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We extend the effective theory approach to the ideal fluid limit where the polarization of the fluid
is non-zero. After describing and motivating the equations of motion [1], we expand them around
the hydrostatic limit, obtaining the sound wave and vortex degrees of freedom. We discuss how the
presence of polarization affects the stability and causality of the ideal fluid limit.

Relativistic hydrodynamics is an area which currently
enjoys a high level of both theoretical and phenomeno-
logical activity [2]. Heavy ion collision experiments have
been shown to be well described by hydrodynamic simu-
lations. The connection of hydrodynamics to microscopic
theory, and the development of hydrodynamics as an ef-
fective field theory, are however still not well understood.

The direct observation of polarization of Λ particles in
heavy ion collisions [3] and microscopic strongly coupled
systems [4], as well as phenomena such as chiral transport
and anomalies [5–10] has motivated the phenomenologi-
cal study of vorticiity in relativistic fluids [11–13] and its
relationship to microscopic spin polarization.

A ”realistic” effective theory for describing the rela-
tionship between vorticity and polarization in the ideal
fluid limit is however still in development. Vorticity does
not emerge in the transport limit, but rather close to the
thermodynamic/hydrodynamic regime. The former was
studied within the usual thermodynamic techniques, up-
dated with the inclusion of angular momentum [14–16],
but this is not a realistic setup for a strongly coupled
dynamical system, where equilibrium is to a good ap-
proximation local rather than global.

Local polarization has also been computed for a vorti-
cose fluid from an extension of the Cooper-Frye formula
[13], but, if such polarization exists at freeze-out, it must
exist throughout the evolution of the fluid and backreact
on the vorticity as well.

The problem describing this is a conceptual one, since
several features associated with fluid dynamics, such as
local isotropy in the comoving frame [20] and the rela-
tivistic Kelvin theorem (also referred to as vorticity con-
servation) [11], are inherently broken by local polariza-
tion [14]. One therefore needs to agree what ideal hy-
drodynamics in this context means, before developing
a hydrodynamics from these principles. Usual insights
from transport theory can also be misleading since po-
larization is a breakdown of molecular chaos, since it is
a two-particle microscopic phase space correlation [1].

An approach to describe this is to use effective field the-
ory [25–29], but modify the way the gradient expansion is
used: Polarization at global equilibtium is proportional
to vorticity, which naively should be suppressed byt the
Knudsen number, but in fact it survives at global equi-
librium and it is necessary to consider it if one wants to
assume local equilibium with non vanishing angular mo-

mentum (spinning fluid cell). The other gradients, like
the shear stress, being vanishing at equilibrium, can be
considered as usual related to dissipation. They can be
neglected in the limit of ideal fluids. In [1] we presented
the simplest instance (lowest order in gradients and sim-
plest assumption for the Lagrangian density) of such a
theory. We shall briefly introduce it and examine its be-
havior close to hydrostatic equilibrium.
In this approach perfect fluid without polarization can

be described by three fields, representing the comoving
( “Lagrangian“) coordinate systems φI . Fluidity can be
defined via symmetries, namely the invariance of the La-
grangian under a volume-preserving diffeomorphism in-
variance [22, 29, 31]. In general

L(φI → ξI(φJ )) → L , det

[

∂ξI
∂φJ

]

= 1 (1)

It directly follows [22, 31] that the lagrangian is of the
form, at the lowest order in gradients

L = F (b) , b =
√

det
IJ

[BIJ ] , BIJ = ∂µφI∂
µφJ (2)

The Lagrangian above straight-forwardly yields the gen-
eral energy momentum tensor whose conservation yields
Euler’s equations [22, 29, 31],

∂µT
µν = 0 , T µν = (p+ e)uµuν − pgµν (3)

if one substitutes, for energy density e, pressure p and
chemical potential µ

e =
dF (b, µ)

dµ
− F (b, µ) , p = F (b, µ)− dF (b, µ)

db
b (4)

the latter, defined in terms of an internal U(1) conserved
current Jµ and the chemical shift symmetry [31]

