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We point out a unique mechanism to produce the relic abundance for glueball dark matter from
a gauged SU(N)d hidden sector which is bridged to the standard model sector through heavy
vectorlike quarks colored under gauge interactions from both sides. A necessary ingredient of our
assumption is that the vectorlike quarks, produced either thermally or non-thermally, are abundant
enough to dominate the universe for some time in the early universe. They later undergo dark color
confinement and form unstable vectorlike-quarkonium states which annihilate decay and reheat the
visible and dark sectors. The ratio of entropy dumped into two sectors and the final energy budget
in the dark glueballs is only determined by low energy parameters, including the intrinsic scale of
the dark SU(N)d, Λd, and number of dark colors, Nd, but depend weakly on parameters in the
ultraviolet such as the vectorlike quark mass or the initial condition. We call this a cosmic selection
rule for the glueball dark matter relic density.

I. INTRODUCTION

A candidate for dark matter (DM) in the universe is
the lightest glueball from a dark sector with pure SU(N)d
gauge symmetry. Such a setup offers a natural explana-
tion of the DM mass scale through dimensional trans-
mutation. It is also extremely simple; the glueball DM
properties only depend on two parameters, the SU(N)d
intrinsic scale, Λd, and the number of dark colors, Nd [1].
Moreover, the interactions of glueball DM could offer a
series of phenomena allowing it to be examined in cos-
mology and astrophysics. They include self-interacting
and warm DM scenarios [1–4], indirect detection signa-
tures when the glueball DM decays into the standard
model (SM) particles [5], and even the formation of com-
pact stars as the source of gravitational waves [6, 7]. For
the above reasons, such a DM candidate has been often
revisited in recent years.

Among the many aspects of glueball DM, its produc-
tion mechanism in the early universe has been less ex-
plored. Due to gauge invariance, higher dimensional op-
erators are needed for such a dark sector to communicate
with the SM sector. This implies that the abundance
of glueball DM, if ever related to that of the SM sec-
tor, would be highly sensitive to the detailed high scale
physics, or the initial conditions [8–12]. One could re-
sort to ultraviolet (UV) complete models by introducing
new particles and portals between the dark and SM sec-
tors. However, if the universe had been hot enough and a
thermal equilibrium established between the two sectors,
glueball DM that is akin to us, if much heavier than neu-
trinos, would be easily overproduced because they are in
the form of dark gluons and relativistic when decoupling
from the SM sector.
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In this paper, we point out a novel glueball DM pro-
duction mechanism. We first consider the case where
the dark and SM sectors thermalize in the early universe
through a pair of vectorlike quarks colored under both the
dark SU(N)d and the strong interaction SU(3)c. The
key to produce correct relic abundance of the glueball
DM is to have the vectorlike quarks first freeze out and
later become the dominant species in the energy den-
sity of the universe. Such a matter dominated phase
will end when the vectorlike quarks in the universe is
diluted enough and dark confinement happens binding
them into composite states neutral under SU(N)d. For
large enough Nd, the most formed composite states are
the vectorlike-quarkonium (which we will call Q-onium)
states made of Q and Q̄. They are unstable and will
quickly decay away, via QQ̄ annihilation, into quarks,
gluons, and dark gluons. This will produce entropy and
reheat the two sectors according to the Q-onium branch-
ing ratios, afterwards the standard cosmology in the SM
sector could begin. Interestingly, we find that the result-
ing glueball DM relic abundance is mainly determined
by low energy parameters including the intrinsic scale Λd
and number of dark colors Nd, but depends very weakly
on detailed high scale physics such as the vectorlike quark
mass. More generally, we also argue that, as long as
the vectorlike quark dominated universe occurs, the very
same conclusion would still hold for non-thermal initial
conditions.

