
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Resonant tidal excitation of oscillation modes in merging
binary neutron stars: Inertial-gravity modes

Wenrui Xu and Dong Lai
Phys. Rev. D 96, 083005 — Published  5 October 2017

DOI: 10.1103/PhysRevD.96.083005

http://dx.doi.org/10.1103/PhysRevD.96.083005


Resonant Tidal Excitation of Oscillation Modes in Merging Binary Neutron Stars:
Inertial-Gravity Modes

Wenrui Xu and Dong Lai
Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14853, USA

In coalescing neutron star (NS) binaries, tidal force can resonantly excite low-frequency (<∼ 500 Hz)
oscillation modes in the NS, transferring energy between the orbit and the NS. This resonant tide
can induce phase shift in the gravitational waveforms, and potentially provide a new window of
studying NS interior using gravitational waves. Previous works have considered tidal excitations
of pure g-modes (due to stable stratification of the star) and pure inertial modes (due to Coriolis
force), with the rotational effect treated in an approximate manner. However, for realistic NSs, the
buoyancy and rotational effects can be comparable, giving rise to mixed inertial-gravity modes. We
develop a non-perturbative numerical spectral code to compute the frequencies and tidal coupling
coefficients of these modes. We then calculate the phase shift in the gravitational waveform due
to each resonance during binary inspiral. Given the uncertainties in the NS equation of state and
stratification property, we adopt polytropic NS models with a parameterized stratification. We
derive relevant scaling relations and survey how the phase shift depends on various properties of the
NS. We find that for canonical NSs (with mass M = 1.4M� and radius R = 10 km) and modest
rotation rates (<∼ 300 Hz), the gravitational wave phase shift due to a resonance is generally less
than 0.01 radian. But the phase shift is a strong function of R and M , and can reach a radian or
more for low-mass NSs with larger radii (R >∼ 15 km). Significant phase shift can also be produced
when the combination of stratification and rotation gives rise to a very low frequency (<∼ 20 Hz in
the inertial frame) modified g-mode. As a by-product of our precise calculation of oscillation modes
in rotating NSs, we find that some inertial modes can be strongly affected by stratification; we also
find that the m = 1 r-mode, previously identified to have a small but finite inertial-frame frequency
based on the Cowling approximation, in fact has essentially zero frequency, and therefore cannot be
excited during the inspiral phase of NS binaries.

I. INTRODUCTION

The recent breakthrough in the detection of gravita-
tional waves (GWs) from merging black hole (BH) bi-
naries by advanced LIGO [1–3] heralds a new era of
studying compact objects using GWs. Coalescing neu-
tron star-neutron star (NS-NS) and NS-BH binaries have
long been considered the most promising sources of GWs
for LIGO/VIRGO [4, 5]. The last few minutes of the
binary inspiral produce GWs with frequencies sweeping
upward through the LIGO sensitivity band (10-1000 Hz).
Due to the expected low signal-to-noise ratios, accurate
gravitational waveforms are required to serve as theoret-
ical templates that can be used in matched filtering to
detect the GW signal from the noise and to extract bi-
nary parameters from the waveform.

The possibility of using GWs from NS binaries to con-
strain the equation of state (EOS) of dense nuclear mat-
ter has long been recognized [4]. The gravitational wave-
forms associated the final merger of two NSs or the tidal
disruption of a NS by a BH exhibit power spectra with
characteristic frequencies that reflect the dynamical fre-
quency of the NS, (GM/R3)1/2 (where M, R are the NS
mass and radius); these characteristic frequencies can be
used to constrain the NS radius and thus the EOS (given
the mass measurement from the inspiral waveform) (e.g.,
[6–12]). Since these characteristic frequencies are greater
than kHz, beyond the current aLIGO sensitivity band,
measuring them will be challenging without special ex-
perimental effort to enhance the high-frequency sensitiv-

ity of the LIGO interferometer.

A. Quasi-Equilibirum Tides

Another method to constrain the EOS of NSs is to
use tidal effect. Numerous papers have been written
on the effect of quasi-equilibirum tides on the inspiral
waveforms. The quasi-equilibrium tide corresponds to
the global (f-mode), quadrupolar deformation of the NS.
To the leading (Newtonian) order, this tidal deformation
changes the interaction potential between the two stars
(with the NS mass M and radius R, the companion mass
M ′ – treated as a point mass) from V (0)(r) = −GMM ′/a
(where a is the binary separation) to

V (r) = −GMM ′

a
−O

(
k2GM

′2R5

a6

)
, (1)

where k2 is the so-called Love number. This leads to a
correction to the GW phase (“phase shift”)

dΦ = dΦ(0)

[
1−O

(
k2M

′R5

Ma5

)]
, (2)

with the “point-mass” GW phase given by

dΦ(0) =
5

48(πMcf)5/3
d ln f, (3)

where f is the GW frequency and Mc = (MM ′)3/5/(M+
M ′)1/5 is the chirp mass. For Newtonian polytropic NS
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models, simple analytic expressions (including the effect
of rotation) for the phase shift are given in Ref. [13]
(Eqs. 66 and 72; see also [14]). Semi-analytic GR cal-
culations of such quasi-equilibrium tidal effect (including
more precise determination of the Love number) can be
found in numerous papers (e.g., [15–19]). Obviously this
effect is only important at small orbital separations, just
prior to merger. Again, there is some prospect of mea-
suring this, thereby constraining the EOS, but it will be
challenging because of the limited high-frequency sen-
sitivity of aLIGO [20, 21]. At small orbital separations,
there is also a “dynamical” correction to the above “equi-
librium” phase shift expression [22]. This arises from
the finite response time ω−1

f of the NS (where ωf the
quadrupole f-mode frequency) as compared to the tidal
forcing time ω−1

tide (where ωtide = 2Ω for nonrotating
NSs, with Ω the orbital frequency) [23]. This “dynam-
ical” correction essentially amounts to replacing k2 by
k2/(1− 4Ω2/ω2

f ). Thus Equation (2) becomes

dΦ = dΦ(0)

[
1−O

(
k2M

′R5

Ma5

)
1

1− 4Ω2/ω2
f

]
. (4)

Finally, we note that the quadrupole approximation is
not accurate at small orbital separations, and one must
use numerically computed quasi-equilibrium binary se-
quences to characterize the full tidal effects [24, 25] or
use 3D hydrodynamical simulations (e.g. [8, 12]).

B. Resonant (Dynamical) Tides

In the early stage of the inspiral, with the GW fre-
quencies between 10 Hz to a few hundred Hz, it is com-
monly assumed that a NS can be treated as a point mass,
and tidal effects are completely negligible. This is indeed
the case for the quasi-equilibrium tides discussed above.
However, a NS can possess a variety of low-frequency
(<∼ 500 Hz) oscillation modes due to stable density strat-
ification and/or rotation. During binary inspiral, the or-
bit can momentarily come into resonance with the nor-
mal modes of the NS. By drawing energy from the orbit
and resonantly exciting the modes, the inspiral speeds up
around the resonant frequency, giving rise to a phase shift
in the GW. This problem was first studied in the case of
non-rotating NSs [23, 26, 27] where the only modes that
can be resonantly excited are g-modes, with typical mode
frequencies <∼ 100 Hz ([23, 26] considered g-modes asso-
ciated with the bulk composition gradients, while [27]
considered those associated with crustal density jumps).
It was found that the effect is small for typical NS pa-
rameters (mass M ' 1.4M� and radius R ' 10 km) and
several equations of state [23] because the coupling be-
tween the g-mode and the tidal potential is weak. Super-
fluidity in the NS core can significantly affect the g-mode
property [28, 29], and recent studies suggest that the re-
sulting phase shift has the same order of magnitude as
that of a normal fluid NS [30, 31].

Ho & Lai (1999)[32] studied the effect of NS rotation,
and found that the g-mode resonance can be strongly en-
hanced even by a modest rotation (e.g., the phase shift in
the waveform ∆Φ reaches up to 0.1 radian for a spin fre-
quency νs <∼ 100 Hz) because rotation can reduce the g-
mode frequency. For a rapidly rotating NS (νs >∼ 500 Hz),
f-mode resonance becomes possible (since the inertial-
frame f-mode frequency can be significantly reduced by
rotation) and produces a large (� 1) phase shift. They
also studied the Coriolis-force driven r-modes, and found
that their tidal excitations become appreciable for very
rapid NS rotations. These r-modes can also be excited
by (post-Newtonian) gravitomagnetic force [33], with the
resulting GW phase shift comparable to the Newtonian
resonant tidal excitation.

