. We will be working in the (− + −+) signature in this section where the

three-point amplitude is finite and well-defined. Throughout this section, |zi| denotes the

absolute value of a real variable, rather than
√
ziz̄i.

5.1 BCFW in Momentum Space

Let us review the BCFW recursion relation for the four-point MHV amplitude. We denote

a stripped amplitude without the momentum conservation delta function as An, while the

physical unstripped amplitude is denoted as An. The stripped color-ordered MHV and

anti-MHV three-point amplitudes are

A3(1
−, 2−, 3+) =

〈12〉3
〈23〉〈31〉 , A3(1

+, 2+, 3−) =
[12]3

[23][31]
. (5.1)

On the other hand, the stripped color-ordered MHV four-point amplitude is

A4(1
−, 2−, 3+, 4+) =

〈12〉3
〈23〉〈34〉〈41〉 . (5.2)

Let pµi be the four-momenta of the four external particles satisfying the momentum conser-

vation
∑4

i=1 p
µ
i = 0. Their spinor helicity variables will be denoted by |i〉 and |i]. We define

P µ
i,j ≡ pµi +pµj . To apply the BCFW recursion relation, we choose 1 and 4 to be the reference

gluons and shift their spinor helicity variables by

|1̂〉 = |1〉 , |1̂] = |1] + u|4] ,
|4̂〉 = |4〉 − u|1〉 , |4̂] = |4] ,

(5.3)
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where

u ≡ − P 2
3,4

〈1|P3,4|4]
, (5.4)

with 〈i|pj|k] = 〈ij〉[jk].
The BCFW recursion relation equates the four-point amplitude to the product of two

three-point amplitudes with shifted momenta,

A4(1
−, 2−, 3+, 4+) = A3(1̂

−, 2−,−P̂+
1,2)

1

P 2
1,2

A3(P̂
−
1,2, 3

+, 4̂+). (5.5)

In the following section we will rewrite the above BCFW recursion relation for the four-point

amplitude in the space of conformal primary wavefunctions and verify that it is obeyed by

our expressions.

5.2 BCFW of Conformal Correlators

We first want to determine the change in ω, z, z̄ under the BCFW shift. We can choose a

reference frame so that

|p〉 = ±
√
2ω

(−1
−z

)
, |p] =

√
2ω

(−z̄
1

)
, (5.6)

where p is a null vector that is parametrized by ω, z, z̄ as pµ = ±ω(1+zz̄, z+ z̄, z− z̄, 1−zz̄).

We choose a plus (minus) sign for an outgoing (incoming) momentum. Let p̂ be the BCFW-

shifted momentum parametrized by ω̂, ẑ, ̂̄z. Its spinor helicity variables are

|p̂〉 = ±t
√
2ω̂

(−1
−ẑ

)
, |p̂] = t−1

√
2ω̂

(−̂̄z
1

)
. (5.7)

Recall that given a null momentum, the spinor variables are only well-defined up to a little

group rescaling |p〉 → t|p〉, |p] → t−1|p] which will be important momentarily. The BCFW

shift (5.3) for incoming particle number 1 is

√
2ω̂1

(
1

ẑ1

)
= t−1

1

√
2ω1

(
1

z1

)
,

√
2ω̂1

(−̂̄z1
1

)
= t1

[√
2ω1

(−z̄1
1

)
+ u
√
2ω4

(−z̄4
1

)]
.

(5.8)
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From above, we can express the hatted variables in terms of the unhatted ones,

ω̂1 = ω1 + u
√
ω1ω4 =

z̄14
z̄24

ω1 ,

ẑ1 = z1 ,

̂̄z1 =
√
ω1z̄1 + u

√
ω4z̄4√

ω1 + u
√
ω4

= z̄2 .

(5.9)

The little group factor t1 is given by t1 =
√

ω1

ω̂1

=
√

z̄24
z̄14

.

Similarly, for outgoing particle number 4, the BCFW-shifted variables are

ω̂4 = ω4 + u
√
ω4ω1 =

z14
z13

ω4 ,

ẑ4 =

√
ω4z4 + u

√
ω1z1√

ω4 + u
√
ω1

= z3 ,

̂̄z4 = z̄4 .