II. MODEL

We consider a dark sector, which at low energy scale is
made of a pure SU(N)d gauge symmetry, with an intrin-
sic scale Λd where the dark gauge coupling goes strong.
The DM candidate within this setup is the lightest dark
glueball state, φ, which is assumed to be a scalar parti-
cle based on existing lattice studies [13–16]. If this is a
completely isolated dark sector, φ could serve as the DM
candidate. With a mass below 107 GeV, it can be cosmo-



logically stable against decaying into two gravitons [1].
Because of gauge invariance, it is possible for such a

dark sector to talk to the SM particles through higher
dimensional operators, which could be generated by in-
tegrating out the high scale physics that bridges the two
sectors. In this work, our goal is to establish a theo-
retical connection between the relic abundance of such a
glueball DM, and that of the SM sector, which is insen-
sitive to the cutoff scale of any higher dimensional oper-
ators. To this end, we resort to a UV complete model by
introducing vectorlike quarks Q, Q̄ which play the role
as bridge particles. Their quantum numbers under the
SU(3)c × SU(2)L × U(1)Y × SU(N)d gauge groups are

Q ∈ (3, 2, 1/6, Nd), Q̄ ∈ (3̄, 2̄,−1/6, N̄d) . (1)

With Q, Q̄ and their gauge interactions, it is possible to
build a thermal contact between the two sectors in the
early universe, when the temperature is high enough.

The presence of the vectorlike quarks opens a new de-
cay channel of the glueball DM φ into two photons at
loop level. The decay rate is [5]

Γφ→γγ =
α2
dα

2(N2
d − 1)m2

φF
2
φ

2934πm8
Q

. (2)

The factor Fφ ≡ 〈0| 12G
aµν
d Gadµν |φ〉 and Gd is the field

strength of the dark gluon field. Through naive dimen-
sional analysis and largeNd power counting, Fφ ∼ Ndm3

φ.
Hereafter, we will focus dark glueball mass below GeV
scale, thus the hadronic decay channels are much less
important. The dark gauge coupling αd = g2

d/(4π) is
evaluated at the mass scale mQ,

αd(mQ) =
6π

11Nd log(m2
Q/Λ

2
d)

. (3)

Requiring the above radiative decay lifetime to satisfy
the present constraints on gamma-ray or X-ray injection
from DM decay τφ→γγ & 1028 sec, we find a lower bound
on the mass of Q,

mQ & 340 GeV ×
( mφ

1 MeV

) 9
8

(
Nd
102

) 1
4

, (4)

where we have made the approximation that the loga-
rithmic factor in αd is of order 1.

III. COSMOLOGY

For the early universe cosmology, we choose to first
describe a thermal history. We will generalize the picture
to be discussed to non-thermal initial conditions by the
end of the next section.

To begin with, we consider the temperature of the uni-
verse high enough and the SM sector, dark sector and the
vectorlike quarks are all in thermal equilibrium with each

other. This can be achieved through the annihilation pro-
cessesQQ̄↔ gg, qq̄, g′g′, where g (q) is the gluon (quark)
in the SM sector and g′ is the gluon in the dark SU(N)d
sector. The condition for keeping all the particles in ther-
mal equilibrium is, ΓQQ̄→f = nQ

〈
(σvrel)QQ̄→f

〉
& H, for

all channels f = {gg, qq̄, g′g′}, where 〈〉 means thermal
averaging of the cross section times relative velocity. For
T > mQ, we have ΓQQ̄→f ∝ T and the Hubble parameter

H ∝ T 2. Therefore, to ensure thermalization happens, it
is sufficient to require the above condition to be satisfied
around T ∼ mQ.

As the temperature falls below mQ, the vectorlike
quarks will freeze out by annihilating into both sectors.
The relevant S-wave cross sections, when T � mQ, take
the forms

(σvrel)QQ̄→gg =
7πα2

S

54Ndm2
Q

, (σvrel)QQ̄→qq̄ = 6× πα2
S

9Ndm2
Q

,

(σvrel)QQ̄→g′g′ =
(N2

d − 1)(N2
d − 2)πα2

d

48N3
dm

2
Q

,

(σvrel)QQ̄→gg′ =
(N2

d − 1)2παSαd
9N2

dm
2
Q

,

(5)

where both αS and αd are to be evaluated at the scale
mQ. It is worth noting that for mQ � Λd, αd goes as

∼ N−1
d based on the RG equation, Eq. (3). As a result,

all the above cross sections are proportional to N−1
d in

the large Nd limit, and the annihilation processes into
both SM and dark sectors will freeze out around the same
epoch. We have neglected the Sommerfeld enhancement
effect which only modifies the above cross sections by
an order one factor during the freeze out of Q [17]. We
have also neglected the QQ̄ annihilation into two SM
electroweak gauge bosons which are subdominant to the
two gluon final state channel because of the smaller gauge
couplings. The Boltzmann equation governing the freeze
out of Q, Q̄ can be written as