A rotating NS supports a large number of Coriolis-force
driven modes named inertial modes (i-modes, also called
rotational hybrid modes or generalized r-modes; see, e.g.,
Refs. [34–38]), of which r-mode is a member. Most i-
modes have frequencies of order the NS spin frequency.
Based on approximate calculations, Lai & Wu (2006) [39]
found that i-modes have coupling to the Newtonian tidal
potential similar to the r-modes, and most i-mode tidal
resonances give relatively small GW phase shifts. They
also identified one r-mode that has a rather small inertial-
frame frequency, which implies a large phase shift inde-
pendent of the spin frequency. This mode gives a GW
frequency that is typically (for reasonable NS rotations)
below the aLIGO sensitivity band (see Section IV.B.4 for
our new result on this mode).

Other related studies include tidal excitation of
shear modes associated with NS crusts [40] (producing
small/modest phase shift) and possible nonlinear effects
due to the coupling of “off-shell” f-modes to high-order
g-modes and p-modes [41–43] – we will not study these
issues in this paper.

C. This Paper

Overall, previous studies (reviewed above) suggest that
for astrophysically most likely NS parameters (M '
1.4M�, R ' 10 km, νs <∼ 100 Hz), tidal resonances
have a small effect on the gravitational waveform dur-
ing binary inspiral (with the GW phase shift ∆Φ � 1).
However, it is important to keep in mind that the ef-
fect is a strong function of R, and a larger NS radius
(R ' 15 km), appropriate for ∼ 1.4M� NSs with stiff
EOS or low-mass (<∼ 1M�) NSs, would significantly in-
crease the phase shift. In the case of g-modes, the mag-
nitude of ∆Φ depends on several uncertain aspects of
nuclear EOS (e.g. the symmetry energy). Although the
observed double NS systems all have rather modest ro-
tation rates (<∼ 50 Hz), rapidly rotating NSs (∼ 700 Hz)
have been found. Future GW observations may reveal
new classes of NSs that are totally different from those
already observed via electromagnetic radiation. To this
end, it is desirable to examine tidal resonances for a wide
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range of NS parameters and survey various possibilities.
This is one of the main goals of this paper.

Previous studies of inertial mode resonances during bi-
nary inspiral have adopted approximate calculation of
these modes. Given that the GW phase shift due to res-
onance depends on the tidal coupling coefficient, which in
turn depends sensitively on the shape of the mode wave-
function, there is a concern that an inaccurate treatment
may lead to large error. Indeed, we show in this paper
that one of the “important” r-modes identified in Ref. [39]
turns out to have identically zero frequency (see Sec-
tion IV.B). Moreover, previous calculations of the mixed
“inertial-gravity” modes of NSs are not accurate, par-
ticularly in the regime where stratification and Coriolis
force are comparable – and it is precisely in this regime
(where the mode frequency is close to zero in the in-
ertial frame) that a significant phase shift is expected.
Note that accurate calculations of mixed modes in main-
sequence stars [44] and NSs [38] do exist (the latter use an
initial-value problem to determine mode frequencies but
not eigenfunctions), but they do not calculate the tidal
coupling coefficients of the modes. In this paper, we de-
velop a new spectral code to calculate the inertial-gravity
modes (both the frequency and tidal coupling coefficient)
precisely, including the full treatment of Coriolis force,
gravitational potential perturbation and the effect of ro-
tational distortion, and we use the results to evaluate the
significance of tidal resonances of stratified, rotating NSs.

Our paper is organized as follows. Section II summa-
rizes the key equations for calculating the gravitational
wave phase shift due to tidal resonance. Section III de-
scribes our method for numerical computation of the os-
cillation modes of rotating, stratified NSs. In Section IV
we discuss the key results of NS oscillation modes (in-
cluding scaling relations) that directly influence resonant
tidal excitation. We present our results for the GW phase
shifts associated with various mode resonances in Section
V and conclude in Section VI.

II. TIDAL RESONANCE DURING BINARY
INSPIRAL

The method of calculating the GW phase shift due
to tidal resonance in a rotating NS with arbitrary spin-
orbit misalignment was presented in Refs. [32, 39]. Here
we introduce the notations and give the key equations.

Consider a NS of mass M , radius R and spin Ωs in
orbit with a companion of mass M ′ (another NS or a
black hole). We allow for a general spin-orbit inclination
angle Θ (the angle between Ωs and the orbital angular
momentum L). The orbital radius a decreases and the
orbital angular frequency Ωorb increases in time due to
GW emission. In the spherical coordinate system cen-
tered on M with the Z-axis along L, the gravitational

potential produced by M ′ is (to quadrupole order):

U(r, t) =− GM ′r2

a3

(
3π

10

)1/2 [
e−2iΦorb(t)Y22(θL, φL)

+e2iΦorb(t)Y2,−2(θL, φL)
]
,

(5)

where Φorb(t) =
∫ t
dtΩorb is the orbital phase. We ignore

higher order components of the tidal potential since they
have little contribution to the tidal coupling.

In order to describe oscillation modes relative to the
spin axis, we express the tidal potential in terms of
Ylm(θ, φ), the spherical harmonic function defined in the
corotating frame of the NS with the z-axis along Ωs. This
is achieved by the relation

Y2m′(θL, φL) =
∑
m

D(2)
mm′(Θ)Y2m(θ, φs), (6)

where D(2)
mm′ is the Wigner D-function and φs = φ+ Ωst.

Oscillation modes of the NS are specified by the La-
grangian displacement, ξ(r, t), of a fluid element from its
unperturbed position. In the rotating frame, a free mode
of frequency ωα has ξα(r, t) = ξα(r) e−iωαt ∝ eimφ−iωαt,
where m is the azimuthal number of the mode and α
denotes the mode index (which includes m). We only
need to consider m > 0, since a mode with (m,ωα) is
physically identical to a mode with (−m,−ωα). In this
convention (m > 0), a mode with ωα > 0 (ωα < 0) is
prograde (retrograde) with respect to the rotation.

A tidal resonance occurs when a mode with the
inertial-frame frequency

σα = ωα +mΩs, (7)

is excited by the potential component ∝ e−im
′Φorb , with

the mode frequency satisfying the condition

σα = m′Ωorb. (8)

Note that for quadrupolar tide, we only need to consider
m′ = ±2. Clearly, a prograde mode (σα > 0) is excited
by the m′ = 2 potential, while a retrograde mode (σα <
0) by the m′ = −2 potential. The energy transferred to
the mode during the resonance is given by

∆Eα,m′ =
3π

10

GM ′
2

R

GM

R3

(
π

m′Ω̇orb

)
σα
εα

×
(
D(2)
mm′Qα,2m

)2
(
R

aα

)6

,

(9)

where Ω̇orb is the rate of change of Ωorb due to GW emis-
sion, aα is the binary semi-major axis at the tidal reso-
nance, and

Qα,2m ≡
〈
ξα,∇(r2Y2m)

〉
, (10)

εα ≡ ωα + 〈ξα, iΩs × ξα〉, (11)
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with 〈A,B〉 ≡
∫
d3xρ(A∗ ·B), and we use the normaliza-

tion M = R = 1 and 〈ξα, ξα〉 = 1. The quantity Qα,2m
is a nondimensional number characterizing the strength
of the tidal coupling of the mode. The phase shift in GW
signal caused by this energy transfer is given by

∆Φ =− 5π2

1024

(
Rc2

GM

)5
1

q(1 + q)

× m′

ε̂α|σ̂α|

(
D(2)
mm′Qα,2m

)2

,

(12)

where σ̂α = σα(R3/GM)1/2 and ε̂α = εα(R3/GM)1/2.
Note that in the above equation, m′ = ±2 and m = 1
or 2; modes with larger m do not couple with the
quadrupole tidal potential.

Note that when the binary consists of two NSs
with comparable mass, each of them experiences
tidal resonances caused by the other. The tidal
resonances on the two NSs in general happen at
different Ωorb unless they have exactly the same
mass, radius and spin. Meanwhile, the width of
a tidal resonance is very narrow [see Eqs.(2.44)-
(2.45) of [32]], so resonances on the two NSs
do not interfere with one another, and the total
phase shift is simply the sum of the phase shifts
of the resonances on each of the NSs.

III. MODES IN ROTATING NEUTRON STARS:
METHOD OF CALCULATION

This section describes our numerical method to calcu-
late the oscillation modes of rotating, stratified neutron
stars. For simplicity, we assume the equilibrium state
of the NS to be barotropic and spherically symmetric,
i.e., the centrifugal distortion due to rotation is ignored;
this should not affect our lowest order results when Ωs
is relatively small compared to (GM/R3)1/2. (For one
particular inertial mode, the effect of centrifugal distor-
tion can be important – this will be discussed in Section
IV.B). We include the full effects of the Coriolis force and
gravitational potential perturbation in the mode calcula-
tion.

The numeric code we use here is based on the spectral
method developed by Reese et al. (2006) [45] to calculate
p-modes in rapidly rotating and stratified stars with poly-
tropic density profile and stratification characterized by a
constant adiabatic exponent. We modify this method to
allow for general density and stratification profiles. Reese
et al. also included the distortion of the star due to ro-
tation in their calculation. For most part of this paper
we ignore this distortion for simplicity, but its effect can
be incorporated in our method without much technical
difficulty (see Section IV.B.2).

