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Gravitational waves encode invaluable information about the nature of the relatively unexplored
extreme gravity regime, where the gravitational interaction is strong, non-linear and highly dynami-
cal. Recent gravitational wave observations by advanced LIGO have provided the first glimpses into
this regime, allowing for the extraction of new inferences on different aspects of theoretical physics.
For example, these detections provide constraints on the mass of the graviton, Lorentz violation in
the gravitational sector, the existence of large extra dimensions, the temporal variability of New-
ton’s gravitational constant, and modified dispersion relations of gravitational waves. Many of these
constraints, however, are not yet competitive with constraints obtained, for example, through Solar
System observations or binary pulsar observations. In this paper, we study the degree to which
theoretical physics inferences drawn from gravitational wave observations will strengthen with de-
tections from future detectors. We consider future ground-based detectors, such as the LIGO-class
expansions A+, Voyager, Cosmic Explorer and the Einstein Telescope, as well as space-based de-
tectors, such as various configurations of eLISA and the recently proposed LISA mission. We find
that space-based detectors will place constraints on General Relativity up to 12 orders of magnitude
more stringently than current aLIGO bounds, but these space-based constraints are comparable to
those obtained with the ground-based Cosmic Explorer or the Einstein Telescope (A+ and Voyager
only lead to modest improvements in constraints). We also generically find that improvements in the
instrument sensitivity band at low frequencies lead to large improvements in certain classes of con-
straints, while sensitivity improvements at high frequencies lead to more modest gains. These results
strengthen the case for the development of future detectors, while providing additional information
that could be useful in future design decisions.

I. INTRODUCTION

The recent detection of gravitational waves by the ad-
vanced LIGO (aLIGO) detectors [1, 2] has revealed that
the gravitational interaction seems to behave as predicted
by Einstein’s theory of General Relativity (GR), even in
the extreme gravity regime [3] where the gravitational in-
teraction is strong, non-linear and highly dynamical [4].
This confirmation of GR in extreme gravity can then
be used to extract inferences on fundamental theoreti-
cal physics by imposing generic constraints on deviations
from the pillars of Einstein’s theory, i.e. constraints on
physical mechanisms that may or may not activate in the
extreme gravity regime [5]. Examples of these inferences
include statements about the mass of the graviton and
thus about its propagation speed (as predicted e.g. in new
massive gravity [6–8] and bigravity [9]), whether Lorentz
invariance is violated in the gravitational sector (as pre-
dicted e.g. in Einstein-Æther theory [10, 11] and khrono-
metric gravity [12, 13]), the existence of a large extra
dimension (as predicted e.g. in certain Randall-Sundrum
scenarios [14, 15]), the temporal variability of fundamen-
tal physical constants [16], and the dispersion relation of
gravitational waves (modifications of which are predicted
in a plethora of quantum gravitational models [17–22]).

Most of the constraints one can place on GR deviations
with gravitational waves, however, are not yet competi-
tive with constraints derived with Solar System or binary
pulsar observations [23]. This is in part because of the
much higher signal-to-noise ratio of Solar System and bi-

nary pulsar observations relative to current gravitational
wave observations. But this will undoubtably change
as next-generation gravitational wave observatories be-
gin operation in the coming decades with much higher
signal-to-noise ratio observations. Although the future
is uncertain, there are proposals to upgrade the aLIGO
instrument into an A+ and a Voyager configuration that
would become operational by ∼ 2020 and ∼ 2027 respec-
tively [24]. There are also plans to construct an entirely
new next-generation observatory, either Cosmic Explorer
or Einstein Telescope, by the middle of the following
decade [24]. We will describe some of the details of these
upgrades later, but suffice it to say that they will allow for
observations with signal-to-noise ratios that are 6 times,
12 times, and 60 times larger than current aLIGO. By
the mid 2030s, space-based gravitational wave observa-
tories, such as the proposed LISA [25], should also be-
gin operation, allowing us to observe gravitational waves
emitted by much more massive compact objects at very
high signal-to-noise ratios.

This paper addresses the degree to which inferences
on theoretical physics will become stronger given grav-
itational wave observations with future detectors. We
have already shown that inferences on the existence of
dipole radiation in the merger of compact binaries can
be strengthened by 5–6 orders of magnitude with joint
aLIGO-evolved LISA observations [26]. We now ex-
tend this analysis to consider (i) several other theoreti-
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cal physics mechanisms that can be constrained1 and (ii)
several other future detectors (in particular, upgrades to
ground-based detectors) that will allow for much louder
future observations. We carry out a large number of
Fisher analysis calculations assuming single events, sky
averaging, and use both realistic and phenomenological
sensitivity curves. The latter are included when devel-
oping a physical and mathematical understanding of the
results obtained using realistic sensitivity curves. These
Fisher calculations allow us to estimate projected con-
straints on a variety of physical mechanisms, and also on
particular modified theories of gravity, as a function of
the post-Newtonian (PN)2 order at which the modifica-
tions first enter the gravitational wave observable.

The results obtained in this paper strengthen the fun-
damental science case for future gravitational wave detec-
tors, both ground and space-based, and they provide in-
formation that could be used in design decisions as these
new detectors are developed. For this reason, given the
length of the paper and the fact that the results obtained
may be interesting to different communities, we provide
a short summary of our main findings below.

1. Generic constraints with space-based detec-
tors for deviations that enter first at negative
(positive) PN order are constrained 12 (3) or-
ders of magnitude better than current LIGO
constraints, but comparable and at most 3 or-
ders of magnitude better than constraints with
third-generation ground detectors.

Constraints on GR deviations with space-based detec-
tors are certainly much more stringent than those that
can be placed with current ground-based detectors, if
for no other reason than because the former will detect
gravitational waves with a signal-to-noise ratio in the
thousands. The constraints become comparable, how-
ever, when one considers what is achievable with third-
generation detectors, since these will also observe in the
very high signal-to-noise ratio regime. The improvement
of space-over-ground constraints is significantly larger
when considering deviations that enter at negative PN
order; this is simply because the former have access to a
much lower frequency band, allowing for the detection of
low-mass binaries in the very early stages of inspiral.

1 Indeed, generic theoretical physics mechanisms can be con-
strained with gravitational waves in a model-independent way,
such as Lorentz invariance or parity violation, as explained in
detail in [5].

2 In the PN approximation, one solves the field equations as an
expansion in low velocities (relative to the speed of light) and
weak gravitational fields. For details/discussion, see [27].

2. Improvements of ground-based detectors
within the current LIGO facilities will lead to
only modest improvements of constraints on GR
deviations.

A+ and Voyager type improvements of the current
LIGO facilities will lead to improved constraints on GR
deviations that will not exceed an order of magnitude.
This is because such projected modifications will not
greatly improve the low-frequency band of the detector
noise (see Fig. 1). Cosmic Explorer and Einstein Tele-
scope type improvements, which typically require entirely
new facilities, will greatly improve the low-frequency
band of the detector noise leading to impressive improve-
ments in our ability to test negative PN order GR devi-
ations.

3. Negative PN GR deviations are best con-
strained by gravitational waves produced by
widely separated binaries, while positive PN de-
viations are roughly independent of the system
considered.

GR deviations that enter first at negative PN order
terms (relative to the leading GR term) scale with in-
verse powers of the gravitational wave frequency (and
thus the orbital frequency). Since inspiral signals have a
chirping nature, the low frequency part of a gravitational
wave signal corresponds to a large separation of the bi-
nary. An example of this is the GW150914 event which,
although observed with aLIGO during the very late inspi-
ral and merger phase, would have been observed with a
space-based detector when it was very widely separated.
Therefore, GR deviations that enter first at negative PN
order are best constrained by widely separated binaries.
On the other hand, GR deviations that enter first at posi-
tive PN order are constrained equally well by all compact
binary systems, provided the late inspiral and merger is
in band.

4. Sensitivity modifications at low frequencies
greatly improve our ability to constrain GR de-
viations that first enter at negative PN order,
but modifications at high frequency do not im-
prove positive PN constraints as much as sensi-
tivity modifications in the bucket of the band.

This is because negative PN order modifications are
very large at low frequencies. Improving the noise sensi-
tivity in this regime leads to the accumulation of many
more cycles at low-frequencies, and thus, to the build up
of more signal-to-noise ratio precisely in the regime of
the band where the modifications are largest. This can
be quantified in terms of the effective cycles accumulated
at low-frequencies [45].
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GR Deviation PN Parameter Best Space Const. Best Ground Const. Current Const. Best Space Sys. Best Ground Sys.