(5.10)

The little group factor is given by t4 =
√

ω̂4

ω4

=
√

z14
z13

. Particles 2 and 3 are unaffected by

the BCFW shift so that ω̂i = ωi, ẑi = zi, ̂̄zi = z̄i for i = 2, 3.

The unshifted (stripped) three-point amplitude A3(1
−, 2−,−P+) can be written in terms

of the ω, z, z̄ coordinates as follows

A3(1
−, 2−,−P+) = −2ω1ω2

ωP

z312
z2P zP1

≡ A−−+(ωi; zi, z̄i) . (5.11)

For the BCFW-shifted three-point amplitude, we need to keep track of the little group factors

in (5.7),

A3(1̂
−, 2−,−P̂+) = −2t21

ω̂1ω̂2

ω̂P

ẑ312
ẑ2P ẑP1

= t21 A−−+(ω̂i; ẑi, ̂̄zi) . (5.12)

Similarly, if

A3(P
−, 3+, 4̂+) = 2

ω3ω4

ωP

z̄334
z̄3P z̄P4

≡ A−++(ωi; zi, z̄i) , (5.13)

17



then

A3(P̂
−, 3+, 4̂+) = 2t−2

4

ω̂3ω̂4

ω̂P

̂̄z334
̂̄z3P ̂̄zP4

= t−2
4 A−++(ω̂i; ẑi, ̂̄zi) . (5.14)

The BCFW relation is conventionally written in terms of the stripped amplitudes. We

would like to write it in terms of the physical unstripped amplitudes, as only these have

well-defined Mellin transforms. We do not want to work directly with the standard BCFW-

shifted variables ω̂i, ẑi, ̂̄zi since the three-point function Ã3 is singular at these values. We

will circumvent this difficulty by considering a modified shift of the variables ωi, zi, z̄i,

(ω̃1, z̃1, ˜̄z1) =
(
|1 + Uζ |ω1, z1,

z̄1 + Uζz̄4
1 + Uζ

)
,

(ω̃2, z̃2, ˜̄z2) = (ω2, z2, z̄2) ,

(ω̃3, z̃3, ˜̄z3) = (ω3, z3, z̄3) ,

(ω̃4, z̃4, ˜̄z4) =
(
|1 + Uζ−1|ω4,

z4 + Uζ−1z1
1 + Uζ−1

, z̄4

)
,

(5.15)

where U is a free variable, the absolute values are such that ω̃i > 0, and

ζ ≡
√

z12z̄13
z24z̄34

. (5.16)

Using (4.2), one can show that the quantity in the square root in (5.16) is positive. The tilde

variables ω̃i, z̃i coincide with the standard BCFW-shifted variables |ω̂i|, ẑi if both the ratio

ω4/ω1 and U equal to their on-shell values, i.e. if ω4

ω1

= ζ2 and U = u. Indeed, the on-shell

values of ω1 and ω4 can be computed using (4.2) to be

ω4

ω1
=

z12z̄13
z24z̄34

= ζ2 . (5.17)

Even though the two shifts agree on-shell, there is an important Jacobian factor relating

δ(4)(p1 + p2 + p3 + p4) and δ(4)(p̃1 + p2 + p3 + p̃4):

δ(4)(p1 + p2 + p3 + p4) =
∣∣∣det{p̃1, p2, p3, p̃4}
det{p1, p2, p3, p4}

∣∣∣δ(4)(p̃1 + p2 + p3 + p̃4)

→U=u |1− z| δ(4)(p̃1 + p2 + p3 + p̃4) . (5.18)
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Let us now rewrite the BCFW relation as

A4(1
−, 2−, 3+, 4+) = A4(1

−, 2−, 3+, 4+)δ(4)(p̂1 + p2 + p3 + p̂4)

= t21t
−2
4

1

P 2
1,2

A−−+

(
ω̂1, ω2, ω̂P1,2

; ẑi, ̂̄zi
)
A−++

(
ω̂P1,2

, ω3, ω̂4; ẑi, ̂̄zi
)