L(φI , e
iα) → L(φI , e

iα+ψ(φI))

to be

µ = b−1Jµ∂µψ

The lagrangian in general is related to the free energy by
a legendre transformation w.r.t. the chemical potential.
The diffeomorphism symmetries and the chemical shift

allow for a uniquely defined flow velocity

uµ =
1

6b
ǫIJKǫµαβγ∂

αφI∂βφJ∂γφK =
Jµ√
−JνJν

(5)
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with the comoving projector being

∆µν = B−1
IJ ∂

µφI∂νφJ (6)

If the system has intrinsic polarization,the coordinates
φI(x) are not enough because they do not contain in-
formation about polarization. Moreover, because of the
conceptual difficulties described earlier, we need to de-
fine precisely what we mean by the ideal hydrodynamic
limit, especially because of the polarizations breaking of
local isotropy and vorticity conservation. We take the
ideal hydrodynamic limit to mean that dynamics is de-
pendent only on the flow uµ and comoving variables, the
comoving variables are defined entirely by local entropy
maximization, and that only sound waves and vortices
arise as local excitations(see Ref. [1] for the details.
Note that previous attemps to address this issue did not
concentrate on this poit [17, 18]).
Regarding the polarization effective degrees of freedom

yµν , they have been defined in Ref [1] as the (infinitesi-
mal) volume integral of the (space part of the) total angu-
lar momentum of a fluid cell in the local comoving frame,
normalized using the volume of the cell itself. This can
be interpreted as a way to keep track of the angular mo-
mentum structure of the fluid during a coarse graining
procedure. Angular momentum conservation has always
been considered in relativistic hydrodynamics, therefore
no new symmetry has to be added, only the new polar-
ization degrees of freedom: the lack of a spin tensor and
the symmetry of the stress-energy tensor imply local an-
gular momentum conservation both for ideal and viscous
hydrodynamics.
If the polarization were ”passively transported along

the fluid”, in other worlds, if polarization were conserved,
then one wold need an additional symmetry on the effec-
tive Lagrangian. This situation is similar to the actual

U(1) symmetry considered in Ref [31], where the phase
invariance, represented by an explicit dependence of the
Lagrangian on the gradient of the local phase, was not
enough to recover ideal (non-polarized) hydrodynamics,
because the electric current is not guaranteed to be pro-
portional to the energy flux. To enforce this requirement
one can introduce the concept of shift symmetry, which
can be interpreted as an invariance of physics under local
rescaling of the electric charge units. If one uses the same
formalism to describe the flow of the spin current (yµν in
the comoving frame), one would have

L (yµν(x)) = L
(

yµν(x) + fµν(φI(x))
)

, (7)

which would represent, not only the invariance of physics
under rescaling of the polarization units, but also invari-
ance under an arbitrary addition of an extra polarization
which is constant along the flux lines. Following [31] ,
the invariant that should enter the effective Lagrangian
is

ẏµν = u · ∂ yµν .

If we apply the “revised” chemical shift (7), ẏµν is invari-
ant since ∂µφI will enter in the derivative and annihillate
with uµ∂µφI is vanishing by construction.
Conservation of angular momentum, even in the ideal

limit, does not imply that polarization should correspond
to an even approximatel conserved current. We there-
fore treat yµν as an auxiliary field distinct from φI , and
impose the interaction between orbital and spin angular
momentum via the equation of state. In order for local
equilibrium to be well-defined, we chose to write directly
the polarization degrees as proportional to the local vor-
ticity,

yµν = χ(b, ω2)ωµν (8)

a violation of this condition will inevitably result in Gold-
stone modes and topological constraints which create
long-term correlations which make a hydrodynamic limit
impossible [1]. Note that in an external field such as (but
not only) magnetohydrodynamics [36, 39], this symme-
try would be broken and the Lagrangian would depend
directly on polarization.
By counting gradients and enforcing symmetries, the

lowest order term which respects the internal diffeomor-
phism symmetry is yµνy

µν . For example det[y] is a higher
term in gradient (y being proportional to the vortic-
ity, which is a gradient), ǫαβγρ∂