Dipole Radiation -1
β 4.9 × 10−12 1.9 × 10−10 4.4 × 10−5 EMRI NSNS

δĖDip 7.8 × 10−8 3.2 × 10−8 1.8 × 10−3 EMRI/GW150914 NSNS

Large Extra-Dimension -4
β 2.2 × 10−22 6.4 × 10−20 9.1 × 10−11 EMRI NSNS

` [µm] 3.0 × 102 7.5 × 104 10 − 103 [28–32] EMRI/GW150914 BHBH

Time-Varying G -4
β 2.2 × 10−22 6.4 × 10−20 9.1 × 10−11 EMRI NSNS

Ġ [1/yr] 6.8 × 10−8 1.1 × 10−3 10−12 − 10−13 [33–37] EMRI NSNS

Einstein-Æther Theory 0
β 4.0 × 10−8 6.7 × 10−5 3.4 × 10−3 EMRI `BHNS

(c+, c−) (10−3, 3 × 10−4) (10−2, 4 × 10−3) (0.03, 0.003) [38, 39] EMRI NSNS

Khronometric Gravity 0
β 4.0 × 10−8 6.7 × 10−5 3.4 × 10−3 EMRI `BHNS

(βKG, λKG) (10−4, 10−2)/2 (10−2, 10−1)/5 (10−2, 10−1)/2 [38, 39] EMRI GW150914

Graviton Mass +1
β 4.3 × 10−5 1.0 × 10−3 8.9 × 10−2 EMRI/IMBH `BHBH

mg [eV ] 9.0 × 10−28 9.9 × 10−25 10−29 − 10−18 [40–44] SMBH/IMRI GW150914

TABLE I. Table summary of the best constraints on a variety of modified gravity modifications, listed in the first column. The
second column indicates the PN order at which the modification first enters the gravitational wave phase. The third column
labels the parameters that can be constrained. The fourth (fifth) column shows the best projected constraint achievable with
a space-based (ground-based) detectors, which is to be compared with current constraints on β (listed as the best constraint
obtained with either of the GW150914 or GW151226 detections), and with current constraints on theory parameters as given
by the most stringent of either aLIGO or other observations. The last two columns show the class of the system that lead to the
best constraint. Constraints on Einstein-Æther/khronometric Gravity are given as rough constraints on (c+, c−)/(βKG, λKG)
(for the contours, see Figs. 9 and 8).

5. Both space- and ground-based detectors
can place constraints that are comparable to,
and sometimes better than, current constraints,
though the former can typically do somewhat
better than the latter.

Future gravitational wave observations will certainly
lead to constraints that are in many cases more stringent
than current constraints, as seen in Table I. Though the
results are theory-dependent, space-based instruments
can often offer more stringent constraints on the prop-
erties of nature in the extreme-gravity regime, such as
the mass of the graviton or the size of a large extra-
dimension. This is due in part to the high signal-to-noise
ratio nature of detections that are accessible to these
kinds of detectors, as well as the wide range of binary
masses, separation distances, and luminosity distances
that produce mHz frequency gravitational waves.

6. Future ground-based detectors are comple-
mentary to space-based detectors when placing
constraints on modified theories of gravity.

As shown in Table. I, the constraints one can place on
modified gravity with ground- and space-based detectors
are not significantly different. What is important is that
the constraints derived with either type of instrument
are, in many cases, orders of magnitude stronger than
current bounds obtained by other observations and ex-
periments. In this sense, the science case for the next gen-
eration of ground-based instruments and for space-based
instruments is strong with regards to the inferences one
can extract about theoretical physics from future gravi-
tational wave data.

The remainder of this paper describes in detail the
methodology used to reach the results summarized above
and is divided as follows. Section II explains how dif-
ferent modifications to the pillars of GR imprint onto
the gravitational wave observable. Section III presents
the data analysis tools and gravitational wave models
we employ in this paper. Section IV describes the pro-
jected constraints we will be able to place on deviations
from GR with future observations. Section V maps these
constraints to inferences we can extract on fundamen-
tal theoretical physics. Section VI concludes and points
to future research. Henceforth, we follow the conventions
of [46]. In particular, the metric signature is (−,+,+,+),
Latin and Greek letters in index lists stand for parameter
and spacetime indices respectively, and we use geometric
units in which G = 1 = c.

II. MODIFICATIONS TO THE PILLARS OF GR

Modified theories of gravity have pervaded the realm
of gravitational physics for ages. However, we are now
in a position to begin to test these competing hypothe-
ses against actual data in the extreme gravity regime.
Rather than focus our study on a particular theory of
gravity, we take the alternative viewpoint of attempt-
ing to learn about and constrain deviations in the pillars
upon which GR rests, agnostic to any particular theory.
In this section, we classify modified gravity effects by the
main (i.e. leading-order in the inspiral) deviations they
impose on the pillars of GR, separating them into two
groups of deviations: those that affect the generation of
gravitational waves and those that affect the propaga-
tion of gravitational waves. We then discuss how such



4

deviations imprint in the gravitational wave observable.
We do not present here all possible modifications to GR
pillars, and instead summarize a few important modifi-
cations following the more comprehensive analysis of [5].

A. Modifications in the Generation of
Gravitational Waves

Modifications in the generation of gravitational waves
are active only at times when the time derivatives of the
multipole moments of the spacetime that generates the
gravitational waves are non-zero. For a binary system,
this means that generation modifications are only active
during the coalescence event, whose duration depends on
the total mass of the system: at most ∼ 100 minutes
for stellar-mass binaries, but longer than the lifetime of
space-based instruments for extreme mass-ratio events.
Clearly then, generation modifications depend on the lo-
cal properties of the binary, and not on global quantities
like the distance of the source to Earth.

1. Presence of Dipole Radiation

Far from the source, gravitational waves can be de-
scribed through a multipolar decomposition, known as
a post-Minkowskian expansion, i.e. an expansion about
Minkowski spacetime in the strength of the gravitational
field [27]. In Einstein’s theory and to leading-order in this
expansion, gravitational waves are generated by the sec-
ond derivative of the quadrupole moment of the matter
source; the monopole and dipole terms do not generate
gravitational waves due to conservation of mass and lin-
ear momentum, which in turn arise due to the conserva-
tion of the stress-energy tensor. In GR, then, compact bi-
naries generate predominantly quadrupolar gravitational
waves, which then carry predominantly quadrupolar en-
ergy away from the source, forcing the binary to inspiral
at a given rate.

In several modified gravity theories, however, addi-
tional scalar and vector fields can activate in regimes of
extreme gravity, leading to additional sinks of energy that
force binaries to inspiral faster than in GR. This typically
comes about because these additional fields do not sat-
isfy a conservation law, i.e. their stress-energy does not
satisfy an equivalent version of matter stress-energy con-
servation and therefore can have a monopolar structure
far from the source which then forces them to carry dipo-
lar radiation as they propagate out to spatial infinity [47].
For example, in scalar-tensor theories [48–54], dipole ra-
diation is activated in the presence of neutron stars due
to the excitation of a scalar field, which causes binary
neutron stars to inspiral faster than predicted in GR.

Different modified theories predict that different types
of binaries activate a scalar field. In scalar-tensor the-
ories [48–54], no-hair theorems [55, 56] guarantee that
black holes will not activate a monopolar scalar field, as-

suming a constant background field3, therefore black hole
binaries will not lose energy to dipole emission and will
not inspiral at a dipolar rate. In quadratic gravity the-
ories [59–64], however, the scalar field is sourced by cur-
vature invariants, so black holes can activate a monopole
field. In such theories then, black hole binaries will lose
energy and inspiral faster than predicted in GR. Since we
wish to remain theory agnostic, in this paper we will con-
sider the activation of dipolar radiation for any compact
binary systems, regardless of whether it contains neutron
stars or black holes.

How does such dipole energy loss affect the gravita-
tional wave observable? The response function detected
by instruments on Earth is the projection of the gravita-
tional wave metric perturbation onto a response tensor.
The Fourier transform of the former can be computed in
the stationary-phase approximation (SPA) by integrating
a function that depends on the energy loss rate. Let us
then parameterize the latter for a quasi-circular compact
binary inspiral via

Ė = ĖGR + δĖDipv
−2 , (1)

where ĖGR is the energy loss rate predicted in GR, v is the
relative orbital velocity, and δĖDip is a dipole correction
to the GR prediction. The latter is in principle a dimen-
sionless combination of the parameters of the system (like
the masses and spins) and the coupling constants of the
theory. Notice that the dipole correction to the energy
loss rate is v−2 larger than the leading GR prediction, as
expected from a dipolar correction. Such a modification
in the energy flux leads to the following leading PN order
correction to the Fourier phase of the gravitational wave
metric perturbation [5]:

ΨGW,Dip = ΨGW,GR −
3

224
η2/5δĖDip (πMzf)

−7/3
, (2)

where ΨGW,GR is the Fourier phase of the gravitational
wave metric perturbation in GR (see e.g. [65, 66] and
references therein), Mz = (1 + z)M is the redshifted
chirp mass, M = η3/5m is the source chirp mass, η =
m1m2/m

2 is the symmetric mass ratio, m = m1 +m2 is
the total mass, and f is the observed gravitational wave
frequency.

