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We calculate the evolution and gravitational-wave emission of a spinning compact object inspiral-
ing into a substantially more massive (non-rotating) black hole. We extend our previous model for
a non-spinning binary [Phys. Rev. D 93, 064024] to include the Mathisson-Papapetrou-Dixon spin-
curvature force. For spin-aligned binaries we calculate the dephasing of the inspiral and associated
waveforms relative to models that do not include spin-curvature effects. We find this dephasing
can be either positive or negative depending on the initial separation of the binary. For binaries in
which the spin and orbital angular momentum are not parallel, the orbital plane precesses and we
use a more general osculating element prescription to compute inspirals.
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I. INTRODUCTION

The era of gravitational wave astronomy has recently
dawned [1–3], being ushered in by tremendous advances
in experimental physics, data analysis, and theoretical
source modeling. Source modeling is necessary, at mini-
mum, for estimating the physical parameters of relativis-
tic compact binary inspirals. It can also be required to
even detect systems with comparable masses [2] and it
is expected to be crucial for detection of extreme-mass-
ratio binaries. For both detection and parameter esti-
mation, searches are run over a large parameter space
(using e.g., Monte-Carlo-based methods), at each step
convolving the data with theoretical waveform templates.
The signal-to-noise ratio (SNR) will only coherently grow
with the number of oscillations in the signal if the phase
of the template and the signal are closely matched, typi-
cally to less than one radian over the observed time span.
Waveform templates that do not meet this requirement
will result in a substantial loss of accuracy for param-
eter estimation, or even worse provide no detection at
all. Tracking the signal phase to within one radian is
a particularly stringent requirement for small mass-ratio
systems which accumulate hundreds to many hundreds
of thousands of radians of phase whilst in the detector
band.

The gravitational waves emitted from the inspiral of a
stellar mass black hole or other comparable mass compact
object into a massive black hole with mass M ∼ 104–
107M� are in the frequency band of the Laser Interfer-
ometer Space Antenna, LISA, which has recently been
selected as the European Space Agency’s L3 mission
[4]. These extreme mass-ratio inspirals (EMRIs) are key
sources for LISA [5]. The information carried in the
waveforms from EMRIs will allow us to precisely mea-
sure properties of massive black holes and their stellar
environment as well as providing unprecedented tests of
general relativity in the strong-field regime [6–10].

Another class of interesting systems involve interme-
diate mass black holes (IMBHs) with M ∼ 102–103M�.

Such black holes can form intermediate mass-ratio in-
spirals (IMRIs) that fall into two categories depending
on whether there is a stellar mass compact object inspi-
raling into the IMBH or the IMBH is inspiraling into a
massive black hole. The former will merge in the band of
ground-based detectors if the chirp mass of the binary is
. 350M� [11] (this is slightly increased for ground-based
observatories beyond the advanced detector era [12, 13]).
The inspiral phase of such binaries should also be de-
tectable in LISA many weeks before their merger in the
LIGO band [14, 15]. The second type of IMRI would be a
very loud source in the LISA band (possibly not even re-
quiring matched filtering to find [16]). As the population
of IMBHs is poorly understood the event rates for both
types of IMRIs are not well constrained [17]. For this
reason we will concentrate our discussion around EMRIs
whilst bearing in mind that IMRIs are an exciting poten-
tial class of sources that can be modeled with a similar
setup.

The leading-order (in the mass-ratio) dissipative dy-
namics of EMRIs is now understood when the primary is
rotating [18, 19] but has yet to be compiled into com-
plete inspiral models (many so-called ‘kludge’ models
have been developed [20] which use some of this infor-
mation but to date the development of these models has
been driven by the need to rapidly compute waveform
templates to train data analysis algorithms rather than
a need for high precision). Producing waveform models
that track the phase evolution of the binary whilst it is
emitting gravitational waves in LISA’s band to within
one radian requires including subleading-order correc-
tions to the orbital dynamics.

These subleading-order corrections include the follow-
ing effects: (1) orbital resonances, (2) first-order conser-
vative terms, (3) oscillatory first-order dissipative terms,
(4) second-order in the mass-ratio, orbit-averaged dissi-
pative contribution, and (5) spin-orbit coupling effects
[21]. There has been great progress calculating some
of these effects within black hole perturbation theory
and, in particular, within the self-force program [22].
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For geodesic equatorial motion we have calculations at
first order in the mass ratio of conservative dynamics
about non-rotating [23–30] and rotating black holes [31–
35]. These results have been successfully compared and
synergized with results from other approaches to the two-
body problem [29, 31–33, 36–43]. Orbital resonances
are known to be important [44–46] but a precise under-
standing of them awaits calculations for generic orbits
about rotating black holes. Steady progress is also being
made on second order in the mass-ratio calculations [47–
56]. Including these various results into self-force inspiral
models has also been an active field of research [57–59].

The primary focus of this work is to incorporate ef-
fects associated with the spin of the secondary into in-
spiral models for small mass-ratio systems. This has been
explored previously using models incorporating post-
Newtonian results [60, 61] and in models using strong-
field self-force results restricted to quasi-circular inspirals
[62]. In this work we compute the effect of spin-curvature
coupling on generic inspirals into a non-rotating black
hole.

The next section details the different drivers of an in-
spiral and highlights which ones we are including in our
current model. The rest of the paper is organized as fol-
lowed. In Sec. III we give an overview of our approach to
modeling inspirals. In Sec. IV we describe the osculating
element prescription we use, extending previous formu-
lations to generic motion (not confined to the equatorial
plane). In Sec. V we describe the calculation of the self-
force and spin-curvature forcing terms. In Sec. VI we
describe how, once we have the inspiral trajectory, we
compute the associated waveform by moving through a
sequence of so-called snapshot waveforms. In Sec. VII we
give results for spin-aligned binaries where we observe the
difference in the accumulated inspiral phase with respect
to a non-spinning binary can be either positive or neg-
ative depending on the initial separation of the binary.
In VIII we give results for spin-unaligned binaries which
precess out of the equatorial plane. Finally, we give some
concluding remarks in Sec. IX.

Throughout this work we will use geometrized units
such that the speed of light and the gravitational con-
stant are equal to unity (c = G = 1). We will denote the
mass of the primary by M and the mass of the secondary
by µ, and will adopt standard Schwarzschild coordinates
xα = (t, r, θ, ϕ).

II. PHYSICAL DRIVERS OF AN INSPIRAL

The physical mechanism of an inspiral can be viewed
as a force that drives the secondary’s orbit away from
geodesic motion in the (background) spacetime of the
primary. This force has a non-local contribution arising
from the body’s interaction with its own metric pertur-
bation, commonly called the self-force. If the secondary
is spinning there is an additional non-local contribution
resulting from perturbing the orbit and the stress-energy

tensor of the body as well as a local contribution arising
from the coupling between the spin of the body and the
tidal field (background curvature) of the primary. The
latter of these is the well-known Mathisson-Papapetrou-
Dixon (MPD) spin-curvature force [63, 64]. By expand-
ing the Einstein field equations perturbatively in powers
of the mass ratio, ε = µ/M � 1, the equations of motion
for the inspiraling body can be written as

µuβ∇βuα =µ2
(
F (1)α

mono + µF (2)α
mono

)
(2.1)

+ S
(
Fαspin-curvature + µF

(1)α
dipole

)
≡ Fα,

where uα is the body’s four-velocity, ∇ denotes the co-
variant derivative with respect to the background metric
of the primary, S is the spin magnitude, and Fα is the
net force. By F (n)α we denote the nth-order self-force,
i.e., the part proportional to the n+ 1 power of the mass
ratio. The ‘mono/dipole’ subscripts denote whether the
force arises from the mass or spin of the secondary respec-
tively. The subscript ‘spin-curvature’ denotes the MPD
force. As we discuss below, in Eq. (2.1) we have trun-
cated the expansion in the mass ratio at high enough
order to include all important effects.

When the secondary moves along a geodesic of the
background spacetime the influence on the inspiral of
the forces on the righthand side of Eq. (2.1) can be split
into conservative (time-symmetric) and dissipative (time-
antisymmetric) pieces such that

Fα = Fαdiss + Fαcons. (2.2)

Conservative forces act to perturb the orbital parameters,
but do not cause a secular decay of the orbit. The self-
force has a conservative component and the leading-order
MPD force Fαspin-curvature is also conservative in nature.
Dissipative forces are responsible for radiation reaction
effects that lead to, e.g., the decay of orbital energy and
angular momentum. This secular decay can be calculated
by averaging Fαdiss, which motivates a decomposition of
the net force into an adiabatic part, Fαad, and an oscilla-
tory part, Fαosc

Fα = Fαad + Fαosc,

Fαad ≡ 〈Fαdiss〉, (2.3)

Fαosc ≡ Fα − 〈Fαdiss〉. (2.4)

The adiabatic part varies slowly over an inspiral on the
radiation reaction timescale and represents some average
over the orbital timescale (see [58] for details about an
appropriate averaging procedure). The oscillatory part
varies more rapidly on the orbital time scale.

A number of authors have considered how these differ-
ent forces influence the phase of an inspiral [65–67] with
one of the most rigorous discussions given by Hinderer
and Flanagan [21]. We now briefly review several key
results and highlight where previous work has employed
the various components of the self-force in computing in-
spirals.
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EMRIs accumulate tens to hundreds of thousands of
radians of orbital phase whilst the binary is in the LISA
passband. The leading-order contribution to the inspiral
phase enters at O(ε−1) and is driven by the adiabatic,

first-order-in-the-mass-ratio, self-force F
(1)α
ad . A number

of authors have used F
(1)α
ad to calculate the leading-order

phase evolution of generic inspirals into Kerr black holes
[19, 20, 68]. At subleading order (ignoring resonances
that only affect generic inspirals into rotating black holes
[44]) the next contributions to the orbital phase enter at
O(ε0). These include the oscillatory part of the first-

order force, F
(1)α
osc , and the adiabatic part of the second-

order force, F
(2)α
ad .