Let the equilibrium (unperturbed) stellar profile be
given by density ρ0(r), pressure p0(r) and gravitational
potential Ψ0(r). In the rotating frame, the Eulerian per-
turbation of density, pressure and gravitational potential

are denoted by δρ, δp and δΨ, respectively. The velocity
perturbation δv is related to the Lagrangian displace-
ment ξ by δv = −iωξ, where we have assumed ξ ∝ e−iωt
and ω is the mode frequency in the rotating frame. The
linearized fluid dynamics equations then reduce to a gen-
eralized eigenvalue problem:

−iωδρ = −∇ · (ρ0δv), (13)

−iωρ0δv = −∇δp+ δρg0 − ρ0∇δΨ− 2ρ0Ωs × δv,
(14)

−iω(δp− c20δρ) =
ρ0N

2
0 c

2
0

||g0||2
δv · g0, (15)

0 = ∆δΨ− 4πGδρ. (16)

The gravitational acceleration g0, addiabatic sound
speed c0 and Brunt-Väisälä frequency N0 are given by

g0 = −∇Ψ0, (17)

c20 = Γ
p0

ρ0
, (18)

N2
0 = g0 ·

∇ρ0

ρ0

(
1− γ

Γ

)
, (19)

where γ and Γ are defined by

γ ≡ d ln p0

d ln ρ0
, (20)

Γ ≡
(
∂ ln p

∂ ln ρ

)
ad

. (21)

The subscript “ad” denotes adiabatic derivative. In gen-
eral Γ and γ depend on r. When the star has a polytropic
density profile, γ is constant and corresponds to the poly-
tropic exponent.

To solve the eigenvalue problem, we decompose δv into
spheroidal and toroidal components:

δv =

∞∑
j=m

[
ujmYjmer + vjm (∂θYjmeθ +DφYjmeφ)

+ wjm (DφYjmeθ − ∂θYjmeφ)

]
,

(22)

where ujm, vjm, wjm are functions of r, er, eθ, eφ are unit
vectors in the r, θ, φ directions, respectively, and Dφ ≡
(sin θ)−1∂φ. The terms with ujm, vjm give the spheroidal
component of the velocity perturbation and the terms
with wjm the toroidal component.

More details of our spectral algorithm are given in the
Appendix (see also Ref. [45]), where we also discuss the
limitation of the method.

IV. OSCILLATION MODES AND TIDAL
COUPLING COEFFICIENTS

There have been numerous theoretical studies of NS
oscillations, taking account of “realistic” NS structure
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and equation of state (including stratification, superflu-
dity, crustal rigidity, etc.) and general relativity (e.g.,
[46, 47]). While for non-rotating NSs, the computation
of various non-radial modes (for a given NS model) can be
achieved efficiently, for rotating NSs, there remain appre-
ciable technical challenges to compute oscillation modes
in the non-perturbative regime (e.g., [38, 48]; see [49]
for a review). Given the uncertainty in the NS interior
equation of state, in this paper we mainly consider New-
tonian polytropic models (both in terms of the density
profile and stratification), in order to provide a survey of
different possibilities and to identify the most important
oscillation modes for tidal resonance.

A. Pure g-Modes

1. G-mode Scaling Relations

For non-rotating NSs (Ωs = 0), only gravity modes
(g-modes) have sufficiently low frequencies to allow reso-
nant excitation during binary inspiral. G-modes in NSs
arise from composition (e.g. proton to neutron ratio)
gradient in the stellar core [50], density discontinuities in
the crust [51, 52] as well as thermal buoyancy associated
with finite temperatures [46]. For cold NSs (as expected
in merging binaries), the composition gradient in the core
provides the strongest restoring force. The core g-modes
are sensitive to the symmetry energy of nuclear matter
[23], and are also affected by the presence of superfluidity
(in which case the restoring force for g-modes arise from
the gradient in muon-to-electron fraction; see [28, 29]).
Here for simplicity we first consider polytropic NS models
with constant γ = 2 and constant adiabatic index Γ > γ.
We vary Γ to survey different strength of stratification.
This model should give a relatively good estimation of
the frequency and tidal coupling of g-modes in realistic
NSs.

G-modes are purely spheroidal [i.e. wjm = 0 in
Eq. (22)] and has only one nonzero j component. Thus
we can label a mode by three numbers, j,m and n, where
n corresponds to the number of nodes in ujm. Because
of the symmetry, the mode frequency and tidal coupling
coefficient depend only on j and n. Only j = 2 modes
couple to the quadrupole (l = 2) tidal potential.

The middle two columns in Table I give the scaled
frequency and tidal coupling coefficient of j = 2 g-modes
with different n for a γ = 2 polytropic NS. Our numerical
results show that (to lowest order)

ωα ∝ (Γ− γ)1/2M1/2R−3/2, (23)

Qα,2m ∝ Γ− γ, (24)

so we define scaled frequency and tidal coupling coeffi-

cient by

ω̄α = ωα

(
Γ− γ
0.01

)−1/2

M
−1/2
1.4 R

3/2
10 , (25)

Q̄α,2m = Qα,2m

(
Γ− γ
0.01

)−1

, (26)

where M1.4 = M/(1.4M�) and R10 = R/(10 km). This
scaling ensures that the results are independent of the NS
mass, radius and stratification (Γ− γ) when Γ− γ � 1.
Note that the scaled variables are equal to the physical
frequency and tidal coupling coefficient for a canonical
NS with M = 1.4M�, R = 10 km and Γ− γ = 0.01. The
(Γ−γ) scaling of ωα we obtain agrees with the analytical
WKB estimate of the mode frequency (e.g. [23])

ωα '
√
j(j + 1)

(n+ C)π

∫ R

0

N0(r)

r
dr, (27)

where C is a constant of order unity, and the Brunt-
Väisälä frequency N0(r) is given by

N0(r) = g0

√
ρ0

p0

(
1

γ
− 1

Γ

)1/2

, (28)

which is proportional to (Γ− γ)
1/2

for (Γ− γ)� 1.
We see from Table I that Qα,2m decreases significantly

with increasing n; therefore the n = 1 g-modes are the
only modes that contribute significantly to the phase shift
induced by tidal resonances. Note that for realistic NS
stratification (Γ − γ ∼ 0.01), the tidal coupling is small
even fore the n = 1 modes.

2. Effect of Different Stellar Density Profiles

Canonical NSs with mass around 1.4M� can be ap-
proximated by a polytrope with γ between 2 and 3, and
low-mass (<∼ 1M�) could be modeled with γ = 1.5.
Therefore, it is useful to investigate how different NS
density profiles (different γ) affect the g-modes. Table
I contains the scaled frequency and tidal coupling coeffi-
cient of g-modes for two other NS models. One of them
is a γ = 1.5 polytrope. The other has

γ(r) = 2 + tanh

[
5ρ0(r)

ρc

]
, (29)

with ρc the central density of the NS; this model has γ '
3 except for a thin layer near the surface where γ drops to
2. This model is chosen because our spectral algorithm
requires the NS to have γ ≤ 2 at the surface (see more
discussion in Appendix); realistic NSs do have γ <∼ 2 near
the surface. This model should be a reasonably good
approximation for a γ = 3 polytrope, thus we call it the
“γ ' 3” model. For both γ = 1.5 and γ ' 3 models we
also assume a constant Γ − γ, so the scaling (25) - (26)
can still be used.
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TABLE I. Scaled frequency and tidal coupling coefficienta for j = 2 pure g-modes in NSs with different density profiles, assuming
constant Γ− γ.

γ = 1.5 γ = 2 γ ' 3b

ω̄α (2πHz) Q̄α,2m ω̄α (2πHz) Q̄α,2m ω̄α (2πHz) Q̄α,2m

n = 1 ±429 1.2× 10−3 ±181.3 3.5× 10−4 ±92.8 7.5× 10−5

n = 2 ±309 5.2× 10−4 ±124.6 8.5× 10−5 ±61.7 1.2× 10−5

n = 3 ±242 2.4× 10−4 ±95.7 2.5× 10−5 ±46.9 3× 10−6

a The scaled quantities are defined by Eqs. (25)-(26).
b This model has γ ' 3 except for a thin layer near the surface where γ drops to 2. For details of this model see Section IV.A.2.
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Q
α
,2
m
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FIG. 1. Tidal coupling coefficient Qα,2m of the j = 2, n =
1 g-mode as a function of mode frequency ωα for different
density and stratification models. In this figure we consider
a M = 1.4M�, R = 10 km NS. The “γ = 2 non-stratified”
curve corresponds to the model with a non-stratified envelope
(see Section IV.A.3).