×
∫

d4P δ(4)(p̂1 + p2 − P )δ(4)(P + p3 + p̂4) . (5.19)

Next, we trivially insert
∫∞
−∞ dUδ(U − u) into the integral and use

1

P 2
1,2

δ(U − u) = −sgn(z12z̄12)
1

|u|δ(〈1|P1,2|4]U − P 2
1,2) = −sgn(z12z̄12)

1

|U |δ(P̂
2
1,2(U)) , (5.20)

where we have defined P̂1,2(U) = P1,2 + U |4]〈1|. At the on-shell value of U , i.e. U = u,

P̂1,2(u) = p̂1+ p2. Since the integrand only has support on U = u, we can replace P̂1,2(U) by

P and ω̂i, ẑi by ω̃i, z̃i (which depend on U). The BCFW relation then takes the unstripped

form

A4(1
−, 2−, 3+, 4+)

= −sgn(z12z̄12)|1− z|t21t−2
4

∫ ∞

−∞

dU

|U |

∫
d4P δ(P 2) A−−+

(
ω̃1, ω2, ωP ; z̃i, ˜̄zi

)
δ(4)(p̃1 + p2 − P )

× A−++

(
ωP , ω3, ω̃4; z̃i, ˜̄zi

)
δ(4)(P + p3 + p̃4) (5.21)

= −sgn(z12z̄12)|1− z|t21t−2
4

∫ ∞

−∞

dU

|U |

∫
d4P δ(P 2)A−−+

(
ω̃1, ω2, ωP ; z̃i, ˜̄zi

)
A−++

(
ωP , ω3, ω̃4; z̃i, ˜̄zi

)
,

where A denotes the unstripped amplitude with the momentum conservation delta function

included. The Jacobian factor |1− z| comes from the momentum conservation delta func-

tions as explained in (5.18). Because of the delta function δ(P 2), P µ is null and we can

define ωP , zP , z̄P as P µ = ωP (1 + zP z̄P , zP + z̄P , zP − z̄P , 1 − zP z̄P ). In A−−+ above and

from now on, the notation z̃i collectively denotes z̃3, z̃4, and zP . We use a similar collective

notation in A−++.
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We now perform the Mellin transform on both sides of the BCFW relation,

Ã−−++(λi, zi, z̄i) ≡
4∏

i=1

∫ ∞

0

dωi ω
iλi

i A4(1
−, 2−, 3+, 4+)

= −sgn(z12z̄12)|1− z|
∣∣∣∣
z̄24
z̄14

∣∣∣∣
2+iλ1

∣∣∣∣
z13
z14

∣∣∣∣
2+iλ4

∫ ∞

−∞

dU

|U |

∫
d4Pδ(P 2)

4∏

i=1

∫ ∞

0

dω̃i ω̃
iλi

i

×A−−+

(
ω̃1, ω2, ωP ; z̃i, ˜̄zi

)
A−++

(
ωP , ω3, ω̃4; z̃i, ˜̄zi

)

= −sgn(z12z̄12)|1− z|
∣∣∣∣
z̄24
z̄14

∣∣∣∣
2+iλ1

∣∣∣∣
z13
z14

∣∣∣∣
2+iλ4

∫ ∞

−∞

dU

|U |

∫
d4Pδ(P 2)

4∏

i=1

∫ ∞

0

dω̃i ω̃
iλi

i

×
4∏

i=1

∫ ∞

−∞

dλ̃i

2π

∫ ∞

−∞

dλP

2π

∫ ∞

−∞

dλP ′

2π

(
4∏

i=1

ω̃−1−iλ̃i

i

)
ω
−2−iλP−iλP ′

P

× Ã−−+(λ̃1, λ̃2, λP ; z̃j , ˜̄zj)Ã−++(λP ′, λ̃3, λ̃4; z̃j , ˜̄zj) . (5.22)

In the second line we have changed the integration variables to the shifted energy ω̃i. In the

third line we express the three-point amplitudes in terms of their Mellin transforms.