In order to classify the effects of the secondary’s spin
in this hierarchy we must relate the spin magnitude to
the mass ratio. If the secondary is a rotating black hole
we can write

S ≡ |s|µ2, where |s| ≤ 1. (2.5)

all other reasonable stellar objects have an even smaller
spin–see e.g., Sec. II.B.1 of [69]. With this definition
we can, by comparing the two terms in Eq. (2.1), con-
clude that the (conservative) MPD and the adiabatic

part of the F
(1)α
dipole will contribute to the orbital phase

at subleading-order.
To summarize, the influence of each component of the

force on the phase of the waveform in the inspiral is

Φ = κ0 ε
−1︸ ︷︷ ︸

adiabatic: F
(1)α
ad

+ κ1/2 ε
−1/2︸ ︷︷ ︸

resonances (Kerr only)

(2.6)

+ κ1 ε
0︸ ︷︷ ︸

post-1-adiabatic:

F (1)α
osc + F

(2)α
ad

+ · · · ,

where the κ coefficients are dimensionless, of order unity,
and depend on the ingress and egress (or merger) fre-
quencies in a particular detector, but not on the mass
ratio ε.

III. OVERVIEW OF OUR APPROACH

The MPD force is calculated by evaluating spin and
curvature quantities at the instantaneous position of the
smaller body. In contrast, the self-force is a functional of
the smaller body’s past worldline. To compute an inspi-
ral in a self-consistent manner one solves for the world-
line using Eq. (2.1) while simultaneously calculating the
perturbation in the gravitational field to generate the lo-
cal self-force [59]. In this work at each instance along
the worldline we approximate the true (inspiraling) past
worldline of the small body with the geodesic that is tan-
gent at that instance. The tangent geodesic is periodic
allowing the self-force to be computed efficiently in the
frequency-domain. We use make of this approach to com-
pute the self-force in the Lorenz gauge [57, 58, 70, 71].

This geodesic self-force approximation introduces a dis-
crepancy with the true inspiral at post-1-adiabatic order
[72], but preliminary evidence suggests that the coeffi-
cient of this error term is small [73–75].

Approximating the true self-force by the self-force cal-
culated for motion along geodesics tangent to the world-
line naturally suggests evolving the inspirals using a rel-
ativistic osculating elements prescription [76, 77]. These
prescriptions recast of the equation of motion Eq. (2.1)
(making no small force assumption) and describe the in-
spiral in terms of geometric quantities. The derivation
in Schwarzschild spacetime by Pound and Poisson [76] is
restricted to motion in the equatorial plane so in Sec. IV
we extend it to generic motion required when the spin
of the secondary and the orbital angular momentum are
not aligned.

Second-order self-force results have not yet been com-

puted. From Eq. (2.6) we see that neglecting F
(2)α
ad intro-

duces error at post-1-adiabatic order. Once second-order
results are known they will be straightforward to incor-
porate into our scheme, but in this paper only first-order
self-force effects are included. Similarly, there are dissi-
pative effects from the spin of the secondary that enter
at post-1-adiabatic order. These have been calculated
for circular orbits in Schwarzschild [78] and Kerr [79, 80]
spacetime, but to the best of our knowledge have not yet

been calculated for eccentric orbits. Again, once F
(1)α
dipole

is known it can be straightforwardly incorporated into
our long term evolution scheme. As we do not yet have
calculations for these pieces of the force we will hereafter
often adopt the notation

Fαself ≡ µ2F (1)α
mono, (3.1)

Fαspin ≡ µ2sFαspin-curvature. (3.2)

Finally, from Eq. (2.6), we note that the adiabatic self-
force enters at lower order than the other components of
the force, and accordingly must be computed with greater
accuracy in order to affect the phase error at the same
level. To ensure the self-force is sufficiently accurate we
use a hybrid scheme that computes the adiabatic com-
ponent of the self-force with a highly accurate Regge-
Wheeler code and computes the other components with
a Lorenz-gauge code. This scheme is detailed in previous
papers [58, 71].

IV. OSCULATING ELEMENT DESCRIPTION
OF MOTION

In this section we recast the equations of motion (2.1)
into ones for the evolution of the osculating elements of
the inspiral. This procedure is analogous to Lagrange’s
equations of planetary motion in Newtonian celestial me-
chanics. Relativistic osculating element prescriptions of
motion were first given for Schwarzschild spacetime by
Pound and Poisson [76]. In that work they specialized
to motion in the equatorial plane and here we generalize
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their result to generic motion to allow for a description of
the inspiral when the spin of the secondary is not aligned
or anti-aligned with the orbital angular momentum. In
deriving the osculating equations of motion we do not
make any small force approximation or other assump-
tions about the forcing terms–those are independent as-
sumptions that we will discuss in the next section. In
describing the motion of the secondary we will treat it as
a point particle, with discussion in the next section on
the justification for this. We will parameterize the par-
ticle’s motion by its proper time τ and distinguish the
particle’s time-dependent coordinate location from gen-
eral spacetime coordinates with a subscript ‘p’.

The central idea to the osculating elements prescrip-
tion arises from noting that at each point along the ac-
celerated worldline, zµ(τ), there is a one-to-one relation
between the particle’s position and velocity and a tan-
gent (or osculating) geodesic. Each tangent geodesic has
associated with it a set of orbital elements IA (such as
energy, angular momentum, azimuthal angle at perias-
tron, etc) that uniquely identifies the geodesic. Conse-
quently the worldline can be described either by a se-
quence of spacetime coordinates, zµ(τ), or as a sequence
of orbital elements of the osculating geodesics, IA(τ).
With the four-velocity of the tangent geodesic given by
uαG(IA, τ) = ∂τz

α
G(IA, τ), we can write

zα(τ) = zαG(IA, τ), uα(τ) = uαG(IA, τ), (4.1)

where hereafter a sub/superscript ‘G’ denotes a quantity
related to a geodesic. The equations of motion take the
following form in terms of the osculating elements [76]

∂zαG
∂IA

∂IA

∂τ
= 0, µ

∂uαG
∂IA

∂IA

∂τ
= Fα. (4.2)

Our explicit choice of osculating elements IA for bound
motion and the resulting equations of motion are given
in the following subsections.

A. Bound geodesics in Schwarzschild spacetime

During the adiabatic stages of an inspiral (before the
particle plunges into the black hole) the geodesics tan-
gent to the inspiral are bound and generically eccentric.
In this section we describe these tangent geodesics. We
begin by examining the case where the motion is con-
fined to the equatorial plane. Later, we will generalize
to inclined geodesics (though ones that are still confined
to some plane, as must occur in the Schwarzschild back-
ground). We denote equatorial geodesics by a set of func-
tions z′αG (τ) =

[
t′p(τ), r′p(τ), π/2, ϕ′p(τ)

]
, parameterized

by proper time τ . For later convenience we will omit the
‘prime’ from coordinates that are invariant under rota-
tions, i.e., tp = t′p and rp = r′p. The geodesic four-velocity
u′αG is given by

u′αG =

(
EG

fp
, urG, 0,

LG

r2
p

)
, (4.3)

where fp ≡ 1 − 2M/rp, and EG and LG are the specific
orbital energy and angular momentum, respectively. The
constraint uαuα = −1 yields an expression for urG:

(urG)
2

= (EG)2 − fp
(

1 +
(LG)2

r2
p

)
. (4.4)

We parameterize the geodesic with the orbital eccentric-
ity, e, and semi-latus rectum, p, which are related to the
radial turning points rmin and rmax via

p =
2rmaxrmin

M(rmax + rmin)
, e =

rmax − rmin

rmax + rmin
. (4.5)

Eq. (4.5) and the roots of Eq. (4.4) give the relationship
between (p,e) and (E ,L):

EG =

√
(p− 2)2 − 4e2

p(p− 3− e2)
, LG =

pM√
p− 3− e2

. (4.6)

Bound orbits exist with e < 1 and p > 6 + 2e. For e < 1
the line p = 6 + 2e is a separatrix between bound and
plunging orbits [81].

In self-force calculations it is convenient to reparam-
eterize the orbital motion (i.e., all the curve functions)
with the relativistic anomaly χ [82], defined so that

rp(χ) =
pM

1 + e cos [χ− χ0]
. (4.7)

The parameter χ0 specifies the value of χ at periastron
passage.

Eq. (4.7) can be used with Eqs. (4.3) and (4.6) to derive
the following initial value equations for the evolution of
the orbit

dτp
dχ

=
Mp3/2

(1 + e cos v)2

√
p− 3− e2

p− 6− 2e cos v
, (4.8)

dtp
dχ

=
r2
p

M(p− 2− 2e cos v)

√
(p− 2)2 − 4e2

p− 6− 2e cos v
, (4.9)

dϕ′p
dχ

=

√
p

p− 6− 2e cos v
, (4.10)

where v ≡ χ− χ0. It is useful to introduce initial values
T and Φ to Eqs. (4.9) and (4.10) respectively

tp(χ) = T +

∫ χ−χ0

χ0

dtp
dχ

dv, (4.11)

ϕ′p(χ) = Φ +

∫ χ−χ0

χ0

dϕ′p
dχ

dv. (4.12)

These integrals have analytic solutions in terms of special
functions [83], and we find the analytic solution for ϕ′p to
be useful in this work

ϕ′p(χ) = Φ + 2

√
p

p− 6− 2e
F̄
(v

2

∣∣∣ −4e

p− 6− 2e

)
, (4.13)
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where F̄ is the incomplete elliptic integral of the first kind

F̄ (a|b) ≡
∫ a

0

(
1− b sin2 x

)−1/2
dx. (4.14)

We also find use for the incomplete elliptic integral of the
second kind Ē

Ē(a|b) ≡
∫ a

0

(
1− b sin2 x

)1/2
dx. (4.15)

In a coordinate system where the geodesic ap-
pears inclined, the worldline is given by zαG =
[tp(τ), rp(τ), θp(τ), ϕp(τ)]. To transform from z′αG to zαG
we will introduce a rotation matrix with Euler angles Ω
and ι

xp

yp

zp

 =


cos Ω − sin Ω cos ι sin Ω sin ι

sin Ω cos Ω cos ι − cos Ω sin ι

0 sin ι cos ι



x′p

y′p

z′p

 .
(4.16)

Here Ω is the longitude of the ascending node and
ι is the orbital inclination. Using (x′p, y

′
p, z
′
p) =

(rp cosϕ′p, rp sinϕ′p, 0) the following equations are derived

xp = rp(cos Ω cosϕ′p − sin Ω cos ι sinϕ′p), (4.17)

yp = rp(sin Ω cosϕ′p + cos Ω cos ι sinϕ′p), (4.18)

zp = rp sin ι sinϕ′p, (4.19)

φ ≡
∫ ϕ′

p

0

(sec ι cos2 u+ cos ι sin2 u)−1du, (4.20)

ϕp = φ+ Ω, (4.21)

θp = cos−1(sin ι sinϕ′p). (4.22)

The θ and ϕ components of uαG are given by

uθG = −
(1 + e cos v)2 sin ι cosϕ′p

pM
√

(p− 3− e2)(1− sin2 ι sin2 ϕ′p)
, (4.23)

uϕG =
(1 + e cos v)2(p− 3− e2)−1/2

pM(sec ι cos2 ϕ′p + cos ι sin2 ϕ′p)
. (4.24)

The utG and urG four-velocity components are unaffected
by the rotation.