Comparing the results for the three different density
models, we see that the scaled frequency and tidal cou-
pling coefficient are both smaller for larger γ. However, a
lower mode frequency implies tidal resonance at a larger
binary separation, leading to a larger phase shift (for the
same Qα,2m); see Eq. (12). Figure 1 shows the depen-
dence of Qα,2m on the mode frequency ωα for different
NS density models. We see that for the three models
studied here (γ = 1.5, γ = 2 and γ ' 3), the γ = 2 model
yields the largest tidal coupling for given ωα.

3. Effect of Non-Stratified Stellar Envelope

Realistic NSs do not have a constant Γ−γ throughout
the star. To see how non-constant stratification affects
the g-modes, here we consider a model where the NS en-
velope has a zero Brunt Väisälä frequency (Γ − γ = 0).
Specifically, we consider a γ = 2 polytrope with stratifi-

TABLE II. Scaled frequency and tidal coupling coefficient for
j = 2 pure g-modes in a γ = 2 polytropic NS with a non-
stratified envelope.a

ω̄α (2πHz) Q̄α,2m

n = 1 ±120.7 1.62× 10−4

n = 2 ±77.8 3.3× 10−5

n = 3 ±57.1 1.0× 10−5

a Note that Γ− γ is no longer constant in this model, and the
definitions of ω̄α and Q̄α,2m are given by Eqs. (25)-(26), with Γ
replaced by Γ0 (see Eq. 30).

cation given by

Γ(r)−γ = (Γ0−γ)

{
1

2
tanh[20(0.8− r/R)] +

1

2

}
, (30)

where Γ0 is a constant. This gives Γ ' Γ0 for the inner
80% of star and Γ ' γ for the outer 20%. The scaled
frequency and tidal coupling coefficient for g-modes in
this NS model are given in Table II, where ω̄α and Q̄α,2m
are defined by (25) - (26) except we now use Γ0−γ instead
of Γ− γ.

Comparing Table II with Table I, we see that this non-
stratified region tends to decrease the scaled frequency
and tidal coupling of g-modes. However, as shown in
Figure 1, Qα,2m at given ωα is barely affected by includ-
ing a non-stratified envelope.

4. Effect of Cowling Approximation

Many works studying NS modes apply the Cowling
approximation (e.g. [30, 38, 53]), which ignores δΨ. We
expect that the Cowling approximation do not affect the
result significantly when the mode has multiple nodes in
δΨ. But for the modes we are interested in (i.e. g-modes
with small n, and r-modes with small j which we will
discuss later), δΨ usually have few or no node. There-
fore it is necessary to investigate whether the Cowling
approximation is accurate enough in this case. Table
III shows the frequency and tidal coupling coefficient for
j = 2 g-modes in a γ = 2 polytropic NS, calculated
with the Cowling approximation. We see that apply-
ing this approximation barely affects the mode frequency,
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TABLE III. Scaled frequency and tidal coupling coefficient
for j = 2 pure g-modes in a γ = 2 polytropic NS, using the
Cowling approximation.

ω̄α (2πHz) Q̄α,2m

n = 1 ±181.5 4.8× 10−4

n = 2 ±124.7 1.27× 10−4

n = 3 ±95.7 3.9× 10−5

but the tidal coupling Qα,2m is overestimated by 40% -
50%. Therefore, Cowling approximation can only provide
a crude approximation for the tidal coupling coefficient.

B. Pure Inertial Modes (I-Modes)

We now consider another limiting case, when the NS
has no stratification (Γ = γ). In this case all low-
frequency modes are inertial modes (i-modes), whose
restoring force is the Coriolis force.

Since we assume that Ωs is small [compared to the
characteristic frequency (GM/R3)1/2], the Lagrangian
displacement of an i-mode can be expanded in terms of
Ω̂s ≡ Ωs(R

3/GM)1/2:

ξα = ξα,0 + Ω̂sξα,1 + Ω̂2
sξα,2 + · · · , (31)

and ξα,i is independent of Ω̂s. Similar to Eq. (22), we
can decompose the velocity perturbation corresponding
to ξα,i into ujm,i, vjm,i and wjm,i. For each i, ujm,i, vjm,i
and wjm,i can be nonzero only up to some finite j [35].

Following Ref. [35], we label each i-mode by m and
the j = j0 value, the latter given by the largest number
such that at least one of ujm,0, vjm,0 and wjm,0 is nonzero
(this j0 value is the same as l0 in [35]). In general, there
are (j0 −m + 1) modes for each pair of j0 and m. The
value j0 is also related to the parity of the mode. Even j0
corresponds to odd parity modes and odd j0 even parity
modes1. Since only the even parity modes couple to the
tidal potential, we will only consider modes with odd j0
(which will be simply labeled j in the discussion below).

1. Inertial Mode Scaling Relations

Table IV shows the frequency and scaled coupling co-
efficient for j = 1 and 3 pure inertial modes for the
γ = 1.5, 2 and γ ' 3 density models. Our results

1 Here even (odd) parity means that the scalar perturbations of the
mode, such as the density perturbation, is conserved (changes
sign) upon a parity transformation.

show that to lowest order of Ω̂s, the mode frequencies
ωα, σα ∝ Ωs and

Qα,2m ∝ Ω̂2
s, (32)

therefore we define the scaled tidal coupling coefficient
by

Q̂α,2m = Qα,2mΩ̂−2
s . (33)

Note that Q̂α,2m is also independent of M and R. The
mode frequencies agree with the result from [35] very
well, and the scalings agree with the result of [39].

Form Table IV we can see that Qα,2m is mainly de-
termined by j, and decreases as j increases; the j = 3
modes have Qα,2m about an order of magnitude smaller
than the j = 1 mode. Moreover, the j ≥ 5 modes have
Qα,2m about one order of magnitude smaller than the
j ≤ 3 modes. Therefore, the most important contribu-
tion to the GW phase shift comes from j ≤ 3 i-modes.

The j = m i-modes are often referred to as Rossby
modes or r-modes; we will call them r-modes from now on
to distinguish them from other i-modes. The j = m = 1
r-mode is of particular interest. It has ωα/Ωs = −1 and
σα/Ωs = 0 to the lowest order of Ωs, and this result is
independent of the NS density profile. Our numerical
calculation shows that this mode has

σα ∝ Ω̂2
sΩs, (34)

and the proportionality constant can be found in Table
IV. This coefficient should also be affected by the cen-
trifugal distortion of the NS due to rotation, which we
do not include in our calculation for Table IV. Kokko-
tas & Stergioulas [53] gave an analytical calculation of
the frequencies of r-modes for an uniform density star
with the effect of centrifugal distortion included (but they
used Cowling approximation); they found that for this
j = m = 1 r-mode

σα = −3

4
Ω̂2
sΩs. (35)

The scaling of this result is the same as ours, but the
coefficient is very different. Importantly, our calculation
shows that this mode is prograde in the inertial frame
(σα > 0 for all our NS models) while theirs retrograde
(σα < 0). This suggests that including centrifugal distor-
tion may nontrivially affect the result. We will discuss
the effect of distortion by re-calculating this mode in the
following subsection.

It is worth noting that the quantity εα [see (11)],
is always εα ' ωα/2 for all inertial modes in Ta-
ble IV. This is because for pure inertial modes
in polytropic, non-stratified NS at small Ωorb, δΨ
is small and 〈v,−∇δp + δρg0〉 ' 0.2 As a result,
integrating equation (14) gives 〈v,v〉 ' 〈v, iΩs × v〉
and εα ' ωα/2.

2 We do not have a good analytical explanation for why 〈v,−∇δp+
δρg0〉 ' 0. Note that this holds only when |ω|,Ωs � 1.
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TABLE IV. Scaled frequency and tidal coupling coefficient for j = 1 and 3 pure i-modes in NSs with different density models.a

γ = 1.5 γ = 2 γ ' 3b

ωα/Ωs σα/Ωs Q̂α,2m
c ωα/Ωs σα/Ωs Q̂α,2m ωα/Ωs σα/Ωs Q̂α,2m

j = 1,m = 1 -1.000 0.32Ω̂2
s 0.137 -1.000 0.66Ω̂2

s 0.370 -1.000 0.90Ω̂2
s 0.559

j = 3,m = 2 0.827 2.827 0.031 0.556 2.556 0.015 0.405 2.405 0.005

-1.034 0.966 0.010 -1.100 0.900 0.010 -1.151 0.849 0.005

j = 3,m = 1 1.184 2.184 0.026 1.032 2.032 0.017 0.938 1.938 0.007

-0.746 0.254 0.014 -0.690 0.310 0.009 -0.656 0.344 0.004

-1.545 -0.545 0.020 -1.613 -0.613 0.014 -1.655 -0.655 0.006

a This calculation ignores centrifugal distortion (but includes the gravitational perturbation), which is a good approximation for all
modes except for the j = m = 1 mode. See Section IV.B.1-2 for discussion.

b Same as the γ ' 3 model used in Table I.
c Q̂α,2m = Qα,2mΩ̂−2

s as defined in Eq. (33).