H

s

dYQ
d ln z

=
∑
f

〈
(σvrel)QQ̄→f

〉 [
Y 2
Q −

(
Y eqQ

)2
]
, (6)

where z = mQ/T , s is the entropy density of the universe
receiving contribution from both sectors, the yield is de-
fined as YQ = nQ/s, and nQ is the number density of Q
particles. We assume no CP violation thus YQ̄ = YQ. At

T & mQ, the number densities of Q and Q̄, which are
still in thermal equilibrium, take the form

nQ = nQ̄ = 12Nd ×
m2
QT

2π2
K2

(mQ

T

)
, (7)

where K2 is the modified Bessel function of the second
kind. They serve as the initial conditions for solving the
above Boltzmann equation.

Right after freeze out, the number of Q, Q̄ are Boltz-
mann suppressed compared to the radiation species in
the SM and dark sectors. Around this time, the two sec-
tors share the same temperature Tf = Tf (hereafter we
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use T (T ) to denote the dark (SM) sector temperature).
Their energy densities are

ρQ+Q̄ = 2mQYQ(Tf )s(Tf ) ,

ρSM =
π2

30
gSM
∗ T 4

f , ρd =
π2

30
gd
∗T

4
f ,

(8)

where gSM
∗ = 106.75 and gd

∗ = 2(N2
d − 1). As a conven-

tion, we define the universe expansion parameter corre-
sponding to this temperature (Tf = Tf ), af = 1. After-
wards, the interactions between the two sectors can only
go through off-shell Q, Q̄ and quickly fall out of thermal
equilibrium, so the two sectors will evolve with their own
temperatures. At temperatures well below mQ, interac-
tions like gQ→ gQ, g′Q→ g′Q are elastic, i.e., they do
not cause the exchange of heat among the three species,
and the time dependence of energy densities in Eq. (8)
still holds.

Next, we are interested in the fate of the vectorlike
quarks Q, Q̄ particles. After freeze out, they are already
non-relativistic and their energy density ρQ+Q̄ redshifts

as a−3, where a is the expansion parameter of the uni-
verse. In contrast, ρSM and ρd redshifts faster, as a−4. As
a result, it is possible for ρQ+Q̄ to come into dominance of
the universe at a later stage. With our setup, the vector-
like quarks are stable particles. The only way to deplete
them from the universe is to have Q and Q̄ find each
other to annihilate. Well after the thermal freeze out,
this could happen only because they are colored under
the dark SU(N)d gauge group. Once their number den-
sities fall below Λ3

d, the dark confinement will take place
and the Q and Q̄ particles will bind into color singlet
states under SU(N)d.

1 We call the expansion param-
eter corresponding to this event, ac. It could be solved
using

ac =
1

Λd

(
2YQ(Tf )s(Tf )

) 1
3

. (9)

The corresponding dark sector temperature is Tc =
Tf/ac, while the SM may have experienced a change in
the degrees of freedom after freeze out, and its tempera-
ture Tc could be obtained by solving the entropy conser-
vation gSM

∗S (Tf )T 3
f = gSM

∗S (Tc)T
3
c a

3
c .

For large Nd, it is much more likely for the Q, Q̄ par-
ticles to pair up and form Q-onium bound states rather

1 There is also the QCD phase transition and SU(3)c color con-
finement which could happen before the dark sector one, but
because there are many more SM quarks than the heavy vector-
like quarks in the universe, it is much more likely for Q (or Q̄)
to find a light quark (or antiquark) than finding each other to
become SU(3)c color neutral. Moreover, because ΛQCD � mQ,
the composite states made of Qq̄ have approximately equal mass
to Q. They are still colored under the dark SU(N)d and stable,
and a dark sector phase transition is still necessary to eventually
annihilate Q, Q̄ away.

