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The evolutions of the flat FLRW universe and its linear perturbations are studied systematically
in the dressed metric approach of LQC. When it is dominated by the kinetic energy of the inflaton
at the quantum bounce, the evolution of the background can be divided into three different phases
prior to the preheating, bouncing, transition and slow-roll inflation. During the bouncing phase,
the evolution is independent of not only the initial conditions, but also the inflationary potentials.
In particular, the expansion factor can be well described by the same exact solution in all the cases
considered. In contrast, in the potential dominated case such a universality is lost. It is because
of this universality that the linear perturbations are also independent of the inflationary models
and obtained exactly. During the transition phase, the evolutions of the background and its linear
perturbations are found explicitly, and then matched to the ones given in the other two phases.
Hence, once the initial conditions are imposed, the linear scalar and tensor perturbations will be
uniquely determined. Considering two different sets of initial conditions, one imposed during the
contracting phase and the other at the bounce, we calculate the Bogoliubov coefficients and find
that the two sets yield the same results and all lead to particle creations at the onset of the inflation.
Due to the pre-inflationary dynamics, the scalar and tensor power spectra become scale-dependent.
Comparing with the Planck 2015 data, we find constraints on the total e-folds that the universe
must have expanded since the bounce, in order to be consistent with current observations.

I. INTRODUCTION

The inflationary paradigm not only solves elegantly
the problems of the standard big bang cosmology, but
also predicts the primordial power spectra whose evo-
lutions determine the temperature fluctuations in cos-
mic microwave background (CMB) and the formation of
the large-scale structure of the universe [1–3] (see [4]
for an updated review). This prediction explains the
power spectrum of the galaxy distribution, and has been
remarkably confirmed by CMB measurements with un-
precedented precisions [5–7].

However, the inflationary scenario is sensitive to the
ultraviolet (UV) physics, and its successes are tightly
contingent on the understanding of such UV physics [4].
In particular, the underlying quantum field theory on a
classical spacetime becomes questionable for a large class
of inflationary models, in which the e-folds of the expan-
sion of the universe are more than 70 [8]. This is because
in these models the sizes of the current universe are less
than that of Planck at the onset of inflation, then the
treatment of the spacetime as classical becomes invalid.
This is the well-known trans-Planckian problem [9, 10].
In addition, general relativity (GR) inevitably leads to
an initial singularity [11, 12], with which it is not clear
how to impose the initial conditions. Instead, one usu-
ally ignores the pre-inflationary dynamics and sets the
Bunch-Davies (BD) vacuum at the time when the pertur-

bation modes are inside the Hubble horizon during infla-
tion. However, from the beginning of inflation (which is
normally believed to start at the energy scale about 1016

GeV) to the Planckian scale, an energy gap of at least
three-order exists. Once this pre-inflationary dynamics is
taken into account, it is not clear how such a picture will
be altered, as it is quite reasonable to expect that par-
ticles are created generically during the pre-inflationary
phases, and non-BD states could be created even when
the modes were well inside the Hubble horizon during
inflation.

To address these important issues, loop quantum cos-
mology (LQC) provides an interesting framework, in
which the big bang singularity is simply replaced by a
quantum bounce in the deep Planck era, due to the quan-
tum gravitational effects [13, 14], and a large number of
cosmological models has been investigated [15–37], in-
cluding the flat Friedmann-Lemǎıtre-Robertson-Walker
(FLRW) universe, the model that we shall focus on in
this paper. In such a framework, the universe that was
dominated by the kinetic energy of the inflaton at the
bounce can eventually evolve to the desired slow-roll in-
flation [38–46].

An important question now is whether the quantum
bounce and its subsequent pre-inflationary dynamics can
leave any observational signatures to the current and/or
forth-coming experiments, so LQC can be placed directly
under tests. Such considerations have attracted a great
deal of attention lately, see, for example, the special is-
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sue of International Journal of Modern Physics D on Loop
Quantum Cosmology [47], and the monograph of World
Scientific, Loop Quantum Gravity: The First 30 Years
[48]. A crucial step for connecting the quantum bounce
with observations is the understanding of the evolutions
of the background as well as the cosmological perturba-
tions during the pre-inflationary period. Extensive stud-
ies have been carried out, but mainly numerical [47, 48].
In this paper, one of our goals is to study the quantum
bounce and its subsequent pre-inflationary dynamics an-
alytically, with the hope that it will provide deeper in-
sights into the physics involved.

The studies of the pre-inflationary dynamics in the
framework of LQC have been carried out by following
mainly two different approaches [49], dressed metric [15–
18] and deformed algebra [19–24] 1. In the latter, with
some reasonable assumptions and the choice of initial
conditions, it has been already shown that the resulting
cosmological perturbations are in conflict with current
observations [53, 54]. In the former, among other things,
it was argued that the pre-inflationary effects could pro-
duce a way to relieve the tension between the standard
spectra obtained in GR and observations at large scales
[55].

In this paper, we shall provide a systematical study
of the effects of the quantum bounce and its subsequent
pre-inflationary dynamics on the background evolution
and primordial perturbations in the framework of the
dressed metric approach [15–18]. Earlier works on the
subjects are mainly numerical [16, 18, 30, 31, 55, 56], and
often requires time and memory intensive computations
by using high-performance computing, in order to ex-
plore the most interesting region of the parameter space
[56]. Our purpose in this paper is two-fold: First, we
shall carry out an analytical investigation on the evolu-
tions of both the background of the universe and its linear
scalar and tensor perturbations. Second, we shall focus
mainly on universal properties of the evolutions during
the pre-inflationary period. That is, properties that do
not depend on the inflationary potentials, so that they
hold for any inflationary models. This is tightly related
to the previous results that the universe that was dom-
inated at the quantum bounce by the kinetic energy of
the inflaton will eventually evolve to a desired slow-roll
inflation [38–45].

Based on the above observations, in this paper we shall
mainly consider the models that are dominated at the
quantum bounce by the kinetic energy of the inflaton. In
particular, we shall show that under this assumption not
only the evolution of the background of the universe is
universal, but also the evolutions of its linear perturba-
tions during the pre-inflationary period. We also study
models that are dominated at the bounce by the poten-
tial of the inflaton, and show explicitly that such uni-

1 Other approaches, such as separate universe [50], hybrid models
[51] and consistent histories [52], are still in their developments.

versalities are lost. In particular, the rest of the paper
is organized as follows. In Sec. II and III, we present
a detailed analysis of the background evolution first nu-
merically (Sec. II) and then analytically (Sec. III), and
show that the evolution of the background is universal
and independent of the form of the inflationary poten-
tials, as long as it is dominated by the kinetic energy of
the inflaton at the quantum bounce. Based on the un-
derstanding of the background evolution, in Sec. IV we
turn to study the cosmological scalar and tensor pertur-
bations. In particular, we show that the effective poten-
tials of the perturbations of both scalar and tensor can
be mimicked very well by a Pöschl-Teller (PT) potential
during the bouncing phase, whereby we obtain analyti-
cally the mode functions of the perturbations. In Sec.
V, we consider two different sets of initial conditions for
the cosmological perturbations, one is the Bunch-Davies
(BD) vacuum imposed at the contracting phase right be-
fore the quantum bounce, and the other is the fourth-
order adiabatic vacuum state imposed at the bounce. By
using our analytical solution we show explicitly that the
BD vacuum state imposed at the contracting phase re-
duces to the fourth-order adiabatic vacuum state at the
bounce. In addition, with these initial conditions, we also
derive explicitly the analytical expressions of primordial
power spectra and discuss the associated bouncing and
pre-inflationary effects. In Sec. VI, we perform the Cos-
moMC code to study cosmological constraints by using
the Planck2015 data [7]. Our main conclusions and dis-
cussions are presented in Sec. VII. Two appendices are
also included. Part of the results have been already re-
ported in [57].

II. BACKGROUND EVOLUTION: NUMERICAL

In this section, let us begin to consider the evolution of
the flat FLRW background coupled with a single scalar
field φ, the inflaton, in the framework of LQC,

ds2 = −dt2 + a(t)δijdx
idxj , (2.1)

where a(t) is the cosmological scale factor with t being
the cosmic time. In LQC, the FRLW spacetime can be
quantized by using the canonical quantization framework
of loop quantum gravity. The quantized background
spacetime together with the scalar field φ, is described
by a quantum state Ψ0(a, φ) which is a complex function
of the scale factor a(t) and scalar field φ. The evolution
of this quantum state is governed by the LQC quantum
Hamiltonian constraint, and a remarkable feature is that
it is nonsingular. Among many states Ψ0(a, φ) in the
LQC Hilbert space, one is in general interested in a state
that is sharply peaked around a classical trajectory at
late times, when the curvature of the Universe is well be-
low the Planck scale and the classical GR is an excellent
approximation [33–36]. Evolving this state by using the
LQC quantum Hamiltonian constraint, it has been shown



3

that it remains sharply peaked during the whole dynam-
ical trajectory, even in the deep Planck era [34, 35]. As
a result, the evolution of the peak of such states can be
accurately described by an effective trajectory that gov-
erned by its effective equations.

These effective equations for a flat FLRW background
has been derived in Refs. [58–60] (see also [37] for an al-
ternative approach), from which the modified Friedmann
equation takes the form

H2 =
8π

3m2
Pl

ρ

(
1− ρ

ρc

)
, (2.2)

where H ≡ ȧ/a denotes the Hubble parameter and the
dot represents the derivative with respect to the cosmic
time t, mPl = 1/

√
G is the Planck mass, ρ is the energy

density of the universe, and ρc is the critical energy den-
sity which represents the maximum value of the energy
density in LQC and is about ρc ' 0.41m4

Pl. For a single
scalar field φ with a potential V (φ) in the FLRW back-
ground, the effective equation of motion in LQC takes
the same form of the Klein-Gordon equation as in GR,

φ̈+ 3Hφ̇+ V,φ = 0, (2.3)

where V,φ = dV (φ)/dφ.
A robust prediction of the above effective dynamics is

the occurrence of a non-singular quantum bounce, which
removed the initial singularity in the early stage of the
classical universe (see [32–37] and references therein).
Eq. (2.2) shows that the quantum bounce occurs at
ρ = ρc, where the energy density reaches the maximum
value and the Hubble parameter becomes zero. The back-
ground evolution with a bounce phase has been exten-
sively studied, and one of the main results is that, right
following the quantum bounce, a desired slow-roll infla-
tion phase is almost inevitable [13, 40–43] (for recent con-
siderations, see [55]).

It is remarkable to note that the modified Friedmann
equation (2.2) and the Klein-Gordon equation (2.3) are
also derived in the deformed algebra approach [19–24].
Hence, all the results obtained in this section as well as
the results obtained in the next section will be equally
applicable to this approach, too.

In this section, we will study the “bounce plus slow-roll
inflation” scenario by considering two typical inflationary
potentials, the power-law potential and Starobinsky po-
tential, as specified below:

• Inflation with a power-law potential. A power-law
potential takes the form

V (φ) =
1

2
m4−nφn, (2.4)

where the parameter m has dimension of mass.
We consider two specific values of n: n = 2 and
n = 1/2, respectively. The corresponding values
of the mass for each potential used for numerical

calculations are set to

m =

{
1.3× 10−6mPl, n = 2,

7.4× 10−4mPl, n = 1
2 .

(2.5)

Note that these values are chosen to be consistent
with Planck 2015 data [7].

• R2-inflation. This is also known as the Starobinsky
inflation, whose potential has the form

V (φ) =
3

32π
M2m2

Pl

(
1− e−

√
16π
3

φ
mPl

)2

, (2.6)

where the parameter M has dimension of mass,
whose value used for numerical calculations is set
to [7, 31]

M = 2.51× 10−6mPl, (2.7)

to be consistent with Planck 2015 data.

In this paper, we find that it is also convenient to use
the conformal time,

η =

∫ t

tend

dt′

a(t′)
, (2.8)

so that at the end of the inflation t = tend and at the
bounce tB, the corresponding conformal times are, re-
spectively, given by

ηend = 0, ηB =

∫ tB

tend

dt′

a(t′)
. (2.9)

Let us first study the background evolution numeri-
cally for different inflationary potentials. Eqs. (2.2) and
(2.3) can be solved numerically by imposing the initial

conditions for a(t), φ(t), and φ̇(t) at a specific point. A
convenient choice of such a point is the bounce t = tB,
at which we have the relations

1

2
φ̇2(tB) + V (φ(tB)) = ρc, and ȧ(tB) = 0. (2.10)

Thus, if we consider ρc as a given constant, using the first
equation we can write φ̇B in terms of ρc and φB , once a
potential V (φ) is specified. Therefore, now we only need
to specify a(tB) and φ(tB) as the initial conditions. For
the sake of simplicity, we further rescale a(t) by setting
a(tB) = 1 at the bounce. Then, the initial conditions
finally reduce to specifying the value of φ(tB) only. In

the following, we shall consider the two classes φ̇B > 0
and φ̇B < 0, separately.

We shall pay particular attention to two important is-
sues, namely how likely the occurrence of the slow-roll
inflation is, and whether enough e-folds can be gener-
ated during the slow-roll inflation. For these purposes,
let us first introduce the following background quantities:
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(1) The equation of state w(φ), which is defined by

w(φ) ≡ φ̇2/2− V (φ)

φ̇2/2 + V (φ)
. (2.11)

During the slow-roll inflation, w(φ) has to be very
close to −1.

(2) The slow-roll parameter εH , which is defined by the
derivative of the Hubble parameter,

εH ≡ −
Ḣ

H2
. (2.12)

During the slow-roll inflation, εH is required to be
very small, i.e., εH � 1.

(3) The e-folds of the slow-roll inflation Ninf, which is
defined as the e-folds between the onset of the slow-
roll inflation until the end of it,

Ninf ≡ ln

(
aend

ai

)
. (2.13)

In this paper, the onset of the inflation is defined
by the time when the universe begins to accelerate,
ä(ti) = 0, i.e., ä(t) first changes its sign right after
the bouncing phase. The end of the inflation is de-
fined by the time when the accelerating expansion
of the universe stops, that is, w(φend) = −1/3.