2. Effect of Centrifugal Distortion

For all of our calculations (except for this subsection),
we assume that the NS is spherical and ignore distor-
tion due to the finite rotation rate. Here we calcu-
late the modes in a distorted NS to study if including
this distortion can nontrivially affect the result. As dis-
cussed above, this may be especially important for the
j = m = 1 r-mode. For the stellar density profile, we
assume that the NS is barotropic and obtain the dis-
torted profile iteratively, similar to the method in [54].
The method of calculating modes in a distorted star is
summarized in [45].

We find that the correction to ωα/Ωs and Q̂α,2m due to

distortion are both of order Ω̂2
s. As a result, this correc-

tion is unimportant in most cases. The only exception is
the j = m = 1 r-mode, where σα/Ωs is also of order Ω̂2

s.
Figure 2 shows the inertial-frame frequency σα for two
different density models when different approximations
are used. We see that when we ignore distortion, we get
σα > 0 and σα ∝ Ω̂2

sΩs. When distortion is included,
however, σα becomes very close to 0: Our results show
that |σα|/Ωs <∼ 5× 10−5, which is comparable to the es-
timated numerical error due to the finite grid size of our
calculation. This suggests that this j = m = 1 r-mode
likely has σα/Ωs = 0 or O(Ω̂4

s). Moreover, this result is
independent of the density profile used: In Figure 2 we
use two different density profiles (γ = 2 and γ ' 3), and
σα is clsoe to zero for both models.

3. Effect of Cowling Approximation

Kokkotas & Stergioulas [53] calculated the inertial-
frame frequencies σα of j = m r-modes in a rotation-
ally distorted, incompressible (uniform density) star un-
der Cowling approximation (i.e. ignore δΨ). To com-
pare with their result, we also calculate σα using Cowl-
ing approximation in a distorted γ = 2 or γ ' 3 NS
model (see Fig. 2). We see that under Cowling approx-

imation, the j = m = 1 r-mode has σα/Ωs ∝ Ω̂2
s and

the mode is retrograde (σα < 0), which has the same
sign as the result (for incompressible stars) in [53]. For
our NS models with γ = 1.5, 2 and γ ' 3, this mode
has σα/(Ω̂

2
sΩs) = −0.11,−0.30 and −0.46 respectively,

whereas for γ = ∞, the analytic (Cowling approxima-

tion) result is σα/(Ω̂
2
sΩs) = −0.75.

Similar to the case for g-modes, Cowling approxima-
tion barely affect the result of ωα and σα up to O(Ωs),
but produces a nontrivial error in Qα,2m (relative error
>∼ 30% for most modes in Table IV). Therefore, Cowling
approximation should not be used if we need to obtain
a relatively accurate result for tidal coupling and GW
phase shift.

4. Discussion on the j = m = 1 R-Mode

As noted above (see Fig. 2), in our “exact” calculation,
which takes account of the rotational distortion and grav-
itational potential perturbation, the j = m = 1 r-mode
has zero frequency in the inertial frame. Calculations
that neglect either of these effects would give an incor-
rect result (σα/Ωs ∼ Ω̂2

s). This is important because such
incorrect result would imply that for a rapidly rotating
NS the mode frequency would lie in the LIGO sensitivity
band and the resonance could be detectable due to the
large GW phase shift it inflicts [39].

It is useful to understand why this j = m = 1 mode
has zero frequency. In the Ωs → 0 limit, the velocity
perturbation associated with this mode is (see Eq. 22)

δv ∝ r
(

1

sin θ

∂Y11

∂φ
eθ −

∂Y11

∂θ
eφ

)
. (36)

This corresponds to a “spin-over” perturbation, i.e., the
equilibrium rotation around a different axis. With a fi-
nite rotation rate (Ωs 6= 0), there also exists such a “spin-
over” mode. When all the effects (distortion and ∆Ψ) are
included, the perturbed state should have the same en-
ergy as the unperturbed state, and thus the mode should
have zero inertial-frame frequency.
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FIG. 2. The inertial-frame frequency σα (in units of the
spin frequency Ωs) for the j = m = 1 r-mode calculated
using different approximations. Crosses and saltires mark
the γ = 2 and γ ' 3 density models, respectively. The
red dashed curves correspond to results for a spherical star
(i.e. the rotational distortion is ignored) and blue dotted
curves correspond to results with Cowling approximation (i.e.
δΨ is ignored). The curves are best-fitting results assuming

σα/Ωs ∝ Ω̂2
s; we see that this fits the numerical data points

well. The green lines show the “exact” results where both δΨ
and distortion are included: These results have σα/Ωs ' 0;
the deviation from zero is comparable to the numerical error
(|σα|/Ωs <∼ 5 × 10−5 for Ω̂s <∼ 0.25, which for a canon-
ical 1.4M�, 10km NS corresponds to spin frequency
<∼ 500Hz), so it is likely that this mode has exactly zero

inertial-frame frequency or σα/Ωs is of order Ω̂4
s or higher.

C. Mixed Modes (Inertial-Gravity Modes)

We now consider modes in rotating, stratified NSs. In
such stars, low-frequency modes involve mixing between
g-modes and i-modes. Most of these mixed modes be-
come similar to i-modes when stratification is weak or
Ωs is large, and similar to g-modes when stratification
is strong or Ωs is small. Figure 3 shows our numerical
results for ωα, σα and Qα,21 for the m = 1 mixed modes
with strongest tidal coupling. As in Section III, we use
the scaled rotation rate, mode frequencies and tidal cou-
pling coefficient given by

ω̄α
ωα

=
σ̄α
σα

=
Ω̄s
Ωs

=

(
Γ− γ
0.01

)−1/2

M
−1/2
1.4 R

3/2
10 , (37)

Q̄α,2m
Qα,2m

=

(
Γ− γ
0.01

)−1

. (38)

The scaled quantities are independent of Γ−γ, M and R
to the lowest order. This allows our results to be easily
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FIG. 3. Scaled rotating (inertial) frame frequency ω̄s (σ̄s) and
tidal coupling coefficient Q̄α,21 for the m = 1 mixed modes
in a rotating and stratified γ = 2 polytropic NS. The results
in this figure are exact for Γ − γ = 0.01, and are accurate
to the lowest order [Ω̂s and (Γ − γ)1/2 order for frequencies,

and Ω̂2
s and (Γ − γ) order for Qα,21] otherwise. The mode is

labeled by the pure g-mode and pure i-mode they are similar
to in the small Ωs and large Ωs limits; e.g. “j = 2 g → j = 3
i” denotes a mode that is similar to a j = 2 g-mode when
Ωs → 0 and is similar to a j = 3 i-mode when Ωs is large.
Modes that have zero frequency at Ωs = 0 are labeled by the
i-mode they are similar to at large Ωs; e.g. “j = 3 i” denotes
a mode that becomes similar to a j = 3 i-mode at large Ωs.
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adapted for different values of Γ− γ, M and R.

Four modes shown in Figure 3. Two of these are the
j = 2,m = 1, n = 1 g-modes in the limit Ωs → 0. As
Ωs increases, the frequencies, tidal coupling coefficients
and perturbation profiles (eigenfunctions) of the modes
change characters and become mixed with i-modes. To-
wards the right side of the plot (high Ωs), the effect of
rotation dominates and these two modes asymptotically
become two of the three j = 3,m = 1 i-modes discussed
in Section B. The other two modes shown in Fig. 3 are
another j = 3,m = 1 i-mode and the j = m = 1 r-mode.
As Ωs → 0, they both have ωα → 0, indicating that they
do not become g-modes in this limit.

Figure 4 shows the comparison of σα and Qα,21 of the
j = m = 1 r-mode in a stratified NS and an unstrat-
ified NS; we see that there is no noticeable difference
between the two results, suggesting that this mode is un-
affected by stratification. Since we already know (see
Section IV.B) that this mode has an inertial-frame fre-

quency that satisfies |σα| � Ω̂2
sΩs when there is no strat-

ification, we conclude that the same inequality applies for
realistic stratified NSs.

The j = 3, m = 1 i-mode is affected by stratification
in an interesting way. Figure 5 shows the comparison of
σα and Qα,21 of this j = 3,m = 1 i-mode in a stratified
NS and an unstratified NS. We see that stratification
causes σα to decrease and Qα,21 to increase. The effect
of stratification is most significant when Ωs → 0: the
decreased σα and increased Qα,21 makes the GW phase
shift converge to a finite value as Ωs → 0, while when
there is no stratification the GW phase shift goes to zero
at Ωs → 0. We will discuss the GW phase shift of this
mode in more detail in Section V.