FIG. 1. Squared diagram of ηQ → g′g′ decay (first line), and
the number of closed color loops from contracting the vector-
like quark and dark gluon lines in the large Nc, Nd limit (sec-
ond line). In this process, because both ηQ and g′g′ are QCD
singlets, the QCD color indices carried by Q, Q̄ are closed into
two disconnected loops, as indicated by the left part of the
second line. On the other hand, the g′g′ final states are not
necessarily a singlet under the dark SU(N)d. In the large Nd

limit, each of the dark gluons can be represented by a double
line. As a result, the dark color indices carried by Q, Q̄ can
propagate through the g′ and they are closed into two loops
with a different topology, as shown by the right part of the
second line. Taking into account of the bound state normal-
ization factor 1/

√
NcNd, this decay rate is proportional to

NcNdα
2
d. Similarly, the ηQ → gg decay rate is proportional

to NcNdα
2
s. These power countings agree with our explicit

calculation Eq. (10).

than having Nd of Q’s to form baryonic states. 2 Here for
simplicity, we first consider the case where they all settle
down to the Q-onium ground states before the annihi-
lation happens. Because Q is a fermion, there are two
ground states, ηQ (spin singlet) and ΥQ (spin triplet),
both are singlets under SU(N)d and SU(3)c.

3

Because mQ � Λd, ηQ and ΥQ are non-relativistic
bound states and their decay rates into gluons in the two

2 There are strong constraints on the relic abundance of dark bary-
onic states that are stable, carrying electromagnetic charge. See
ref. [18] and references therein. To be a singlet under SU(N)d,
the Q-baryon states must contain Nd of Q particles. Thus, as a
rough estimate, the probability of forming such a baryonic state

is (Nd!)/N
Nd
d smaller than the probability of forming a QQ̄ me-

son state. For the value of Nd & 100 of interest to this study,
the formation rate of Q-baryons in the early universe therefore
seems safely small.

3 If the QQ̄ form an octet state under SU(3)c the strong interac-
tion potential is repulsive and bound state might not form. On
the other hand, the excited Q-onium states could de-excite down
to ηQ by radiating soft dark gluons.
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sectors are

ΓηQ→gg =
Nd(N

2
c − 1)α2

S

4Ncm2
Q

|R(0)|2 ,

ΓηQ→g′g′ =
Nc(N

2
d − 1)α2

d

4Ndm2
Q

|R(0)|2 ,

ΓΥQ→ggg =
Nd(N

2
c − 1)(N2

c − 4)(π2 − 9)α3
S

36N2
cm

2
Q

|R(0)|2 ,

ΓΥQ→g′g′g′ =
Nc(N

2
d − 1)(N2

d − 4)(π2 − 9)α3
d

36N2
dm

2
Q

|R(0)|2 ,

(10)

where R(0) is the radial part of the bound state wave-
function at the origin, and again αS and αd are to be
evaluated at the scale mQ. Because of the generalized
Landau-Yang theorem, ΥQ must decay into three (dark)
gluons. In the decay rates, we show the Nc (= 3) and Nd
dependence on an equal footing. Here we have neglected
the decays of ηQ and ΥQ due to electroweak interactions,
assuming they are subdominant. At leading order, nei-
ther ηQ nor ΥQ could decay into qq̄ via a gluon because
they are color singlets.

We define a quantity r to be the ratio of entropy pro-
duction in the visible and dark sectors. Clearly, r is pro-
portional to the ratio of decay rates into two sectors. In
the large Nc and Nd limit, for ηQ decay,

r(η) ≡
ΓηQ→gg

ΓηQ→g′g′
' α2

S

α2
d

, (11)

with all the color pre-factors cancelled out; and for ΥQ

decay,

r(Υ) ≡
ΓΥQ→ggg

ΓΥQ→g′g′g′
' Ncα

3
S

Ndα3
d

. (12)

Because the gauge couplings satisfy αS ∼ 1/Nc and αd ∼
1/Nd, we find that r(η) ∼ r(Υ). The actual value of r
should lie between r(η) and r(Υ). This is still correct when

the excited QQ̄ states are taken into account because
they must either de-excite down to the ground states or
directly annihilate decay into two or three (dark) gluons.

The above large Nd power counting is in strong con-
trast with that in Eq. (5) where all the QQ̄ annihilation
cross sections are of the same order. The key here is that
after the dark SU(N)d confinement, Q, Q̄ must annihi-
late in the color singlet state, and this greatly reduces
the color degrees of freedom of the final state dark glu-
ons from N2

d to 1. As a consequence, the annihilating
decay into the dark sector is suppressed.