In the following, we shall study the background evo-
lution for each of the two potentials mentioned above
separately.

A. Quadratic potential

Let us begin by discussing the evolution of the back-
ground with the quadratic potential (i.e., Eq. (2.4) with
n = 2), which has already been discussed in detail in
Refs. [18, 56]. Here we summarize some main results.

As the initial conditions for the quadratic potential at
the bounce have the symmetry (φB, φ̇B)→ (−φB,−φ̇B),
in this subsection we only need to consider the case
φ̇B > 0, and the results can be easily extended to the
case φ̇B < 0 by using the above symmetry. We can fur-
ther divide the initial conditions into two subclasses, the
kinetic energy dominated and the potential energy dom-
inated cases at the quantum bounce.

The background evolution for a set of kinetic energy
dominated initial conditions is illustrated in Fig. 1, in
which the scale factor a(t), the equation of state w(φ),
and the slow-roll parameters εH are all obtained numer-
ically for the same set of the initial values of φB. It
is shown clearly that the desired slow-roll inflationary
phase for these initial conditions is achieved. During this
phase, the scale factor is exponentially growing (c.f. the
top panel of Fig. 1), and w(φ) is very close to −1 (c.f.

ϕ�=�����

ϕ�=��� ���

ϕ�=-� ���

����������

�� � ���
��� ���

���

�

��

���

����

���

���

�/���

�
(�
)/
�
�

ϕ�=�����

ϕ�=��� ���

ϕ�=-� ���

�� ��� ����
��� ��� ��� ���

-���

-���

���

���

���

�/���

�
(ϕ
)

ϕ�=�����

ϕ�=��� ���

ϕ�=-� ���

��� ��� ��� ���

���

���

���

���

���

�/���

ϵ
�

FIG. 1. Numerical solution for the quadratic potential with
kinetic energy dominated initial conditions at the bounce and
φ̇B > 0. Top panel: the evolution of the scale factor a(t)
for different choices of the initial conditions. The analytical
solution given by Eq. (3.4) is also shown in order to compare it
with the numerical ones. Middle panel: the equation of state
w(φ) for the same set of initial conditions. Bottom panel:
the slow-roll parameter εH during the transition and slow-roll
inflationary phases.

the middle panel of Fig. 1), while the parameter εH � 1
(c.f. the bottom panel of Fig. 1). For initial conditions

with φ̇B < 0, the replacement φB by −φB [so that now
φB/mPl ∈ (−12,−1.5, 9)] shall yield the same results.

From the curves of the equation of state w(φ) [the mid-
dle panel of Fig. 1)], we can see clearly that the evolu-
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FIG. 2. Comparison between the potential energy V (φ) and

the kinetic energy φ̇2/2 for the quadratic potential. The en-

ergy density ρ = φ̇2/2 + V (φ) is also shown. Top panel: for

the initial condition φB = 2mPl with φ̇B > 0. Bottom panel:
for the initial condition φB = 6mPl with φ̇B < 0.

tion of the universe before preheating can be divided into
three different phases, the bouncing, transition and slow-
roll inflation. During the bouncing phase, the kinetic
energy of the inflaton is dominant, and w(φ) ' +1. At
t/tPl ' 104, w(φ) suddenly decreases from w(φ) ' +1 to
w(φ) ' −1 at t/tPl ' 105. Comparing with the other two
phases, this transition phase is rather short. Afterward,
w(φ) remains w(φ) ' −1 until the end of the slow-roll
inflation. It is remarkable to note that the evolution of
the expansion factor a(t) during the bouncing phase is in-
dependent of the choices of the initial values of φB , and
can be well described by the analytical solution given by
Eq. (3.4) below.

In Fig. 2, the kinetic and potential energies, as well
as the energy density of the inflationary field φ, are illus-
trated for both φ̇B > 0 and φ̇B < 0. A remarkable fea-
ture is that the potential energy remains almost the same
during the three different phases, while the kinetic energy
starts at about the Planckian energy at the bounce and
then drops about 12-orders before the slow-roll inflation
starts, whereby the potential energy starts to dominate
the evolution of the universe.

The corresponding e-folds Ninf during the slow-roll in-
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N
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f

FIG. 3. The e-folds Ninf during the slow-roll inflationary
phase for different choices of the initial condition φB for the
case φ̇B > 0. The gray dotted line represents the minimum
value of e-folds (N∗ = 60), in order to be consistent with
observations.

flation as a function of φB is illustrated in Fig. 3. In
order to produce at least 60 e-folds during the slow-roll
inflation, Fig. 3 shows clearly that one has to require

φB ∈ (−φmax,−5.3mPl) ∪ (0.83mPl, φmax), (2.14)

for φ̇B > 0, where φmax =
√

2ρc/m. For the initial

conditions with φ̇B < 0, using the symmetry (φB, φ̇B)→
(−φB,−φ̇B), one gets the constraints

φB ∈ (−φmax,−0.83) ∪ (5.3mPl, φmax). (2.15)

The e-folds Ninf increases when the absolute values of
φB is increasing, which implies that a larger value of the
potential energy at the bounce can produce more e-folds
during the slow-roll inflation than a smaller one. Note
that similar results were already obtained in [18, 56].

When the potential energy V (φ) of the inflaton dom-
inates at the quantum bounce, the background evolu-
tion of the universe is illustrated in Fig. 4, from which
we can see that the universality of the evolution of a(t)
disappears. In fact, the bouncing phase does not ex-
ist any more, although the slow-roll inflationary phase
w(φ) ' −1 can be still achieved.

B. Power-law potential with n = 1/2

We continue considering the power-law potential in
this subsection but now focus on n = 1/2, for which the
value of the scalar field φ must be positive in order for the
potential to be real. Similar to the quadratic potential
case, we further divide the initial conditions into two sub-
classes, the kinetic energy dominated and the potential
energy dominated.

Let us first consider the case in which the evolution
is dominated at the bounce by the kinetic energy of the
inflaton. Then, the background evolutions for a set of ini-
tial conditions with φ̇B > 0 and φ̇B < 0 are illustrated,
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FIG. 4. Numerical solution for the quadratic potential with
the initial condition that the potential energy dominates the
evolution of the universe at the bounce for φ̇B > 0. Top
panel: the evolution of the scale factor a(t). The analytical
solution given by Eq. (3.4) is also illustrated. Middle panel:
the equation of state w(φ) for the same set of initial conditions
as those given in Top panel. Bottom panel: the slow-roll
parameter εH.

respectively, in Fig. 5 and Fig. 6, in which the scale fac-
tor a(t), the equation of state w(φ), and the slow-roll
parameters εH are all obtained numerically. To see the
universality of the evolution of the scale factor a(t), its
analytical solution of Eq. (3.4) is also illustrated. From
these figures, we find that: (a) similar to the quadratic
potential case, the evolution of the universe can be di-
vided into three different phases, the bouncing, transition
and slow-roll inflation. (b) During the bouncing phase,
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FIG. 5. Numerical solution for the power-law potential with
n = 1/2 and the kinetic energy dominates the evolution at

the bounce with φ̇B > 0. Top panel: the evolution of the
scale factor a(t). The analytical solution given in Eq. (3.4)
is also illustracted. Middle panel: the equation of state w(φ)
with the same set of the initial conditions as those given in
Top panel. Bottom panel: the slow-roll parameter εH.

the evolution of the scale factor a(t) is independent of

not only the initial conditions of φB and φ̇B , but also the
potential. It is well described by the analytical solution
given by Eq. (3.4) for the quadratic potential (n = 2) as
well as for the power-low potential with n = 1/2. In fact,
as we shall show below, this is also true for the Starobin-
sky potential. This is mainly because the amplitude of
the potential during the bouncing phase is very small in
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FIG. 6. Numerical solution for the power-law potential with
n = 1/2 and the kinetic energy dominates the evolution at the

bounce with φ̇B < 0. Top panel: the evolution of the scale
factor a(t). The analytical solution given in Eq. (3.4) is also
illustrated. Middle panel: the equation of state w(φ) for the
same set of initial conditions as those in Top panel. Bottom
panel: the slow-roll parameter εH.

comparison with the kinetic one, and its effects on the
evolution of the background during the bouncing phase
are negligible. This can be seen clearly from Fig. 2 for
the quadratic potential and Fig. 7 for the power-low po-
tential with n = 1/2.

The corresponding e-folds Ninf during the slow-roll in-
flation as a function of φB is illustrated in Fig. 8. For
the initial conditions with φ̇B > 0, the top panel of
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FIG. 7. Comparison between the potential energy V (φ) and

the kinetic energy φ̇2/2. The energy density ρ = φ̇2/2 +V (φ)
for the power law potential with n = 1/2 is also illustrated.

Top panel: for the initial condition φB = 4mPl and φ̇B > 0.
Bottom panel: for the initial condition φB = 9mPl and φ̇B <
0.

Fig. 8 shows that the desired slow-roll inflation can be
produced for any value of φB in the range of (0, φmax).

Here φmax =
4ρ2c
m7 . Moreover, the slow-roll inflation can

last long enough to produce more than 60 e-folds. For
the initial conditions with φ̇B < 0, in order to produce
at least 60 e-folds during the slow-roll inflationary phase,
the values of φB have to be restricted to

φB ∈ [3.7mPl, φmax]. (2.16)

Similar to the quadratic potential, the e-folds Ninf in-
creases when the value of φB is increasing.

For the evolution in which the potential energy domi-
nates at the quantum bounce, the background evolution
is presented in Fig. 9. Again, in this case the evolution
of the scale factor sensitively depends on the choice of
the initial conditions of φB and φ̇B . But, the slow-roll
inflation is still achieved, and similar to the quadratic
potential, the potential energy dominated initial condi-
tions can lead to a large number of e-folds Ninf during
the slow-roll inflation.
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FIG. 8. The e-folds Ninf during the slow-roll inflation as a
function of φB for the power-low potential with n = 1/2. Top

panel: for φ̇B > 0. Bottom panel: for φ̇B < 0.

C. Starobinsky potential

The behavior of the background evolution with the
Starobinsky potential has been studied in detail in
[30, 31]. Here we again summarize some of their main
results, by paying particular attention on the universal
properties.

The potential energy of the scalar field cannot exceed
the maximum value ρc, so that the value of φB can only
lie in the range of (φmin,+∞), where

φmin = −
√

3mPl

4
√
π

ln

(
1 +

√
32πρc√

3MmPl

)
. (2.17)

For the value of M given by Eq. (2.7) (see Ref. [31] for
details), we have φmin = −3.47mPl, and the potential
energy can dominate the evolution only in a very narrow
range φ ∈ [φmin,−3mPl). In order to identify what kind
of initial conditions can lead to sufficiently long slow-roll
inflation, we search all the parameter space of φ numeri-
cally.

The results of the background evolutions for the ki-
netic energy dominated initial conditions are illustrated
in Fig. 10 and Fig. 11, with φ̇B > 0 and φ̇B < 0, respec-
tively. In both figures, the scale factor a(t), the equation
of state w(φ), and the slow-roll parameters εH are all
obtained numerically for the same set of initial values of

ϕ�=��
�� ���

ϕ�=��
�� ���

ϕ�= ��
�� ���

����������

�� �� ��� ���� ���
���

����

���

����

����

����

�/���

�(
�)
/�
�

ϕ�=��
�� ���

ϕ�=��
�� ���

ϕ�= ��
�� ���

�� � ��� ���� ���

-���

-���

���

���

���

�/���

�
(ϕ
)

FIG. 9. Numerical solution for the potential energy dom-
inated initial conditions for the power law potential with
n = 1/2 and φ̇B > 0. Top panel: the evolution of the scale
factor a(t) including the analytical solution given by Eq. (3.4).
Middle panel: the equation of state w(φ). Bottom panel: the
slow-roll parameter εH .

φB but with different signs of φ̇B. Again, similar to the
last two cases, the evolutions of the background can be
divided into three different phases, the bouncing, transi-
tion and slow-roll inflation, as one can see clearly from the
behavior of the equation of state w(φ). Moreover, during
the bouncing phase the evolution of the scale factor a(t)
is universal: it does not depend on the initial values of
φB and φ̇B, neither on the form of potentials. As long
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FIG. 10. Numerical solution for the Starobinsky potential
with φ̇B > 0. Top panel: the evolution of the scale factor
a(t) and the analytical solutions given by Eq. (3.4). Middle
panel: the equation of state w(φ). Bottom panel: the slow-
roll parameter εH.

as the evolution is dominated by the kinetic energy of
the inflaton, the evolution of a(t) is well described by the
analytical solution (3.4) during the bouncing phase, no
matter whether the inflationary potential is the Starobin-
sky one or the power-low one!

From Fig. 12 it can be seen that the universality is
closely related to the fact that the kinetic energy of the
inflaton dominates the evolution of the background dur-
ing the whole bouncing phase, once it dominates at the
quantum bounce. Then, the kinetic energy suddenly de-
creases at t/tPl ' 105, and the potential energy starts to
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����������

�� ��� ��� ��� ���

�

���

���
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)
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FIG. 11. Numerical solution for the theory of Starobinsky
potential with φ̇B < 0. Top panel: the evolution of the scale
factor a(t) from both the numerical and analytical solutions.
Middle panel: the equation of state w(φ) for the same set of
initial conditions. Bottom panel: the slow-roll parameter εH
during the slow-roll inflation.

take over (w(φ) ' −1), whereafter the slow-roll inflation
starts, as one can see clearly from Figs. 10 and 11.

The initial conditions that lead to sufficiently long
slow-roll inflation are shown in Fig. 13, from which we
can see that, in order to produce at least 60 e-folds dur-
ing the slow-roll inflation, the values of φB have to be in
the range of

φB ∈ (−1.47mPl,+∞) (2.18)
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FIG. 12. Comparison between the potential energy V (φ) and

the kinetic energy φ̇2/2 for the theory of Starobinsky poten-
tial. Top panel: for the initial condition φB = 4mPl and
φ̇B > 0. Bottom panel: for the initial condition φB = 9mPl

and φ̇B < 0.

for φ̇B > 0, and

φB ∈ (3.61mPl,+∞) (2.19)

for φ̇B < 0. Within the above ranges, Fig. 13 shows that
the e-folds Ninf increases when the value of φB increases.