Figure 6 is similar to Fig. 3 but shows the m = 2
mixed modes. It shows two modes which are the two
j = 2, m = 2, n = 1 g-modes for Ωs → 0. Similar to
the m = 1 g-modes, their frequencies and perturbation
profiles change as Ωs increases, and for large Ωs they
asymptotically become the two j = 3, m = 2 i-modes.
Note that the retrograde g-mode becomes a prograde i-
mode as Ωs increases (the purple lines in the figure),
therefore the inertial frame frequency σα crosses zero at
some intermediate Ωs (for our NS model this happens at
Ω̄s ' 110 · 2πHz). When σα is small, the GW phase shift
can be significantly boosted as we see from Eq. (12) that
∆Φ ∝ σ−1

α .

A major goal of this paper is to study whether tidal
coupling can be increased by the mixing between g-modes
and i-modes in the regime when the effects of stratifica-
tion and rotation are comparable. In this regime the
perturbation profiles of the modes can be significantly
different from pure g-modes or pure i-modes, which in
principle may allow the corresponding Qα,2m to increase.
However, Figures 3 and 6 show that the tidal coupling
coefficient does not significantly increase in this regime;
instead, for some modes the tidal coupling is suppressed
(e.g. the green curve in Figure 3 and the blue curve in
Figure 6). Therefore, the mixing between g-modes and
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FIG. 4. Inertial-frame frequency σα and tidal coupling coef-
ficient Qα,21 of the j = m = 1 r-mode in a γ = 2 polytropic
NS with M = 1.4M� and R = 10km. Blue circles are the
results for a stratified NS with Γ − γ = 0.01 (corresponding
to the blue curve in Figure 3), and black curves are the re-
sults for an unstratified NS. We see that the two results are
identical, even at Ωs → 0 where the effect of stratification is
much stronger than that of rotation. Note that the results
shown in this figure (and in other figures of Section IV.C) do
not include the effect of the rotational distortion; when the
effect is included, σα for the j = m = 1 r-mode is zero to the
accuracy of our calculation.

i-modes in general does not increase the GW phase shift
by increasing the tidal coupling coefficient, but mainly
by changing the inertial-frame mode frequency.

We note that as a result of mode mixing, there are some
ambiguities in tracing the evolution of different modes as
Ωs varies. In fact, in Figure 3 and Figure 6 some of the
curves do not strictly follow a single mode. As the ex-
ample depicted in Fig. 7 shows, two adjacent modes may
exchange their perturbation profiles and the tidal cou-
pling coefficients due to mixing. When this happens, we
cross into the other mode which preserves the perturba-
tion profile we are interested in and has a larger tidal
coupling. This is the reason for the few small dips in
bottom panels of Figs. 3 and 6.
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FIG. 5. Inertial-frame frequency σα and tidal coupling coeffi-
cient Qα,21 of the j = 3,m = 1 i-mode that does not become
a g-mode in a stratified NS when Ωs = 0 (the yellow curve
in Fig. 3) in a γ = 2 polytropic NS with M = 1.4M� and
R = 10km. The yellow circles are the results for a stratified
NS with Γ − γ = 0.01 (corresponding to the yellow curve in
Fig. 3), and the black curves are results for an unstratified NS.
We see that σα is significantly decreased for small Ωs and the
tidal coupling coefficient is increased due to the stratification.

V. GW PHASE SHIFT DUE TO TIDAL
RESONANCE

Given the frequency and tidal coupling coefficient of
the NS oscillation modes, we can calculate the GW phase
shift ∆Φ due to each tidal resonance. In this section we
first consider ∆Φ due to pure (non-rotating) g-mode res-
onance in different NS models. Then we discuss ∆Φ for
mixed modes, emphasizing two cases where the mixing
between g-modes and i-modes affects the GW phase shift
in a nontrivial way.

A. Pure g-Modes

We begin by considering the Ωs = 0 case, and all low-
frequency modes are pure g-modes. From Eqs. (12), (25)
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FIG. 6. Same as Figure 3 but for the m = 2 modes.
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FIG. 7. “Crossing” of two adjacent modes. The solid and
dashed curves mark two adjacent modes. We see that as
they become close to each other at ' 180 · 2πHz, they avoid
crossing each other but exchanges perturbation profiles. The
exchange is apparent if we look at Q̄α,21 of the two modes.
In order to trace the mode we are most interested in (i.e., the
mode with larger tidal coupling), we choose to consider the
red colored branches as a single mode. The mode shown here
is the j = 2, m = 1 modified g-mode with positive frequency
shown in Fig. 3 (the red curve).

and (26), we find that for aligned spin (Θ = 0),

∆Φ = −0.060

(
R10

M1.4

)5
2

q(1 + q)

(
Γ− γ
0.01

)
×
(

f̄α
100 Hz

)−2(
Q̄α,22

10−3

)2

= −0.060

(
R8

10

M6
1.4

)
2

q(1 + q)

(
fα

100 Hz

)2

×
(

f̄α
100 Hz

)−4(
Q̄α,22

10−3

)2

, (39)

where fα = ωα/(2π) is the mode frequency, and f̄α =
ω̄α/(2π) and Q̄α,22 can be directly read off from Tables
I-III for different NS models. Figure 8 shows the magni-
tude of the phase shift ∆Φ due to tidal resonance with
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FIG. 8. GW phase shift |∆Φ| due to tidal resonance with
the j = 2, n = 1 g-mode as a function of mode frequency
fα = ωα/2π (also the GW frequency) for different NS density
and stratification models. The sign of ∆Φ is negative. In
this figure we consider a M = 1.4M�, R = 10km NS in an
equal-mass binary with aligned spin (Θ = 0). The “γ = 2
non-stratified” curve corresponds to the model with a non-
stratified envelope (see Section IV.A.3).

the j = 2,m = 2, n = 1 g-mode in a canonical NS bi-
nary (M = 1.4M�, R = 10 km and q = 1) with different
density and stratification profiles, as a function of the
mode frequency fα (which is also the inertial frame fre-
quency, and is equal to the GW frequency). We see that
among the three density models we considered, γ = 2
gives the largest GW phase shift for given fα. Mean-
while, including a non-stratified envelope barely affects
the relation between the GW phase shift and fα. For fα
at ∼ 300 Hz, we find |∆Φ| <∼ 0.01 for the canonical NS
binaries.

It is important to recognize the strong dependence of
Eq. (39) on the mass and radius of the NS. For example,
if we consider a M = 1.2M�, R = 13 km NS (which
is entirely allowed or even preferred by empirically con-
strained nuclear equations of state; see [55]; also note that
the measured NS mass ranges from 1.17M� to 2M�),
the phase shift in Fig.8 should be increases by a factor
(∝ R8/M6) of 20.6 !

B. Pure Inertial Modes

With finite NS rotation (but no stratification), we have
σα ∝ Ωs and Qα,2,m ∝ Ω2

s. Equation (12) can be written
as

∆Φ = ∓0.0027

(
R8

10

M6
1.4

)
2

q(1 + q)

(
εα|σα|

Ω2
s

)−1

×

(
Qα,2m

0.02Ω̂2
s

)2(
fs

500 Hz

)2 ∣∣∣D(2)
m±2

∣∣∣2 , (40)
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FIG. 9. Maximum GW phase shift |∆Φ|max (i.e. assuming
a spin-orbit inclination which gives the largest |∆Φ|) as a
function of the NS rotation rate Ωs, for different modes in
a γ = 2 polytropic NS with M1.4 = R10 = 1 and Γ − γ =
0.01, with an equal-mass companion. The solid (dashed) lines
denote the m = 1 (m = 2) modes. Each line corresponds to
the mode with the same color shown in Fig. 3 (for m = 1) or
Fig. 6 (for m = 2). Note that the j = m = 1 r-mode (the blue
lines in Fig. 3) is not included here because its inertial-frame
frequency is essentially zero.

where fs = Ωs/(2π) is the NS rotation frequency, the
upper (lower) sign applies to modes with σα > 0 (σα <
0), which are excited by the m′ = 2 (m′ = −2) tidal
potential. The relevant Wigner functions are

|D(2)
22 | = cos4 Θ

2
, (41)

|D(2)
2−2| = sin4 Θ

2
, (42)

|D(2)
12 | = 2 cos3 Θ

2
sin

Θ

2
, (43)

|D(2)
1−2| = 2 sin3 Θ

2
cos

Θ

2
, (44)

where Θ is the spin-orbit misalignment angle. From
Table IV we see that Qα,2m <∼ 0.02Ω̂2

s, thus pure i-
modes give rise to a negligible ∆Φ unless the star has
R8
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6
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0 100 200 300 400 500
Ωs (2πHz)

10-4

10-3

10-2

|∆
Φ
| m

a
x
 (

ra
d
)

0 20 40 60 80 100 120 140
σα (2πHz)

10-4

10-3

10-2

|∆
Φ
| m

ax
 (

ra
d
)

γ= 2

γ' 3

Γ− γ= 0. 01

Γ− γ= 0. 02

FIG. 10. Maximum GW phase shift |∆Φ|max for one of the
j = 3, m = 1 i-modes (the yellow curves in Fig. 3) for differ-
ent stellar models. The NS parameters are M1.4 = R10 = 1.
Upper panel: |∆Φ|max as a function of stellar spin Ωs. Lower
panel: |∆Φ|max as a function of the inertial-frame frequency
(which is equal to the GW frequency). Different color de-
notes different density models and the solid and dashed lines
denote relatively low (Γ− γ = 0.01) and high (Γ− γ = 0.01)
stratification, respectively.