It is important to notice that r is independent of the
vectorlike quark mass mQ. The ratio of energy dumped
into the two sectors is dictated by the ratio of decay rates,
which leads to a “selection rule”, r ∼ N2

d . Counter-
intuitively, the dark sector gets less reheated when it
contains more degrees of freedom in the presence of a
large Nd. Such a power counting for the decays of ηQ
(and similarly for ΥQ) can also be understood from the
number of closed color loops in the square of the decay
amplitude, as depicted in Fig. 1.

The decay lifetimes of the Q-onium states are dictated
by the mass scale of Q and are much shorter than the cos-
mological time scale. In the instantaneous confinement
and decay approximation, the energy densities of the two
sectors are reheated to

ρ̂d(ac) = ρd(ac) + ρQ+Q̄(ac)
1

1 + r
,

ρ̂SM(ac) = ρSM(ac) + ρQ+Q̄(ac)
r

1 + r
.

(13)

With these, we can also solve for the temperatures in the
two sectors after the reheating, Tr and Tr, respectively,

Tr =

[
30ρ̂d(ac)

2π2(N2
d − 1)

] 1
4

, Tr =

[
30ρ̂d(ac)

π2gSM
∗ (Tr)

] 1
4

. (14)

After theQ-onium states all decayed away, both ρd and
ρSM will redshift as radiation, ∼ a−4. As the universe fur-
ther expands, a second phase transition will occur in the
dark sector when the temperature there equals the intrin-
sic scale of SU(N)d, i.e., T = Λd. The dark gluons will
then confine into glueballs. 4 The lightest dark glueball
state, φ, is our DM candidate, with mass mφ ∼ Λd. The
expansion parameter associated with the dark glueball
formation will be called, aΛ, which is equal to

aΛ = ac

(
15ρ̂d(ac)

π2(N2
d − 1)Λ4

d

) 1
4

. (15)

The corresponding SM sector temperature TΛ can be
solved using, gSM

∗S (Tr)T
3
r a

3
c = gSM

∗S (TΛ)T 3
Λa

3
Λ.

We assume the dark glueball energy density simply
matches to that of the dark gluons,

ρφ(aΛ) = ρd(aΛ) =
π2

15
(N2

d − 1)Λ4
d , (16)

and after this phase transition in the dark sector, the
dark glueball quickly turns non-relativistic and its num-
ber density redshifts like pressure-less matter, 5 until to-
day. Therefore,

ρφ(a0) ' ρφ(aΛ)

(
aΛ

a0

)3

, (17)

where a0 stands for today. On the other hand, the en-
ergy density in the SM sector remains radiation-like until

4 Because the Q number density is Boltzmann suppressed after
freeze out and the dark gluons are reheated by the Q-onium
decay, the confinement of dark gluons always happens later than
the confinement of Q, Q̄.

5 For dark sector temperatures below Λd, it is possible for the
glueball DM to further slightly decrease their comoving number
through the 3φ → 2φ scattering, until such a process freezes
out. The conserved quantity is φ’s entropy. Because φ is already
non-relativistic at this stage, the net reduction of φ particles is
small [1, 2]. In our calculation, we neglect this effect.
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FIG. 2. In the parameter space of Nd versus mQ, the orange curve in the two plots above corresponds to the correct relic
abundance (see Eq. (19)) for the SU(N)d glueball DM, which becomes independent of the vectorlike quark mass mQ when
they are heavy enough (the horizontal part of the curve). Such UV insensitiveness occurs as long as there is a stage in the
early universe when the energy density of the vectorlike quarks becomes dominant, as shown by the yellow shaded regions.
The black curve is a boundary below which the vectorlike quarks and the DM and dark sector can reach thermal equilibrium
at temperature around mQ. In the hatched region above the black curve, we make the assumption that the vectorlike quarks
are abundant enough so that their domination in the universe is guaranteed to happen. We have fixed the value of the dark
sector intrinsic scale Λd = 1 (100) keV in the left (right) plot. In the left plot, the region surrounded by the green curve has too
low reheating temperature after the annihilation decay of the vectorlike quarks. In both plots, along the blue curve, one may
realize unification of SM gauge couplings in the presence of the vectorlike quarks.

today. Again, taking into account of the possible change
in the number of degrees of freedom, we get

ρSM(a0) = ρSM(aΛ)

(
g∗(T0)

g∗(TΛ)

g∗S(TΛ)

g∗S(T0)

)(
T0

TΛ

)(
aΛ

a0

)3

,

(18)

where T0 = 2.7 K is the CMB photon temperature.
The ratio of the DM energy density to that in the SM

sector calculated from Eqs. (17) and (18) is to be com-
pared with the observed value today [19]

ρφ
ρSM

=
ρφ

1.68ργ

∣∣∣∣
obs.