2. Anomalous Accelerations, Large Extra Dimensions and
Time-Varying Fundamental Constants

Modified theories that attempt to reconcile quantum
mechanics with GR sometimes posit the existence of ex-
tra dimensions (in addition to the four spacetime dimen-
sions of GR). In string theory, these extra dimensions are

3 If the background scalar field is not constant, black holes can
grow hair as shown in [57, 58]
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typically compactified and small, but in the late 1990s
researchers began to consider the possibility of large ex-
tra dimensions [14–16, 67]. For example, in the Randall-
Sundrum braneworld scenario [14, 15] (which we will con-
sider in this paper), four-dimensional spacetime resides
on a (4-dimensional) brane, with a large extra dimension
orthogonal to it leading to the bulk.

Until recently, it was not clear whether stable black
hole solutions exist in such braneworld models. Initially,
it was believed that stable solutions do not exist, and
thus, that brane-localized black holes evaporate at a rate
dictated in part by the mass of the black hole and the size
of the large extra dimension [68, 69]. Recently, however,
brane-localized black hole solutions have been found [70–
72], therefore it is possible that classical black holes do
not need to evaporate in such models. Nonetheless, if
black holes were to evaporate, they would force a bi-
nary containing at least one black hole to acquire an
anomalous acceleration (since the mass would become
time-dependent), leading to a clear signature in the grav-
itational wave observable [73].

An anomalous acceleration due to an evaporating mass
is equivalent to a time-varying gravitational constant
G [16]. This is because the binding energy of a binary,
which controls the acceleration, depends on the product
of the total mass of the binary and the gravitational con-
stant, where the latter acts as a conversion factor between
mass and energy [16]. Scalar tensor theories [48, 49]
can be thought of as promoting the gravitational con-
stant to a function of a spacetime-dependent scalar field
in the presence of matter, while F (R) theories [74] and
bimetric theories [75] can introduce a time-dependence
in G in pure vacuum spacetimes. One can then imag-
ine, for example, a situation in which the mass is con-
stant but G is a slowly-varying function of time so that
it can be Taylor expanded about the time of coalesce as
G = G0 + Ġ0(t− tc) plus higher-order terms. This would
lead to an anomalous acceleration and modification to
the gravitational wave observable that is similar to that
induced by an evaporating braneworld black hole.

The promotion of G to a spacetime quantity violates
local position invariance, one of the key components of a
fundamental pillar of GR, the Strong Equivalence Prin-
ciple (SEP). The SEP states that the trajectory of any
body (weakly- or self-gravitating) is not only indepen-
dent of its internal structure and composition, but also
of the velocity of the (freely-falling) frame in which one
measures this trajectory and of when and where in the
Universe the object is located; this last component of
the SEP is called local position invariance. Therefore,
a constraint on the anomalous acceleration caused by a
time-variation of G or of M is a test of the SEP.

How does this anomalous acceleration affect the grav-
itational wave observable? In the case of an evaporating
black hole binary, the leading PN order correction to the
Fourier phase of the gravitational wave metric perturba-

tion is [5, 73]:

ΨGW,ED = ΨGW,GR +
25

851968
ṁ

× 3− 26η + 34η2

η2/5(1− 2η)
(πMzf)

−13/3
(3)

where, as before, ΨGW,GR is the Fourier phase of the
gravitational wave metric perturbation in GR, while
ṁ ≡ dm/dt is the source’s evaporation rate which de-
pends on the size of the extra dimension. Of course, this
is only valid for binaries that contain black holes, since
these contain singularities through which gravitons can,
in principle, leak into the bulk of a higher dimensional
model. In the case of a time-dependent gravitational con-
stant, the Fourier phase is [5, 16]:

Ψ
GW,Ġ = ΨGW,GR −

25

65526

ĠzMz

G
(πMzf)

−13/3
(4)

where Ġz = Ġ/(1 + z) is the observed rate of change
of Newton’s constant. In both cases, the correction to
GR depends on the same power of frequency, and one
can map ΨGW,ED to Ψ

GW,Ġ through a redefinition of Ġ in
terms of ṁ.

3. Local Lorentz Symmetry Violation

The SEP requires that local Lorentz symmetry be pre-
served by the gravitational interaction, i.e. that the out-
come of all gravitational experiments be independent of
the velocity of the (freely-falling) laboratory frame in
which the measurements are performed. Violations of
this symmetry are present when one introduces preferred
frames aligned with dynamical vector fields, as is the case
in Einstein-Æther theory [10, 11] or when one chooses
a preferred foliation of spacetime through a dynamical
scalar field, as in a (healthy) version of Hořava-Lifshitz
gravity [76–79] called khronometric gravity [13, 80].

The magnitude of the violation of Lorentz symmetry
is controlled by the magnitude of the coupling constants
of the theory [38, 39, 81]. In Einstein-Æther theory, the
degree of Lorentz violation depends on four coupling con-
stants (c1, c2, c3, c4), two of which are stringently con-
strained by Solar System experiments, leaving only two,
namely c± = c1 ± c3, that are weakly constrained. In
khronometric gravity, the degree of violation is controlled
by three coupling constants (αKG, βKG, λKG), the first of
which is stringently constrained by Solar System exper-
iments, leaving only the latter two weakly constrained.
The best constraints on these two degrees of freedom
in both Einstein-Æther theory and khronometric grav-
ity comes from binary pulsar observations [38, 39].

How do gravitational Lorentz-violations affect the
gravitational wave observable? In Einstein-Æther the-
ory, the leading PN order correction to the Fourier phase
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of the gravitational wave metric perturbation is [81]:

ΨGW,EA = ΨGW,GR +
3

128
(πMzf)

−5/3
[
1−

(
1− c14

2

)
×
(

1

w2
+

2c14c
2
+

(c+ + c− − c−c+)2w1
+

3c14

2w0(2− c14)

)
+ SA2 + S2A3

]
(5)

while in khronometric gravity one finds [81]:

ΨGW,KG = ΨGW,GR +
3

128
(πMzf)−5/3

[
1− (1− βKG)

×
(

1

wKG
2

+
3 βKG

2wKG
0 (1− βKG)

)
+ SA2 + S2A3

]
(6)

where wn is the propagation speed of the spin-n mode,
S = (s1m2 + s2m1)/m, with s1,2 the sensitivities of the
compact objects4, and A2,3 given in [38, 39]. Notice that
both corrections enter at Newtonian order, meaning they
are both proportional to (πMf)−5/3 which is the leading
PN order dependence on frequency of ΨGW,GR. In princi-
ple, there is also a correction that enters at −1PN order,
but this is proportional to the difference in the sensitivi-
ties of the compact object, which have not yet been calcu-
lated for black holes in either theory. In Sec. IV, we will
neglect this -1PN order correction, thus obtaining conser-
vative projected constraints, i.e. constraints that could in
principle become more stringent if the -1PN term were
included once the sensitivities are calculated.

B. Modifications in the Propagation of
Gravitational Waves

Modifications in the propagation of gravitational waves
are active only while the wave travels from the source to
Earth. Since all sources are at cosmological distances,
billions of light years away, there is ample time for these
modifications to compile during their travel to Earth.
This means, in particular, that propagation modifica-
tions are proportional to a positive power of the source’s
distance to Earth, a global quantity, and thus, they can
typically be many orders of magnitude larger than gen-
eration modifications (assuming both types are present).
Typically, propagation modifications are enhanced rela-
tive to generation modifications by a factor of the ratio
of the times during which each of these effects is active,
i.e. ∼ tprop/tgen ∼ DL/M, where DL is the luminosity
distance and M is the total mass [5].

In GR, the gauge boson that carries the gravitational
interaction, the graviton, is massless which need not be

4 The sensitivities of the compact objects are essentially a measure
of how the mass changes as the scalar field varies. See e.g. [82–
84].

the case in modified theories. In massive gravity theo-
ries [7, 8, 85, 86], the gravitational interaction is medi-
ated by a massive gauge boson that must travel slower
than the speed of light. Using insight from special rel-
ativity, one then expects that the (phase) velocity of a
massive graviton vg should satisfy

v2
g

c2
= 1−

m2
gc

4

E2
, (7)

where c is the speed of light, mg is the rest mass of the
graviton, and E is its rest energy [23]. If mg > 0, then
vg
c < 1 and the velocity of the gravitational wave will be

slower than the speed of light. In the limit mg → 0, one
of course recovers the predictions of Einstein’s theory.

Such a modification in the graviton’s dispersion rela-
tion will then propagate into a correction to the gravi-
tational wave observable. To all PN order, the modified
Fourier phase is [5, 7, 8, 85, 86]:

ΨGW,MG = ΨGW,GR + π2 D0

(1 + z)

Mz

λ2
MG

(πMzf)
−1

(8)

where D0 is a measure of the distance to the source,Mz

is the redshifted chirp mass, z is the cosmological red-
shift and λMG is the Compton wavelength of the massive
graviton [85]. Notice that, as expected, the massive grav-
ity modification is proportional to the distance traveled
by the wave.

In addition to a propagation modification, massive
gravity theories may also modify the generation of gravi-
tational waves, although this depends much more on the
particular massive gravity model considered. As demon-
strated in [5], however, when both a modification to the
generation and to the propagation of gravitational waves
are present, the latter will dominate the former, i.e. the
ratio of a propagation modification to a generation mod-
ification scales as DL/M.