B. Evolution of the orbital elements

The complete set of orbital elements we choose to de-
scribe the tangent geodesics are given by

IA = {e, p, χ0, ι,Ω,Φ, T}. (4.25)

Any fixed set of these elements uniquely specifies a
bound, eccentric, possibly inclined, geodesic in the space-
time. To describe the inspiraling worldline we promote

these elements to have time-dependence. The rate-of-
change of IA is described by Eq. (4.2). In order to ex-
plicitly give the evolution equations, let us define the
operator

D ≡ de

dχ

∂

∂e
+
dp

dχ

∂

∂p
+
dχ0

dχ

∂

∂χ0
, (4.26)

Parameterizing the elements using χ we can then write

0 = D [tp] +
∂tp
∂T

dT

dχ
, (4.27)

0 = D [rp], (4.28)

0 = D [θp] +
∂θp
∂ι

dι

dχ
+
∂θp
∂Φ

dΦ

dχ
, (4.29)

0 = D [ϕp] +
∂ϕp
∂ι

dι

dχ
+
∂ϕp
∂Ω

dΩ

dχ
+
∂ϕp
∂Φ

dΦ

dχ
, (4.30)

1

µ

dτp
dχ

Fα = D [uαG] where α = {t, r}, (4.31)

1

µ

dτp
dχ

F β = D [uβG] +
∂uβG
∂ι

dι

dχ
+
∂uβG
∂Φ

dΦ

dχ
(4.32)

where β = {θ, ϕ},

Eqs. (4.28) and (4.31) form a closed system that describes
the evolution of the elements α = {e, p, χ0}

dα

dχ
= c(t)α F t + c(r)α F r, (4.33)

The c-coefficients depend on e, p, and v and, as they are
a little unwieldy, are given explicitly in Appendix A.

To take advantage of our hybrid self-force tech-
nique [58, 71] we eliminate F r from the α = {p, e}
versions of Eq. (4.33) using the orthogonality condition
uµF

µ = 0

F r =
fp
(
fpu

tF t − r2
pu
θF θ − r2

p sin2 θp u
ϕFϕ

)
ur

. (4.34)

This form appears inconvenient because ur vanishes at
the radial turning points. However, the presence of a sin v
factor in Eqs. (A2) and (A4) allows the resulting expres-
sions to be simplified in such a way that the denominator
does not vanish. Eq. (4.27) describes the rate-of-change
of T . However, instead of calculating T we dynamically
evolve tp using Eq. (4.9). Eq. (4.29) and (4.32) describe
the evolution of the elements α = {ι,Φ}

dα

dχ
= c(θ)α F θ + c(e)α

de

dχ
+ c(p)α

dp

dχ
+ c(χ0)

α

dχ0

dχ
, (4.35)

Similarly, Eq. (4.30) describes the evolution of Ω

dΩ

dχ
= c

(e)
Ω

de

dχ
+ c

(p)
Ω

dp

dχ
+ c

(χ0)
Ω

dχ0

dχ
+ c

(ι)
Ω

dι

dχ
+ c

(Φ)
Ω

dΦ

dχ
.

(4.36)

The c-coefficients in these two equations depend on e,
p, v, ι, and ϕ′p and their explicit form can be found in
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Appendix A. Note that in the c
(θ)
Φ coefficient given in

Eq. (A11) there is a 1/ sin ι factor that diverges when
ι = 0. This is a familiar property of osculating orbits in
Newtonian celestial mechanics. To circumvent this issue
one can change to a different set of orbital elements or,
as we do in this work, leverage the spherical symmetry
of the problem. Without loss of generality, we choose
the initial condition ι0 = π/4 which avoids the worldline
ever crossing ι = {0, π/2} as under our small mass-ratio
approximation ι will oscillate with a small amplitude.

V. FORCING TERMS

The forcing terms that drive the inspiral are on the
righthand side of Eq. (2.1). In this work we do not include
the second-order or spin-dipole forcing terms (as they
have yet to be calculated) so the force, Fµ, has two parts

Fα = µ2
(
F (1)α

mono + sFαspin-curvature

)
= Fαself + Fαspin.

(5.1)

The first term arises from the interaction of the secondary
with its own (first-order in the mass-ratio) metric pertur-
bation and is known as the (first-order) self-force. The
second term arises from the interaction of the spin of the
secondary with the background spacetime of the primary.
This force is known as the Mathisson-Papapetrou-Dixon
(MPD) spin-curvature force. We discuss how these two
forcing terms are calculated in the following subsections.

A. Self-force

In the small mass ratio limit the spacetime metric of
the binary can be written as gµν + hµν where gµν is
the background metric of the primary and hµν is a first-
order-in-the-mass-ratio perturbation arising from the sec-
ondary (we do not include higher-order in the mass ratio
corrections in this work). Within this description the sec-
ondary interacts with its own metric perturbation. This
self-interaction gives rise to a self-force that acts to drive
the inspiral. Being sourced by the metric perturbation
backscattering off the background curvature of the pri-
mary, this self-interaction is non-local so that the self-
force at any instance is a functional of the the entire past
(inspiraling) history of the secondary. This makes the
self-force particularly challenging to calculate.

One way to make the calculation more amenable is to
restrict the secondary’s motion to a geodesic of the back-
ground spacetime. The periodic nature of the geodesic
then allows efficient frequency-domain techniques to be
employed [57, 58, 70, 71, 84–91] and we make use of this
approach in this work. Approximating the true self-force
at each instance (a functional of the inspiraling world-
line) with the geodesic self-force introduces a discrepancy
with the true inspiral at post-1-adiabatic order [72], but
preliminary evidence suggests that the coefficient of this

error term is very small [73–75]. When the spin of the
secondary is not aligned with the orbital angular momen-
tum the orbit will precess about the initial equatorial
plane. The effect of this precession on the self-force is

captured by the F
(1)α
dipole term that we are not currently

including in our model (but once it has been calculated
it is straightforward to incorporate).

We now briefly review our calculation of the self-
force. We model the secondary as a point particle to
give an unambiguous result that does not depend on
the higher multipole structure of the body (though we
will add dipole structure to account for the body’s spin
in the next subsection). This point particle model ne-
cessitates a regularization procedure to handle the di-
vergence in the metric perturbation at the particle’s lo-
cation [22, 92, 93]. Practically, we make use of the
mode-sum scheme [94–100]. The regularization proce-
dure was, until recently [101], only understood in the
Lorenz gauge. In this gauge the trace-reversed metric
perturbation, h̄µν ≡ hµν − 1

2gµν(hαβg
αβ), is governed

by the linearized Einstein equations subject to the con-
straint ∇µh̄µν = 0

2h̄µν + 2Rα β
µ ν h̄αβ = −16πTµν , (5.2)

where 2 ≡ gαβ∇α∇β , Rα β
µ ν is the Riemann tensor of

the background spacetime, and Tµν is the stress energy
tensor of a point mass following a geodesic. A number of
authors have considered Lorenz-gauge metric perturba-
tions in Schwarzschild spacetime [57, 70, 71, 84–87, 89–
91, 102, 103] and Kerr spacetime [32]. This work utilizes
the frequency domain code presented in Ref. [71] with
refinements described in Refs. [58, 91].

The adiabatic part of the self-force, which contributes
at leading-order in Eq. (2.6), must be calculated to within
an error tolerance smaller than the mass ratio whereas
the terms contributing at post-1-adiabatic order require
only a few digits of accuracy. We use a hybrid scheme
[58, 71] that has been developed to achieve these tol-
erances. This hybrid scheme uses a highly accurate
Regge-Wheeler-Zerilli (RWZ) [104, 105] code (based on
Refs. [88, 91]) to generate Fµad while post-processing the
Lorenz gauge self-force (and spin-curvature force) results
to calculate Fµosc. This scheme relaxes the requirements
on our Lorenz-gauge self-force code (which takes substan-
tially longer to run than the RWZ code at high precision)
while maintaining target phase accuracies in the resulting
inspiral.

Our hybrid code outputs the Fourier coefficients of the
self force for a given orbital configuration. We calculate
these Fourier coefficients for tens of thousands of orbital
configurations and perform an interpolation over the rel-
evant parameter space. We minimize interpolation error
by performing multiple local interpolations, modifying
our discretization in regions where the self-force varies
more rapidly e.g., near the separatrix. For full details
see Ref. [58]. This interpolant can be rapidly evaluated
for any orbit configuration (including those not in the
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original dataset) and we couple the interpolant with the
osculating element equations of motion to compute in-
spirals.

Our hybrid code computes the self-force in a coordi-
nate system where the instantaneous orbital motion is
equatorial (the ‘prime’ coordinate system). In this coor-
dinate system F ′θself vanishes. To transform to the inclined
frame we apply a rotation giving

F tself = F ′tself, F rself = F ′rself, (5.3)

F θself = −
4F ′ϕself sin ι cosϕ′p

√
1− sin2 ι sin2 ϕ′p

3 + cos (2ι) + 2 cos (2ϕ′p) sin2 ι
, (5.4)

Fϕself =
4F ′ϕself cos ι

3 + cos (2ι) + 2 cos (2ϕ′p) sin2 ι
. (5.5)

B. Spin-curvature force

When multipole-moments beyond the monopole are
endowed to the orbiting particle there is an interac-
tion between them and the Riemann tensor of the back-
ground spacetime. Ignoring the self-force and multipole-
moments beyond the spin of the body (the ‘pole-dipole’
approximation) gives rise to the Mathisson-Papapetrou-
Dixon equations of motion [63, 64, 106]

uβ∇βpα = −1

2
Rανλσu

νSλσ (5.6)

uβ∇βSµν = pµuν − pνuµ. (5.7)

where pα is the particle’s four-momentum and Sαβ is the
spin tensor of the orbiting body. Generically, the four-
velocity and the four-momentum are not aligned, i.e.,
pα 6= µuα.