Finally, using

∫
d4Pδ(P 2) =

∫ ∞

0

ωPdωP

∫
dzPdz̄P , (5.23)

we can perform the ωP and the λP ′ integrals to obtain,

Ã−−++(λi, zi, z̄i) = −sgn(z12z̄12)|1− z|
∣∣∣∣
z̄24
z̄14

∣∣∣∣
2+iλ1

∣∣∣∣
z13
z14

∣∣∣∣
2+iλ4

×
∫ ∞

−∞

dU

|U |

∫ ∞

−∞

dλP

2π

∫
dzPdz̄P Ã−−+(λ1, λ2, λP ; z̃j, ˜̄zj)Ã−++(−λP , λ3, λ4; z̃j, ˜̄zj) . (5.24)

The above equation is our final result for the BCFW recursion relation in the space of

conformal primary wavefunctions. The tilde variables are defined in (5.15) and z̃P = zP ,
˜̄zP = z̄P .

Let us check (5.24) by explicitly plugging in the three-point functions obtained in (3.5)
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and (3.9):

Ã−−+(λ1, λ2, λP ; z̃j, ˜̄zj) = −πsgn(z12z2P zP1) δ(λ1 + λ2 + λP )
δ(˜̄z1 − ˜̄z2)δ(˜̄z2P )

|z12|−1−iλP |z2P |1−iλ1|z1P |1−iλ2

,

Ã−++(−λP , λ3, λ4, ; z̃j , ˜̄zj) = πsgn(z̄34z̄4P z̄P3) δ(λ3 + λ4 − λP )
δ(z̃4 − z̃3)δ(z̃3P )

|z̄43|−1+iλP |z̄3P |1−iλ4 |z̄4P |1−iλ3

.

(5.25)

All the integrals can be performed by solving the delta functions. In particular we have

U =
z34
z13

ζ . (5.26)

Plugging the above value of U into another delta function we obtain

δ

(
z̄12 − Uζz̄24
1 + Uζ

)
= δ(|z − z̄|)

∣∣∣∣
z̄34z̄14
z̄224z̄13

∣∣∣∣ , (5.27)

where z and z̄ are the cross-ratios (4.5). One can then verify that the righthand side of

(5.24) correctly reproduces the (−+−+) signature analog of the four-point function (4.4).6
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A Conventions

In this appendix we will review our conventions in the ηµν = diag(−1,+1,+1,+1) signature.

The Levi-Civita symbols are normalized as ǫ12 = −ǫ21 = +1 and ǫ12 = −ǫ21 = −1. We

denote the chiral and anti-chiral spinor indices of the Lorentz group SL(2,C) as α and α̇,

respectively. The index of a spinor λα is lowered and raised as λα = ǫαβλβ and λα = ǫαβλ
β.

A four-momentum pµ can be represented by a two-by-two matrix as

pαα̇ = pµσ
µ
αα̇ , (A.1)

where σµ
αα̇ = (I, ~σ). We also define

pα̇α = ǫα̇β̇ǫαβpββ̇ = pµσ̄
µα̇α , (A.2)

where σ̄µα̇α = (I,−~σ). Using the identity ǫαβǫα̇β̇σµ
αα̇σ

ν

ββ̇
= −2ηµν , the inner product between

two four-momenta can be written as ǫαβǫα̇β̇pαα̇qββ̇ = −2pµqµ .
A null four-momentum pαα̇ has vanishing determinant so can always be written in terms

of their spinor helicity variables,

pαα̇ = |p]α 〈p|α̇ . (A.3)

The spinor helicity variables are defined up to a little group rescaling, |p〉 → t|p〉 and |p]→
t−1|p]. Similarly,

pα̇α = |p〉α̇ [p|α , (A.4)

where the spinor helicity variables with upper indices are defined as

[p|α = ǫαβ |p]β , 〈p|α̇ = ǫα̇β̇|p〉β̇ . (A.5)

We define the brackets of spinor helicity variables as

[pq] = [p|α |q]α = −ǫαβ |p]α |q]β = −[qp] , (A.6)