' 3× 103 , (19)

where we have assumed the standard ratio of neutrino to
photo temperature, Tν = (4/11)1/3Tγ .

IV. A COSMIC SELECTION RULE

Our results are shown in Fig. 2 in the parameter space
of Nd versus mQ, for two fixed values of Λd = 1, 100 keV,
respectively. Along the orange curves, the glueball DM
in this model could obtain the correct relic abundance.
Below and to the left of the orange curves, the glueball
DM is overproduced.

Based on these results, we find an interesting param-
eter space for the correct dark glueball relic abundance,
corresponding to the horizontal part of the orange curves,
where the vectorlike quarks are heavy enough and abun-
dant enough. In this case, the energy density of the vec-
torlike quarks came into domination of the universe for

a while before they hadronize and annihilate decay away
(corresponds to the yellow shaded region in Fig. 2). A
quite intriguing feature here is that, the relic abundance
depends very weakly on mQ. Instead, it is only deter-
mined by the intrinsic dark scale Λd and the number of
dark colors Nd.

The key reason for this feature follows from observing
Eq. (13). We consider the limit where the second term on
the right-hand side dominates in both energy densities,
i.e., ρ̂SM(ac) ' rρ̂d(ac). In this limit, up to changes in
gSM
∗ , the ratio of Eqs. (17) and (18) is given by,

ρφ(a0)

ρSM(a0)
∼ TΛ

rT0
. (20)

It is worth noting again that the right-hand side does not
depend on the vectorlike quark mass mQ. The value of
r is determined by Eq. (10), which goes as ∼ N2

d in the
large Nd limit. The value of TΛ, in unit of Λd, can be
inferred from the relation between Tr and Tr calculated
using Eq. (14). Again, up to changes in gSM

∗ , we find

TΛ ∼ Λd

(
rN2

d

gSM
∗

) 1
4

' NdΛd

(gSM
∗ )

1
4

. (21)

Based on Eqs. (19), (20) and (21), we find a correla-
tion between Nd and Λd that yields the correct DM relic
abundance,

Nd ' cΛd , (22)

where we find numerically, c ' 15 keV−1. The relation
between Nd and Λd is depicted in Fig. 3. For small values
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of Λd, the required Nd for relic density is slightly larger
than the prediction in Eq. (22). This is mainly because
the temperature at TΛ is below the QCD phase transi-
tion, where annihilating away the hadronic sector tends
to make the rest of SM particle “hotter” than estimated
above. As a result, a larger value of Nd is needed to keep
the ratio Eq. (20) invariant.

It is worth reminding our reader that the dark SU(N)d
intrinsic scale Λd is closely tied to the the glueball DM
mass. As the main finding of this work, for given DM
mass in this model there is a particular value of Nd for
its relic abundance today, i.e., the branching ratios of
the vectorlike quarkonium decay in the early universe
into the SM and dark sectors only depend on Nd but are
largely independent of the high scale parameters such as
the vectorlike quark mass. Therefore, we would like to
call it a cosmic selection rule for the SU(N)d glueball
dark matter.

We have taken into account a consistency condition
which states that the decay of Q-onia must reheat the
SM sector to a temperature above MeV scale so that
the standard big-bang nucleosynthesis could begin. This
is more relevant for lower values of Λd (in the left plot
of Fig. 2, the region enclosed by the green curve is ex-
cluded), where the vectorlike quarks could be diluted for
a longer period before they decay.

Another feature of the above cosmic selection rule is
that the desired value of Nd increases with Λd. On the
other hand, for T � mQ, the interaction strength be-
tween the two sectors are more suppressed at larger Nd
(see Eq. (5)). As a result, the available parameter space
for the above mechanism to work with a thermal initial
condition shrinks for larger Λd. This feature can be seen
in Fig. 2, where the overlap between the orange curve
(for correct relic density) and the yellow region (for Q
domination) shrinks for larger Λd, unless one gives up
the thermal initial condition (see next paragraph). If
one insists on the thermal initial condition, there is an
upper bound on Λd for our mechanism to work, which is
Λd . 0.2 GeV. This is why the range of the orange dots
is limited from the right in Fig. 3.