III. DATA ANALYSIS, MODELS,
DETECTORS AND SOURCES

Gravitational waves interact very weakly with mat-
ter, which is why they are typically buried in detector
noise. If one knows the shape of the gravitational wave
one expects to detect, then the optimal search strategy is
matched filtering, when the noise is stationary and Gaus-
sian. In this strategy, one maximizes the cross-correlation
of the detector’s output and a waveform response model
or template (weighted by the detector’s spectral noise
density) with respect to the template’s parameters to
find the best fit. In this section, we will first describe
the gravitational wave models we employ, and then con-
tinue with a discussion of our data analysis strategy and
a description of future detectors through their spectral
noise density.
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A. Gravitational Wave Models to Test GR

A matched filtering strategy to test GR with gravi-
tational waves requires the use of waveform templates
that represent the gravitational wave response function
in modified gravity, the first step of which is the con-
struction of accurate templates within GR. In this pa-
per, we use the inspiral, merger, and ringdown (IMR)
templates of [65, 66, 87], sometimes referred to as the
(non-precessing) PhenomD model; we refer the reader to
those references for a detailed description of how such
waveform models are constructed. These waveforms are
appropriate to describe the gravitational waves emitted
in the inspiral, merger, and ringdown of binary black
holes. Indeed, PhenomD was constructed by fitting the
plunge and merger phase to numerical relativity simu-
lations of approximately equal-mass black hole coales-
cences. In spite of this, we will continue to use PhenomD
when modeling the inspiral of binaries with at least one
neutron star component, as well as when modeling ex-
treme mass-ratio inspirals. When considering the former,
we will be forced to stop all of calculations before the
merger occurs, i.e. at the gravitational wave frequency
corresponding to first contact since the merger is typi-
cally drastically different. When considering the latter,
one should in principle include higher PN order correc-
tions to the inspiral phase. In this paper, however, we will
use the PhenomD model as a kludge waveform when con-
sidering extreme- and intermediate-mass ratio systems,
as was done in the past e.g. in [88]. This kludge treat-
ment should be enough to obtain a correct qualitative
understanding of the constraints we can place with such
systems; when more accurate waveforms are computed
for these systems, the conclusions of this paper can be
refined.

For the waveform model in modified gravity, we use the
parameterized post-Einsteinian (ppE) framework [89], a
nested super-model built on top of a given GR model.
This framework modifies any given GR waveform model
through the introduction of two classes of theory param-
eters: exponent parameters (that specify the particular
type of GR deviation) and amplitude parameters (that
control the magnitude of the GR deformation). Gravi-
tational wave detectors are much more sensitive to the
gravitational wave phase than to their amplitude, and
thus, neglecting amplitude modifications for simplicity,
the simplest ppE model is of the form [89]

h̃ppE(f) = h̃GR(f)eiβu
b

(9)

where u = (πMf)1/3 is a reduced frequency, β is a ppE
amplitude parameter, and b is a ppE exponent parame-
ter.

Lacking numerical relativity intuition of how gravita-
tional waves are modified in the merger phase of a binary
coalescence, we will only consider modifications to the in-
spiral part of the waveform. An analysis similar to what
is done in this paper was done in [90] but for ringdown

modes. The ppE inspiral-merger-ringdown waveform be-
comes

h̃ppE =

{
h̃ins

GRe
iβub

f < fIM,

h̃MR
GR f > fIM,

(10)

where h̃ins
GR and h̃MR

GR are the GR Fourier waveforms in the
inspiral and in the merger-ringdown respectively, and fIM

is the frequency of transition from the inspiral phase to
the merger-ringdown phase, with the fitting parameters
of the model chosen to ensure continuity of the waveform
across fIM. As previously stated, we will model the GR
part of the waveform with the IMRPhenomD model.

The ppE model is particularly useful because it not
only allows us to constrain generic deviations from GR,
it also allows us to map these parameter constraints to
bounds on physical processes that modify the pillars of
Einstein’s theory. In particular, different values of b
correspond to different physical mechanisms that intro-
duce such modifications, as should be clear by compar-
ing Eq. (10) to the Fourier phase corrections presented
in Sec. II (see also [5]). Table II presents a simple ref-
erence to connect the deviations presented in Sec. II to
ppE parameters.

Given a gravitational wave observation that is consis-
tent with GR, one can then determine how large β can
be while remaining consistent with statistical noise. To
do so, one must maximize the cross-correlation between
the signal, which we will assume to be given exactly by
the waveform evaluated in GR (i.e. the ppE model with
β = 0), and the ppE model with respects to all param-
eters of the latter. The parameters of the ppE model
are θa = (lnA, φc, tc, lnM, ln η, χs, χa, β), where A is

an amplitude factor that scales with M5/6
z /DL, Mz is

the redshifted chirp mass, DL is the luminosity distance,
φc is the phase of coalescence, tc is the time of coales-
cence, and χs,a ≡ (χ1 ± χ2)/2 are symmetric and anti-
symmetric combinations of the (dimensionless) spin pa-

rameters χ1,2 ≡ ~S1,2/m
2
1,2, where ~S1,2 is the spin angular

momentum of the compact object. We do not include the
polarization angle or the sky location angles in the pa-
rameter vector, as we are using sky-averaged waveforms.

B. The Basics of a Fisher Analysis

The most accurate way to determine how stringently
modified gravity deviations can be constrained with fu-
ture observations is through a Bayesian analysis. In such
a study one calculates the full posterior probability dis-
tribution of the search parameters given the observations.
The width of such posteriors then provides a measure of
how much statistical wiggle room there is for parameters
that represent GR deviations to vary from zero.

For sufficiently high signal-to-noise ratio signals [91,
92], an approximation to this Bayesian calculation, a
Fisher analysis, provides an upper bound on constraints
when testing GR by the Cramer-Rao bound [93, 94]. In
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Modified GR Pillar Example Theories b β PN

Dipole Radiation Scalar Tensor, EdGB -7 βST [57, 61], βEdGB [62] -1

Local Position Invariance (SEP) Extra Dimension [14–16, 67], G(t) -13 βED [73], βĠ [16] -4

Local Lorentz Violation (SEP) Einstein-Æther, Khronometric -5 βEA [10, 11], βKG [13, 80] 0

Massive Graviton Massive Gravity -3 βMG [7, 8, 85, 86] +1

Modified Dispersion Relation Quantum Gravity 3α− 3 βMDR [5] 1 + 3
2
α

TABLE II. Mapping between violations to the pillars of GR (first column), a few example modified theories in which such
violations occur (second column), and the ppE parameters that recover such modifications (third and fourth column), together
with the leading PN order at which they enter (last column). The table is divided into those modifications that arise during
the generation of gravitational waves (top) and those that appear during the propagation of gravitational waves (bottom) [5].

a Fisher analysis, one assumes the likelihood probability
function has a single Gaussian peak, and approximates
the behavior of the signal about that peak through a Tay-
lor expansion. What results is a measure of the variance
and the covariance of parameters in the template model
through integrals that depend only on the templates and
the spectral noise density of the detector. In what fol-
lows, we summarize the main details of this calculation,
following the notation of [82, 95, 96]. Given a waveform
model h(t; θa) with parameter θa, the root-mean-squared
(1σ) error on any single parameter in a Fisher analysis is
given by

∆θa =
√

Σaa, (11)

where no sum is here implied and where the variance-
covariance matrix Σab is found by inverting the Fisher
matrix Γab, i.e. Σab = (Γab)

−1. The Fisher matrix is
given by

Γab ≡
(
∂h

∂θa

∣∣∣∣ ∂h∂θb
)
, (12)

where ∂h/∂θa is the partial derivative of the waveform
model with respect to the parameter θa, and where we
have defined the inner product between two waveform
models via

(h1|h2) ≡ 2

∫ fhigh

flow

h̃1h̃
∗
2 + h̃∗1h̃2

Sn(f)
df . (13)

In the inner product, the overhead tilde stands for the
Fourier transform, the superscript star stands for com-
plex conjugation, and Sn(f) is the detector’s spectral
noise density. With this definition of the inner product,
the signal-to-noise ratio is simply

ρ ≡ (h|h)1/2. (14)