C. Mixed Modes

In the presence of NS rotation and stratification, we
write Eq. (12) (using Eqs. 37 and 38) in the form

∆Φ = ∓0.060

(
R10

M1.4

)5
2

q(1 + q)

(
Γ− γ
0.01

)
×
(

f̄α
100 Hz

)−2(
Q̄α,2m
10−3

)2(
2πfα
εα

) ∣∣∣D(2)
m±2

∣∣∣2
= ∓0.060

(
R8

10

M6
1.4

)
2

q(1 + q)

(
fα

100 Hz

)2

×
(

f̄α
100 Hz

)−4(
Q̄α,2m
10−3

)2(
2πfα
εα

) ∣∣∣D(2)
m±2

∣∣∣2 ,(45)
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FIG. 11. Similar to Figure 10, but for the modified m = 2
g-mode that has σα zero crossing in frequency (purple curves
in Fig. 6).

where fα = |σα|/(2π) is the absolute value of the mode
frequency, and f̄α = |σ̄α|/(2π) and Q̄α,2m can be read
off from Figs. 3-6 for different NS models and modes. In
Eq. (45), the upper (lower) sign applies to modes with
σα > 0 (σα < 0), i.e., the prograde (retrograde) modes
with respect to the spin axis in the inertial frame, which
are excited by the m′ = 2 (m′ = −2) tidal potential.

Figure 9 shows the GW phase shift at the optimal in-

clination (i.e., for the value of Θ that maximizes |D(2)
m±2|)

for the modes depicted in Figs. 3 and 6. Note that the
phase shift of the j = m = 1 r-mode (the blue curves in
Fig. 3) is now shown here because its frequency σα is es-
sentially zero. We see that for most modes with canonical
NS parameters (M1.4 = R10 = 1), the GW phase shift
is much less than unity. In fact, with two exceptions
(which we will discuss in the next paragraphs), the GW
phase shift of a mixed mode is not significantly larger
than that of the corresponding pure g-mode when rota-
tion is ignored, or the corresponding pure i-mode when
stratification is ignored. This comes about because the

tidal coupling Qα,2m is usually not significantly enhanced
by mode mixing. As a result, for these modes, knowing
the pure g-mode and pure i-mode results is enough to
give a good estimate of the GW phase shift.

There are two cases where the combination of rotation
and stratification significantly enhances the GW phase
shift, and an estimate of ∆Φ based on pure i-modes or
pure g-modes would prove inadequate. The first case
concerns the i-modes that are significantly modified by
stratification. An example of this is the yellow mode
shown in Fig. 3. When Ωs → 0, this mode has σα → 0
and does not become any of the g-modes; however, the
mode frequency and tidal coupling are both significantly
affected by stratification (see Fig. 5). As a result, we see
in Figure 9 that ∆Φ for this mode converges to a finite
value as Ωs → 0. In particular, for a wide range of Ωs
(including Ωs → 0), ∆Φ of this mode is larger than all
other modes shown in Fig. 9. To study this mode in more
details, we plot the maximum GW phase shift as a func-
tion of Ωs and σα for different stellar models in Figure
10. We see that |∆Φ| decreases as γ increases; this agrees
with the fact that Qα,21 decreases when γ increases (see
Table IV). Also, |∆Φ| increases when Γ − γ increases;
we find that |∆Φ| ∝ Γ− γ at Ωs → 0, which is a scaling
relation similar to pure g-modes. For larger Ωs, stratifi-
cation affects ∆Φ less significantly. Moreover, this mode
maintains a relatively large (compared to other modes)
and nearly constant (varying by <∼ 50%) ∆Φ as σα varies
from zero to a few hundred Hz, while most other modes
have zero ∆Φ at σα → 0 (because for those modes small
σα requires either stratification or rotation to be small).
Note that this mode has very small frequency (σα � Ωs)
for small Ωs; therefore it is necessary to consider whether
rotational distortion affects the above results. It turns
out that rotational distortion only modifies σα and ∆Φ
slightly.

Another important case is when the inertial-frame fre-
quency σα becomes small due to the combined effects
of stratification and rotation. This occurs when a ret-
rograde mode (with ωα < 0) gets “dragged” by the NS
rotation, so that σα increases and changes sign as Ωs in-
creases. As a result, σα becomes zero for a particular
value of Ωs, which causes the GW phase shift ∆Φ to di-
verge (since ∆Φ ∝ 1/|σα|).3 An example is the m = 2
purple mode depicted in Fig. 6, which has a negative
σα for Ωs → 0 (“retrograde”) and positive σα (“pro-
grade”) for large Ωs. We see from Fig. 9 that |∆Φ|max

diverges at Ωs ' 110 · 2πHz. Figure 11 shows the max-
imum GW phase shift due to this m = 2 mixed mode
as a function of Ωs and σα for different NS models. We
see that for larger γ, the zero crossing (σα = 0) happens
at smaller Ωs and the peak is narrower, while for larger
Γ − γ, the zero crossing happens at larger Ωs and the
peak is wider. For γ = 2,Γ − γ = 0.02 (which gives the

3 It is in principle possible for ∆Φ to diverge due to εα crossing
zero; but this never happens for the modes studied in this paper.
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largest |∆Φ|max among the four sets in Fig. 11), we see
that |∆Φ|max

>∼ 0.01 rad for a ∼ 100 · 2πHz range in σα
(which corresponds to a ∼ 50 Hz range in the GW fre-
quency). This relatively large width suggests that there
is an appreciable chance for the system to have a combi-
nation of spin and stratification profile that gives a small
enough |σα| to cause a significant GW phase shift.

D. Summary: GW Phase Shift for Different GW
Frequencies

In order to relate our results to potential future ob-
servations, we summarize here the GW phase shifts we
expect to see at different GW frequencies. Note that
the GW frequency (fGW) is equal to the absolute value
of the inertial-frame mode frequency (since we only con-
sider the tidal potential with m′ = ±2), i.e. fGW =
fα = |σα|/(2π). For convenience, we consider a NS with
M1.4 = R10 = 1 and an equal-mass companion, but re-
sults for other NS/binary parameters can be obtained by
appropriate scalings.

For fGW
<∼ 20 Hz, the most significant GW phase shift

comes from the tidal resonance of zero-crossing mixed
modes (or modified g-modes); see the purple-lined mode
shown in Figs. 6 and 9) with small σα. These modes
can have large GW phase shift (even >∼ 1 rad), and the
|∆Φ| is larger for smaller σα (and thus smaller fGW).
Note that to have a small σα requires the NS to have
a right combination of stratification and rotation (see
Fig. 11). For a given NS binary, the probability that the
parameters of the system gives a small σα is relatively
low.

Another major source of GW phase shift at low fre-
quency (fGW

<∼ 100 Hz) is the stratification-modified i-
mode (see the yellow-lined mode in Figs. 3 and 9; see
also Fig. 10). For these modes the GW frequency is de-
termined by the spin rate and stratification together, but
the phase shift is mainly determined by the strength of
stratification. As a result, there is little correlation be-
tween phase shift and GW frequency. For typical strati-
fication (Γ−γ ∼ 0.01), the phase shift is ∼ 10−3 to 10−2

rad.

For higher frequency (fGW
>∼ 100 Hz), the most signif-

icant GW phase shift can come from g-mode, i-mode or
mixed modes, depending on the parameters of the sys-
tem. These modes share the common features that the
GW phase shift tends to increase as fGW increases, while
fGW tends to increase when stratification and spin rate
increase. NSs with large stratification and/or spin rate
will have modes at relatively high frequency (a few hun-
dred Hz) that give a relatively large (>∼ 0.01 rad) GW
phase shift.

VI. SUMMARY

We have presented a comprehensive study on the res-
onant tidal excitation of neutron star (NS) oscillation
modes in coalescing compact binaries. Such “resonant
tide” may affect the gravitational waveforms from the bi-
nary inspiral, and could potentially provide a clean win-
dow for studying NSs using gravitational waves. Our
study goes beyond previous works in that we treat the
effects of NS rotation and stratification exactly (using a
newly developed spectral code for NS oscillations) – this
exact calculation reveals several features of the resonant
tide that are not present in previous works. The main
results of our paper are summarized as follows.

• Given the various uncertainties associated with the
NS equation of state and in preparation for fu-
ture studies of NSs using GWs, we have adopted
parameterized polytropic models that characterize
the density and stratification profiles of the NS.
Such a parameterization provides a “survey” for
various possible NS models. Throughout the paper,
we have presented scaling relations for the NS os-
cillation mode frequency, tidal coupling coefficient
and the GW phase shift associated with a reso-
nance. Thus, while our numerical results and fig-
ures are often specific to a particular NS model,
they can be rescaled when a different NS model is
considered.