However, in contrast to the power-low potential cases,
now the potential energy dominated initial conditions
cannot lead to a slow-roll inflation, as can be seen clearly
from Fig. 14. This is consistent with what was obtained
in [30, 31].

D. Summary of the background evolution of the
FLRW universe

Before proceeding further, let us summarize the main
results obtained so far on the background evolutions of
the flat FLRW universe in the framework of the dressed
metric approach in LQC. The evolutions can be divided
into two classes, one is dominated by the kinetic energy
of the inflaton at the quantum bounce, and the other is
dominated by its potential energy at the bounce.

In the case where the evolution of the universe is dom-
inated by the potential energy of the inflaton, a slow-roll

-��� -��� -��� -��� -��� -���
�

���

���

���

���

ϕ�

�
��
�
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FIG. 13. The e-folds Ninf during the slow-roll inflation as a
function of φB. Top panel: for φ̇B > 0. Bottom panel: for
φ̇B < 0.

inflation phase may or may not be possible, depending on
the inflationary models. In particular, for the power-law
potential, it is always the case, but for the Starobinsky
potential the evolution never leads to a slow-roll infla-
tionary phase [30, 31].

In contrast, a slow-roll inflationary phase is always
achieved in the case where the evolution of the universe is
dominated initially by the kinetic energy of the inflaton
at the quantum bounce. In this case, the evolution of
the universe prior to preheating always experiences three
different phases, the bouncing, transition and slow-roll
inflation, as it can be seen clearly from the equation of
state w(φ) shown in Figs. 1, 5, 6, 10 and 11. To see this
more clearly, we collect these results together in Fig. 15.
Note that, instead of plotting the case of the power-law
potential with n = 1/2, we plotted out the case with
n = 1/3 in order to show further the universal properties
of the evolution.

It is also remarkable to note that during the bounc-
ing phase the evolution of the scale factor a(t) with the
kinetic energy dominated initial conditions is universal:
it is not only independent of the initial conditions φB
and φ̇B , but also independent of the inflationary poten-
tials, as shown explicitly in Figs. 1, 5, 6, 10 and 11. For
the sake of comparison, we collect these curves into a
single figure, Fig. 16. The main reason is that the po-
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FIG. 14. Numerical solution for the Starobinsky potential
with the potential energy dominated initial conditions. For
the sake of simplicity, we show here only for φ̇B > 0. Top
panel: the evolution of the scale factor a(t) and the analytical
solution of Eq. (3.4). Middle panel: the equation of state
w(φ). Bottom panel: the slow-roll parameter εH .

tential energy V (φ) remains very small and the kinetic
energy is completely dominant during this whole phase.
For example, for the potential V (φ) = V0φ

2, we find
that V (φ)/m4

Pl ∈ (2 × 10−11, 4.5 × 10−11); for n = 1/3,
V (φ)/m4

Pl ∈ (9×10−12, 1.2×10−11); and for the Starobin-
sky potential, we have V (φ)/m4

Pl ∈ (7 × 10−13, 7.3 ×
10−13). Clearly, in this whole phase, we can safely ig-
nore the effects of the potential and simply set it to zero,
V (φ) = 0. This explains why the evolution of a(t) is
independent of inflationary models during this bouncing

Power-law n=2,ϕB=1.2

Power-law n=1/3, ϕB=25

Starobinsky,ϕB=5

0.1 100 105

-1.0

-0.5

0.0

0.5

1.0

t/tPl

w
ϕ

FIG. 15. The equation of state wφ for the power-law and
Starobinsky potentials. We choose m = 1.3× 10−6 for n = 2,
m = 1.1 × 10−3 for n = 1/3, and M = 2.5 × 10−6 for the
Starobinsky potential. In all the cases we set mPl = 1.

Power-law n=2, ϕB=1.2

Power-law n=1/3, ϕB=25

Starobinsky ϕB=5

Anaytical

tB 1 100 104 106
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FIG. 16. The evolution of the scale factor a(t) in the case
where the evolution is dominated by the kinetic energy of
the inflaton at the quantum bounce for the power-law and
Starobinsky potentials. The parameters are chosen as the
same as those given in Fig. 15.

phase.

During the bouncing phase, the universe expands
about 4 e-folds, and the exact number depends on the
choices of initial conditions of φB and φ̇B , as well as on
the inflationary models (for details, see the analysis to be
carried out in the next section). Afterwards, the kinetic
energy drops dramatically (about 12 orders from its ini-
tial Planck scale), so the equation of state w(φ) suddenly
changes from w(φ) ' +1 to w(φ) ' −1, whereby the
slow-roll inflationary phase starts. The transition phase
is normally very short in comparison to the other two
phases.
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III. BACKGROUND EVOLUTION:
ANALYTICAL

As shown numerically in the last section, a slow-roll
inflationary phase can be achieved for any potential con-
sidered so far only for the case where the kinetic energy
of the inflaton dominates the evolution of the universe at
the quantum bounce. Therefore, in the rest of this paper
we shall mainly focus on this case. Then, the evolution
of the background can be divided into three phases, the
bouncing, transition, and slow-roll inflation. In the fol-
lowing we shall first find analytical solutions of the scale
factor in each of these three phases, and then connect
them smoothly across the boundaries of these phases.

A. The Bouncing Phase

Since the kinetic energy of the inflaton is dominating
during this phase, as shown in the last section, we can
safely ignore the effects of the potential term in the equa-
tions of motion, and find

H2 =
8π

3m2
Pl

1

2
φ̇2

(
1− φ̇2

2ρc

)
, (3.1)

φ̈+ 3Hφ̇ = 0. (3.2)

The above set of equations can be solved analytically.
In particular, from the Klein-Gordon equation (3.2) we
obtain

φ̇(t) = ±
√

2ρc

(
aB

a(t)

)3

. (3.3)

Substituting this into Eq. (3.1), we find

a(t) = aB

(
1 + γB

t2

t2Pl

)1/6

, (3.4)

where γB ≡ 24πρc
m4

Pl
' 30.9 is a dimensionless constant.

The relation between the conformal time η and the cos-
mic time t is then given by

η(t)− ηB = 2F1

(
1

6
,

1

2
,

3

2
;−γB

t2

t2Pl

)
t, (3.5)

which is a monotonically increasing function of t, where

2F1(a, b, c; z) is the hypergeometric function. With the
analytical solution for a(t), from Eq. (3.3) one finds

φ(t) = φB ±
mPl

2
√

3π
arcsinh

(
√
γB

t

tPl

)
, (3.6)

and

φ̇(t) = ±
√

2ρc

(1 + γBt2/t2Pl)
1/2

. (3.7)

In the top panels of Figs. 1, 5, 6, 10, and 11, we com-
pared the analytical solution of the scale factor given by

Eq. (3.4) with the numerical (exact) one, obtained by
various initial conditions and potentials, and found that
all the numerical solutions are universal, and can be de-
scribed well by the analytical solution.

Note that, in contrast to the kinetic energy dominated
bouncing phase, for the potential dominated bouncing,
as shown in Figs. 4, 9 and 14, the universality of the
evolution of a(t) is lost, and it sensitively depends on the

initial conditions specified by φB and φ̇B , as well as the
inflationary potential V (φ).

B. The Transition Phase

After the bouncing phase, the universe enters the tran-
sition phase. During this period, the kinetic energy of the
scalar field decreases dramatically, and the potential en-
ergy soon becomes dominant. A special point during this
process is the time tc, when the potential energy is equal
to the kinetic energy, i.e., w(φ(tc)) = 0. As shown by the
numerical results, the variations of both the e-folds δN
and the scalar field φ during the transition phase are al-
most negligible, in comparison to those obtained during
the bouncing and slow-roll inflationary phases. This im-
plies that the analytical solutions of the scale factor a(t)
and scalar field φ(t) given by, respectively, Eqs. (3.4) and
(3.6) for the bouncing phase can extend their validity
until t = tc. In particular, we have

φ̇c ' ±
√

2ρc

(1 + γBt2c/t
2
Pl)

1/2
, (3.8)

where φc ≡ φ(tc). On the other hand, since w(φ(tc)) = 0,
we have

φ̇c = ±
√

2V (φc). (3.9)

Then, combining the above two equations we can find
φc in terms of tc. To show this, let us first note the
examples in the second figures of Figs. 1, 5, 6, 10 and 11,
from which we find that tc/tPl ' 104 − 105 (locating at
points when wφ ∼ 0 at these figures), that is, in general
we have tPl/tc � 1. Then, to the leading order of tPl/tc,
we find that,

φc = φB ±
mPl

2
√

3π
arcsinh

(√
γB

tc
tPl

)
' φB ±

mPl

2
√

3π
ln

(
2

√
γB

tc
tPl

)
, (3.10)

φ̇c = ±

√
γBm4

Pl

12π(1 + γBt2c/t
2
Pl)

' ± m2
Pl√

12π

tPl

tc
. (3.11)

With these expressions, tc can be found explicitly for the
quadratic and Starobinsky potentials. In particular, for
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the quadratic potential from Eq. (3.9) we obtain

tc =


1

mW(2
√
γB

mPl
m e2

√
3πφB/mPl)

, φ̇c > 0,

−1

mW−1(−2
√
γB

mPl
m e−2

√
3πφB/mPl)

, φ̇c > 0,
(3.12)

where W (x) and W−1(x) are the Lambert W0 and W−1

functions, respectively. For the Starobinsky potential, we
find

tc =


2

3M +

e
− 2
√

3πφB
mPl


√36γBm2

Ple
4
√

3πφB
mPl −3M2+6

√
γBmPle

2
√

3πφB
mPl

2/3

+(3M2)1/3


2(9M)1/3

√
γBmPl

√36γBm2
Ple

4
√

3πφB
mPl −3M2+6

√
γBmPle

2
√

3πφB
mPl

1/3 , φ̇c > 0,

2
3M

[
1 +

(
4
√
γBmPl

3M

)2/3

e−
√

16π/3φB/mPl

]
, φ̇c < 0.

(3.13)

The detailed derivation of tc for the Starobinsky potential
is presented in Appendix A.

Given tc, we are now able to calculate a(tc), φ(tc) and

φ̇(tc), which are given by

ac = aB

(
1 + γB

t2c
t2Pl

)1/6

, (3.14)

φc = φB +
mPl

2
√

3π
ln

(
2
√
γB

tc
tPl

)
, (3.15)

and

φ̇c =
mmPl

2
√

3π
W
(

2
√
γB
mPl

m
e2
√

3πφB/mPl

)
. (3.16)

Then, we obtain,

Nc ≡ ln

(
ac
aB

)

=
1

6
ln

1 +
γBm

2
Pl

m2W
(

2
√
γB

mPl

m e2
√

3πφB/mPl

)2

 .
(3.17)

The numerical values of Nc, φc, and φ̇c derived from the
above expressions are presented in Table. I-IV for differ-
ent potentials and signs of φ̇c. From these tables it can be
seen that the upper bounds of errors of these quantities
between their numerical (exact) and analytical values are
less than one percent.

Right after the moment t = tc, the kinetic energy of the
scalar field is continuously decreasing, and the universe
remains decelerating until w = −1/3, at which point we
have

ä(t) = 0, φ̇2 = V (φ), (w(φ) = −1/3). (3.18)

Denoting this moment as ti, we can see that after tis
moment the universe enters an accelerating phase, ä(t) >
0. Right after ti, the slow-roll parameter |εH | is still large
and oscillating around its zero point, but soon becomes
very small, |εH | � 1, and then the slow-roll inflationary

phase starts. Therefore, practically we can consider the
moment t = ti as the beginning of the slow-roll inflation.
To estimate the values of φ(ti) and a(ti), we expand φ(t)
and a(t) at t = tc as

φ(t) = φc + tcφ̇c ln
t

tc
, (3.19)

a(t) = ac

(
1 + tcHc ln

t

tc

)
, (3.20)

where Hc can be calculated by using the Friedmann equa-
tion,

Hc =

√√√√8πG

3

(
φ̇2
c

2
+ V (φc)

)
. (3.21)

Note that in writing the above equation we had ignored
the term ρ(tc)/ρc in Eq. (2.2), which is of the order
ρ(tc)/ρc ' 10−12, as shown in the last section Then, at
t = ti we have

φi = φc + φ̇ctc ln
ti
tc
, (3.22)

φ̇i =
tc
ti
φ̇c. (3.23)

Given w = −1/3 at t = ti, we also have

φ̇2
i = V (φi). (3.24)

In general it is very difficult to solve above equations to
get ti for any given potential V (φ). However, we can
always expand V (φi) at φc as

V (φi) = V (φc) + V,φ(φc)tcφ̇c ln
ti
tc
, (3.25)

and Eq. (3.24) yields

φ̇c = ± ti
tc

(√
V (φc) +

tcφ̇c
2

Vφ(φc)√
V (φc)

ln
ti
tc

)
, (3.26)

where “±” correspond to φ̇c > 0 and φ̇c < 0, respectively.
Solving the above equations we find
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TABLE I. Numerical and analytical results with different values of φB for a quadratic potential and φ̇B > 0. We use units
mPl = 1 and aB = 1.