〈pq〉 = 〈p|α̇ |q〉α̇ = ǫα̇β̇〈p|α̇〈q|β̇ = −〈qp〉 . (A.7)
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The inner product between two null momenta can be written as products of the brackets,

2p · q = −pαα̇qββ̇ǫαβǫα̇β̇ = 〈pq〉[pq] . (A.8)

We also define:

[p|k|q〉 = [p|α kαα̇ |q〉α̇ = [pk]〈kq〉 , (A.9)

〈q|k|p] = 〈q|α̇ kα̇α |p]α = 〈qk〉[kp] . (A.10)

We can choose a frame and parametrize a null momentum pµ by ω, z, z̄ as,

pµ = ±ω(1 + |z|2, z + z̄,−i(z − z̄), 1− |z|2) , (A.11)

with a plus (minus) sign for an outgoing (incoming) momentum. In terms of a two-by-two

matrix, we have

pαα̇ = σµ
αα̇pµ = |p]α〈p|α̇ = ±2ω

(−|z|2 z̄

z − 1

)
. (A.12)

Next we want to express the spinor helicity variables in terms of ω, z, z̄. A priori, any such

identification suffers from the ambiguity of little group rescaling |p〉 → t|p〉, |p] → t−1|p],
which in turn rescales the polarization vectors as ǫµ±(p) → t∓2ǫµ±(p). For our purpose, how-

ever, the choice of conformal primary wavefunction in (2.8) fixes a particular normalization

for the polarization vectors as in (2.7), ǫµ+(p = ±ωq) = 1√
2
∂zq

µ and ǫµ−(p = ±ωq) = 1√
2
∂z̄q

µ.

In this normalization the spinor helicity variables can be written in terms of ω, z, z̄ as

|p]α =
√
2ω

(−z̄
1

)
, 〈p|α̇ = ±

√
2ω

(
z

−1

)
,

[p|α =
√
2ω

(
1

z̄

)
, |p〉α̇ = ±

√
2ω

(−1
−z

)
.

(A.13)

For two outgoing or two incoming particles, the brackets can be written as

[ij] = 2
√
ωiωj(z̄i − z̄j) , 〈ij〉 = −2√ωiωj(zi − zj) . (A.14)

On the other hand, the brackets between one incoming and one outgoing particle are

[ij] = 2
√
ωiωj(z̄i − z̄j) , 〈ij〉 = 2

√
ωiωj(zi − zj) . (A.15)
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B Inner Products of One-Particle States

In [10] (see also [25,28] for the scalar case) the inner product between four-dimensional one-

particle states of spin one was computed in the space of conformal primary wavefunctions.

Here we review this calculation for completeness. Let us denote a massless one-particle state

with helicity ℓ = ±1 and three-momentum ~p by |~p, ℓ〉, with the energy p0 given by p0 = |~p|.
The inner product between such one-particle states is7

〈p2, ℓ2|p1, ℓ1〉 = 2p01(2π)
3 δℓ1,−ℓ2 δ

(3)(~p1 + ~p2) . (B.1)

The Mellin transform of this inner product is

ÃJ1J2(λi, zi, z̄i) = (2π)3 δℓ1,−ℓ2

×
∫ ∞

0

dω1 ω
iλ1

1

∫ ∞

0

dω2 ω
iλ2

2 ω1(1 + |z1|2) δ(2)(ω1z1 − ω2z2)δ(ω1(1− |z1|2)− ω2(1− |z2|2))

= (2π)4 δℓ1,−ℓ2 δ(λ1 + λ2)δ
(2)(z1 − z2) , (B.2)

where we have used (2.20). The 2d spins are given by J1 = ℓ1 and J2 = ℓ2.