The lower and upper limits of integration in the inner
product can be effectively taken to be the frequencies at
which the noise of the detector becomes very large. For
space-based detectors, we choose flow to be

f space

low = max (flratio, f3 years) , (15)

where flratio is the (low) frequency at which the amplitude
of the gravitational wave signal is ten times smaller than
the noise spectrum, while f3 years is the frequency that
corresponds to three years prior to reaching the inner
most stable circular orbit frequency, fisco, for a test par-
ticle in a Schwarzschild spacetime. Similarly, we choose
fhigh to be

f space

high = fhratio , (16)

where fhratio is the (high) frequency at which the gravi-
tational wave amplitude is once again ten times smaller
than the noise. For ground-based detectors, we choose
flow to be

f ground

low = max (flow-cut, flratio) , (17)

where flow-cut = 5 Hz when considering aLIGO at design
sensitivity, A+, Voyager, and CE, while flow-cut = 1 Hz
when considering ET. Similarly, we choose fhigh to be

f ground

high = min (fhratio, fhigh-cut) , (18)

where fhigh-cut = fcont is the gravitational wave frequency
at contact when considering binaries with at least one
neutron star, and fhigh-cut = fhratio when considering bi-
nary black holes. We stop the integration at the con-
tact frequency when considering neutron stars because
the waveform model we use does not incorporate features
present in neutron star mergers (see Sec. III A)

With this machinery in hand, in Sec. IV we will present
estimates of the projected accuracy to which GR devia-
tions can be constrained through a Fisher analysis on
ppE PhenomD models, with the amplitude multiplied
by the square root of the number of detectors (one for
both CE and ET-D, and two for aLIGO, A +, Voy-
ager, and the space-based detectors). The noise curves
used in the analysis are sky-averaged, as discussed in
Sec. III C. All calculations are carried out in Mathemat-
ica, making sure that the numerical accuracy of all cal-
culations is high enough to be accurate to at least per-
cent level. In particular, the Fisher matrix is inverted
through a Cholesky decomposition to reduce numerical
error from matrix inversion. The Fisher analysis is car-
ried out to constrain β for ppE exponent parameters
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Name m1[M�] m2[M�] (χ1, χ2) DL z ρLISA

GW150914 35.1 29.5 (0.31, 0.39) 400 Mpc ∼ 0.09 6.6

EMRI 105 10 (0.8, 0.4) 1 Gpc ∼ 0.2 102.2

IMRI 105 103 (0.7, 0.9) 5 Gpc ∼ 0.8 297.5

IMBH 5×103 4×103 (0.7, 0.9) 16 Gpc ∼ 2 102.7

SMBH 5×106 4×106 (0.7, 0.9) 48 Gpc ∼ 5 486.7

TABLE III. Intrinsic (source) properties of one representative system considered for space-based detectors, chosen to be
representative of various classes that could emit gravitational waves in the frequency-range of these detectors. The luminosity
distances were chosen to conform with astrophysical expectations and are fixed across detectors. The signal-to-noise ratios vary
depending on the instrument used to evaluate this statistic, and here we present only those provided by the LISA configuration.

b ∈ {−13,−12, ...,−1}, equivalent to modified gravity
corrections of n ∈ {−4,−3.5, ...,+2} PN order. One
could in principle consider a wider range of values for b,
but this prior range suffices to capture all of the physical
processes presented in Sec. II.

C. Future Detectors and their Sources

This subsection describes a few possible detector con-
figurations that have been considered by the community
and the sources we expect to detect with them. We will
not provide a detailed technical description of each of the
future instruments, but instead we characterize them via
their spectral noise density. The latter will effectively
determine how well parameters can be measured with a
Fisher analysis. For more details about the detectors, we
refer the reader to [24, 25, 97]

1. Space-based Detectors and their Sources

A proposal for the final design of LISA has recently
been submitted for review by ESA [25]. This instrument
will have six-links with 2.5 Gm arms and low acceleration
noise demonstrated possible with LISA Pathfinder [98].
We also consider three other previously suggested eLISA
configurations with different sky-averaged, six-link sen-
sitivity curves presented in [97] that differ only in the
length of the arms (1, 2, and 5 Gm corresponding to
the labels A1, A2, and A5). We only consider configura-
tions with low acceleration noise; these correspond to the
N2 configurations of [97]. Figure 1 presents the spectral
noise densities for each LISA configuration we consider
as a function of frequency. Each successive eLISA config-
uration improves the sensitivity of the instrument in the
low- and middle-frequency regions, with N2A5 being the
most sensitive configuration (the “classic LISA” design).
All throughout we will assume a three-year mission du-
ration.

For each LISA configuration, we consider gravitational
waves emitted by the following classes of systems:
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FIG. 1. (Color Online) Noise spectral density for all instru-
ments used in our analysis as a function of frequency. (e)LISA
operates at much lower frequencies than aLIGO. At such low
frequencies, (e)LISA is capable of detecting both gravitational
waves from very massive systems inaccessible to aLIGO, as
well as the very early inspiral of some systems whose merger-
ringdown phases occur in the aLIGO frequency band, such as
GW150914-like systems.

• GW150914-like systems (GW150914): A low mass
black hole binary with moderate spins, low redshift,
and a mass ratio of q ≡ m2/m1 ∼ 0.8.

• Extreme mass-ratio inspirals (EMRIs): A low-mass
black hole (with a mass between 10−100M�) inspi-
ralling into a supermassive black hole (with a mass
between 105−107M�) with moderate to high spins
and a relatively low redshift.

• Intermediate mass-ratio inspirals (IMRIs): An
intermediate-mass black hole (with a mass between
103−104M�) inspiralling into a supermassive black
hole (with a mass between 105−107M�) with mod-
erate to high spins and redshifts of order unity.

• Intermediate mass black hole binaries (IMBH):



10

Name m1[M�] m2[M�] (χ1, χ2) DL ρaLIGO ρA+ ρVoyager ρET-D ρCE

NSNS 2 1.4 (0.01, 0.02) 100 Mpc 23.2 33.6 109.5 238.4 382.7

`BHNS 5 1.4 (0.2, 0.02) 150 Mpc 21.7 31.3 102.8 225.1 361.2

`BHBH 8 5 (0.2, 0.3) 250 Mpc 27.7 39.8 131.4 289.0 463.7

BHBH 25 20 (0.3, 0.4) 800 Mpc 21.7 28.4 108.2 253.4 409.1

GW150914 35.1 29.5 (0.31, 0.39) 400 Mpc 54.6 71.5 271.8 641.7 1031.1

TABLE IV. Same as Table III but for one representative system appropriate to ground-based detectors. The distances were
fixed such that the signal-to-noise ratio is always ∼ 25 for an aLIGO detection at design sensitivity, except for the distance to
(and other properties of) the GW150914 system which was fixed to be approximately that of the actual GW150914 event.

Two intermediate-mass black holes with masses be-
tween 103 − 105M�, moderate to high spins, and
at moderate redshift.

• Supermassive black hole binaries (SMBH): Two su-
permassive black holes with masses between 106 −
107M�, moderate to high spins, moderate to high
redshifts, and a high mass ratio.

All systems are assumed to be on a quasi-circular inspiral
trajectory. The luminosity distance is fixed individually
for each system, with all distances corresponding to a
redshift smaller than 10. Notice that since the signal-
to-noise ratio scales with A, which is proportional to the
chirp mass, these signal-to-noise ratios are typically much
larger than the signal-to-noise ratios of events that will
be detected by ground-based instruments. For each of
these classes, we pick three representative systems to ex-
plore projected constraints on deviations from GR. One
representative of each class is listed in detail in Table III.
In this paper, we do not consider constraints obtained
by stacking multiple events, as this will be studied sepa-
rately in the future [99].

Since detections with space-based instruments will
have very high signal-to-noise ratios, it becomes impor-
tant to consider not only statistical error in our param-
eter estimations, but also systematic error. Systematic
error becomes dominant to statistical error for sufficiently
loud signals which will have the effect of saturating our
projected bounds. However, as detectors improve, wave-
form modeling will also become more accurate, and thus,
systematic error will also decrease. We expect the results
of this study to be roughly insensitive to the inclusion of
additional complexity in the inspiral waveforms as more
accurate models become available.

2. Ground-based Detectors

We consider a set of spectral noise density curves that
correspond to modeled estimates of the noise in various
instrument realizations: aLIGO (at design sensitivity),
A+, Voyager, CE, and ET-D [24, 101, 102]. The second
and third are currently projected as aLIGO upgrades,

while the last two are new, third-generation ground-
based detectors. Some key properties of these future in-
struments are the following:

• A+. Projected date of operation of ∼ 2020, im-
proves the level of quantum noise and coating ther-
mal noise, increasing the observational range of
aLIGO by 140%.

• Voyager. Projected date of operation of ∼ 2027,
reduces the aLIGO noise by using silicon in place
of glass in mirrors and suspensions, as well as op-
erating at a lowered temperature of 120K (rather
than aLIGO’s 295K), increasing the observational
range of A+ by a factor of roughly two.

• CE: Projected date of operation of ∼ 2035, will be
a new facility that is much larger than aLIGO and
possibly underground, increasing the observational
range of aLIGO by a factor of 10 to 100.

• ET-D: With a projected date of operation of ∼
2030-2035, will be a new facility built underground
to decrease the low-frequency noise, thus increasing
the observational range of aLIGO by roughly the
same amount as CE.

Figure 1 presents the spectral noise density curves for
each of these instruments.

For each ground-based detector, we consider gravita-
tional waves emitted by the following classes of systems:

• Neutron star binaries (NSNS): A neutron star bi-
nary system with negligible spins at very low red-
shift.