φB 1.2 3 6 8 10 15 30 100
φc (num.) 3.27857 5.01001 7.93546 9.89956 11.8701 16.8135 31.7103 101.52

φc in Eq. (3.15) 3.30919 5.04065 7.96612 9.93022 11.9007 16.8442 31.741 101.552
relative errors (%) 0.933958 0.611686 0.386329 0.309709 0.258305 0.182371 0.0966972 0.00315

106φ̇c (num.) 4.26214 6.513 10.3161 12.8694 15.4311 21.8575 41.2234 131.98

106φ̇c in Eq. (3.16) 4.30195 6.55285 10.356 12.9093 15.471 21.8974 41.2633 132.017
relative errors (%) 0.933974 0.611895 0.386329 0.309711 0.258344 0.18245 0.0967077 0.02803

Nc (num.) 4.08222 3.9431 3.79139 3.71822 3.65808 3.54258 3.33171 2.94444
Nc in Eq. (3.17) 4.08574 3.94546 3.79291 3.71945 3.65911 3.54331 3.3321 2.94445
relative error (%) 0.0862255 0.0598019 0.0399598 0.0328818 0.0280036 0.0205946 0.0117816 0.00034

φi (num.) 3.31229 5.04457 7.97064 9.93496 11.9056 16.8493 31.7463 101.557
φi in Eq. (3.29) 3.41687 5.15005 8.07676 10.0413 12.0121 16.956 31.8533 101.664

relative errors (%) 3.15746 2.09092 1.33138 1.07037 0.89445 0.633335 0.336934 0.105518
Ni (num.) 4.18948 4.05307 3.90334 3.83086 3.77119 3.65638 3.44632 3.05956

Ni in Eq. (3.30) 4.2849 4.1475 3.99703 3.9243 3.86445 3.74938 3.53901 3.15202
relative error (%) 2.27761 2.32974 2.40028 2.43898 2.47292 2.54341 2.6897 3.02191

TABLE II. Numerical and analytical results with different values of φB for a quadratic potential and φ̇B < 0. We use units
mPl = 1 and aB = 1.

φB 5.3 6 8 10 12 15 30 40
φc (num.) 3.21517 3.94896 6.01803 8.06595 10.1027 13.1457 28.2707 38.3202

φc in Eq. (3.15) 3.18455 3.91832 5.98738 8.03529 10.0721 13.1151 28.24 38.2896
relative errors (%) 0.952133 0.775671 0.509318 0.380079 0.303482 0.233247 0.108462 0.080017

106φ̇c (num.) −4.17972 −5.13364 −7.82344 −10.4857 −13.1336 −17.0895 −36.7519 −49.8163

106φ̇c in Eq. (3.16) −4.13992 −5.09382 −7.78359 −10.4459 −13.0937 −17.0496 −36.712 −49.7765
relative errors (%) 0.961286 0.781726 0.511909 0.381523 0.304391 0.233919 0.108579 0.0800772

Nc (num.) 4.1026 4.03269 3.89019 3.79158 3.71595 3.62766 3.37149 3.2699
Nc in Eq. (3.16) 4.09854 4.02942 3.88809 3.79003 3.71472 3.62672 3.37106 3.26958

relative errors (%) 0.0992386 0.0811183 0.0540453 0.0409425 0.0331148 0.0258796 0.0127129 0.00960974

φi (num.) 3.17574 3.91015 5.98013 8.02847 10.0655 13.1087 28.234 38.2837
φi in Eq. (3.29) 3.12504 3.85941 5.92935 7.97768 10.0147 13.0579 28.1832 38.2329

relative errors (%) 1.59655 1.29764 0.849147 0.632656 0.504679 0.387547 0.179945 0.132708
Ni (num.) 4.22812 4.1562 4.01083 3.91087 3.83446 3.74546 3.48806 3.38619

Ni in Eq. (3.30) 4.21348 4.14326 4.00032 3.9015 3.82575 3.73735 3.48099 3.37935
relative error (%) 0.346113 0.311432 0.261958 0.239621 0.227182 0.216663 0.202858 0.202082

ti =


2
√
V (φc)

Vφ(φc)W

[
2
√
V (φc)

Vφ(φc)tc
exp

(
2V (φc)

tcφ̇cVφ(φc)

)] , φ̇c > 0,

− 2
√
V (φc)

Vφ(φc)W−1

[
− 2
√
V (φc)

Vφ(φc)tc
exp

(
2V (φc)

tcφ̇cVφ(φc)

)] , φ̇c < 0.
(3.27)

Once ti is given, we can then calculate ai and φi, which
are given by

ai = ac

(
1 + tcHc ln

ti
tc

)
, (3.28)

φi = φc + tcφ̇c ln
ti
tc
. (3.29)

Then, we find that

Ni ≡ ln

(
ai
aB

)
= Nc + ln

(
1 + tcHc ln

ti
tc

)
. (3.30)

The numerical values of φi and Ni obtained from the
above expressions and the numerical ones are presented
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TABLE III. Numerical and analytical results with different values of φB for the Starobinsky potential and φ̇B > 0. We use
units mPl = 1 and aB = 1.

φB −1.47 −1.30 −1.1 −0.4 0.1 0.2 1 4
φc (num.) 0.928828 1.09732 1.29648 1.99585 2.49582 2.59582 3.39582 6.39582

φc in Eq. (3.15) 0.959718 1.1281 1.3272 2.02652 2.52649 2.62649 3.42648 6.42648
relative errors (%) 3.32573 2.80515 2.36924 1.53662 1.22872 1.18138 0.903066 0.47948

106φ̇c (num.) 0.599505 0.606327 0.610156 0.613022 0.613174 0.613181 0.613196 0.613196

106φ̇c in Eq. (3.16) 0.601132 0.60714 0.610515 0.613043 0.613176 0.613183 0.613196 0.613196
relative errors (%) 0.271265 0.134118 0.0588624 0.00335137 0.000448314 0.000301966 0.0000209013 4.22436 ∗ 10−6

Nc (num.) 4.73968 4.73738 4.73611 4.73516 4.73511 4.73511 4.73511 4.7351
Nc in Eq. (3.16) 4.74174 4.73843 4.73658 4.7352 4.73513 4.73513 4.73512 4.73512

relative errors (%) 0.0434831 0.0220978 0.00990369 0.000787333 0.000327793 0.000309995 0.000270085 0.000286131

φi (num.) 0.964351 1.13323 1.33261 2.03215 2.53212 2.63212 3.43212 6.43212
φi in Eq. (3.29) 1.01542 1.18417 1.38348 2.08296 2.58293 2.68293 3.48293 6.48293

relative errors (%) 5.29573 4.4954 3.8172 2.50043 2.00661 1.93038 1.48042 0.789942
Ni (num.) 4.85272 4.85166 4.85108 4.85066 4.85063 4.85063 4.85063 4.85063

Ni in Eq. (3.30) 4.8497 4.84707 4.8456 4.84451 4.84445 4.84445 4.84444 4.84444
relative error (%) 0.0622625 0.094637 0.113005 0.126749 0.127458 0.127488 0.127546 0.127531

TABLE IV. Numerical and analytical results with different values of φB for the Starobinsky potential and φ̇B < 0. We use
units mPl = 1 and aB = 1.

φB 3.61 3.7 3.8 3.9 4.1 4.3 5 8
φc (num.) 1.21293 1.30332 1.40361 1.50381 1.70402 1.90411 2.60418 5.60418

φc in Eq. (3.15) 1.18224 1.27263 1.37293 1.47313 1.67335 1.87344 2.57351 5.57352
relative errors (%) 2.53051 2.35464 2.18599 2.04003 1.79998 1.61067 1.1776 0.547214

106φ̇c (num.) −0.608918 −0.61024 −0.611236 −0.611895 −0.612623 −0.612943 −0.613182 −0.613195

106φ̇c in Eq. (3.16) −0.608407 −0.609875 −0.610986 −0.611727 −0.612547 −0.61291 −0.61318 −0.613196
relative errors (%) 0.0838578 0.0599164 0.0407656 0.0274843 0.0123245 0.00546677 0.000304264 0.000112727

Nc (num.) 4.73794 4.73706 4.7364 4.73596 4.73548 4.73527 4.73511 4.7351
Nc in Eq. (3.16) 4.73773 4.73693 4.73632 4.73592 4.73547 4.73527 4.73513 4.73512

relative errors (%) 0.00437058 0.0027701 0.00166291 0.000973656 0.000256096 0.0000465156 0.00026842 0.000294261

φi (num.) 1.17634 1.26682 1.36718 1.46742 1.66768 1.86779 2.56788 5.56788
φi in Eq. (3.29) 1.12548 1.21597 1.31634 1.41659 1.61686 1.81698 2.51707 5.51707

relative errors (%) 4.32418 4.01394 3.71831 3.46372 3.0472 2.72049 1.97868 0.912557
Ni (num.) 4.85439 4.85322 4.85234 4.85177 4.85113 4.85085 4.85064 4.85063

Ni in Eq. (3.30) 4.84764 4.84665 4.8459 4.84541 4.84487 4.84463 4.84445 4.84444
relative error (%) 0.138954 0.135372 0.13271 0.130961 0.129044 0.128204 0.127572 0.12753

in Table. I-IV for different potentials (quadratic and

Starobinsky potentials) and signs of φ̇c, from which it
can be seen that the upper bounds of errors of our ana-
lytical estimations for φi are less than 5.3%, while for Ni
they are less than 3.1%.

C. The Slow-Roll Inflationary Phase

After t = ti, the universe soon enters the slow-roll
inflationary phase. During it, the potential energy of
the scalar field is dominating. To ensure the slow-roll
evolution of the background, we also need to impose two
additional conditions,

(i)
1

2
φ̇2 � V (φ), (ii) |φ̈| � |Hφ̇|. (3.31)

Then, the Friedmann and Klein-Gordon equations can
be approximated by

H2 ' 8π

3m2
Pl

V (φ), (3.32)

3Hφ̇+
dV (φ)

dφ
' 0. (3.33)

From the Friedmann equation for a slowly varying V (φ),
we obtain,

a(t) ∝ eHinft, (3.34)

where Hinf denotes the Hubble parameter during the
slow-roll inflation. Thus, the e-folds Ninf can be calcu-
lated via the relation

Ninf ≡ ln

(
aend

ai

)
=

∫ tend

ti

H(t)dt



16

���������

�����-��� ���� �=�/�

�����������

|���/�|

|�(η)|

-�� -� � � ��

��-�

��-�

��-�

�

�/���

|�
(�
)
�
�
|�
��/
�
|

FIG. 17. Comparison between |U(η)| and |a′′/a| for different
inflationary potentials during the bouncing phase for the case
where kinetic energy of the inflaton dominates the evolutiion
of the background at the quantum bounce. In plotting these
curves, we assumed φ̇B > 0, and set φB = 3mPl, 5mPl, 2mPl,
respectively, for the quadratic potential, the power-law po-
tential with n = 1/2, and the Starobinsky potential.

=

∫ φend

φi

H

φ̇
dφ ' 8π

m2
Pl

∫ φi

φend

V

Vφ
dφ. (3.35)

IV. PRIMORDIAL SCALAR AND TENSOR
PERTURBATIONS

Let us now turn to consider the linear perturbations
of the background of the universe presented in the last
two sections. In general, there are mainly two differ-
ent approaches to implement cosmological perturbations
in the framework of LQC, the dressed metric [16–18]
and deformed algebra approaches [13, 49]. In both ap-
proaches, the primordial perturbations with quantum
gravitational effects have been studied (see, for example,
Refs. [18, 30, 31, 44, 45, 53, 55, 56, 61] and references
therein). In particular, the deformed algebra approach,
with some (reasonable) assumptions, seems already in
conflict with current observations [53, 54]. Therefore, in
this paper we shall focus ourselves only on the dressed
metric approach.

A. Cosmological perturbations in the quantum
FRLW background spacetime

In this subsection, we present a brief introduction of
the dressed metric approach to the cosmological scalar
and tensor perturbations in LQC. In the standard in-
flationary framework, both the cosmological scalar and
tensor perturbations are treated as quantum fields in the
classical FRLW background spacetime. In this treat-
ment, as the energy density of the background is well
below the Planck energy, the quantum gravitational ef-
fects of the background spacetime is negligible. However,
the above formalism breaks down when one extends the

standard inflationary phase to the pre-inflationary era
(near the bounce), in which case the quantum gravita-
tional effects on the background has to be taken into
account. For this reason, one has to study the quantum
cosmological perturbations on a quantum FRLW back-
ground spacetime.

The quantum theory of cosmological perturbations on
a quantum FRLW spacetime was developed in the con-
text of LQC in [16–18] based on the framework developed
in [15]. In this picture, the quantum cosmological per-
turbation fields propagate on a quantum geometry de-
scribed by the quantum state Ψ0(a, φ), which is free of
singularities. Moreover, as shown in [17], one can treat
the cosmological perturbation field as test fields if their
back-reaction on the FLRW spacetime is small. In this
case, the mathematical treatments can be very much sim-
plified.

In the test field approximation, the dynamics of the
cosmological perturbation fields on the quantum geom-
etry Ψ0(a, φ) is equivalent to that of quantum fields on
a quantum modified effective geometry described by a
dressed metric g̃ab [16–18],

g̃abdx
adxb = ã(−dη̃2 + dxidx

i), (4.2)

where the dressed scale factor ã and the dressed confor-
mal time η̃ are

ã =

(
〈Ĥ−1/2

0 â4Ĥ
−1/4
0 〉

〈Ĥ−1
0 〉

)1/4

, (4.3)

dη̃ = 〈Ĥ−1/2
0 〉(〈Ĥ−1/2

0 â4Ĥ
−1/2
0 〉)1/2dφ. (4.4)

Here Ĥ0 is the background Hamiltonian and the ex-
pectation values are taken with respect to the back-
ground quantum geometry state given by Ψ0(a, φ). In
this dressed metric, the equations of motion of the op-
erators representing scalar and tensor perturbations are
formally the same as the equations appearing in classical
spacetimes, which in Fourier space are

µ
(s)
k (η̃)′′ +

(
k2 − ã′′

ã
+ Ũ(η̃)

)
µ

(s)
k (η̃) = 0, (4.5)

and

µ
(t)
k (η̃)′′ +

(
k2 − ã′′

ã

)
µ

(t)
k (η̃) = 0, (4.6)

where µ
(s)
k (η̃) = zsRk with Rk denotes the cosmologi-

cal comoving curvature perturbation and zs(η̃) = ãφ̇/H,

µ
(t)
k (η̃) = ãhk denotes tensor perturbation, and

Ũ(η̃) =
〈Ĥ−1/2

0 â2Û(φ)â2Ĥ
−1/2
0 〉

〈Ĥ−1/2
0 â4Ĥ

−1/2
0 〉

. (4.7)

It should be note that although the effective equation
of motions (4.5) and (4.6) takes the same form as their
classical version, the background quantities in these equa-
tions, namely ã, Ũ , and η̃ are different from their clas-
sical counterparts. In the opposite, these quantities are
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now representing the quantum expectation values in the
background state Ψ0(a, φ). However, it is pointed out in
[18] that for sharply peaked background states Ψ0(a, φ),

the dressed effective quantities (like ã, η̃, and Ũ(Ũ)) are
very well approximated by their peaked values (a, η, and
U(φ)) from the deep Planck era up to the entire expand-
ing phase, where

U(φ) = a2
(
f2V (φ) + 2fV,φ(φ) + V,φφ(φ)

)
, (4.8)

with f ≡
√

24πGφ̇/
√
ρ. With the above approximation,

the equation of motion of the scalar perturbation be-
comes

µ
(s)
k (η)′′ +

(
k2 − a′′

a
+ U(η)

)
µ

(s)
k (η) = 0. (4.9)

During the bouncing phase, if the energy density of the
scalar field is dominated by its kinetic energy at the
quantum bounce, then it will dominate the evolution
of the background during the whole bouncing phase,
as shown in the last sections. In this case, it can be
shown that U(η) is negligible in comparison with a′′/a.
Fig. 17 shows the absolute values of U(η) and a′′/a for
different potentials, from which we can see clearly that
|U(η)/(a′′/a)| � 1 for any given potentials. Thus, the
U(η) term in Eq. (4.9) can be safely ignored during the
bouncing phase.