Finally, we want to point out that our findings can
be applied to more general initial conditions of the early
universe. Our discussions so far begin with the vectorlike
quarks, SM and dark sectors all thermalized in together.
The key ingredient here is to have the vectorlike quarks
to dominate the energy density of the early universe.
It could also be realized with non-thermal initial con-
ditions. As long as the vectorlike quarks are abundantly
produced, the same conclusion will remain. In Fig. 2, we
have extended the relic abundance calculation into the
hatched region above the black curve, which shows the
same cosmic selection rule still holds.
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and Lyman α
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FIG. 3. The low energy parameter space of Nd versus Λd. The
correct relic abundance to the glueball DM can be accommo-
dated on the orange dots, where we assumed the vectorlike
quarks to be heavy and abundant enough to dominate the
early universe. The black dashed line corresponds to the ap-
proximate relation derived in Eq. (22), as a fit to the orange
dots. Also shown are the regions of interest to astrophysical
probes, including warm DM, self-interacting DM, as well as
possible gravitational wave signals from massive compact ob-
jects formed by the glueball condensate, as derived in refs. [1]
and [6]. The gray shaded region in the lower-left corner (below
the yellow or blue band) is excluded by astrophysical obser-
vations.

V. IMPLICATIONS OF OUR RESULTS

The hidden glueball DM is based on very simple as-
sumptions about the dark sector, but could leave quite a
few imprints in the cosmology and astrophysics. They in-
clude the self-interacting and warm DM scenarios as the
consequences of the scalar glueball potential interactions,
as well as the possibility of forming macroscopic compact
objects (dark stars) which may source the gravitational
waves. Fig. 3 also shows the regions in the Nd versus
Λd parameter space that could accommodate these phe-
nomena [1, 6]. These possibilities serve as incentives for
future experimental tests. In contrast, in the cosmic se-
lection rule Eq. (22), the relationship between Nd and
Λd is derived from a different perspective by requiring a
UV insensitive glueball relic density. It could serve as a
theoretical guide on the favored model parameter space.

A potential consequence of the Q, Q̄ matter domina-
tion in the early universe is the formation of minihalos
and even primordial black holes, because the primordial
density perturbations grow linearly during that period
(see [20, 21] for discussions along this direction but within
different contexts). The mass and size of these objects
are typically the size of the universe around the reheating
temperature after the Q-onia decay.

As the final remark, we discuss the impact of our re-
sult on the running of gauge couplings. With a large
dark color number Nd, the running of dark SU(N)d cou-
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pling is slow but still asymptotic free. On the other
hand, it will have a strong impact in the running of
SM gauge couplings at energy scale above the vector-
like quark mass. The electroweak quantum numbers of
the vectorlike quarks chosen in Eq. (1) are not important
for the cosmological discussions above, but as we show
below, such a particular choice allows the SM gauge cou-
plings to unify better at much higher scales. The vec-
torlike quark contributions to the beta equations at one
loop level are

∆b1 =
2

15
Nd, ∆b2 = 2Nd, ∆b3 =

4

3
Nd , (23)

where the bi’s are defined as, dαi/(d lnµ) = biα
2
i /(2π).

In fact, we find that with Q and Q̄ it is possible
to obtain unification of the three couplings if Nd '
21.4/ (35.4− ln[mQ/GeV]). This relation between Nd
and mQ is shown by the blue dashed curves in Fig. 2.
The unification scale associated with this curve is around
2.3 × 1015 GeV, which is close to the present proton de-
cay bound (see, e.g., [22] and references therein), given
the uncertainties of GUT scale threshold corrections to
the scale. To obtain the correct glueball relic abundance,

we find the needed value of Nd turns out to be much
higher than that for unification. As a result, at energy
scales above 2mQ, all the SM gauge couplings would run
quickly into the non-perturbative regime. This implies
that the simple model we have discussed above is only
effective at describing the low energy physics perturba-
tively, but not at energy scales and temperatures above
the 2mQ scale. We do not aim at deriving a high scale
theory here, but rather stress again that our cosmologi-
cal calculation in this work only involves physics below
the mQ scale and is largely insensitive to the UV physics,
and moreover, the final glueball DM relic density almost
does not depend on mQ either.
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