• Low-mass black hole-neutron star binaries
(`BHNS): A neutron star inspiraling into a
stellar-mass black hole with small spins at very
low redshift.

• Low-mass black hole binaries (`BHBH): A stellar-
mass (5 − 10M�) black hole binary system with
small to moderate spins at small redshift.

• Black hole binaries (BHBH): A black hole binary
system with masses in the tens of solar masses,
small to moderate spins, and at small redshift.
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FIG. 2. (Color Online) Projected constraints on modified gravity effects as a function of ppE PN order at which they first
enter for a variety of space-based (left) and ground-based (right) detectors and a variety of systems (anything above the regions
is projected to be ruled out). The shaded regions are bounded by the highest and lowest constraints that can be placed at a
given PN order for all instruments studied. For comparison, we also include the constraints that have already been placed by
aLIGO with the GW150914 detection [1, 2] (thin cyan line), as well as constraints that can be placed with binary pulsars [100]
(dashed black line). Observe that the magnitudes of the projected constraints with space-based and ground-based instruments
are comparable, with the former being better by roughly 2–4 orders of magnitude at negative PN order.

• GW150914-like binary systems (GW150914): As
previously defined in Sec. III C 1.

As in the space-based case, all systems are assumed to
be on a quasi-circular inspiral trajectory. The luminosity
distances for the ground-based systems are chosen such
that each system has a signal-to-noise ratio of ∼25 when
detected with aLIGO at design sensitivity, except for the
GW150914 case which uses the actual detection param-
eters. As expected, at a fixed luminosity distance, the
signal-to-noise ratios increase as the instrument sensitiv-
ity improves. As in the space-based case, for each of these
classes we pick three representative systems to explore
projected constraints on deviations from GR (the prop-
erties of one of these is listed in Table IV). As in the case
of sources for space-based detectors, we will not consider
constraints obtained by stacking multiple events, leaving
this to future work [99].

IV. PROSPECTS FOR FUTURE TESTS OF GR

This section discusses how projected constraints on de-
viations from GR are improved with future detectors. We
begin by presenting these constraints and conclude with
an explanation of the improvements using phenomeno-
logical noise curves.

A. Future Ground-based and Space-based Tests

The left panel of Fig. 2 shows the projected constraints
that space-based detectors can place on modified gravity

as a function of the ppE PN order at which the modi-
fication first enters for a variety of systems (the region
above the curves would be ruled out given such observa-
tions). The constraints are presented as shaded regions,
which represent variation due to instrument choice and
representative system choice. In all cases, the N2A5 con-
figuration can do best at testing GR, as expected from
Fig. 1. For negative PN order modifications, the SMBH
class is worst at placing constraints, while the EMRI and
GW150914 classes are best. For positive PN order modi-
fications, all classes do approximately equally well, except
for the GW150914 class, which does the worst.

Let us explain this behavior. Negative PN order mod-
ifications to GR are proportional to negative powers of
the orbital velocity (relative to the leading PN order GR
term). Therefore, negative PN corrections are naturally
larger for systems that are more widely separated since
their orbital velocity is smaller by the Virial theorem
(a version of which typically holds in modified gravity)
or by Kepler’s third law. The GW150914-like systems
that space-based detectors could observe are by far the
most widely separated and, therefore, lead to the best
projected constraints at negative PN order. EMRI sys-
tems could also be emitting gravitational waves during
the entire lifetime of the space-based missions at rela-
tively small velocities, although not as small as those
of GW150914-like systems. Gravitational waves emit-
ted by SMBH systems, on the other hand, are at such
low-frequencies that the majority of the inspiral occurs
outside of the sensitive frequency band of space-based
detectors, such that negative PN order terms cannot be
constrained as stringently. Nonetheless, the constraints
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FIG. 3. (Color Online) Left: Projected constraints on β, given a GW150914-like detection with different ground-based detectors.
Observe that ET-D provides better constraints than CE for all negative PN orders due to its low-frequency improvement, but
they become comparable for PN orders ≥ 0. Right: Fractional improvement to the projected constraints on GR modifications
relative to those achievable with aLIGO at design sensitivity, as a function of PN order. The boundaries of the shaded regions
are determined by the minimum and maximum constraints that can be placed with an instrument when considering all systems
under study. Observe that while A+ improves the constraints only marginally relative to aLIGO, Voyager and CE can provide
constraints that are roughly 5 and 20 times better respectively. Observe also that ET-D leads to drastically better constraints
relative to aLIGO at negative PN orders, but this improvement becomes comparable to that obtained with CE at positive PN
orders, as also shown on the left panel.

one could place with EMRIs at negative PN orders are
comparable to those we can place with GW150914-like
systems because (i) we have chosen signal-to-noise ratios
an order of magnitude larger for EMRIs and (ii) the grav-
itational waves emitted by these EMRI systems start in
the bucket of the LISA noise curve (at about 5 × 10−3

Hz).
At positive PN order, the projected constraints on

modifications to GR one could place seem to be roughly
independent of the system considered. Positive PN cor-
rections are largest in the last stages of the inspiral of
binary systems, and in particular, during their merger.
But the maximum velocity reached by all these systems
is roughly the same before merger. This, combined with
the different signal-to-noise ratios of the different systems
explains why they roughly achieve the same constraints.
Of course, this is not the case for the GW150914-like
systems, since these do not merge in the LISA band.

The projected constraints presented here are clearly
better than current constraints we can place with the
aLIGO GW150914 and GW151226 observations (even if
this had been detected at design sensitivity). This is par-
ticularly true at negative PN order, where constraints can
be ten orders of magnitude more stringent with future
LISA observations. Such a result was already anticipated
in [26], where constraints on dipole radiation were inves-
tigated. Indeed, our results are consistent with those
in [26], extending them to other PN orders.

Comparing constraints on modified gravity that can be
achieved with space-based detectors in the future to those
we can place with aLIGO today is unfair. By the time

LISA flies, it is very probable that new and improved
versions of aLIGO will be operational. For this reason,
the right panel of Fig. 2 shows projected constraints as
a function of PN order using aLIGO (at design sensitiv-
ity) and all future ground-based detectors for a variety of
systems. As expected, systems that sample the smallest
orbital velocities (NS binaries in the ground-based case)
will lead to the most stringent constraints on negative
PN order effects, while all systems do approximately the
same at positive PN order. Comparing the best con-
straints on the left and the right panels, we also see that
LISA can place constraints that are roughly 3 orders of
magnitude better than the best future ground-based con-
straints at negative PN order, while the constraints are
roughly the same at positive PN order.

Another feature we notice by comparing the left and
right panels of Fig. 2 is that the shaded regions are much
wider in the ground-based case than in the space-based
case. This is because although there are several possible
LISA configurations, they differ little relative to future
improvements to ground-based instruments. For this rea-
son, it is instructive to look at the fractional improve-
ment in the projected constraints with future upgrades
to ground-based instruments relative to the constraints
we can obtain with aLIGO at design sensitivity as a func-
tion of PN order at which they enter. This is shown in
Fig. 3 where the fractional improvement is defined via

Frac. Improv =
Future Det.

aLIGO Design
, (19)

with the shaded regions representing variability in the



13

constraints due to the different systems that could be
detected. Observe that the A+ and Voyager detectors
improve the constraints we can place on modified gravity
at all PN orders by a factor of about 2–10 respectively.
On the other hand, the ET and CE detectors can lead
to drastic improvements in our ability to test GR, with
enhancements of up to three orders of magnitude at nega-
tive PN order and one order of magnitude at positive PN
order. Observe that CE is better than ET at positive PN
orders, while the reverse is true at negative PN orders,
which is due to the improved low-frequency sensitivity of
ET, as shown in Fig. 1.

The constraints obtained with binary pulsars (such as
J0737-3039 [100]) appear to do noticeably better than
gravitational wave constraints for all negative PN or-
ders. However, as one considers more advanced ground-
based detectors and a larger class of systems, gravita-
tional waves can do better than binary pulsars for modi-
fications that enter at PN orders & −1. Similarly, in the
space-based case, gravitational waves can do better than
binary pulsars for modifications that enter at PN orders
& −2.

When comparing binary pulsar constraints to gravita-
tional wave constraints, caution is advised. Binary pul-
sar constraints obviously require spacetimes with mat-
ter, since the observations depend on radio pulses emit-
ted by neutron stars. Many modified theories of gravity,
however, modify GR predominantly in vacuum space-
times, almost exactly reducing to GR near stars, re-
gardless of their compactness. For example, in Einstein
dilaton Gauss-Bonnet gravity [61, 62] and in dynamical
Chern-Simons gravity [103, 104], black holes acquire non-
trivial scalar hair, but the scalar hair of neutron stars is
greatly suppressed [59]. Therefore, binary pulsar obser-
vations cannot constrain these classes of theories at all,
and thus, it is important to make observations involving
at least one black hole (be it with an as-of-yet undetected
radio pulsar observation from a black hole-neutron star
binary, or with gravitational wave observations of coa-
lescing black hole or black hole-neutron star binaries).