• We have developed a new spectral code to calcu-
late the oscillation modes of rotating NSs, with an
exact treatment of the Coriolis force. This exact
(non-perturbative) treatment allows us to obtain
the mapping of various modes as a function of the
rotation rate (see Figs. 3-4). Our spectral code can
also include the effects of rotational distortion of
the unperturbed star and the gravitational pertur-
bation (i.e., without using the Cowling approxima-
tion). We find that although adopting the Cowling
approximation barely affects the mode frequency,
it can cause appreciable overestimate of the tidal
coupling coefficient and the GW phase shift. Over-
all, while these high-order effects (rotational distor-
tion and gravitational perturbation) do not qualita-
tively change the tidal excitation property of most
oscillation modes, there is one important exception:
We have shown that when all these effects are in-
cluded, the j = m = 1 r-mode has essentially zero
frequency, whereas approximate calculations would
give σα/Ωs ∼ Ω̂2

s. (see Section IV.B.4 for more de-
tails). This is important because it implies that the
j = m = 1 r-mode cannot be tidally excited during
binary inspiral.

• For pure g-modes (with negligible rotation), the
mode frequency fα (which is also the corresponding
GW frequency at resonance) depends on the strat-
ification, and the GW phase shift |∆Φ| is always
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<∼ 0.01 for canonical NSs (M = 1.4M�, R = 10 km)
and equal-mass binaries (Fig. 8). However, ∆Φ in-
creases as R8/M6 (Eq. 38) and can become signif-
icant for low-mass NSs with larger radii. For pure
inertial modes (with no stratification), the phase
shift is typically smaller, but it also increases with
increasing R8/M6 (Eq. 39).

• In the presence of both rotation and stratification,
a NS has a spectrum of mixed (inertial-gravity)
modes (Figs. 3-4), two of which may lead to ap-
preciable GW phase shift at low frequency (Fig. 9).
The first can be thought of as the rotation-modified
m = 2 g-mode (the purple lines in Fig. 4 and
Fig. 9; see also Fig. 11): this mode is retrograde
in the rotating frame of the NS, but attains a small
inertial-frame frequency σα because of rotation. A
significant ∆Φ can be produced when the NS has
an appropriate rotation to give fα = |σα|/(2π) <∼
20 Hz. The second mixed mode of interest is
the stratification-modified m = 1 i-mode (the yel-
low lines in Fig. 3 and Fig. 9; see also Fig. 10):
This mode has a frequency that approaches zero
for Ωs → 0, but is nevertheless significantly af-
fected by the stratification; as a result, ∆Φ for this
mode is mainly determined by the stratification and
does not depend sensitively on the GW frequency
(Fig. 10). The value of ∆Φ for this mode is still
small (<∼ 10−2) for canonical NSs, but as for all the
modes studied in this paper, |∆Φ| increases with
increasing R8/M6 (Eq. 44).
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Appendix A: Numerical Methods

Here we sketch our numerical methods used to solve
for the oscillation modes in a rotating star with a general
density profile. For simplicity, we ignore the centrifugal
distortion of the equilibrium star in our discussion here,
although this can be included using the method discussed
in Ref. [45].

1. Scaling of Equations

When solving for the eigenmodes of the generalized
eigenvalue problem (13) - (16), it is convenient to use the
normalization

R = 4πG = ρc = 1, (A1)

where ρc is the central density of the star. We can define
a scaled equilibrium density

H(r) ≡ [ρ0(r)]
1/N

, (A2)

where N = 1/[γ(1) − 1], and γ(1) is the value of γ
evaluated at the stellar surface (r = 1), with γ =
d ln p0/d ln ρ0. We also scale the density and pressure
perturbation δρ and δp using

b ≡ δρ/HN−1, Π ≡ δp/HN , (A3)

where we have assumed that N ≥ 1. Such scaling guar-
antees the regularity of the solution at the stellar surface.

With the scaled variables, equations (13)-(16) can be
written as

− iωb = −Nδv · ∇H −H∇ · δv, (A4)

− iωHδv = −H(∇Π +∇Φ) +∇H
(
−NΠ +

Nγ

N + 1

b

Λ

)
− 2HΩs × δv, (A5)

− iω
(

Π− Γ

(N + 1)Λ
b

)
=

(
Γ

γ
− 1

)
Nγ

N + 1

δv · ∇H
Λ

,

(A6)

0 = ∆(δΨ)−HN−1b, (A7)

where

Λ ≡ ρ
1+1/N
0

(N + 1)p0
. (A8)

Note that when the star is exactly polytropic, Nγ
N+1 is

always 1 and the above equations reduce to equations
(22)-(24) in [45] (with λ = −iω).

Equations (A4)-(A7) are still in 2D; to further reduce
the problem we remove the azimuthal dependence by ex-
panding Π, b and δΨ in terms of spherical harmonics:

Π =

∞∑
j=m

ΠjmYjm, b =

∞∑
j=m

bjmYjm, δΨ =

∞∑
j=m

ΨjmYjm,

(A9)
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where Πjm, bjm and Ψjm are functions of r. Similarly,
the velocity perturbation δv = −iωξ can be decomposed
into spheroidal and toroidal components:

δv =

∞∑
j=m

[
ujmYjmer + vjm (∂θYjmeθ +DφYjmeφ)

+ wjm (DφYjmeθ − ∂θYjmeφ)
]
,

(A10)

where ujm, vjm, wjm are functions of r, er, eθ, eφ are
unit vectors in r, θ, φ direction respectively, and Dφ ≡
(sin θ)−1∂φ. The terms with ujm, vjm give the spheroidal
component of the velocity perturbation and while
the terms with wjm the toroidal component. Thus,
the mode is fully described by six sets of variables
(ujm, vjm, wjm,Πjm,Ψjm, bjm) that only depend on r.

2. Solving the Equations

To solve the eigenvalue problem, we transform (A4)-
(A7) into equations of different j components of the
variables u, v, w,Π,Ψ, b. We multiply Eqs. (A4), (A6)
and (A7) by {Yjm}∗ and integrate over the 4π solid an-
gle; this effectively projects the equations onto different
Yjm. For (A5), we project the equation onto (Yjmer),
(∂θYjmeθ+DφYjmeφ) and (DφYjmeθ−∂θYjmeφ) respec-
tively (by multiplying the equation by the conjugate of
the projection vector and integrate over 4π radians). For
details of this projection and the expression of the pro-
jected equations 4, see Ref. [45]. Then we choose a cutoff

j (call it jmax) and keep only components with j ≤ jmax.
For the r direction, we choose a Chebychev grid con-
sisting of Nr points from 0 to 1, which allows us to use
spectral method to solve for the modes. The problem
is now reduced to a generalized eigenvalue problem of
matrices. Note that the use of spectral method requires
that the stellar profile (density, stratification, etc.) to be
relatively smooth.

For implementation of the boundary conditions, see
[45].

3. Limitations of the Method

A major limitation of the method is that we must as-
sume N ≥ 1 when setting the scaled variables. As a
result, this method does not work for stellar models with
N < 1. Moreover, in practice when N is not an integer
the accuracy of the algorithm drops significantly, possibly
due to the fact that we are using a spectral method which
effectively expands the mode into basis polynomials.

Fortunately, there is an easy way to fix this problem.
Since we do not require a constant γ throughout the
star (unlike [45]), we can always modify γ near the outer
boundary so that most of the star has the density profile
we desire, and towards the boundary γ goes to a value
which gives a positive integer N and thereby ensuring
good performance of our algorithm. In this way, we can
obtain a reasonably good approximation for any density
profile we need. One example is the γ ' 3 model used in
the main text (Section IV).
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[25] K. Uryū, F. Limousin, J. L. Friedman, E. Gourgoul-
hon, and M. Shibata, Phys. Rev. D 80, 124004 (2009),
arXiv:0908.0579 [gr-qc].

[26] A. Reisenegger and P. Goldreich, ApJ 426, 688 (1994).
[27] M. Shibata, Progress of Theoretical Physics 91, 871

(1994).
[28] E. M. Kantor and M. E. Gusakov, MNRAS 442, L90

(2014), arXiv:1404.6768 [astro-ph.SR].
[29] A. Passamonti, N. Andersson, and W. C. G. Ho, MNRAS

455, 1489 (2016), arXiv:1504.07470 [astro-ph.SR].
[30] H. Yu and N. N. Weinberg, MNRAS 464, 2622 (2017),

arXiv:1610.00745 [astro-ph.HE].
[31] H. Yu and N. N. Weinberg, MNRAS 470, 350 (2017),

arXiv:1705.04700 [astro-ph.HE].
[32] W. C. G. Ho and D. Lai, MNRAS 308, 153 (1999), astro-

ph/9812116.
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