In the slow-roll inflationary phase, during which the
energy density is dropped down to about 10−12ρc, the
equation of motion reduces to the classical one obtained
in general relativity,

µ
(s)
k (η)′′ +

(
k2 − z′′s

zs

)
µ

(s)
k (η) = 0. (4.10)

For the tensor perturbations, similar to the scalar one,
the equation of motion becomes,

µ
(t)
k (η)′′ +

(
k2 − a′′

a

)
µ

(t)
k (η) = 0, (4.11)

which takes exactly the same form as that in classical
general relativity.

B. The characteristic length during the bouncing
phase

The evolutions of the scalar and tensor perturbations
depend on both the background and the wave-number
k of the perturbations. As we consider only the kinetic
energy dominated case, both scalar and tensor pertur-
bations follow the same equation of motion during the
bouncing phase (t/tPl ≤ 104). In this case, the term
a′′/a in Eq. (4.9) defines a characteristic radius λ as

λ2 =
a

a′′
, (4.12)

for a′′ > 0, which plays the same role as that of the
comoving Hubble radius LH defined as LH = (aH)−1.

However, for a better understanding, we find that, in-
stead of LH , it is more proper to use λ2, as shown
schematically in Fig. 18. For example, when the modes
are inside this radius (i.e., 1/k2 < λ2) the solution of
Eq. (4.9) is of the form,

µs,tk (η) ∼ e±i
∫ √

k2−a′′/adη. (4.13)

When the modes are outside of the radius (i.e., 1/k2 >
λ2), we have growing/decaying solutions,

µs,tk (η) ∼ e±
∫ √

a′′/a−k2dη. (4.14)

Here we would like to note that λ2 is only defined when
a′′ > 0, and right after the bounce a′′ changes its sign
from positive to negative. This defines two special points
t = ±ts as shown in Fig. 18, at which we have

a′′(ts) = 0. (4.15)

Another specific time is the transition point t = ti which
divides the decelerating and accelerating expansions of
the universe, i.e., at ti we have ä = 0. This point is also
considered as the starting point of the slow-roll inflation-
ary phase in this paper.

The term a′′/a has its maximum at the bounce,
a′′/a|t=tB = a2

BγBm
2
Pl/3, which defines a characteristic

energy scale,

kB ≡
√
a′′

a

∣∣∣∣∣
t=tB

=

√
γB

3
aBmPl, (4.16)

the blue solid curve shown in Fig. 18, so that we can
use it to classify different modes. Some modes with large
values of k2 � k2

B (the region below the low (orange)
dashed line in Fig. 18) are inside the radius all the time
until it exits the Hubble horizon during the slow-roll in-
flation. Some of the modes with smaller k2 � k2

B (the
region above the upper (green) dashed line in Fig. 18)
exit and re-enter the radius during the bouncing phase,
and will finally re-exit the Hubble radius during the slow-
roll inflation. Since the modes with k � kB are inside
the radius during the whole pre-inflationary phase, they
will have the same power-law spectra as those given in
GR. We are interested in the modes with k ' kB (the
shaded region in Fig. 18) as they are modes whose phys-
ical energy during the bouncing phase are of the Planck
scale kphy = k/aB ' mPl. However, the perturbations
for these modes have different behavior when they are
inside and outside the radius, which makes Eq. (4.9) very
difficult to solve analytically.

C. Perturbations During the Bouncing Phase

In general, we can consider the equation of motion
of primordial perturbations as a specific type of the
Schrödinger equation,

µ′′k(η) +
[
k2 − V (η)

]
µk(η) = 0, (4.17)
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Bouncing Slow-roll inflation
Transition

-ts tB ts ti tend

1

kB
2

0

Characteristic length λ2=a/a''

FIG. 18. Schematic plot of a/a′′, where a′′/a|t=ts = 0
with ts ∼ 0.2tPl, ä(ti) = 0 with ti being the starting time
of the inflationary phase, and during the slow-roll inflation,
a/a′′ = L2

H/2. In drawing this figure, we analytically extend
the solution of a(t) to a contracting phase t < tB.
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FIG. 19. Comparison between a′′/a and the PT potential
given in Eq. (4.20). We set aB = 1 and mPl = 1.

in which V (η) serves as an effective potential, and for the
scalar and tensor perturbations we have

V (η) =

{
a′′/a− U(η), scalar,

a′′/a, tensor.
(4.18)

However, as we mentioned above, we can safely ignore
the U(η) term in the scalar perturbation equation dur-
ing the bouncing phase. As a result, both scalar and
tensor perturbations obey the same equation with the
same effective potential a′′/a. So, in this subsection we
only need to consider one of them during the bouncing
phase.

In order to solve the perturbation equation, let us first
consider the analytical expression of a′′/a. From the an-
alytical equation of a(t) and the relation dt/a(t) = dη,
we find

V (η) ≡ a′′

a
= a2

B

γBm
2
Pl(3− γBt

2/t2Pl)

9(1 + γBt2/t2Pl)
5/3

. (4.19)

If we consider Eq. (4.17) as the Schrödinger equation,
the term V (η) serves as an effective barrier during the
bouncing phase. This potential can be approximated by
a PT potential for which we know the analytical solution,

VPT(η) =
V0

cosh2 α(η − ηB)
. (4.20)

Here V0 is the height of the effective potential and
−2V0α

2 is the curvature of the potential at its maximum.
Specifically for V (η) given by Eq. (4.19), one has

V0 =
a2

BγBm
2
Pl

3
= k2

B =
α2

6
. (4.21)

In Fig. 19, we plot the PT potential and the one given
by Eq. (4.19), from which we can see that VPT(η) mimics
V (η) very well.

To find the analytical solution of Eq. (4.17) with the
PT potential, we define two new variables x and Y(x) via
the relations,

x(η) =
1

1 + e−2
√

6kB(η−ηB)
, (4.22)

Y(x) = [x(1− x)]ik/(2
√

6kB)µk(η), (4.23)

and rewrite Eq. (4.17) as

x(1− x)
d2Y
dx2

+ [a3 − (a1 + a2 + 1)x]
dY
dx
− a1a2Y = 0,

(4.24)

where

a1 ≡
1

2

(
1 +

1√
3

)
− ik√

6 kB

,

a2 ≡
1

2

(
1− 1√

3

)
− ik√

6 kB

,

a3 ≡ 1− ik√
6 kB

. (4.25)

Eq. (4.24) is the standard hypergeometric equation, and
has the general solution,

µ
(PT)
k (η) = akx

ik/(2
√

6kB)(1− x)−ik/(2
√

6kB)

× 2F1(a1 − a3 + 1, a2 − a3 + 1, 2− a3, x)

+bk[x(1− x)]−ik/(2
√

6kB)
2F1(a1, a2, a3, x).

(4.26)

Here ak and bk are two independent integration con-
stants, and α =

√
6kB as given in Eq. (4.21). They are

uniquely determined by the initial conditions.

D. Perturbations During the Transition Phase

After the bouncing phase, the kinetic energy of the
scalar field φ keeps decreasing and the potential energy
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soon becomes dominant. As shown in Fig. 18, during this
transition phase we have

k2 �
∣∣∣∣a′′a − U(η)

∣∣∣∣ , k2 �
∣∣∣∣a′′a

∣∣∣∣ . (4.27)

Thus, the equation of motion for both scalar and tensor
perturbations can be described by

µ′′k(η) + k2µk(η) = 0, (4.28)

which has the general solutions,

µk(η) =
1√
2k

(
α̃ke

−ikη + β̃ke
ikη
)
, (4.29)

where α̃k and β̃k are two constants.
It is remarkable to note that during both, the bouncing

and transition phase, the scalar and tensor perturbations
obey the same equation of motion. As to be shown below,
this is no longer the case during the slow-roll inflationary
phase.

E. Perturbations During the Slow-Roll Inflationary
Phase

After the transition phase, the energy density dropped
down to about 10−12ρc and the universe enters the slow-
roll inflationary phase. During this period, the equations
of motion for both scalar and tensor perturbations are
relativistic, and can be described by

µ′′k(η) +

(
k2 −

ν2
s,t + 1/4

η2

)
µk(η) = 0, (4.30)

where νs,t(η) can be expressed in terms of the slow-roll
parameters and the subscripts “s, t” denote scalar and
tensor perturbations, respectively. For the scalar pertur-
bations, we have

ν2
s ' η2 z

′′
s (η)

zs(η)
+

1

4
, (4.31)

with zs = aφ̇/H, while for the tensor perturbations, we
have

ν2
t ' η2 z

′′
t (η)

zt(η)
+

1

4
, (4.32)

with zt = a(t). As both νs and νt are the slow-roll quan-
tities during the slow-roll inflation, we can take them
as constant approximately. Then, the approximate so-
lutions of Eq. (4.30) can be solved analytically and ex-
pressed as a linear combination of Hankel functions,

µ
(s,t)
k (η) '

√
−πη
2

[
αkH

(1)
νs,t(−kη) + βkH

(2)
νs,t(−kη)

]
,

(4.33)

where we already ignored the irrelevant phase factor
ei(1+2νs,t)π/4.

F. Matching the Solutions Together

Now we need to determine the coefficients αk and βk
by connecting the solutions (4.33), (4.29), and (4.26) to-
gether in their intermediate regions. For this purpose,
we first consider the limit η − ηB � 0 for the solution
(4.26), from which we find

x ∼ 1− e−2
√

6kB(η−ηB) → 1. (4.34)

Thus, we obtain

1− x ∼ e−2
√

6kB(η−ηB). (4.35)

Using the relations,

2F1(a1 − a3 + 1, a2 − a3 + 1, 2− a3, x)

= (1− x)a3−a1−a2
Γ(2− a3)Γ(a1 + a2 − a3)

Γ(a1 − a3 + 1)Γ(a2 − a3 + 1)
2F1(1− a1, 1− a2, 1 + a3 − a1 − a2, 1− x)

+
Γ(2− a3)Γ(a3 − a1 − a2)

Γ(1− a1)Γ(1− a2)
2F1(a1 − a3 + 1, a2 − a3 + 1, a1 + a2 − a3 + 1, 1− x), (4.36)

and

2F1(a1, a2, a3, x) = (1− x)a3−a1−a2
Γ(a3)Γ(a1 + a2 − a3)

Γ(a1)Γ(a2)
2F1(a3 − a1, a3 − a2, a3 − a1 − a2 + 1, 1− x)

+
Γ(a3)Γ(a3 − a1 − a2)

Γ(a3 − a1)Γ(a3 − a1)
2F1(a1, a2, a1 + a2 + 1− a3, 1− x), (4.37)

we find

µPT
k (η) =

[
ak

Γ(2− a3)Γ(a1 + a2 − a3)

Γ(a1 − a3 + 1)Γ(a2 − a3 + 1)
+ bk

Γ(a3)Γ(a1 + a2 − a3)

Γ(a1)Γ(a2)

]
e−ik(η−ηB)
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+

[
ak

Γ(2− a3)Γ(a3 − a1 − a2)

Γ(1− a1)Γ(1− a2)
+ bk

Γ(a3)Γ(a3 − a1 − a2)

Γ(a3 − a1)Γ(a3 − a2)

]
eik(η−ηB). (4.38)

Comparing Eqs. (4.38) and (4.29), we obtain,

α̃k√
2k

=

[
ak

Γ(2− a3)Γ(a1 + a2 − a3)

Γ(a1 − a3 + 1)Γ(a2 − a3 + 1)

+ bk
Γ(a3)Γ(a1 + a2 − a3)

Γ(a1)Γ(a2)

]
eikηB , (4.39)

β̃k√
2k

=

[
ak

Γ(2− a3)Γ(a3 − a1 − a2)

Γ(1− a1)Γ(1− a2)

+ bk
Γ(a3)Γ(a3 − a1 − a2)

Γ(a3 − a1)Γ(a3 − a2)

]
e−ikηB . (4.40)

Then, considering the solution (4.33) in the limit
−kη →∞, we obtain

µk(η) =
αk√
2k
e−ikη +

βk√
2k
eikη. (4.41)

Comparing it with Eq. (4.29), we find

αk√
2k

=
α̃k√
2k

=

[
ak

Γ(2− a3)Γ(a1 + a2 − a3)

Γ(a1 − a3 + 1)Γ(a2 − a3 + 1)

+ bk
Γ(a3)Γ(a1 + a2 − a3)

Γ(a1)Γ(a2)

]
eikηB , (4.42)

βk√
2k

=
β̃k√
2k

=

[
ak

Γ(2− a3)Γ(a3 − a1 − a2)

Γ(1− a1)Γ(1− a2)

+ bk
Γ(a3)Γ(a3 − a1 − a2)

Γ(a3 − a1)Γ(a3 − a2)

]
e−ikηB . (4.43)

Now several comments are in order:

• Since ai’s depend on k/kB via Eq. (4.25), we can
see that αk and βk in general also depend on k/kB .