µJνyγρ would violate
parity and ∂µJνy

µν be higher order in gradient, again.
Parity violating terms would of course be permitted in
the context of anomalous hydrodynamics ). Considering
that polarization introduces a correlation between mi-
crostates, the presence of polarization at a given entropy
b should change the free energy, to leading order in gra-
dient, as b → b (1− cyµνy

µν) where c is a dimensionful
constant representing polarizeability (it can be positive
for a ferromagnetic material and negative for an antifer-
romagnetic one). For dimensional reasons, c ∼ T 2

0 Given
this, a physically reasonable way to introduce polariza-
tion that we adopted is

F (b, y) → F (b× f(y)) , f(y) = 1− cyµνy
µν +O

(

y4
)

(9)
For instance, the ideal gas without polarization with den-
sity n of particles of which a fraction α are polarized, as-
suming nearest-neighbor interactions b ∼ n(1 − α2) and
F (b) ∼ b4/3(1− α2), making c ∼ 3/4.
We can now make the link between the lagrangian for-

mulation and usual thermodynamics using the methods
of [31] but with the angular momentum in lieu of chemi-
cal potential (note that the collinearity between angular
momentum and polarization is what makes this analogy
possible). While physically, because of lack of isotropy,
it is non-trivial to relate the usual derivatives of the free
energy to what we know as pressure and energy density,
the existence of some free energy F to be minimized will
lead to a constraint of the type

dF (b, y) = ∂bF ds+ ∂yµν
F dyµν = (10)

= −(1− cy2)F ′ds− 2cbF ′yµνdyµν .
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which allows us to link the constant of proportionality in
Eq. (8) to F via Legendre transfroms

−2cbF ′yµν = −2cbχF ′ωµν ∝ 1

T

Note that this means that the source term yµν is not
a dynamical degree of freedom, since it is fixed by en-
tropy maximization. If we had F in terms of a partition
function we could find χ given a local temperature and
vorticity explicitly, via a derivation along the lines of [7]
and its similarity with magnetic susceptibility.
The equation of motion, using the standard Euler-

Lagrange equations, is

∂µJ
µ
I = 0, (11)

where

JµI = 4 c ∂ν

{

F ′
[

χ (χ+ 2 ∂Ω2χ)ωαβ g
α{µP

ν}β
I

]}

−

−F ′
[

uρP
ρµ
I

(

1− cy2 − 2cbχω2 ∂bχ
)]

−2c
(

χ+ 2ω2 ∂Ω2χ
)

F ′×

×
{[

χω2 − 1

b
yρσ (uα∂

αKρ − uα∇ρKα)

]

P σµI −

− 1

6b
yρσε

µραβǫIJK∇σ∂αφ
J∂βφ

K

}

.

with PKµν = ∂Kµ/∂
µφK , ∇α = ∆αβ∂β and [...], ... corre-

sponding to, respectively, antisymmetrization and sym-
metrization of the indices, as done in [35].
In addition to generally breaking homogeneity andthe

relativistic Kelvin theorem, unlike non-polarized hydro-
dynamics the higher gradient in velocity dependence
these equations will be higher than 2nd order in gradient.
To understand the consequences of this, we linearized the

hydrostatic limit with ”temperature” T0 ∼ b
1/3
0 ,

φI = T0 (XI + πI) , (12)

Note that this is not the actual temperature of the back-
ground, it is proportional to that only in the conformal
limit. Using the notation in [38], where ∂π is shorthand
for ∂iπJ and [∂π] for its trace and time derivatives are
denoted by dots, the non-polarized hydrodynamics gives
the usual wave equation for sound waves, the stationary
vortex state polarization terms which will increase the
gradients at each order by one unit. The free part of the
equation will be

L = A

{

[∂π]− 1

2
[∂π · ∂π]− 1

2
π̇2

}

+ (13)