The systems of equations (5.6) and (5.7) do not form a
closed system and an additional spin-supplementary con-
dition (SSC) must be imposed. The choice of SSC is not
unique owing to the fact that in relativity the center of
mass of a spinning body is an observer dependent point.
The choice of SSC is fundamentally arbitrary but might
be motivated by simplifying the equations of motion for
a particular setup. Careful comparison shows that each
SSC leads to the same physics [107–109]. In this work
we adopt the Pirani condition [110]

uµS
µν = 0. (5.8)

It is convenient to introduce the spin vector, Sµ, from
which the spin tensor can be constructed

Sµν = εµναβuαSβ , (5.9)

where εµναβ is the Levi-Civita tensor. The magnitude of
the spin vector S2 ≡ SαSα is a constant [111].

The set of equations (5.6), (5.7) and (5.8) can be in-
tegrated to compute the wordline of a spinning body.

For each Killing vector ξα(j) of the spacetime the quantity

[111]

CS = pαξ
α
(j) −

1

2µ
Sαβ∇βξ(j)

α . (5.10)

is conserved along the body’s worldline. The first term of
Eq. (5.10) is conserved for a geodesic (e.g. µ EG = pαξ

α
(t))

while the second term accounts for the MPD force. Here
a superscript S denotes a conserved quantity related to
a spinning body (recall that a superscript G denotes
a quantity conserved for a geodesic). The four Killing
vectors of Schwarzschild spacetime admit four conserved
quantities in accordance with Eq. (5.10). We demon-
strate conservation of two of these quantities as a con-
sistency check in Section VIII A by disabling (for testing
purposes) the self-force in our numerical scheme.

As we are working in the small mass-ratio limit ε� 1
Eq. (2.5) tells us that the spin magnitude is also small.
We thus linearize our calculation in S. This results in
substantially simpler equations of motion, though it is an
open question whether the non-linear (in S) terms might
lead to interesting resonance phenomenon that the linear
approximation does not capture [111]. To linear order in
S the four-velocity and angular-momentum are parallel

uα = pα/µ+O(S2). (5.11)

The equations of motion (5.6)-(5.7) reduce to

uβ∇βuα = −1

2
Rανλσu

νSλσ (5.12)

uβ∇βSµν = 0. (5.13)

Comparing Eq. (2.1) and Eq. (5.12) we identify the spin-
curvature force as

Fαspin = −1

2
Rανλσu

νSλσ (5.14)

Equation (5.13) tells us that, to linear order in S, the
spin vector is parallel transported along the worldline.
In Schwarzschild spacetime this gives us explicitly

dSα

dτ
= −ΓαµνS

µuν , (5.15)

dSt

dχ
= −dτp

dχ

M

fpr2
p

(Stur + Srut), (5.16)

dSr

dχ
=
dτp
dχ

(
M

fpr2
p

(Srur − f2
pS

tut)

+ fprp(S
θuθ + Sϕuϕ sin2 θp)

)
, (5.17)

dSθ

dχ
=
dτp
dχ

(
Sϕuϕ cos θp sin θp −

Sθur + Sruθ

rp

)
,

(5.18)

dSϕ

dχ
= −dτp

dχ

(
cos θp
sin θp

(Sϕuθ + Sθuϕ) +
Sruϕ + Sϕur

rp

)
.

(5.19)
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To couple these spin evolution equations to the osculat-
ing elements equations we rewrite then as forcing terms.
Eqs. (5.8) and (5.9) imply that the spin vector is purely
spatial in the rest frame of the small body

uµS
µ = 0. (5.20)

We use this condition to determine St

St =
Srur + fpr

2
p(S

θuθ + Sϕuϕ sin2 θp)

f2
pu

t
. (5.21)

This leaves three degrees of freedom for choosing the ini-
tial conditions of Sµ. Using Eq. (5.14) and (5.9) to ex-
press the components of Fµspin in terms of the components
of the spin vector gives

F tspin =
3Mur sin θp(S

ϕuθ − Sθuϕ)

rpfp
, (5.22)

F rspin =
3Mfpu

t sin θp(S
ϕuθ − Sθuϕ)

rp
, (5.23)

F θspin =
3Muϕ sin θp(S

tur − Srut)
r3
p

, (5.24)

Fϕspin = −3Muθ(Stur − Srut)
r3
p sin θp

. (5.25)

VI. WAVEFORMS

Coupling the force terms in the previous section with
the osculating element equations of motion in Sec. IV al-
lows for the computation of inspiral trajectories. With a
trajectory in hand there are a number of ways to compute
the waveform.

The most accurate method is to use the trajectory as
a source in a time-domain code. Via extrapolation or
via hyperboloidal compactification, the waveform can be
extracted at null infinity [59, 112, 113]. The high com-
putational cost of these time-domain simulations means
they cannot provide a wide survey of waveforms across
the parameter space but they are invaluable to assess the
accuracy of other waveform generation methods.

One of the most common methods for computing wave-
forms is to use the weak-field quadrupole formula (some-
times supplemented by octupolar or fast-motion correc-
tions). This technique is taken by so-called ‘kludge’
methods [20, 114, 115] that combine input from a number
of different techniques (e.g., post-Newtonian and black
hole perturbation theory) to model the trajectory. These
techniques allow waveforms to be computed rapidly but
they may not faithfully represent the true waveform in
the very strong-field [20].

In this work we take a different approach inspired by
our geodesic self-force interpolation model. Using our
frequency-domain codes we compute so-called ‘snapshot’
waveforms [19, 68] for a large number of parameters in the
(p, e) space. We then interpolate between these snapshot
waveforms to create a continuously evolving waveform
over the entire inspiral.

A. Frequency-domain waveforms

The radiation from the binary can be extracted from
the (complex) Weyl curvature scalar

Ψ4 = −Cαβγδnαm̄βnγm̄δ (6.1)

where Cαβγδ is the Weyl curvature tensor (equal to the
Riemann tensor in vacuum), and nα and m̄α are compo-
nents of the Kinnersly tetrad [116]. Far from the source
Ψ4 can be related to the gravitational radiation via

Ψ4(r →∞) ' 1

2

(
ḧ+ − iḧ×

)
. (6.2)

where h+ and h× are the two independent polarizations
of the gravitational waves and an overdot denotes differ-
entiation with respect to coordinate time.

The scalar Ψ4 can be decomposed into spin-weighted
spherical harmonics −2Ylm as

Ψ4(t, r, θ, ϕ) =

lmax∑
l=2

l∑
m=−l

ψlm4 (t, r)−2Ylm(θ, ϕ). (6.3)

The function ψ4 can be obtained directly using the
Teukolsky formalism [116]. As our hybrid self-force
scheme employs highly accurate results in the Regge-
Wheeler gauge we already have precomputed data for
the asymptotic amplitudes of the RWZ fields. These am-
plitudes can be related to ψ4 via

ψlm4 (r →∞) '
nmax∑
n=nmin

ω2
mn

4r

√
(l + 2)(l + 1)l(l − 1)

×
(
iCodd

lmn − Ceven
lmn

)
e−iωmn(t−r), (6.4)

where Ceven
lmn is the coefficient of the Zerilli-Moncrief mas-

ter function [105, 117], and Codd
lmn is the coefficient of the

Cunningham-Price-Moncrief master function [118, 119]
(according to the conventions of [88]) and ωmn = mΩϕ+
nΩr is the mode frequency. The waveform is calculated
by integrating Eq. (6.2) twice with respect to time, giving

h+ − ih× =
1

r

lmax∑
l=2

l∑
m=−l

Hlm(t, r)−2Ylm(θ, ϕ), (6.5)

Hlm(t, r) ≡
nmax∑
n=nmin

1

2

√
(l + 2)(l + 1)l(l − 1)

×
(
Ceven
lmn − iCodd

lmn

)
e−iωmn(t−r), (6.6)

In order to evaluate C
even/odd
lmn for arbitrary values of

(p, e) we interpolate over the parameter space using the
same scheme that we used for the self-force [58]. In total
we computed 11, 234 orbital configurations in the range
p < 57 and e < 0.82. For purposes of reconstructing
waveforms, the C-coefficients are interpolated for a range
of indices: nmin = −40 through nmax = +40, and for
every m for l = 2 and l = 3.
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Using this prescription the waveform for a given (p, e),
corresponds to a geodesic with periastron passage at
t = ϕ = 0. To compute the waveform associated with
an inspiral we update the snapshot parameters (p, e, t, ϕ)
at each periastron passage to maintain consistency be-
tween the inspiraling orbital motion and the waveform’s
amplitude and phase. The values of (p, e) jump discon-
tinuously at periastron passages under this method. This
jump has a minimal effect on our inspiral waveform, as
the dephasing between the geodesic waveform and the
true inspiral waveform takes places over the radiation re-
action timescale which is much longer than the orbital
timescale. These discontinuous changes will thus be neg-
ligible for small mass-ratio binaries while the inspiral is
evolving adiabatically (as it does away from the separa-
trix). As the waveform and inspiral parameters are syn-
chronized at each periastron passage our inspiral wave-
form should be a good representation of the true wave-
form throughout the entire adiabatic inspiral.

VII. SPIN-ALIGNED INSPIRALS (PLANAR
MOTION)

For orbits where the spin and orbital angular momen-
tum are aligned the inspiral motion is confined to a plane.
In this scenario the osculating elements equations sim-
plify greatly (dι/dχ = dΩ/dχ = 0). When ι and Ω are
constant the troublesome 1/ sin ι terms can be avoided
by calculating ϕ′p dynamically using Eq. (4.10) instead
of evolving Φ. Under these simplifications our osculating
elements scheme is applied to equatorial inspirals by en-
forcing the condition ι = 0 or, equivalently, θp = π/2. In
this case the only non-zero component of the spin vector,
Sα, is

Sθ =
sµ2

rp
. (7.1)

Consequently, from Eqs. (5.22)-(5.25), only F tspin and
F rspin are non-zero

F tspin = −3sµ2Muruϕ

r2
pfp

(7.2)

F rspin = −3sµ2Mfpu
tuϕ

r2
p

. (7.3)

We now present some sample inspirals and waveforms for
the spin-aligned case.