• In general relativity, the BD vacuum is normally
imposed [4],

αGR
k = 1, βGR

k = 0, (4.44)

whenever the mode is inside the Hubble horizon.
When the effects of the pre-inflationary dynamics
are taken into account, in general this is no longer
the case. In fact, both of them now depend on the
constants ak and bk, which are closely related to
the pre-inflationary dynamics during the bouncing
phase.

• The quantity |βk|2 represents the rate of particle
creation due to the expansion of the universe. In
general βk does not vanish, that is, particles are
generically created due to the expansion of the uni-
verse during the bouncing and transition phases.

• Eqs. (4.42) and (4.43) are valid for both scalar and
tensor perturbations. Thus, if the same initial con-
ditions are chosen for these two types of perturba-
tions, the effects of pre-inflationary dynamics are
also the same. This is a unique characteristic of
the dressed metric approach.

Now with the analytical solution of Eq. (4.33) and αk
and βk given by Eqs. (4.42) and (4.43), let us turn to com-
pute the power spectra for both scalar and tensor per-
turbations. For the scalar perturbations, the primordial
power spectrum can be calculated in the limit −kη → 0+,
and is given by,

PR(k) ≡ k3

4π2
|Rk(η)|2 =

k3

4π2

∣∣∣∣∣µ(s)
k (η)

zs(η)

∣∣∣∣∣
2

. (4.45)

Using the asymptotic form of the Hankel functions,

lim
−kη→0+

H(1,2)
ν (−kη) ' ∓ i

π
Γ(ν)

(
−kη

2

)−ν
, (4.46)

where +, − correspond to H
(2)
ν (−kη) and H

(1)
ν (−kη)

respectively, we find

µ
(s)
k (η)→ i

√
−η
2π

(αk + βk)Γ(νs)

(
−kη

2

)−νs
. (4.47)

Then, the power spectrum reads

PR(k) = |αk + βk|2PGR
R (k), (4.48)

where

PGR
R (k) ≡ k2

4π3

(
H

aφ̇

)2

Γ2(νs)

(
−kη

2

)1−2νs

, (4.49)

is the standard inflationary scalar spectrum for a single
scalar field inflationary model in GR, and αk and βk are
given by Eqs. (4.42) and (4.43) in terms of ak and bk.
The latter are determined by the initial conditions.

Note that Eq. (4.48) is the most general expression for
the scalar power spectrum in the framework of the dressed
metric approach in LQC. Once the initial conditions are
specified, it will be uniquely determined.

In addition, as mentioned above, αk and βk depend
on the comoving wavenumber k via the coefficients ai’s
through Eq. (4.25), so the power spectrum PR(k) is
generically scale-dependent, due to the quantum gravita-
tional effects. Clearly, to be consistent with observations
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[6, 7], which show that the power spectrum is almost
scale-invariant, the dependence cannot be strong. Oth-
erwise, it will be inconsistent with observations. Such a
dependence clearly is closely related to the initial con-
ditions, which will be considered in detail in the next
section. For some given initial conditions, observations
will impose strong constraints on the effects of pre-
inflationary dynamics, which will provide an excellent
opportunity to test observationally the theory of LQC, or
more precisely, the ideas of the dressed metric approach.

For the tensor perturbation, the primordial power

spectrum of h = 2MPlµ
(t)
k (η)/a(η) can be calculated in

the limit −kη → 0+ via the expression,

Ph ≡
k3

4π2
|h(k)|2 =

k3

4π2

∣∣∣∣∣ 2µ
(t)
k (η)

MPla(η)

∣∣∣∣∣
2

. (4.50)

Similar to the scalar case, using the asymptotic form of
the Hankel functions given by Eq. (4.33) in the limit
−kη → 0+, we find

µ
(t)
k (η)→ i

√
−η
2π

(αk + βk)Γ(νt)

(
−kη

2

)−νt
. (4.51)

Then, the tensor spectrum reads

Ph(k) = |αk + βk|2 PGR
h (k), (4.52)

where

PGR
h (k) ≡ k2

π3M2
Pl

1

a2
Γ2(νt)

(
−kη

2

)1−2νt

, (4.53)

and αk and βk are given by Eqs. (4.42) and (4.43), which
are generically scale-dependent, as mentioned above.
Once the initial conditions are given, they are uniquely
determined. Eq. (4.52) is the most general expression
for the tensor power spectrum in the framework of the
dressed metric approach in LQC, and in general depends
on the comoving wavenumber k, due to the quantum grav-
itational effects during the pre-inflationary phases.

It should be noted that the corrections due to the
quantum gravitational effects of the pre-inflationary dy-
namics are all proportional to the factor |αk + βk|2 for
both scalar and tensor perturbations, as one can see from
Eqs. (4.48) and (4.52). As mentioned above, if the same
initial conditions for these two types of perturbations are
imposed, for example, all of therm are in the Bunch-
Davies vacuum initially, this factor will be the same.
Then, the ratio r between the scalar and tensor pertur-
bations remains the same as that given in GR!

V. INITIAL CONDITIONS AND EFFECTS OF
PRE-INFLATIONARY DYNAMICS IN

PRIMORDIAL SPECTRA

In the last section, the linear cosmological perturba-
tions were calculated in each of the three phases prior
to preheating, i.e., the bouncing, transition and slow-rill

inflationary phases [cf. Figs. 15 and 18], and analyt-
ical expressions of the mode functions for both scalar
and tensor perturbations were found, whereby the cor-
responding power spectra were computed and given ex-
plicitly by Eqs. (4.48) and (4.52). The mode functions
found in these three different phases were also matched
together and finally given by Eqs. (4.42) and (4.43), in
which the parameters αk and βk of the mode functions in
the slow-roll inflationary phase are expressed as functions
of ak and bk of the mode functions in the bouncing phase.
The latter will be determined by initial conditions. So, in
this section, we shall first consider the initial conditions,
and then we study the effects of the quantum bounce
and its subsequent pre-inflationary dynamics during the
bouncing and transition phase on the power spectra.

A. Initial Conditions of Primordial Perturbations

In the framework of LQC, various sets of initial con-
ditions have been investigated [38, 55, 62–69]. However,
this is a subtle issue, because in general there is not a
preferred initial state for a quantum field in arbitrarily
curved space-times. If the universe is sufficiently spatially
flat and evolves sufficiently slowly so that the character-
istic scale for a perturbation mode is much larger than
its wavelength, there is an approximate definition of the
initial state: the Bunch-Davies vacuum state. This is
also the common initial state adopted in general relativ-
ity at the beginning of the slow-roll inflation where all the
relevant perturbation modes are well inside the Hubble
horizon [4].

However, in the pre-inflationary phases, especially near
the bounce, the background geometry is far from the
slow-roll inflationary phase. In particular, for the per-
turbations during the bouncing phase, as illustrated
in Fig. 18, their wavelengths could be larger, equal,
or smaller than the corresponding characteristic scale.
Thus, it is in general impossible to assume that the
universe is in the Bunch-Davies vacuum at the bounce
[62, 66, 67]. In this subsection, we consider only two of
them that have been frequently used in the literature,
and show that they essentially lead to the same results.

1. The BD Vacuum in Contracting Phase

As illustrated in Fig. 18, during the contracting phase
right before the bounce, all the relevant perturbation
modes are well inside the characteristic length λ. Then,
we can naturally choose the BD vacuum state as the ini-
tial conditions of the perturbations of both scalar and
tensor [65],

µinitial
k (η) ∼ 1√

2k
e−ikη, (5.1)

with which we can uniquely determine the coefficients ak
and bk appearing in Eqs. (4.42) and (4.43). Considering
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FIG. 20. Comparison between the analytical solution given
by Eq. (4.26) and the numerical solution with the initial con-
dition (5.4), aB = 1, and mPl = 1.

that during the contracting phase, we have η − ηB � 0,
we find

x ∼ e2
√

6kB(η−ηB) → 0, (5.2)

and thus

xik/(2
√

6kB)(1− x)−ik/(2
√

6kB) ∼ eik(η−ηB),

(x(1− x))−ik/(2
√

6kB) ∼ e−ik(η−ηB). (5.3)

Inserting the above expressions into Eq. (4.26), and then
comparing it with the above initial condition, we find
that,

ak = 0, bk =
eikηB√

2k
. (5.4)

Note that in the above calculations we used the fact

2F1(c1, c2, c2, 0) = 1. Fig. 20 shows our analytical solu-
tion together with the numerical one, from which we can
see that they match extremely well during the bouncing
phase.

Here we would like to note that most of the modes
(with k2 � |a′′/a|) are well inside the characteristic
length λ during the contracting phase. As a result,
µPT
k (η) of Eq. (4.26) with the initial condition of the BD

vacuum state imposed at the contracting phase are valid
for all these modes, even if some of them (with k < kB)
are outside the characteristic length λ at the bounce.

2. The Fourth-order Adiabatic Vacuum State at the Bounce

Another moment of the initial conditions is right at
the bounce [38]. However, as we mentioned above, at
this point the curvature of the background geometry has
significant effects on the perturbation modes. This is
different from the case of the quasi-de-Sitter spacetime or
the contracting phase right before the bounce. Therefore,

it is not possible to impose the BD vacuum state at the
bounce.

Instead, one can impose two conditions, the adiabatic
regularization and maximal symmetry of the perturbation
modes, with which it was shown [16–18, 66] that the state
of the perturbations at the bounce can be constructed as
the fourth-order adiabatic vacuum. According to [18], the
fourth-order adiabatic vacuum of Eq. (4.17) with V (η)
being given by Eq. (4.18) can be written in the form

µk(η) =
1√

2W
(4)
k (η)

e−i
∫ ηW (4)

k (η̃)dη̃, (5.5)

where

W
(4)
k (η) =

i=4∑
i=1

Wi, (5.6)

with

W0 = k, (5.7)

W1 = 0, (5.8)

W2 = − 1

2k

a′′

a
, (5.9)

W3 = 0, (5.10)

W4 =
1

8k3

(
2a′′a′2

a3
− 2a′′2

a2
− 2a′a′′′

a2
+
a′′′′

a

)
.

(5.11)

The above state is constructed from the generalized
WKB approximate solution of the fourth-order and can
also be regarded as an expansion in the number of deriva-
tives of the scale factor. The leading order in the expan-
sion corresponds to the positive energy solution in the
Minkowski space and the rest of the terms are higher-
order contributions that vanish at different rates when
a/k → 0 [17, 18].

Here we would like to note that, as also pointed out in
[17, 18], 2. This implies that the fourth-order adiabatic
vacuum state constructed above can only apply to the
modes with k ≥ kB, here kB represents the maximum
value of

√
a′′/a during the bouncing phase [c.f. Fig. 18].

For the modes with k < kB, as pointed out in [17, 18],
ambiguity remains in constructing the vacuum state at
the bounce.

Imposing the fourth-order adiabatic vacuum at the
bounce for modes with k ≥ kB, we find

W2 = −a
2
BγB

6kt2Pl

= −k
2
B

2k
, (5.12)

W4 = −13a4
Bγ

2
B

72k3t4Pl

= −13k4
B

8k3
. (5.13)

Using these results and expanding the fourth-order adia-
batic vacuum state up to the order of O(k4

B/k
4), we find

µk(ηB) =
1√
2k

[
1− 1

4

k2
B

k2
− 29

32

k4
B

k4
+O

(
k6

B

k6

)]
.
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(5.14)

Now we are in the position to determine the coefficients
ak and bk appearing in Eq. (4.26) by connecting the
initial state with the analytical solution (4.26) at the
bounce, at which we find

µ(PT)(ηB) = ak 2F1

(
1−
√

3

2
,

1 +
√

3

2
, 1 +

ik√
6kB

,
1

2

)

+bk
√
π4

ik
2
√

6kB Γ

(
1− ik√

6kB

)
×Γ−1

(
3

4
−
√

3

12
− ik

2
√

6kB

)

×Γ−1

(
3

4
+

√
3

12
− ik

2
√

6kB

)
. (5.15)

Then, using the asymptotic expansions of the Gamma
function appearing in Eq. (B.13) of Appendix B, we
arrive at the same results of Eq. (5.4). Note that in
obtaining the above result, we had simply ignored an
irrelevant phase difference between (5.15) and (5.14).

Thus, we conclude that the solution of Eq. (4.26) start-
ing with a BD vacuum state at the contracting phase will
reduce to the one obtained by imposing the fourth-order
adiabatic vacuum state at the bounce. This is easy to un-
derstand. In fact, if one applies the fourth-order adiabatic
vacuum state to Eq. (5.5) at the contracting phase, one
can see that the perturbation modes also satisfy the BD
vacuum condition there. However, it must be noted that
the perturbations with the BD vacuum initial condition
and the fourth-order adiabatic vacuum one are the same
only for the modes with k ≥ kB. For other modes, the
fourth-order adiabatic vacuum state at the bounce is not
applicable, while the BD vacuum initial state can be still
applied to these modes but in the contracting phase.

B. Effects of the Pre-inflationary Dynamics on
Primordial Power Spectra

With the coefficients ak and bk being given by
Eq. (5.4), the coefficients αk and βk appearing in
Eqs. (4.42) and (4.43) can be casted in the form

αk =
Γ(a3)Γ(a1 + a2 − a3)

Γ(a1)Γ(a2)
e2ikηB ,

βk =
Γ(a3)Γ(a3 − a1 − a2)

Γ(a3 − a1)Γ(a3 − a2)
. (5.16)

Then, we find that

|αk + βk|2 = 1 +

[
1 + cos

(
π√
3

)]
csch2

(
πk√
6kB

)
+
√

2

√
cosh

(
2πk√
6kB

)
+ cos

(
π√
3

)
cos

(
π

2
√

3

)

× csch2

(
πk√
6kB

)
cos (2kηB + ϕk) , (5.17)

where

ϕk ≡ arctan

{
Im[Γ(a1)Γ(a2)Γ2(a3 − a1 − a2)]

Re[Γ(a1)Γ(a2)Γ2(a3 − a1 − a2)]

}
.