Let us consider the case with helicities −ℓ1 = ℓ2 = +1, while the other case follows simi-

larly. The answer Ã−+(λi, zi, z̄i) is a contact term, but it has the same SL(2,C) covariance

as a two-point function of conformal primaries with weights (with λ2 = −λ1 fixed by the

delta function above)

h1 = i
λ1

2
, h̄1 = 1 + i

λ1

2
,

h2 = 1 + i
λ2

2
, h̄2 = i

λ2

2
. (B.3)

In particular, the 2d spins are J1 = h1 − h̄1 = −1 and J2 = h2 − h̄2 = +1. Indeed, under an

SL(2,C) transformation zi → z′i =
azi+b
czi+d

, the contact term δ(λ1+ λ2)δ
(2)(z1− z2) transforms

as

δ(λ1 + λ2)δ
(2)(z′1 − z′2) = |cz1 + d|4δ(λ1 + λ2)δ

(2)(z1 − z2)

=

[
2∏

i=1

(czi + d)∆i+Ji(c̄z̄i + d̄)∆i−Ji

]
δ(λ1 + λ2)δ

(2)(z1 − z2) . (B.4)

7As before, we label a helicity of a gauge boson as it were an outgoing particle. That is why the inner
product is only non-vanishing if ℓ1 = −ℓ2.

24



References

[1] F. Cachazo and A. Strominger, “Evidence for a New Soft Graviton Theorem,”

1404.4091.

[2] D. Kapec, V. Lysov, S. Pasterski, and A. Strominger, “Semiclassical Virasoro

symmetry of the quantum gravity S-matrix,” JHEP 08 (2014) 058, 1406.3312.

[3] C. Cheung, A. de la Fuente, and R. Sundrum, “4D scattering amplitudes and

asymptotic symmetries from 2D CFT,” JHEP 01 (2017) 112, 1609.00732.

[4] D. Kapec, P. Mitra, A.-M. Raclariu, and A. Strominger, “A 2D Stress Tensor for 4D

Gravity,” 1609.00282.

[5] Z. Bern, S. Davies, and J. Nohle, “On Loop Corrections to Subleading Soft Behavior

of Gluons and Gravitons,” Phys. Rev. D90 (2014), no. 8, 085015, 1405.1015.

[6] S. He, Y.-t. Huang, and C. Wen, “Loop Corrections to Soft Theorems in Gauge

Theories and Gravity,” JHEP 12 (2014) 115, 1405.1410.

[7] F. Cachazo and E. Y. Yuan, “Are Soft Theorems Renormalized?,” 1405.3413.

[8] T. He, D. Kapec, A.-M. Raclariu, and A. Strominger, “Loop-Corrected Virasoro

Symmetry of 4D Quantum Gravity,” 1701.00496.

[9] D. Kapec, M. Perry, A.-M. Raclariu, and A. Strominger, “Infrared Divergences in

QED, Revisited,” 1705.04311.

[10] S. Pasterski and S.-H. Shao, “A Conformal Basis for Flat Space Amplitudes,”

1705.01027.

[11] M. S. Costa, V. Goncalves, and J. Penedones, “Conformal Regge theory,” JHEP 12

(2012) 091, 1209.4355.

[12] A. Gadde, “In search of conformal theories,” 1702.07362.

[13] M. Hogervorst and B. C. van Rees, “Crossing Symmetry in Alpha Space,”

1702.08471.

[14] S. Caron-Huot, “Analyticity in Spin in Conformal Theories,” 1703.00278.

[15] A. Strominger, “Asymptotic Symmetries of Yang-Mills Theory,” JHEP 07 (2014) 151,

1308.0589.

25

http://www.arXiv.org/abs/1404.4091
http://www.arXiv.org/abs/1406.3312
http://www.arXiv.org/abs/1609.00732
http://www.arXiv.org/abs/1609.00282
http://www.arXiv.org/abs/1405.1015
http://www.arXiv.org/abs/1405.1410
http://www.arXiv.org/abs/1405.3413
http://www.arXiv.org/abs/1701.00496
http://www.arXiv.org/abs/1705.04311
http://www.arXiv.org/abs/1705.01027
http://www.arXiv.org/abs/1209.4355
http://www.arXiv.org/abs/1702.07362
http://www.arXiv.org/abs/1702.08471
http://www.arXiv.org/abs/1703.00278
http://www.arXiv.org/abs/1308.0589


[16] T. He, P. Mitra, and A. Strominger, “2D Kac-Moody Symmetry of 4D Yang-Mills

Theory,” JHEP 10 (2016) 137, 1503.02663.