A. Sample results

It is key to assess how a spinning secondary influences
the phasing of the inspiral. We compare the inspiral
phase for binaries with a spinning secondary against non-
spinning binaries and show the results for the inspiral
trajectories in Figs. 1 and 2 and sample waveforms in

s=1

s=0.5

s=-0.5

s=-1

0 20 40 60 80

-1.0

-0.5

0.0

0.5

1.0

ϵ t/M

Δ
φ

FIG. 1. Dephasing of inspirals with a spinning secondary
with respect to a non-spinning inspiral. The dephasing is
defined as ∆ϕ ≡ ϕs 6=0

p − ϕs=0
p . The initial parameters for the

non-spinning inspiral are (p0, e0) = (10, 0.4) and the initial
frequencies of the spinning inspirals are matched to the initial
frequencies of the non-spinning case. For these calculations we
choose a mass ratio of µ/M = 5×10−3, which is large enough
that the eccentric oscillations of the inspirals are visible in
the figure. Reading from top to bottom the spin values are
s = {+1,+0.5,−0.5,−1}.

Figs. 3 and 4. When we compare inspirals we match the
initial frequencies of the spinning inspiral with the fre-
quencies of the non-spinning inspiral using the technique
described in our previous paper [58].

For Fig. 1 the initial parameters for the non-spinning
binary are (p, e) = (10, 0.4). Over the course of the inspi-
ral we find for the maximum spin |s| = 1 that the orbit
dephases by ∆ϕ ∼ 1.2 radians. In this example spin-
aligned binaries act to increase the phase of the inspiral
with respect to the non-spinning case. Similarly, anti-
aligned binaries act to decrease the inspiral phase. Burko
and Khanna [62] consider a similar setup for the evolu-
tion of quasi-circular inspirals including spin-curvature
effects. In their Fig. 6 they consider the effect of vary-
ing the spin on the secondary for inspirals which start
at r0 = 10M . In the quasi-circular case, they find ∼ 4
radians of phase difference for the |s| = 1 inspiral. Our
results and theirs cannot be directly compared, however,
as they attempt to include second-order radiative effects
(via a post-Newtonian approximation) in their inspiral
calculation, which are not a part of our model.

The phase difference observed in the example pre-
sented in Fig. 1, whereby the spin-aligned binary takes
longer to merge than the spin anti-aligned binary, is
reminiscent of the ‘orbital hangup’ observed for circu-
lar binaries in numerical relativity simulations [120]. A
more exhaustive search through the (p0, e0) parameter
space reveals that this behavior is not universal and for
some configurations the opposite is observed, i.e., a spin-
aligned binary can accumulate less phase than the asso-
ciated non-spinning binary. Figure 2 demonstrates this
change in behaviour for a number of inspirals that differ
in p0 but each begin with the same high initial eccen-
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FIG. 2. Dephasing of a spin-aligned binary with respect
to a (initially frequency matched) non-spinning binary. All
inspirals initially have eccentricity e0 = 0.75 and we show
∆ϕ = ϕs=1 − ϕs=0 for a variety of inspirals with differing
initial p0 values. For inspirals with a strong-field p0 . 19
the accumulation of ∆ϕ is positive and monotonic (modulo
oscillations on the orbital timescale). For p0 & 21 the accu-
mulation of ∆ϕ is negative and monotonic. Between these
two regimes the accumulation of ∆ϕ is not monotonic and
the spinning inspiral can initially lose phase with respect to
the non-spinning case before catching up again, even return-
ing to being in phase (∆ϕ = 0) as plunge is approached. The
opposite behavior is observed for spin anti-aligned (s = −1)
binaries. The inspirals in this figure were computed with mass
ratio ε = 5× 10−3.

tricity e0 = 0.75. In general we find that spin-aligned
inspirals with a p0 in the strong-field (p . 20) accumu-
late more phase before the onset of the plunge than the
non-spinning case, whereas spin-aligned inspirals with p0

in the weak field (p & 20) experience the opposite and ac-
cumulate less phase before the onset of the plunge than
the non-spinning case. We also observe that the accu-
mulation of the ∆ϕ is not always monotonic, e.g., for
p0 ' 20 a spin-aligned binary can initially lose phase
with respect to the non-spinning case but can catch up
with it later, even to the extent that the two inspirals re-
align in phase (∆ϕ = 0). We observe this change of sign
of ∆ϕ occurs regardless of the initial eccentricity, includ-
ing for quasi-circular inspirals with e0 = 0.1 For these
inspirals we observe the change in sign of ∆ϕ occurs for
inspirals with p0 ' 30.

The influence of the spin-curvature force on ∆ϕ con-
trasts with that of the conservative self-force, which al-
ways acts to reduce the inspiral phase [25, 58]. In re-
gions of the parameter space where the effect of the spin-

1 In the literature it is common to read statements like ‘circular
orbits remain circular as they adiabatically evolve due to radia-
tion reaction’. This statement is true when one is concerned only
with the leading-order phase evolution. When modeling post-1-
adiabatic corrections, as in this work, it is important to note that
inspirals with e0 = 0 develop eccentricity which oscillates near
e = 0 with an amplitude that scales with the mass ratio.
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FIG. 3. Sample waveforms for inspirals with a spinning and
non-spinning secondary with ε = 10−3. The initial orbital
parameters are (p0, e0) = (20, 0.7). We match the initial fre-
quencies of the spinning and non-spinning configuration so
that the two waveforms are initially in phase (top panel). Af-
ter ∼ 140 radial oscillations the dephasing of the waveforms
becomes noticeable (middle panel). After ∼ 360 radial os-
cillations the waveforms have dephased by a half cycle (bot-
tom panel). Close to the plunge (∼ 700 radial oscillations,
ε(t − r)/M ' 3700) the waveforms have dephased by 2 com-
plete cycles.

ning secondary acts to monotonically increase the inspi-
ral phase this raises the possibility that waveforms as-
sociated with an inspiral computed using the radiative
approximation [19, 68] plus a spinning secondary might
closely mimic a waveform computed using the full dissi-
pative and conservative self-force with a non-spinning bi-
nary. Exploring the possible degeneracies between these
two models we leave for future work.

In Figs. 3 and 4 we show gravitational waveforms from
a high and a medium eccentricity inspiral, respectively.
Each figure contains three panels, displaying three dif-
ferent epochs in the inspiral. The figures show the wave-
forms at an early time, when the dephasing first becomes
noticeable, and later when the waveforms first dephase by
a half cycle. To display the dephasing, each panel shows
the waveforms for both the spinning and non-spinning
cases. Initially, the frequencies of the two waveforms are
matched but over time the waveforms dephase by a num-
ber of cycles.
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FIG. 4. Sample waveforms for inspirals with a spinning and
non-spinning secondary with ε = 10−5. The initial orbital
parameters are (p0, e0) = (10, 0.3). We match the initial fre-
quencies of the spinning and non-spinning configuration so
that the two waveforms are initially in phase (top panel). Af-
ter ∼ 230 radial oscillations the dephasing of the waveforms
becomes noticeable (middle panel). After ∼ 2400 radial os-
cillations the waveforms have dephased by a half cycle (bot-
tom panel). Close to the plunge (∼ 4400 radial oscillations,
ε(t−r)/M ' 90) the waveforms have dephased by 15 complete
cycles.

VIII. ARBITRARY SPIN INSPIRALS WITH
ORBITAL PLANE PRECESSION

In cases where the secondary’s spin and the orbital
angular momentum are not initially aligned, the orbital
plane and spin will subsequently precess during the inspi-
ral. To capture this motion we evolve the inspiral using
the osculating element equations we derived in Sec. IV,
though with the initial condition ι0 = π/4 to avoid co-
ordinate divergences in the osculating element equations
(recall the discussion at the end of Sec. IV B). In the pre-
vious section the influence of a spin-aligned secondary on
the inspiral phase was assessed by comparing to a non-
spinning inspiral with the same two initial orbital fre-
quencies. In the case of generic spin orientation there are
three orbital frequencies, the additional one associated
with the precession of the orbital plane. It may be pos-
sible to make a matched-frequency comparison between
a spin-unaligned inspiral in Schwarzschild spacetime and
an inspiral with a non-spinning secondary in Kerr space-
time. At the present time fully relativistic, generic orbit
Kerr inspirals are not available for comparison (though
kludge models do exist for this case [20]). Our waveform
generation scheme, presented in Sec. VI A, is only appli-

cable to inspirals in the equatorial plane. Consequently,
in this section we showcase generic spin inspirals without
assessing the effect of the spin on the inspiral phase or
attempting to compute the associated waveforms (these
are left for future work).

A. Consistency checks

To test whether our numerical code is functioning cor-
rectly we performed a number of consistency checks. As
discussed in Sec. V B, if the self-force is not applied the
spinning secondary’s worldline admits a constant of mo-
tion for each of the spacetime’s Killing vectors [111]. The
time-like killing vector of Schwarzschild spacetime results
in a conserved specific energy ES . The presence of spin
perturbs the geodesic specific energy EG by ∆E

ES = EG + ∆E , (8.1)

∆E =
M

µ
sin θp(u

θSϕ − uϕSθ). (8.2)

Additionally, the three rotational killing vectors imply
conservation of the x, y, and z components of angular
momentum. The z-component is given by

LSz = LGz + ∆Lz, (8.3)

LGz = r2
p u

ϕ sin2 θp, (8.4)

∆Lz =
1

µ

(
fprp(S

tuθ − Sθut) sin θp

+ (Srut − Stur) cos θp

)
. (8.5)

Similar results are straightforwardly obtained for the x
and y components of the angular momentum. Fig. 5
demonstrates that the perturbed energy ES and z-
component of angular momentum LSz are conserved along
the worldline if application of the self-force is withheld.
As a further consistency check we verified that the spin
magnitude is invariant under parallel transport.