(5.18)

In Fig. 21 we display the ratio between the power spec-
trum with the bouncing effects and the standard one
given in GR, as a function of the wave-number k. We
would like to note that Fig. 21 is consistent with the one
presented in [16, 18] [c.f. Fig. 1 in [16] and Fig. 5 in
[18]]. While the results obtained in [16, 18] are purely
numerical, here our results are derived directly from the
analytical expression given by Eq. (5.17).

It is remarkable to note that the pre-inflationary dy-
namics leads to oscillations in the power spectra of both
scalar and tensor perturbations, and the amplitudes of
these oscillations are independent of the slow-roll infla-
tionary models, although they depend explicitly on k. The
amplitudes of these oscillations, which essentially depend
on the parameter α[=

√
6kB], represent a characteristic

feature of LQC. In Eq. (5.17), the last two terms, propor-

tional to csch2(πk/(
√

6kB)), decrease exponentially as k
increases. In other words, the power spectra get reduced
exponentially for k/kB � 1. However, as k/kB ' 0,
they get enhanced as (kB/k)2. Hence, the quantum grav-
itational effects are important at the scales k . kB.
These modes, as we mentioned above, are essentially
the ones whose energies are of the Planck scale at the
bounce. They are initially inside the radius defined by
λ =

√
|a/a′′|, and then leave and re-enter it during the

bouncing phase. The modes with k � kB are always
inside the radius before they leave the Hubble horizon
during the slow-roll inflationary phase, thus finally they
lead to a standard power-law spectrum.

Note that the solution with the PT potential is not
a good approximation for the modes with a very small
wavenumber (i.e., k2 � |a′′/a| during the whole bouncing
phase). For these modes, if we ignore the k2 term in
Eq. (4.9), the solution can be approximated by

µk(η) ' aka(η) + bk/a(η), (k2 � |a′′/a|), (5.19)

which has been considered in detail in [44]. However,
these modes are beyond our interest because they are
still outside of our currently observable universe.

VI. OBSERVATIONAL CONSTRAINTS ON THE
EFFECTS OF THE PRE-INFLATIONARY

DYNAMICS

The quantum corrections (5.17) are k-dependent and
expected to be constrained by observations. In the fol-
lowing, we perform the CMB likelihood analysis by using
the Planck 2015 data [7], with the MCMC code developed
in [70]. In order to carry out the CosmoMC code let us
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TABLE V. Best fit values of the six cosmological parameters and the constraints on kB/a0 and r at 95% C.L for different
cosmological models from different data combinations.

Parameter Planck TT+lowP Planck TT,TE,EE+lowP Planck TT+lowP+r Planck TT,TE,EE+lowP+r
Ωbh

2 0.022355 0.022193 0.022322 0.022064
Ωch

2 0.11893 0.12000 0.11908 0.12071
100θMC 1.04115 1.04065 1.04080 1.04057

τ 0.077835 0.089272 0.081955 0.085259
ln(1010As) 3.088 3.112 3.101 3.104

ns 0.9662 0.9647 0.9658 0.9607
kB/a0 < 3.12× 10−4 < 3.05× 10−4 < 3.14× 10−4 < 3.14× 10−4

r −−−− −−− < 0.113 < 0.107
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FIG. 21. Ratio between the power spectrum with the effects
of the pre-inflationary dynamics and the standard power-law
spectrum obtained in GR. The dotted blue curve denotes the
analytical power spectrum given by Eq. (5.17), which obvi-
ously oscillates rapidly with k. The solid red curve shows the
average of the oscillating spectrum.

parameterize the primordial scalar and tensor spectra de-
scribed in Eqs. (4.48) and (4.52) as,

PR(k) = (1 + δPl)PGR
R (k), (6.1)

Ph(k) = (1 + δPl)PGR
h (k), (6.2)

where δPl is given by 2

δPl =

[
1 + cos

(
π√
3

)]
csch2

(
πk√
6kB

)
, (6.3)

and the standard power-law spectra PGR
R (k) and PGR

h (k)
are parameterized in their standard forms,

PGR
R = As

(
k

k∗

)ns−1+···

,

PGR
h = At

(
k

k∗

)nt+···
. (6.4)

2 The oscillating terms in Eq. (5.17) oscillate very fast and have
negligible effects when integrating them out with time. So, they
can be safely ignored observationally. In addition, in [57] δPl was
denoted by δP .

Here As(At) is the scalar (tensor) amplitude, ns(nt) the
scalar (tensor) spectral index, and k∗ = 0.05Mpc−1 de-
notes the pivot scale.

We assume the flat cold dark matter model with the ef-
fective number of neutrinos Neff = 3.046 and fix the total
neutrino mass Σmν = 0.06eV . Let us first consider the
scalar spectrum and vary the following seven parameters,

(Ωbh
2,Ωch

2, τ,Θs, ns, As, kB/a0), (6.5)

where Ωbh
2 and Ωch

2 are, respectively, the baryon and
cold dark matter densities, τ is the optical depth to reion-
ization, Θs is the ratio (multiplied by 100) of the sound
horizon at decoupling to the angular diameter distance
to the last scattering surface. In addition, we have one
more parameter kB/a0, which is related to the effects of
the pre-inflationary dynamics. For the six cosmological
parameters (Ωbh

2,Ωch
2, τ,Θs, ns, As), we use the same

prior ranges as in [71], while for the parameter kB/a0,
which is related to the bouncing effects, we set the prior
range as kB/a0 ∈ [10−8, 0.002]Mpc−1.

In particular, we use the high-l CMB temperature
power spectrum (TT) and the polarization data (TT,
TE, EE) respectively with low-l polarization data (lowP)
from Planck2015. In Table. V, we list the best fit val-
ues of the six cosmological parameters and constraints
on kB/a0 and r at 95% C.L. for different cosmological
models from different data combinations. Marginalizing
other parameters, we find that kB/a0 is constrained by
the Planck TT+lowP (Planck TT,TE,EE+lowP) to [cf.
the left panel of Fig. 22],

kB

a0
< 3.12× 10−4Mpc−1(3.05× 10−4), at 95% C.L.

(6.6)

When we add one more parameter, the tensor-to-scalar
ratio r = A(t)/A(s), to include the tensor spectrum, the
Planck TT+lowP (Planck TT,TE,EE+lowP) data yields
[cf. the right panel of Fig. 22],

kB

a0
< 3.14× 10−4Mpc−1(3.14× 10−4), at 95% C.L.

(6.7)

These upper bounds shows that the observational con-
straints on the pre-inflationary dynamics effects are ro-
bust to different data sets (without/with polarization
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data included) and whether the tensor spectrum is in-
cluded.

In Fig. 23 we show constraints on various pairs of the
cosmological parameters and their respective probabil-
ity distributions for the CosmoMC runs described above
and for the results from Planck 2015 data. We notice
that the colored curves which represent the probability
distributions of kB/a0 are almost perfectly superposed,
which strongly indicates again that the constraints on
kB derived in this paper are robust.

Using the relation

kB

a0
=

√
γB

3

aB

a0
mPl =

√
γB

3
mPle

−Ntot , (6.8)

where Ntot ≡ ln (a0/aB) denotes the total e-folds from
the quantum bounce until today, the above upper bounds
on kB/a0 can be translated into the constraint on the
total e-folds Ntot as

Ntot > 141 (95%C.L.), (6.9)

where we have taken ρc = 0.41m4
Pl. This in turn leads to

a lower bound δN∗ > Ntot − N∗ − Nafter, where δN∗ ≡
ln (a∗/aB), N∗ ≡ ln (aend/a∗), and Nafter ≡ ln (a0/aend),
where a∗ denotes the expansion factor at the moment
that our current horizon exited the Hubble horizon dur-
ing the slow-roll inflation, and aend is that at the end of
inflation. Taking N∗ ' 60 ' Nafter, we find

δN∗ & 21. (6.10)

It should be noted that our above results are based on
the hypothesis: (1) The universe is filled with a scalar
field with an inflationary potential V (φ) and the back-
ground evolution is dominated by the kinetic energy of
the inflaton at the quantum bounce. (2) We impose the
BD vacuum initial conditions at the contracting phase
right before the quantum bounce.

VII. SUMMARY AND OURLOOK

In this paper, we have provided a detailed and sys-
tematical study of the evolutions of the background and
linear scalar and tensor perturbations of a flat FLRW
universe in the framework of the dressed metric approach
of LQC [16–18]. A remarkable feature is the replacement
of the big bang singularity by a quantum bounce [16–18].
In addition, slow-roll inflation is an attractor in the phase
space of the initial conditions and most likely to happen
with generic initial conditions [55, 56].

To study the universal properties of the pre-
inflationary dynamics in the framework of the dressed
metric approach, in this paper we have mainly focused
on models, the dynamics of which is dominated by the
kinetic energy of the inflaton at the quantum bounce, i.e.,

1

2
φ̇2(tB)� V (φ(tB)), (7.1)

as these models are the only ones found so far that in-
evitably lead to the slow-roll inflation in the late stage of
the evolution of the universe [30, 31].

A. Evolution of the Background

For all the models that satisfy the initial condition
(7.1), we have found the following for the evolution of
the background of the flat FLRW universe:

• The evolution of the universe prior to the preheat-
ing can be divided universally into three different
phases (see Fig. 15):

bouncing, transition, and slow-roll inflation.

During the bouncing phase, the evolution of the
universe is dominated by the kinetic energy of the
inflaton, so the equation of state w(φ) defined by
Eq. (2.11) remains practically w(φ) ' 1 during this
whole phase. However, at t/tPl ' 104 ∼ 105, the
kinetic energy suddenly decreases, and w(φ) soon
decreases from w(φ) ' 1 to w(φ) ' −1. This tran-
sition phase is very short in comparison with the
other two phases. Afterwards, the universe enters
an accelerating phase, where ä > 0. At the begin-
ning of this phase, the absolute value of the slow-
roll parameter εH defined by Eq. (2.12) is still large,
but soon settles down to zero, whereby the slow-roll
inflation starts, as shown explicitly in Section II.

• During the bouncing phase, the evolutions of the
expansion factor a(t) and the scalar field φ are
independent of the inflationary potential, and can
well be approximated by the analytical solutions of
Eq. (3.4) and (3.6), respectively.

The main reason is that the potential V (φ) remains
very small and the kinetic energy is dominant dur-
ing this whole phase. For example, for the poten-
tial V (φ) = V0φ

2, we find that V (φ)/m4
Pl ∈ (2 ×

10−11, 4.5× 10−11); for n = 1/3, V (φ)/m4
Pl ∈ (9×

10−12, 1.2× 10−11); and for the Starobinsky poten-
tial, we have V (φ)/m4

Pl ∈ (7× 10−13, 7.3× 10−13).
Clearly, in this whole phase, we can safely ignore
the effects of the potential and set it to zero, such
that the solution Eq.(3.4) for a(t) immediately fol-
lows.

• During the transition phase, the expansion factor
a(t) and scalar field φ(t) can be well approximated

analytically by Eq. (3.19) with ac, φc and φ̇c being
given by Eqs. (3.14) -(3.16), where tc is the moment
when the kinetic energy is equal to the potential en-
ergy, so that w(φc) = 0 [cf. Fig. 15]. Then, the
e-folds Nc[≡ ln(ac/aB)] can be calculated analyti-
cally by Eq. (3.17).

From the moment tc until the beginning of the slow-
roll inflationary phase, denoted by the time ti, the
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FIG. 22. The CMB likelihood analysis in the (kB , ns)-plane with a robust fitting ns ' 0.965. The observational constraints on
(ns, kB/Mpc−1) are obtained at 68% and 95% C.L. by using Planck 2015 TT+lowP and TT, TE, EE+lowP data. The upper
panel only considers the scalar spectrum, while the bottom one includes the non-zero tensor contributions. Note that we set
a0 = 1.
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FIG. 23. Observational constraints on various pairs of parameters (68% and 95% contour lines) and the probability distributions
for ln(1010As), ns, kB/a0, and r by using Planck 2015 data. Note that in the numerical simulations we set a0 = 1.
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e-fold that the universe expands is ∆N ≡ Ni−Nc =
ln(ai/ac) ' 0.1, as shown both numerically and
analytically in Tables I-IV, where Ni is analytically
given by Eq. (3.30).

Once the universe enters the slow-roll inflationary
phase, the e-folds Ninf[≡ ln(aend/ai)] from ti to the
end of the inflation can be calculated by the stan-
dard formula given by Eq. (3.35).

• To be complete, in Section II we have also stud-
ied the evolution of the universe in which the to-
tal energy of the inflaton is dominated by the po-
tential energy V (φ) at the quantum bounce, that

is, 1
2 φ̇

2(tB) � V (φ(tB)), and in particular, for the
Starobinsky potential we have shown that slow-roll
inflation never happens, which is consistent with
the results obtained in [30, 31].

As noticed previously, the modified Friedmann equa-
tion (2.2) and the Klein-Gordon equation (2.3) are also
derived in the deformed algebra approach [19–24]. So, all
the results obtained for the evolution of the background
in this paper are equally applicable to this approach. In
fact, they are applicable to any theory of gravity in which
the background is governed by Eqs.(2.2) and (2.3).

B. Perturbations and Observational Constraints

With the above understanding of the background evo-
lution of the universe, we then turned to study the linear
scalar and tensor perturbations during the above men-
tioned three different phases, and mainly found the fol-
lowing:

• During the bouncing and transition phases, the po-
tential term U(φ) given by Eq. (4.7) for the scalar
perturbations of Eq. (4.9) is always negligible in
comparison with the term a′′/a, as shown in Fig.
17. As a result, during these two phases, the scalar
and tensor perturbations satisfy the same equation
of motion, given by Eq. (4.11).

• During the bouncing phase, the effective potential
V (η)[≡ a′′/a] given by Eq. (4.19) (for both scalar
and tensor perturbations) can be well approxi-
mated by the PT potential (4.20), for which an

analytical expression for the mode functions µ
(s,t)
k

exists, and is given by Eq. (4.26).