[17] F. Cachazo, S. He, and E. Y. Yuan, “Scattering of Massless Particles in Arbitrary

Dimensions,” Phys. Rev. Lett. 113 (2014), no. 17, 171601, 1307.2199.

[18] E. Witten, “Perturbative gauge theory as a string theory in twistor space,” Commun.

Math. Phys. 252 (2004) 189–258, hep-th/0312171.

[19] N. Arkani-Hamed, F. Cachazo, C. Cheung, and J. Kaplan, “The S-Matrix in Twistor

Space,” JHEP 03 (2010) 110, 0903.2110.

[20] L. J. Mason and D. Skinner, “Scattering Amplitudes and BCFW Recursion in Twistor

Space,” JHEP 01 (2010) 064, 0903.2083.

[21] P. A. M. Dirac, “Wave equations in conformal space,” Annals Math. 37 (1936)

429–442.

[22] A. E. Lipstein, “Soft Theorems from Conformal Field Theory,” JHEP 06 (2015) 166,

1504.01364.

[23] C. Cardona, “Asymptotic Symmetries of Yang-Mills with Theta Term and

Monopoles,” 1504.05542.

[24] A. Nande, M. Pate, and A. Strominger, “Soft Factorization in QED from 2D

Kac-Moody Symmetry,” 1705.00608.

[25] S. Pasterski, S.-H. Shao, and A. Strominger, “Flat Space Amplitudes and Conformal

Symmetry of the Celestial Sphere,” 1701.00049.

[26] C. Cardona and Y.-t. Huang, “S-matrix singularities and CFT correlation functions,”

1702.03283.

[27] D. Nandan, A. Volovich, C. Wen, and M. Zlotnikov, work in progress.

[28] J. de Boer and S. N. Solodukhin, “A Holographic reduction of Minkowski space-time,”

Nucl. Phys. B665 (2003) 545–593, hep-th/0303006.

[29] S. J. Parke and T. R. Taylor, “An Amplitude for n Gluon Scattering,” Phys. Rev.

Lett. 56 (1986) 2459.

[30] J. Maldacena, D. Simmons-Duffin, and A. Zhiboedov, “Looking for a bulk point,”

JHEP 01 (2017) 013, 1509.03612.

26

http://www.arXiv.org/abs/1503.02663
http://www.arXiv.org/abs/1307.2199
http://www.arXiv.org/abs/hep-th/0312171
http://www.arXiv.org/abs/0903.2110
http://www.arXiv.org/abs/0903.2083
http://www.arXiv.org/abs/1504.01364
http://www.arXiv.org/abs/1504.05542
http://www.arXiv.org/abs/1705.00608
http://www.arXiv.org/abs/1701.00049
http://www.arXiv.org/abs/1702.03283
http://www.arXiv.org/abs/hep-th/0303006
http://www.arXiv.org/abs/1509.03612


[31] R. Britto, F. Cachazo, and B. Feng, “New recursion relations for tree amplitudes of

gluons,” Nucl. Phys. B715 (2005) 499–522, hep-th/0412308.

[32] R. Britto, F. Cachazo, B. Feng, and E. Witten, “Direct proof of tree-level recursion

relation in Yang-Mills theory,” Phys. Rev. Lett. 94 (2005) 181602, hep-th/0501052.

27

http://www.arXiv.org/abs/hep-th/0412308
http://www.arXiv.org/abs/hep-th/0501052

	Introduction
	A Conformal Basis for Gauge Bosons
	Massless Vector Conformal Primary Wavefunctions
	Mellin Transform

	Gluon Three-Point Amplitudes
	Gluon Four-Point Amplitudes
	BCFW Recursion Relation of Conformal Correlators
	BCFW in Momentum Space
	BCFW of Conformal Correlators

	Conventions
	Inner Products of One-Particle States