B. Sample results

The larger the mass ratio, the more prominent the pre-
cession of the orbital plane will be. In order to make
the precession due to the spin-curvature force visible we
computed an inspiral with mass-ratio ε = 0.08 and spin
magnitude s = 1. Computing an inspiral at this mass
ratio is a slight abuse of perturbation theory, as we are
not sure of its validity for these values of ε (though see
e.g., [37] which suggests the range of validity of black hole
perturbation theory might be larger than once thought).
Our results for this ε = 0.08 inspiral are presented in
Fig. 6. In displaying our results we rotate the coordinates
such that the new inclination parameter oscillates around
zero (recall that ι0 = π/4), or equivalently, the new z-
coordinate of the position vector, z′′p , oscillates with a
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FIG. 5. Energy (ES) and angular momentum (z-component
LSz ) conservation in the presence of spin-curvature force alone.
Numerical residuals (relative errors) from expected strict con-
servation in energy and angular momentum are shown (dotted
curves) for an orbit in which spin-curvature force is applied
but the self-force is not. For contrast, the strictly geodesic
quantities EG and LGz (solid curves) can be seen to vary with
an amplitude on the order of the mass ratio ε. The orbital
parameters in this example are e0 = 0.3, p0 = 10, ι0 = π/4,
Sr0 = Sθ0M = Sϕ0M = 0.3µ2, ε = 10−3.

minimized amplitude. The transformation to the double
primed coordinate system is given by

xp

yp

zp

 =


1 0 0

0 cos ι0 − sin ι0

0 sin ι0 cos ι0



x′′p

y′′p

z′′p

 . (8.6)

For the orbital parameters chosen in Fig. 6, z′′p reaches
4% of rp at its maximum. At this level, precession of the
orbital plane is noticeable but modest.

IX. CONCLUSIONS

In this work we have computed the effect of spin-
curvature coupling on the inspiral of a spinning body
into a non-rotating black hole including all first-order in
the mass-ratio self-force effects. For binaries where the
spin and orbital angular momentum are aligned or anti-
aligned we compute the waveforms by evolving through
a sequence of snapshot waveforms. We also computed
the dephasing of these waveforms with respect to non-
spinning binaries, finding that the sign of the accumu-
lated phase difference depends on the initial binary sep-
aration. For binaries with initial eccentricity e0 = 0
the phase accumulation for a spin-aligned binary verses
a non-spinning binary is negative for p & 30 and posi-
tive for p . 30 (spin anti-aligned binaries show the op-
posite behavior). For binaries with initial eccentricity
e0 = 0.75 the change in sign of the accumulated phase

difference occurs for p ' 20. The magnitude of the de-
phasing due to the spin-curvature force is similar in mag-
nitude to the conservative self-force corrections to the
inspiral phase [58]. We leave it to future work to exam-
ine whether inspirals computed using, e.g., a radiative
approximation with a spinning secondary can mimic in-
spirals computed using the full dissipative and conserva-
tive self-force for a non-spinning binary. It would also
be interesting to consider the dephasing of two particles
that are initially more widely separated than those con-
sidered in this work. Such a study would likely require
input from post-Newtonian calculations [121]. For orbits
where the spin and orbital angular-momentum are not
aligned the secondary will precess out of the equatorial
plane. We extend the osculating element prescription of
motion to accommodate this precession and present an
example inspiral in Fig. 6.

This work is naturally extended in a number of ways.
First, our primary is not rotating. For a rotating pri-
mary there are self-force calculations (in the radiation
gauge) [122], efficient calculations of the spin-curvature
force [111], and osculating element schemes [77]. These
three pieces could be combined to extend the results in
this work. Second, we do not include second-order in the
mass-ratio fluxes or fluxes related the spinning secondary
in this work. Work progresses calculating the former [47–
56]. The latter has been calculated for circular orbits [78–
80] but has not, to the best of our knowledge, been calcu-
lated for generic orbits. As per the discussion in Sec. II,
inclusion of these pieces is necessary to get a waveform
accurate to post-1-adiabatic order. Third, because of the
geodesic self-force approximation we use in this work, it
is important to compare our inspirals against those from
computed using self-consistent evolutions [59, 73–75].

Finally we note that, although our evolution scheme is
primarily based upon numerical self-force results, there is
much scope for synergy with analytic results. Recently,
combining black hole perturbation and post-Newtonian
theory has allowed for the calculation of gauge invariant
results to very high post-Newtonian order (at first-order
in the mass-ratio) [28, 30, 35, 39–41, 123–125]. These
results are often to such high order that they reproduce
strong-field results to better than a fraction of a percent.
As we argued in our previous paper [58] (and is also noted
in [60]), whilst the leading-order flux needs to be calcu-
lated to better than one part in the inverse mass-ratio,
the terms that contribute to the post-1-adiabatic evolu-
tion need only be calculated to one part in a thousand.
Even in the strong-field, the accuracy requirement for the
latter is within the reach of high-order post-Newtonian
black hole perturbation theory results. We thus envisage
these high-order post-Newtonian results complementing
high accuracy numerical calculations like those presented
in this work.



13

 

FIG. 6. Sample inspiral with mass ratio ε = 0.08 and |s| = 1 and initial parameters p0 = 12, e0 = 0.4, ι0 = π/4, Sr0 =
0.7955930287154575µ2, Sθ0M = Sϕ0M = 0.03977965143577288µ2. Changes in color represent the passage of time (blue is t = 0
and red is immediately before plunge). Top: z′′p /rp is plotted vs. rp to demonstrate precession of the orbital plane. With this
large mass-ratio the z-coordinate of the position vector reaches 4% of rp at its maximum. Middle-left: Evolution of the binary
through (p, e) space. The large oscillations in the best-fit (osculating) geodesics are a result of the high mass ratio. The black
line is the separatrix. Middle-right: A top-down view of the trajectory in Schwarzschild coordinates. From this viewpoint
the trajectory resembles that of an equatorial inspiral because the precession is modest. Bottom: The r-component of the
spin-vector is plotted vs. t. On short timescales Sr exhibits bi-periodicity where the fundamental frequencies are the radial
frequency and the frequency of spin precession.
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Appendix A: Osculating element equations

The coefficients that appear in Eq. (4.33) are given by

c(t)e =

(
2e2 − p+ 6

) [(
3e2 − 4p+ 12

)
cos v + e

(
e cos (3v) + (6− p) cos (2v)

)]
+ e

(
p(3p− 32) + 60− 2e2(p− 10)

)
2µM−1p−1(p− 3− e2)−1[(p− 2)2 − 4e2]−1/2[(p− 6)2 − 4e2](1 + e cos v)4

√
p− 6− 2e cos v

,

(A1)

c(r)e =
Mp2(1− e2)(p− 3− e2)

(
(p− 6)(p− 2) + 4e2

)
sin v

µ ((p− 6)2 − 4e2) (p− 2− 2e cos v)(1 + e cos v)4
, (A2)

c(t)p =
Mp2

(
p− 3− e2

)
[e2 cos (2v) + e2 − 2p+ 6]

√
(p− 6− 2e cos v)[(p− 2)2 − 4e2]

µ[(p− 6)2 − 4e2](1 + e cos v)4
, (A3)

c(r)p =
2eM(p− 4)2p3

(
e2 − p+ 3

)
sin v

µ(2e cos v − p+ 2)(1 + e cos v)4[4e2 − (p− 6)2]
, (A4)

c(t)χ0
=
Mp sin v

(
e2 − p+ 3

) [
e
(
4e2 − (p− 6)2

)
cos v + (p− 6)

(
e2 cos(2v) + e2 − 2p+ 6

)]√
(p− 2)2 − 4e2

µ e ((p− 6)2 − 4e2) (1 + e cos v)4
√
p− 6− 2e cos v

, (A5)

c(r)χ0
=
Mp2

(
p− 3− e2

) [ (
4e4 − e2((p− 8)p+ 24)− (p− 6)(p− 2)

)
cos v − 2e(p− 4)2

]
µ e (4e2 − (p− 6)2) (1 + e cos v)4(2e cos v − p+ 2)

. (A6)

The coefficients that appear in Eq. (4.35) are given by

c(θ)ι =
M2p5/2 cosϕ′p

(
e2 − p+ 3

)
µ cos ι (1 + e cos v)4

√
1− sin2 ι sin2 ϕ′p
p− 6− 2e cos v

, (A7)

c(e)ι =
sin ι cos2 ϕ′p

(
e− (e2 − 2p+ 6) cos v

)
cos ι (e2 − p+ 3) (1 + e cos v)

, (A8)

c(p)ι =
(6 + 2e2 − 3p) cos2 ϕ′p sin ι

2p cos ι (3 + e2 − p)
, (A9)

c(χ0)
ι = −

2e sin ι sin v cos2 ϕ′p
cos ι (1 + e cos v)

, (A10)

c
(θ)
Φ =

M2p5/2 sinϕ′p
(
p− 3− e2

)
µ sin ι (1 + e cos v)4

√
1− sin2 ι sin2 ϕ′p
p− 6− 2e cos v

, (A11)

c
(e)
Φ =

sin (2ϕ′p)
(
(e2 − 2p+ 6) cos v − e

)
2 (e2 − p+ 3) (1 + e cos v)

+
(2e+ p− 6)F̄ − (p− 6)Ē

e(2e+ p− 6)

√
p

p− 6− 2e

− 2(p− 6) sin v

((p− 6)2 − 4e2)

√
p

(p− 6− 2e cos v)
, (A12)

c
(p)
Φ = −

4p1/2
(
p− 3− e2

)√
p− 6− 2e

(
(2e+ p− 6)F̄ − pĒ

)
+ (2e2 − 3p+ 6)(2e− p+ 6)(2e+ p− 6) sin (2ϕ′p)

4p(p− 6− 2e)(p− 6 + 2e)(p− 3− e2)

+
2e sin v

(p− 6)2 − 4e2

√
p

p− 6− 2e cos v
, (A13)

c
(χ0)
Φ =

e sin v sin (2ϕ′p)

1 + e cos v
−
√

p

p− 6− 2e cos v
, (A14)
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where F̄ and Ē are the incomplete elliptic integrals of the first and second kind, respectively, each with the same
arguments as the elliptic integral in Eq. (4.13). The coefficients that appear in Eq. (4.36) are given by

c
(e)
Ω =

4p1/2 cos ι
(√
p− 6− 2e((p− 6)Ē − (2e+ p− 6)F̄ )

√
p− 6− 2e cos v + 2e(p− 6) sin v

)
e(2e− p+ 6)(2e+ p− 6)

√
p− 6− 2e cos v

(
2 sin2 ι cos (2ϕ′) + cos (2ι) + 3

) , (A15)

c
(p)
Ω =

4 cos ι
(
(2e− p+ 6)((2e+ p− 6)F̄ − pĒ)

√
p− 6− 2e cos v + 2ep

√
p− 6− 2e sin v

)
(p− 6− 2e)3/2(2e+ p− 6)

√
p(p− 6− 2e cos v)

(
2 sin2 ι cos (2ϕ) + cos (2ι) + 3

) , (A16)

c
(χ0)
Ω =

4 cos ι

2 sin2 ι cos(2ϕ′p) + cos(2ι) + 3

√
p

p− 6− 2e cos v
, (A17)

c
(ι)
Ω =

2 sin ι sin(2ϕ′p)

2 sin2 ι cos(2ϕ′p) + cos(2ι) + 3
, (A18)

c
(Φ)
Ω = − 4 cos ι

2 sin2 ι cos(2ϕ′p) + cos(2ι) + 3
. (A19)
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[77] J. R. Gair, É. É. Flanagan, S. Drasco, T. Hin-
derer, and S. Babak, Phys. Rev. D 83, 044037 (2011),
arXiv:1012.5111.