B. Exploration of Detector Design

In the previous subsection, we provided an intuitive
explanation of why certain sensitivity improvements im-
pact certain PN order modifications more than others.
Here, we verify these explanations by investigating con-
straints with phenomenological noise curves that isolate
improvements to the sensitivity in the low-, mid-, and
high-frequency regimes.

Let us begin by presenting the phenomenological noise
curves we consider. We constructed an analytic fit to
the design-aLIGO spectral noise density (zero-detuned,
high-power) noise curve [102] that resembles in functional
form the one presented in [105]. We then divide the fre-
quency range over which aLIGO operates into three do-
mains: the low-frequency regime (f < 50Hz), the mid-

frequency regime (50Hz < f < 900Hz), and the high-
frequency regime (f > 900Hz). We improve the sensi-
tivity by roughly a factor of ten without modifying the
other domains, leading to a “left wall” improvement (low-
frequency regime), a “lower wall” improvement (mid-
frequency regime), and a “right wall” improvement (high-
frequency regime), as seen on the left panel of Fig. 4.

The right panel of Fig. 4 shows the relative fractional
improvement in the constraints we can place on modi-
fied gravity with these phenomenological noise curves as
a function of PN order. Observe that the left-wall im-
provements dominate at negative PN orders, while the
lower- and right-wall improvements dominate at positive
PN order. The reason for this is that as one improves the
sensitivity at low-frequencies, the detector is now able
to capture gravitational waves when the binary system
was more widely separated and the orbital velocity was
smaller, precisely where negative PN order corrections
are larger (since they enter as negative powers of the ve-
locity). Similarly, as one improves the sensitivity in the
mid- and the high-frequency regimes, the detector is more
sensitive to the very late inspiral and merger, where the
binary reaches the highest velocities and where positive
PN order corrections are larger.

One may wonder why the constraints obtained with the
right-wall improvement are worse than those obtained
with the lower-wall improvement. The former improves
the noise curve in the high-frequency regime, and thus,
one may think this noise curve would be better at con-
straining high PN order deviations from GR. This, how-
ever, is not true, as shown in the right panel of Fig. 4. For
any chirping signal, there are typically many more cycles
at lower frequencies than at higher frequencies, and thus,
more cycles accumulate in the regime improved by the
lower-wall noise curve. The distinguishability of non-GR
signals (as measured for example by the Bayes factor) is
not simply a function of the integrated dephasing induced
by the non-GR corrections, but rather is a function of
the integrated noise-weighted dephasing, which [45] calls
the effective cycles. The lower-wall improvement leads
to more effective cycles of phase for high PN order cor-
rections than the right-wall improvement, explaining the
feature we see in the right panel of Fig. 4.

The improvement in the constraints is roughly the
square root of the improvement in the sensitivity curve.
Mathematically, this is easy to see; the constraint scales
as the square-root of the variance-covariance matrix in
Eq. (11), and the latter scales inversely with the spectral
noise. The improvement in the constraints is not quite
a factor of 3 throughout because we have only increased
the sensitivity curve in one part of the frequency do-
main. Physically, one can also understand the constraint
improvement as a result of an increase in signal-to-noise
ratio, which also scales with the square root of the spec-
tral noise, i.e. by increasing the sensitivity by an order
of magnitude, we have roughly increased the signal-to-
noise ratio by a factor of three, since we have kept the
luminosity distance fixed.
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FIG. 4. (Color Online) Left: Phenomenological noise spectral density curves as a function of frequency. Right: Relative
fractional improvement of the constraints on β provided by the phenomenologically modified sensitivity curve over those
provided by a fit to design aLIGO. Observe that the noise curve improved at low-frequencies leads to the largest improvements
at negative PN order, while the opposite is true for the noise curves improved in the mid- and high-frequency ranges.

The behavior observed in Fig. 4 is reminiscent of that
found in Sec. IV A within the ground-based instruments.
For example, A+ has the same sensitivity as design
aLIGO at low-frequencies (see Fig. 1), which is why A+
cannot improve constraints on modified gravity at nega-
tive PN orders relative to what we can do with aLIGO
at design sensitivity. ET-D is more sensitive than CE at
low-frequencies, and thus, it allows for the most strin-
gent constraints on negative PN order modifications to
GR relative to those we can obtain with design aLIGO.
Voyager’s increased sensitivity in the mid and high fre-
quencies has a fractional improvement that is similar to
that obtained with the lower- and right-wall models.

V. THEORETICAL PHYSICS IMPLICATIONS

Experimental relativity consists of more than just car-
rying out null-hypothesis tests and constraining generic
deviations from GR. A crucial next step is to use such
constraints to make inferences on modified gravity mech-
anisms that, since GR has been confirmed, cannot be
active in the extreme gravity regime. In this section, we
will map the constraints on the ppE parameters derived
in the previous section to constraints on the magnitude
of certain corrections to the pillars that GR rests on, as
described in Sec. II. We will enhance the study of the
previous section by considering more than a single char-
acteristic source per class, and instead consider 3 sources
per class, which will allow us to show a range of possi-
ble inferences. We will then explore how these inferences
change as a function of the instrument used.

A. Presence of Dipole Radiation

If the orbit of compact binaries decays faster than pre-
dicted in GR due to the emission of dipole radiation, the
gravitational wave phase will acquire a leading-order cor-
rection that enters at -1PN order, as described in Sec. II.
The modified waveform can then be modeled as described
in Sec. III A with the ppE mapping:

β = − 3

224
δĖDipη

2/5 , b = −7 . (20)

Therefore, for a given constraint on β, we obtain stronger
constraints on δĖDip if the signal accumulates significant
SNR at lower frequencies, i.e. when the gravitational
wave producing binary is widely separated. Indeed, as
seen in Fig. 5, the LISA configurations give the best con-
straints using GW150914-type and EMRI systems, while
ground based detectors do best with neutron star binary
systems. In both cases, the constraints are roughly 4–5
orders of magnitude stronger than the current bound ob-
tained from observation of low-mass X-ray binaries [106].

We also see that dipole radiation can be constrained
comparably well with future ground-based and space-
based instruments, although we see that the former can
do better than the latter in the best case by roughly one
order of magnitude. This seems to contradict the con-
straints on β shown in Fig. 2, which at -1PN order are
roughly the same with EMRIs and neutron star binaries,
the best space- and ground-based systems at this PN or-
der respectively. The reason space-based detectors do
worse is that in converting the constraint on β to a con-
straint on δĖDip, one must divide by η2/5 which induces
a suppression in the EMRI case, but barely affects the
neutron star case.
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δĖ
D

ip

NSNS
lBHNS

lBHBH
BHBH

GW150914

EMRI
IMRI

IMBH
SMBH

FIG. 5. (Color Online) Projected constraints on the strength

of dipolar emission δĖDip as a function of instrument. Cur-
rent constraints on dipole radiation from the low mass X-
ray binary pulsar are given by the horizontal dashed yellow
line. The vertical lines represent the variability of the con-
straint within the class of systems considered. Observe the
projected constraints are 4–5 orders of magnitude stronger
than the current bound (which is given by the low-mass X-ray
binary [106]), and that those obtained with third-generation
ground-based detectors are comparable to those obtained with
space-based detectors.

B. Anomalous Accelerations, Large Extra
Dimensions and Time-Varying Fundamental

Constants

The existence and size of a single large extra-dimension
introduces a leading-order modification to the gravita-
tional wave phase that enters at -4PN order, as described
in Sec. II. In this case, however, constraints are only pos-
sible when at least one of the binary components is a
black hole, as otherwise there is no leakage into the ex-
tra dimension. In this study, we only consider black hole
binaries as a generalization. As before, the gravitational
wave can then be modeled as in Sec. III A with

β =
dm

dt

25

851968

(
3− 26η + 34η2

η2/5(1− 2η)

)
, b = −13 (21)

where dm
dt ≡ ṁ = ṁ1 + ṁ2 and

ṁa = −2.8× 10−7

(
M�

Ma

)2(
`

10µm

)2

M� yr−1 (22)

where, in this case, Ma is the mass of one of the black
holes and ` is the size of the large extra dimension that
we are interested in constraining. Here, ` is weighted by
the best current constraints placed by torsion-pendulum

experiments, astrophysical observations of black holes in
globular clusters, and by black hole X-ray binaries [28–
32].

Because the modification enters at negative PN order
as in the case of dipole radiation, we expect the best
constraints on β to come from gravitational waves emit-
ted by widely separated systems. However, the mapping
above shows that any constraint on ṁ will be enhanced
by a factor of η2/5, thus suggesting that the systems with
most extreme masses will lead to the best constraints. In-
deed, as seen in Fig. 6, the best constraints are obtained
with EMRI systems detected with space-based detectors.
These constraints are approximately comparable to cur-
rent constraints [28–32], but 7 orders of magnitude better
than the best constraints achievable with ground-based
detectors.
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FIG. 6. (Color Online) Projected constraints on the size of
a large extra dimension as a function of instrument. Current
constraints on ` are between 10 and 103 µm (see Table I)
as shown with horizontal dashed lines [28–32]. Observe that
EMRIs can place constraints on the size of a large extra di-
mensions that are ∼ 1012 orders of magnitude more stringent
than those placed with SMBHs, and that these constraints
are roughly competitive with current constraints.