During the transition and slow-roll inflation-

ary phases, the mode functions µ
(s,t)
k are also

known analytically, and are given, respectively, by
Eqs. (4.29) and (4.33).

• After matching the three solutions for the mode

functions µ
(s,t)
k together, the coefficients αk and βk

of the mode functions during the slow-roll infla-
tionary phase are given by Eqs. (4.42) and (4.43) in

terms of ak and bk of the mode functions appearing
in Eq. (4.26), which describe the pre-inflationary
dynamics of the mode functions during the bounc-
ing phase, and will be determined by the initial
conditions. In general, it is expected that βk 6= 0 at
the onset of the slow-roll inflation, that is, particles
are generically created due to the pre-inflationary
dynamics. Note that in GR we normally impose
the BD vacuum,

(
αGR
k , βGR

k

)
= (1, 0), at the onset

of inflation [4].

• It is exactly because the particle creations dur-
ing the pre-inflationary phases that the Bogoliubov
coefficients αk and βk in general depend on the
wavenumber k via Eqs. (4.42), (4.43) and (4.25). It
further implies that the power spectra, both scalar
and tensor, will in general depend on k, that is, the
power spectra are no longer scale-invariant, which
provides a great opportunity to test the theory ob-
servationally. Such a dependence can be seen from
Fig. 18, from which we can see that at the quan-
tum bounce the modes with k > kB are all within
the Hubble horizon, while the ones with k < kB are
all outside the Hubble horizon. Depending on the
ratio k/kB , the modes have different dynamics dur-
ing the pre-inflationary phases, although after the
moment ts all the modes will be inside the horizon.
Certainly, this dependence cannot be very strong.
Otherwise, it will be in conflict with current ob-
servations that show that the spectra are almost
scale-invariant [6, 7].

• To determine ak and bk, we have considered two
commonly used sets of initial conditions in Section
V. One is the BD vacuum state imposed in the
contracting phase [65], right prior to the bounce,
as shown in Fig. 18. For t < −ts, all the modes
are within the Hubble horizon, so the BD vacuum
state is a natural choice in this case. The other set
is imposed at the bounce [38, 64]. As shown above,
at this moment, some modes are inside the Hubble
horizon, and some are outside of it. So, in this case
the BD vacuum state is no longer a choice. Instead,
we imposed the fourth-order adiabatic vacuum state
[16–18]. Within the validity of the latter, however,
we found that they essentially lead to the same re-
sults of the parameters ak and bk, all of which are
given by Eq. (5.4).

• It is remarkable to note that the parameters ak and
bk for both scalar and tensor perturbations are all
given by Eq. (5.4). Then, the power spectra of the
scalar and tensor perturbations are proportional to
the same factor |αk +βk|2, as shown by Eqs. (4.48)
and (4.52). As a result, the ratio r between the
tensor and scalar perturbations is the same as that
given in GR.

• In addition, after the effects of the pre-inflationary
dynamics are taken into account, as shown above,
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the power spectra now are generically scale-
dependent. Therefore, by measuring the k-
dependence of the power spectra, one can di-
rectly test LQC. Fitting the power spectra to the
Planck 2015 temperature (TT+lowP) and polariza-
tion (TT,TE,EE+lowP) data, we found the total e-
folds from the quantum bounce to the current time
must be,

Ntot = ln

(
a0

aB

)
> 141, (at95%C.L.), (7.2)

that is, to be consistent with observations, the uni-
verse must have expanded at least 132 e-folds from
the bounce until now, so the scale-dependent fea-
tures are well diluted. Otherwise, it will be in con-
flict with current observations.

C. Outlook

With the above main results, we would like to note the
following. The first issue is about the initial conditions
of the perturbations. As we explained in Sec. V, this
is a subtle issue during the bouncing phase because in
general there is not a preferred initial state for a quan-
tum field in arbitrarily curved spacetime [62, 66, 67] (see
also [68, 69] for a recent discussion). The general solu-
tion of the Bogoliubov coefficients αk and βk given by
Eqs. (4.42) and (4.43) are not limited to any specific set
of the initial conditions. Instead, they are given in terms
of the two parameters ak and bk, which are uniquely de-
termined by initial conditions. So, in principle one can
use these expressions to study the effects of the initial
conditions. Recently, Ashterkar and Gupt [55, 68] have
proposed other new initial states, some of which can ex-
plain the observed scalar spectrum suppression at large
scales and thus fits the observations better than the stan-
dard power-law spectrum. It is also interesting to con-
sider these initial conditions and its observational impli-
cations analytically, by using the formulas presented in
this paper.

Since inflationary models with a single scalar field have
been extensively studied in the framework of GR [4, 8], it
would be very interesting to see if the effects of the pre-
inflationary dynamics in other inflationary models could
lead to any observational signatures, in addition to the
ones found so far. In the standard inflationary models,
one in general imposes the initial conditions for the back-
ground evolution simply by hand at the onset of the slow-
roll inflation, while in LQC, as we discussed in Sec. II,
the initial values of φB and φ̇B have to be chosen so that
H(tB) = 0 at the bounce, which imposes one additional
constraint, so that only one degree of freedom for the
scalar field is left. Moreover, as shown in Sec. VI, cur-
rent observations already impose constraints on the total
e-folds Ntot, so the k-dependent features are well diluted,
in order to be consistent with current observations. Be-
cause the analytical formulas developed in this paper for

both background and perturbation evolutions are gen-
eral, it would be very interesting to apply them to other
inflationary models in order to see if further constraints
can be obtained.

In addition, when we considered the Starobinsky po-
tential, our analysis was limited to the Einstein frame. In
the framework of GR, it was shown that they are equiv-
alent. However, whether this is also true or not in LQC
is still an open question. According to [72], in general
the Einstein and Jordan frames are no longer equivalent
at the quantum level. Thus, it is interesting to explore
the Starobinsky model and its corresponding cosmologi-
cal perturbations directly in the Jordan frame, based on
the quantization proposed in [73, 74].

Yet, once particles are created, it is usually expected
that non-Gaussianity will also raise [4, 8]. Therefore, it
would be very interesting to study non-Gaussianity of
primordial scalar and tensor perturbations by using the
analytical solutions presented in this paper. Numerical
studies were already carried out in [75].

We hope to return to the above issues soon in other
occasions.
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Appendix A: Derivation of tc for the Starobinsky
potential

For the Starobinsky potential, the time tc is deter-
mined by the equation

1

2
φ̇2
c =

3

32π
M2M2

Pl

(
1− e−

√
2/3φc/MPl

)2

, (A.1)

from which we find,

±φ̇c =

√
3

16π
MmPl

(
1− e−

√
16π/3φc/mPl

)
. (A.2)

In the following we divide our discussions into two parts:
φ̇c > 0 and φ̇c < 0.
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1. φ̇c > 0

In this case, we find

φ̇c =

√
3

16π
MmPl

(
1− e−

√
16π/3φc/mPl

)
, (A.3)

where we only consider the case φc > 0, so the right-
hand side of the above equation is always positive 3, and
φc and φ̇c are given, respectively, by

φc ' φB +
mPl

2
√

3π
ln

(
2
√
γB

tc
tPl

)
, (A.4)

φ̇c '
m2

Pl√
12π

tPl

tc
. (A.5)

Since

exp

(
−
√

16π

3

φc
mPl

)

= 2−2/3

(
√
γB

tc
tPl

)−2/3

e−
√

16π/3φB/mPl ,

(A.6)

we have

m2
Pl√

12π

tPl

tc
=

√
3

16π
MmPl

[
1− 2−2/3

(
√
γB

tc
tPl

)−2/3

e−
√

16π/3φB/mPl

]
. (A.7)

Solving this equation we obtain

tc =
2

3M
+

e
− 2
√

3πφB
mPl

[(√
36γBm2

Ple
4
√

3πφB
mPl − 3M2 + 6

√
γBmPle

2
√

3πφB
mPl

)2/3

+ (3M2)1/3

]

2(9M)1/3√γBmPl

(√
36γBm2

Ple
4
√

3πφB
mPl − 3M2 + 6

√
γBmPle

2
√

3πφB
mPl

)1/3
. (A.8)

We can immediately see that, when φB becomes large,
the above expression approaches

tc →
2

3M
, (A.9)

which implies that when the value of φB increases, tc will
approach a value that only depends on the parameter M .

2. φ̇c < 0

In this case, we find

φ̇c = −
√

3

16π
MmPl

(
1− e−

√
16π/3φc/mPl

)
,(A.10)

where we also only consider the case φc > 0, thus the
right-hand side of the above equation is always negative
and φc and φ̇c are given, respectively, by

φc ' φB −
mPl

2
√

3π
ln

(
2
√
γB

tc
tPl

)
, (A.11)

φ̇c ' −
m2

Pl√
12π

tPl

tc
. (A.12)

Since

exp

(
−
√

16π

3

φc
mPl

)

= 22/3

(
√
γB

tc
tPl

)2/3

e−
√

16π/3φB/mPl ,

(A.13)

we have

m2
Pl√

12π

tPl

tc
=

√
3

16π
MmPl

[
1− 22/3

(
√
γB

tc
tPl

)2/3

e−
√

16π/3φB/mPl

]
. (A.14)

3 Even when we consider a negative value of φB as initial input,
the scalar field will finally reach a positive value at t = tc.
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As we have shown numerically, in order to produce suf-
ficient e-folds (≥ 60) during the slow-roll inflation, we
have to require φB ∈ (3.61,+∞). This leads to a sim-
plification in the above equation, as the second terms in
the square bracket can be neglected in comparison to the
first term. Then, we find

tc '
2

3M
, (A.15)

which implies that when the value of φB increases, tc will
approach a value that only depends on the parameter
M . In order to determine the weak dependence of tc
on φB, we can consider a small perturbation δtc. Then,
considering only the first-order expansion in terms of δtc,
we find

δtc =
2

3M

(
4
√
γBmPl

3M

)2/3

e−
√

16π/3φB/mPl .(A.16)

Thus, finally we obtain

tc =
2

3M

[
1 +

(
4
√
γBmPl

3M

)2/3

e−
√

16π/3φB/mPl

]
.

(A.17)

Appendix B: Asymptotic expansion of |Γ(x+ iy)| for
a large |y|

In this appendix we are going to derive the asymptotic
behavior of the Gamma function |Γ(x + iy)| when |y| is
large. Note that the following asymptotic formula of the
Γ(z) function at infinity (i.e., |z| → +∞) is known,

Γ(z) =
√

2πe−zzz−1/2

( ∞∑
k=0

gk
zk

)
, (B.1)

where

g0 = 1, g1 =
1

12
, g2 =

1

288
,

g3 = − 139

51840
, g4 = − 571

2488320
, · · · . (B.2)

Now we are going to use the above formula to calculate
Γ(x+ iy). For this purpose, let us first consider the term
e−z with z = x+ iy, which yields

e−z = e−xe−iy. (B.3)

Turning to the term zz−1/2, we have

(x+ iy)x−1/2+iy, (B.4)

and so we find,

(x− 1/2 + iy) ln (x+ iy)

= (x− 1/2 + iy) ln
[√

x2 + y2 (cos θ + i sin θ)
]

= (x− 1/2 + iy)
(

ln
√
x2 + y2 + iθ

)
= (x− 1/2) ln

√
x2 + y2 − θy

+ i
[
θ(x− 1/2) + y ln

√
x2 + y2

]
, (B.5)

where θ ≡ arccos x√
x2+y2

. Thus, we finally get

zz−1/2 = (x2 + y2)
1
2 (x− 1

2 )e−θy

×ei
[
θ(x−1/2)+y ln

√
x2+y2

]
. (B.6)

We need to expand the above expression about y → ∞
up to the fourth-order. First, for (x2 + y2)

x
2−

1
4 , we find

(x2 + y2)
x
2−

1
4

= yx−
1
2

(
1 +

x2

y2

) x
2−

1
4

= yx−
1
2

[
1 +

(
x3

2
− x2

4

)
1

y2

+

(
5x4

32
− 3x5

8
+
x6

8

)
1

y4
+O

(
1

y4

)]
.

(B.7)

Considering e−θy, first we have

θ = arccos

(
x√

x2 + y2

)

= arccos

x
y

1√
1 + x2

y2


=
π

2
− x

y
+
x3

3

1

y3
− x5

5

1

y5
+O

(
1

y7

)
, (B.8)

thus, we get

−θy = −πy
2

+ x− x3

3

1

y2
+
x5

5

1

y4
+O

(
1

y6

)
, (B.9)

and

e−θy = e−
πy
2 +xe

− x33
1
y2

' e−
πy
2 +x

[
1− x3

3

1

y2
+

(
x5

5
+
x6

18

)
1

y4

]
.

(B.10)

For the terms in the bracket of Eq. (B.1), if we only
consider the first four terms in the expansion 4, we have
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k=0

gk
zk

)
= g0 +

g1

z
+
g2

z2
+
g3

z3
+
g4

z4
+O

(
1

z5

)

=

[
g2

0 +
g2

1 − 2g0g2 + 2g0g1x

x2 + y2
+
g2

2 − 2g1g3 + 2g0g4 + 2(g1g2 − 3g0g3)x+ 4g0g2x
2

(x2 + y2)2

+
g2

3 − 2g2g4 + 2(g2g3 − 3g1g4)x+ 4(g1g3 − 4g0g4)x2 + 8g0g3x
3

(x2 + y2)3

+
g2

4 + 2g3g4x+ 4g2g4x
2 + 8g1g4x

3 + 16g0g4x
4

(x2 + y2)4

]1/2

eiϑ (B.11)

'

{
g0 +

(
g2

1

2g0
− g2 + g1x

)
1

y2

+

[
g1x

3 +

(
g2

1

g0
− 3g2

)
x2 +

(
g3

1

2g2
0

− 2g1g2

g0
+ 3g3

)
x+

g4
1

8g3
0

− g2
1g2

2g2
0

+
g1g3

g0
− g4

]
1

y4
+O

(
1

y6

)}
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Finally, combining all the above expansions together, we find
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