[78] E. Harms, G. Lukes-Gerakopoulos, S. Bernuzzi,
and A. Nagar, Phys. Rev. D94, 104010 (2016),
arXiv:1609.00356.

[79] E. Harms, G. Lukes-Gerakopoulos, S. Bernuzzi,
and A. Nagar, Phys. Rev. D93, 044015 (2016),
arXiv:1510.05548.

[80] W.-B. Han, Phys. Rev. D82, 084013 (2010),
arXiv:1008.3324 [gr-qc].

[81] C. Cutler, D. Kennefick, and E. Poisson, Phys. Rev. D
50, 3816 (1994).

[82] C. Darwin, Proc. R. Soc. Lond. A 249, 180 (1959).
[83] R. Fujita and W. Hikida, Classical and Quantum Grav-

ity 26, 135002 (2009), arXiv:0906.1420.
[84] S. L. Detweiler and E. Poisson, Phys. Rev. D 69, 084019

(2004), arXiv:gr-qc/0312010.
[85] L. Barack and C. O. Lousto, Phys. Rev. D 72, 104026

(2005), arXiv:gr-qc/0510019.
[86] M. Berndston, Harmonic Gauge Perturbations of the

Schwarzschild Metric, Ph.D. thesis, University of Col-
orado (2007), arXiv:0904.0033v1.

[87] L. Barack and N. Sago, Phys. Rev. D 81, 084021 (2010),
arXiv:1002.2386.

[88] S. Hopper and C. R. Evans, Phys. Rev. D 82, 084010
(2010), arXiv:1006.4907.

[89] S. Akcay, Phys. Rev. D 83, 124026 (2011).
[90] S. Hopper and C. R. Evans, Phys. Rev. D 87, 064008

(2013), arXiv:1210.7969.
[91] S. Hopper, E. Forseth, T. Osburn, and C. R. Evans,

Phys. Rev. D 92, 044048 (2015), arXiv:1506.04742.
[92] Y. Mino, M. Sasaki, and T. Tanaka, Phys. Rev. D 55,

3457 (1997).

http://arxiv.org/abs/1610.03497
http://dx.doi.org/10.1103/PhysRevD.92.084025
http://dx.doi.org/10.1103/PhysRevD.92.084025
http://arxiv.org/abs/1503.02334
http://dx.doi.org/10.1103/PhysRevD.81.064004
http://arxiv.org/abs/0910.0207
http://dx.doi.org/10.1103/PhysRevLett.107.141101
http://dx.doi.org/10.1103/PhysRevLett.107.141101
http://arxiv.org/abs/1106.3278
http://dx.doi.org/ 10.1103/PhysRevD.86.104041
http://dx.doi.org/ 10.1103/PhysRevD.86.104041
http://arxiv.org/abs/1209.0964
http://dx.doi.org/10.1103/PhysRevD.89.064063
http://dx.doi.org/10.1103/PhysRevD.89.064063
http://arxiv.org/abs/1312.2503
http://dx.doi.org/10.1103/PhysRevD.90.024039
http://dx.doi.org/10.1103/PhysRevD.90.024039
http://arxiv.org/abs/1404.2747
http://dx.doi.org/10.1103/PhysRevD.90.124037
http://dx.doi.org/10.1103/PhysRevD.90.124037
http://arxiv.org/abs/1409.6933
http://dx.doi.org/10.1103/PhysRevLett.117.191101
http://arxiv.org/abs/1606.08056
http://dx.doi.org/10.1088/1361-6382/aa61d6
http://dx.doi.org/10.1088/1361-6382/aa61d6
http://arxiv.org/abs/1608.04811
http://dx.doi.org/10.1103/PhysRevLett.109.071102
http://dx.doi.org/10.1103/PhysRevLett.109.071102
http://arxiv.org/abs/1009.4923
http://dx.doi.org/10.1103/PhysRevLett.114.081102
http://dx.doi.org/10.1103/PhysRevLett.114.081102
http://arxiv.org/abs/1304.0330
http://dx.doi.org/10.1103/PhysRevD.89.084036
http://dx.doi.org/10.1103/PhysRevD.89.084036
http://arxiv.org/abs/1307.6483
http://dx.doi.org/10.1103/PhysRevLett.109.051101
http://arxiv.org/abs/1201.5089
http://dx.doi.org/10.1103/PhysRevD.85.124011
http://arxiv.org/abs/1203.3189
http://dx.doi.org/10.1103/PhysRevD.85.044048
http://arxiv.org/abs/1107.2098
http://dx.doi.org/10.1103/PhysRevD.90.084039
http://arxiv.org/abs/1404.1543
http://dx.doi.org/10.1103/PhysRevD.89.044046
http://dx.doi.org/10.1103/PhysRevD.89.044046
http://arxiv.org/abs/1311.3104
http://dx.doi.org/10.1103/PhysRevD.89.104020
http://arxiv.org/abs/1403.1843
http://dx.doi.org/10.1103/PhysRevD.92.084019
http://dx.doi.org/10.1103/PhysRevD.92.084019
http://arxiv.org/abs/1505.07841
http://dx.doi.org/10.1103/PhysRevD.92.104047
http://arxiv.org/abs/1510.05172
http://dx.doi.org/10.1103/PhysRevD.94.104018
http://dx.doi.org/10.1103/PhysRevD.94.104018
http://arxiv.org/abs/1608.06783
http://dx.doi.org/10.1103/PhysRevD.95.104056
http://arxiv.org/abs/1703.02836
http://dx.doi.org/ 10.1103/PhysRevD.85.061501
http://arxiv.org/abs/1111.6908
http://dx.doi.org/10.1103/PhysRevD.93.064024
http://dx.doi.org/10.1103/PhysRevD.93.064024
http://arxiv.org/abs/1511.01498
http://dx.doi.org/10.1103/PhysRevLett.108.191102
http://arxiv.org/abs/1112.4821
http://dx.doi.org/10.1103/PhysRevD.84.064023
http://dx.doi.org/10.1103/PhysRevD.84.064023
http://arxiv.org/abs/1105.3567
http://dx.doi.org/10.1103/PhysRevD.85.064023
http://dx.doi.org/10.1103/PhysRevD.85.064023
http://arxiv.org/abs/1111.3243
http://dx.doi.org/10.1103/PhysRevD.91.104017
http://dx.doi.org/10.1103/PhysRevD.91.104017
http://arxiv.org/abs/1503.05097
http://dx.doi.org/10.1098/rspa.1970.0020
http://dx.doi.org/10.1098/rspa.1970.0020
http://dx.doi.org/10.1103/PhysRevLett.94.221101
http://arxiv.org/abs/gr-qc/0504015
http://dx.doi.org/10.1143/PTPS.163.120
http://dx.doi.org/10.1143/PTPS.163.120
http://arxiv.org/abs/gr-qc/0508114
http://dx.doi.org/10.1103/PhysRevD.73.024027
http://dx.doi.org/10.1103/PhysRevD.73.024027
http://arxiv.org/abs/gr-qc/0509101
http://dx.doi.org/10.1103/PhysRevD.67.024005
http://arxiv.org/abs/gr-qc/0210042
http://arxiv.org/abs/gr-qc/0210042
http://dx.doi.org/10.1103/PhysRevD.88.104009
http://dx.doi.org/10.1103/PhysRevD.88.104009
http://arxiv.org/abs/1308.5223
http://dx.doi.org/10.1103/PhysRevD.90.104031
http://arxiv.org/abs/1409.4419
http://dx.doi.org/10.1007/978-3-319-18335-0_13
http://arxiv.org/abs/1506.06245
http://maths.ucd.ie/capra16/schedule/
http://maths.ucd.ie/capra16/schedule/
http://www.tapir.caltech.edu/~capra17/Schedule.shtml
http://www.tapir.caltech.edu/~capra17/Schedule.shtml
http://www2.yukawa.kyoto-u.ac.jp/~capra18/
http://www2.yukawa.kyoto-u.ac.jp/~capra18/
http://dx.doi.org/10.1103/PhysRevD.77.044013
http://dx.doi.org/10.1103/PhysRevD.77.044013
http://arxiv.org/abs/0708.3033
http://dx.doi.org/10.1103/PhysRevD.83.044037
http://arxiv.org/abs/1012.5111
http://dx.doi.org/10.1103/PhysRevD.94.104010
http://arxiv.org/abs/1609.00356
http://dx.doi.org/10.1103/PhysRevD.93.044015
http://arxiv.org/abs/1510.05548
http://dx.doi.org/10.1103/PhysRevD.82.084013
http://arxiv.org/abs/1008.3324
http://dx.doi.org/10.1103/PhysRevD.50.3816
http://dx.doi.org/10.1103/PhysRevD.50.3816
http://dx.doi.org/10.1098/rspa.1959.0015
http://dx.doi.org/10.1088/0264-9381/26/13/135002
http://dx.doi.org/10.1088/0264-9381/26/13/135002
http://arxiv.org/abs/0906.1420
http://dx.doi.org/10.1103/PhysRevD.69.084019
http://dx.doi.org/10.1103/PhysRevD.69.084019
http://arxiv.org/abs/gr-qc/0312010
http://dx.doi.org/10.1103/PhysRevD.72.104026
http://dx.doi.org/10.1103/PhysRevD.72.104026
http://arxiv.org/abs/gr-qc/0510019
http://arxiv.org/abs/0904.0033v1
http://arxiv.org/abs/1002.2386
http://dx.doi.org/10.1103/PhysRevD.82.084010
http://dx.doi.org/10.1103/PhysRevD.82.084010
http://arxiv.org/abs/1006.4907
http://dx.doi.org/10.1103/PhysRevD.83.124026
http://dx.doi.org/10.1103/PhysRevD.87.064008
http://dx.doi.org/10.1103/PhysRevD.87.064008
http://arxiv.org/abs/1210.7969
http://dx.doi.org/10.1103/PhysRevD.92.044048
http://arxiv.org/abs/1506.04742


17

[93] T. C. Quinn and R. M. Wald, Phys. Rev. D 56, 3381
(1997).