The time-variability of Newton’s constant G can also
be constrained by studying a -4PN order deviation from
GR. As discussed in Sec. II, the ppE mapping is in this
case

β =
25

65526

Ġz
G
Mz , b = −13 , (23)

which then suggests that systems with large chirp mass
(due to the β–Ġ mapping) and those that are widely
separated (due to the negative PN correction) will place
the most stringent constraints. This is indeed reflected
in Fig. 7, where we see the best constraints come from



16

EMRI systems, which are 4–6 orders of magnitude bet-
ter than the best constraints we can place with third-
generation ground-based detectors. Since current con-
straints on Ġ are 10−13/yr [33–35], none of these will be
directly competitive.
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FIG. 7. (Color Online) Projected constraints on the magni-
tude of the time variability of Newton’s constant G as a func-
tion of instrument. Future generation detectors will be able
to place constraints up to 12 orders of magnitude more strin-
gent than design aLIGO, with space-based detec tors beating
ground-based by as much as 7 orders of magnitude. Current
constraints are about 10−13/yr [33–35], shown with a dashed
horizontal line near the bottom of the figure.

C. Local Lorentz Symmetry Violation

In Lorentz violating theories, a vector field is intro-
duced that carries additional energy away from the inspi-
raling binaries, inducing modifications that enter at -1PN
order. These corrections, however, depend on the differ-
ence of the compact object sensitivities, which are not
known for black holes. We will thus here estimate future
constraints on Lorentz violating effects using the sensi-
tivities calculated for neutron stars (the sensitivities of
which have been calculated) through the next-to-leading
order term in the phase, which enters at Newtonian or-
der, as explain in Sec. II. Once more, the gravitational
wave can be modeled as in Sec. III A with

β =− 3

128

[(
1− c14

2

)
(AEA,1 + SAEA,2 + S2AEA,3)

]
,

b =− 5 (24)

where S ≡ (s1m2 + s2m1)/m and s1,2 are the compact
object sensitivities, AEA,1 can be found in Eq. (91) of [81],
and AEA,2/3 can be found in Eqs. (111) and (112) of [39].

Notice from the mapping that, in this case, the modifica-
tion depends on more than a single coupling parameter
(e.g. c± in the Einstein-Æther case) and that since these
are dimensionless, there is no additional function of the
binary’s system parameters required in the conversion.
We thus expect a relatively simple two-dimensional map-
ping between β and the coupling constants of the theory,
as shown in Fig. 8. Observations of some black hole in-
spirals and mergers with space-based detectors do best
at constraining these modifications because they are able
to see the merger phase, which breaks a chirp mass-total
mass degeneracy in parameter estimation (see also dis-
cussion in [112, 113]). However, ground-based detectors
become competitive with space-based detectors when one
considers binary black hole systems. The ground-based
constraints provided by the observation of neutron star
inspirals (solid lines in Fig. 8) do not include the merger
phase5 in this study, as described in Sec. III A.

Similarly to Einstein-Æther, khronometric gravity in-
troduces modifications to GR at Newtonian order, and
thus we expect black hole observations of the merger
(with both space- and ground-based detectors) to do bet-
ter than ground-based observations of neutron star in-
spirals6. The gravitational wave can be modeled as in
Sec. III A with:

β =− 3

128

[(
1− αKG

2

)
(AKG,1 + SAKG,2 + S2AKG,3)

]
,

b =− 5 (25)

where αKG = 2βKG, AKG,1 can be found in Eq. (91) of [81],
and AKG,2/3 can be found in Eqs. (121) and (122) of [39].
As before, observations of black hole inspirals and merg-
ers do best at constraining these modifications. We see in
Fig. 9 that constraints with future space-based detectors
would be able to greatly shrink the allowed parameter
space. Projected constraints with NSNS systems lie out-
side of the bounds of this plot.

D. Massive Graviton

A special relativistic modification to the dispersion re-
lation of gravitational waves to include a mass for the
graviton introduces a correction in the gravitational wave
phase that enters at 1PN order, as discussed in Sec. II.
With the waveform model of Sec. III A, the ppE mapping

5 The merger of binary neutron stars occurs at kHz frequencies
where the detectors are less sensitive and where the simple Phe-
nomD waveform model would not be accurate.

6 Note that the constraints that we find are roughly one order
of magnitude worse that what was found in [81]. This is due
to a difference in waveforms used when performing the Fisher
Analysis. In this paper, we use the spin-dependent PhenomD
waveform model, as described in Sec. II–III A, while in [81] the
Taylor F2 model was used.
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FIG. 8. (Color Online) Projected constraint regions placed by ground-based (left) and space-based (right) detectors on the
coupling parameters of Einstein-Æther theory for various systems. The region above the black solid line excludes values of
(c+, c−) that violate certain stability constraints [13, 107, 108]. All values of (c+, c−) outside of the darker grey region are
ruled out by binary pulsar observations [38, 39]. The regions above and to the right of the colored lines correspond to values
of (c+, c−) that would be ruled out with future gravitational wave observations using different ground-based instruments.

FIG. 9. (Color Online) Projected constraint regions on the
coupling parameters of khronometric theory. The region be-
low the solid black line, the region to the right of the dashed
black line, and the region above the dotted black line con-
tain values of (βKG, λKG) that violate certain stability con-
straints [13, 107, 108], binary pulsar constraints [38, 39], and
cosmological constraints [10, 109–111] respectively. The re-
gions above and to the right of the different color lines corre-
spond to values of (βKG, λKG) that would be ruled out with
future gravitational wave observations using different ground-
based instruments. The EMRI and IMRI lines correspond to
future projected constraints with LISA, while the CE and
ET-D lines correspond to future projected constraints with
GW150914-like observations.

is then

β =
π2 D0 Mz

λ2
, b = −3 (26)

where D0 is given in Eq. 25 of [5] and λg is the wavelength
of the graviton.

Notice that in solving for a constraint on mg, one
must divide by the product of the luminosity distance
and the chirp mass. We thus expect that the gravi-
tational waves emitted from the most distant and the
most massive systems will lead to the most stringent con-
straints. This is indeed verified in Fig. 10, where we see
the best constraints come from space-based detectors,
which can observe supermassive black hole mergers at
Gpc distances. These constraints can be as much as 2–3
orders of magnitude better than the best constraints with
third-generation ground based detectors. All of these,
nonetheless, are as much as 5 orders of magnitude better
than current constraints with aLIGO, rapidly approach-
ing the scale at which a mass of the graviton could be
comparable to the cosmological constant (∼ 10−31eV).

VI. FUTURE DIRECTIONS

We have investigated the constraints we will be able
to place on deviations from GR with future space- and
ground-based detectors. We found that constraints can
improve by more than an order of magnitude as one
compares future ground-based instrument observations
to current aLIGO bounds. These improvements, how-
ever, become much closer to those provided by space-
based instruments when considering the future genera-
tion detectors. We also quantified the degree to which
improvements in different bands of the sensitivity noise
leads to improvements in constraints of GR, finding that
modest low-frequency improvements can have large ef-
fects while high-frequency improvements typically have
lesser, but still substantial, effects. We found that this is
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FIG. 10. (Color Online) Projected constraints on the mass of
the graviton as a function of instrument. Notice that SMBH
binary systems, which are both the most massive and most
distant binary systems considered, can constrain the mass of
the graviton up to ∼5 orders of magnitude more stringently
than current bounds.

due to low-frequency improvements that greatly increase
the number of effective cycles for certain GR modifica-
tions.

The work we have done can be used to extrapolate
conclusions about design decisions, but certainly more
work could be done to refine the analysis and solidify
the conclusions. One example would be to redo the
study with a Bayesian analysis instead of a Fisher

analysis; we expect this will have a small effect on
our conclusions because most of the signals considered
have very large signal-to-noise ratio. Another example
would be to quantify the systematic errors induced by
our approximate waveform modeling in their impact
of constraints on deviations of GR; we expect this will
also have a small effect for binaries that are widely
separated, but the modeling must certainly be improved
when considering EMRIs or to include the effects of spin
precession. One could also consider the effect of stacking
multiple signals on the constraints derived here [99]; we
expect this to improve the constraints by a factor of
roughly N1/2 when stacking N signals, but this could
affect space- and ground-based instruments differently
as they may detect a very different number of sources
(since they observe very different populations). A final
simple extension would be to consider constraints with
multi-wavelength observations (i.e., with both ground-
and space-based detectors); given the analysis in [26],
we expect multi-wavelength observations to improve
constraints by a factor of a few.
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X. Jiménez Forteza, and A. Bohé, Phys. Rev. D93,
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