[94] L. Barack and A. Ori, Phys. Rev. D 61, 061502 (2000),
arXiv:gr-qc/9912010.

[95] L. Barack, Phys. Rev. D64, 084021 (2001), arXiv:gr-
qc/0105040.

[96] L. Barack, Y. Mino, H. Nakano, A. Ori, and
M. Sasaki, Physical Review Letters 88, 091101 (2002),
gr-qc/0111001.

[97] L. Barack and A. Ori, Phys. Rev. D67, 024029 (2003),
arXiv:gr-qc/0209072.

[98] S. Detweiler, E. Messaritaki, and B. F. Whiting, Phys.
Rev. D 67, 104016 (2003), arXiv:gr-qc/0205079.

[99] A. Heffernan, A. Ottewill, and B. Wardell, Phys. Rev.
D 86, 104023 (2012), arXiv:1204.0794.

[100] A. Heffernan, A. Ottewill, and B. Wardell, Phys. Rev.
D 89, 024030 (2014), arXiv:1211.6446.

[101] A. Pound, C. Merlin, and L. Barack, Phys. Rev. D 89,
024009 (2014), arXiv:1310.1513.

[102] L. Barack and N. Sago, Phys. Rev. D 75, 064021 (2007),
arXiv:gr-qc/0701069.

[103] S. R. Dolan and L. Barack, Phys. Rev. D 87, 084066
(2013), arXiv:1211.4586.

[104] T. Regge and J. Wheeler, Phys. Rev. 108, 1063 (1957).
[105] F. Zerilli, Phys. Rev. D 2, 2141 (1970).
[106] M. Mathisson, General Relativity and Gravitation 42,

1011 (2010).
[107] L. F. O. Costa and J. Natrio, Proceedings, 524th WE-

Heraeus-Seminar: Equations of Motion in Relativistic
Gravity (EOM 2013): Bad Honnef, Germany, Febru-
ary 17-23, 2013, Fund. Theor. Phys. 179, 215 (2015),
arXiv:1410.6443.

[108] K. Kyrian and O. Semerák, Mon. Not. R. Astron. Soc

382, 1922 (2007).
[109] G. Lukes-Gerakopoulos, J. Seyrich, and D. Kunst,

Phys. Rev. D90, 104019 (2014).
[110] F. A. E. Pirani, Acta Physica Polonica 15, 389 (1956).
[111] U. Ruangsri, S. J. Vigeland, and S. A. Hughes, Phys.

Rev. D94, 044008 (2016), arXiv:1512.00376.
[112] A. Zenginoglu and G. Khanna, Phys. Rev. X1, 021017

(2011), arXiv:1108.1816.
[113] P. A. Sundararajan, G. Khanna, S. A. Hughes,

and S. Drasco, Phys. Rev. D78, 024022 (2008),
arXiv:0803.0317.

[114] L. Barack and C. Cutler, Phys. Rev. D69, 082005
(2004), arXiv:gr-qc/0310125.

[115] A. J. K. Chua and J. R. Gair, Class. Quant. Grav. 32,
232002 (2015), arXiv:1510.06245.

[116] S. Teukolsky, Astrophys. J. 185, 635 (1973).
[117] V. Moncrief, Ann. Phys. 88, 323 (1974).
[118] C. Cunningham, R. Price, and V. Moncrief, Astrophys.

J. 224, 643 (1978).
[119] C. Cunningham, R. Price, and V. Moncrief, Astrophys.

J. 230, 870 (1979).
[120] M. Campanelli, C. O. Lousto, and Y. Zlochower, Phys.

Rev. D74, 041501 (2006), arXiv:gr-qc/0604012.
[121] X. Zhao, M. Kesden, and D. Gerosa, Phys. Rev. D96,

024007 (2017), arXiv:1705.02369.
[122] M. van de Meent, Phys. Rev. D94, 044034 (2016),

arXiv:1606.06297.
[123] C. Kavanagh, A. C. Ottewill, and B. Wardell, Phys.

Rev. D93, 124038 (2016), arXiv:1601.03394.
[124] E. Forseth, C. R. Evans, and S. Hopper, Phys. Rev.

D93, 064058 (2016), arXiv:1512.03051.
[125] S. Hopper, C. Kavanagh, and A. C. Ottewill, Phys.

Rev. D93, 044010 (2016), arXiv:1512.01556.

http://dx.doi.org/10.1103/PhysRevD.56.3381
http://dx.doi.org/10.1103/PhysRevD.56.3381
http://dx.doi.org/10.1103/PhysRevD.61.061502
http://arxiv.org/abs/gr-qc/9912010
http://dx.doi.org/10.1103/PhysRevD.64.084021
http://arxiv.org/abs/gr-qc/0105040
http://arxiv.org/abs/gr-qc/0105040
http://dx.doi.org/ 10.1103/PhysRevLett.88.091101
http://arxiv.org/abs/gr-qc/0111001
http://dx.doi.org/10.1103/PhysRevD.67.024029
http://arxiv.org/abs/gr-qc/0209072
http://dx.doi.org/10.1103/PhysRevD.67.104016
http://dx.doi.org/10.1103/PhysRevD.67.104016
http://arxiv.org/abs/gr-qc/0205079
http://dx.doi.org/10.1103/PhysRevD.86.104023
http://dx.doi.org/10.1103/PhysRevD.86.104023
http://arxiv.org/abs/1204.0794
http://dx.doi.org/10.1103/PhysRevD.89.024030
http://dx.doi.org/10.1103/PhysRevD.89.024030
http://arxiv.org/abs/1211.6446
http://dx.doi.org/10.1103/PhysRevD.89.024009
http://dx.doi.org/10.1103/PhysRevD.89.024009
http://arxiv.org/abs/1310.1513
http://dx.doi.org/10.1103/PhysRevD.75.064021
http://arxiv.org/abs/gr-qc/0701069
http://dx.doi.org/10.1103/PhysRevD.87.084066
http://dx.doi.org/10.1103/PhysRevD.87.084066
http://arxiv.org/abs/1211.4586
http://dx.doi.org/10.1007/s10714-010-0939-y
http://dx.doi.org/10.1007/s10714-010-0939-y
http://dx.doi.org/10.1007/978-3-319-18335-0_6
http://arxiv.org/abs/1410.6443
http://dx.doi.org/10.1111/j.1365-2966.2007.12502.x
http://dx.doi.org/10.1111/j.1365-2966.2007.12502.x
http://dx.doi.org/10.1103/PhysRevD.90.104019
http://dx.doi.org/10.1103/PhysRevD.94.044008
http://dx.doi.org/10.1103/PhysRevD.94.044008
http://arxiv.org/abs/1512.00376
http://dx.doi.org/10.1103/PhysRevX.1.021017
http://dx.doi.org/10.1103/PhysRevX.1.021017
http://arxiv.org/abs/1108.1816
http://dx.doi.org/10.1103/PhysRevD.78.024022
http://arxiv.org/abs/0803.0317
http://dx.doi.org/10.1103/PhysRevD.69.082005
http://dx.doi.org/10.1103/PhysRevD.69.082005
http://arxiv.org/abs/gr-qc/0310125
http://dx.doi.org/10.1088/0264-9381/32/23/232002
http://dx.doi.org/10.1088/0264-9381/32/23/232002
http://arxiv.org/abs/1510.06245
http://dx.doi.org/10.1016/0003-4916(74)90173-0
http://dx.doi.org/10.1086/156413
http://dx.doi.org/10.1086/156413
http://dx.doi.org/10.1086/157147
http://dx.doi.org/10.1086/157147
http://dx.doi.org/10.1103/PhysRevD.74.041501
http://dx.doi.org/10.1103/PhysRevD.74.041501
http://arxiv.org/abs/gr-qc/0604012
http://dx.doi.org/10.1103/PhysRevD.96.024007
http://dx.doi.org/10.1103/PhysRevD.96.024007
http://arxiv.org/abs/1705.02369
http://dx.doi.org/10.1103/PhysRevD.94.044034
http://arxiv.org/abs/1606.06297
http://dx.doi.org/10.1103/PhysRevD.93.124038
http://dx.doi.org/10.1103/PhysRevD.93.124038
http://arxiv.org/abs/1601.03394
http://dx.doi.org/10.1103/PhysRevD.93.064058
http://dx.doi.org/10.1103/PhysRevD.93.064058
http://arxiv.org/abs/1512.03051
http://dx.doi.org/10.1103/PhysRevD.93.044010
http://dx.doi.org/10.1103/PhysRevD.93.044010
http://arxiv.org/abs/1512.01556

	Evolution of small-mass-ratio binaries with a spinning secondary
	Abstract
	Introduction
	Physical drivers of an inspiral
	Overview of our approach
	Osculating element description of motion
	Bound geodesics in Schwarzschild spacetime
	Evolution of the orbital elements

	Forcing terms
	Self-force
	Spin-curvature force

	Waveforms
	Frequency-domain waveforms

	Spin-aligned inspirals (planar motion)
	Sample results

	Arbitrary spin inspirals with orbital plane precession
	Consistency checks
	Sample results

	Conclusions
	Acknowledgments
	Osculating element equations
	References