+B
{

(∂ρπ̇) · (∂ρπ̇) + [∂π̇ · ∂π̇]
}

+

(

1

2
A+ C

)

[∂π]2.

where the constants A,B,C are

A = T0F
′(b0), B = Acχ2(b0, 0), C =

1

2
b20F

′′(b0),

(14)
giving an equation of motion

4B







....
π I −

∑

j

∂2j π̈
I + ∂I∂J π̈

J







+Aπ̈I − 2C∂I∂Jπ
J

(15)
Note that this will always make these excitations sus-
ceptible to Ostrogradski’s instabilities, from lowest order
[34].
To go further, we decompose the perturbation into an

irrotational and rotational parts

~π = ~∇ϕ(xµ) + ~∇× ~Ω(xµ) (16)

, which, in the linearized limit, have their own Fourier
modes

(

ϕ
~Ω

)

=

∫

dwd3k

(

ϕ0

~Ω0

)

exp
[

i
(

~kL,T .~x− wL,T t
)]

(17)
For the Longitudinal ones we have

4Bw4
L −Aw2

L + 2Ck2 = 0, (18)

We note that this differs markedly from the usual effec-
tive theory expansion [29], where the dispersion relation
is of the form w =

∑

iAik
i. This difference, instrumental

in our conclusions, follows from the fact that the effect of
polarization does not follow from a microscopic gradient,
but from a “source“ of a conserved quantity, relativistic
angular momentum [1]. This is defined in a Lorentz-
covariant way, and affect the 0th component on the same
footing as the spacelike components.
In order for Eq. 18 to have only real solution

A2 − 32BC k2 ≥ 0. (19)

It is alwas consistent for small momenta, but, depending
on the sign of BC, stable excitations may disappear at
high momenta.
The two solutions for w2

L are

w2
L =

A

8B
±

√

(

A

8B

)2

− Ck2

2B
(20)

Note that, depending on the parameters and on the mo-
mentum scale, this can be complex. An imaginary part
to the frequency corresponds to damped modes and in-
stabilities. For the transverse modes we get

4Bw4
T − 4B k2 w2

T −Aw2
T = 0. (21)

There is always a couple of non hydrodynamic modes
associated withe the vorticous excitations. The solutions
for w2

T are
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FIG. 1. The maximum of the soundwave velocity w/k plot-
ted against the parameters A/B and C/B. All axes are in
logarithm base 10 Note that we always pick the lowest maxi-
mum w/k physical (ω > 0 and real) solution of Eq. 18 at its
maximum. This generates the noisiness of the plot

wT = 0, w2
T =

A

4B
+ k2, (22)

We have calculated the maximum possible wave veloc-
ity for wL numerically, and it is shown as a function of
the coefficients in Fig. 1 On the one hand, as one can
see, polarization has important consequences on vortex
non-propagation [29]. For a general equation of state, a
change in temperature due to the propagation of a sound
wave will also change the susceptibility. Because of con-
servation of angular momentum, this will also change the
vorticity. This mixing between sound waves and vor-
tices due to the sensitivity of the equation of state to
polarization will allow vortices to propagate and create
an effective hydrostatic limit even in the hydrodynamic
limit in the presence of fluctuations, which could lead
to stabilization [1] for small vorticities, the “fluctuation-
driven turbulence” phase conjectured in [25, 26]. On the
other hand, the ideal hydrodynamic limit also leads to
a non-causal propagation for both sound and vorticity
groupvelocity. In Fig. 1 A/B and C/B are systemati-
cally varied, and it is show the highes phase velocity w/k
is maximized. For all significant values (≫ 10−2) of these
parameters, the maximun of w/k is very high, and in the
same region the group velocity significantly exceed the
causal limit, possibly because of a too fast phase velocity
of excitations in the region.
This is actually a reasonable result, as it is a direct

consequence of the fact that the Free energy F (b, y), and
hence the local dynamics, is sensitive to an accelleration
(similar non-causal dissipative violations of propagation
were found at higher gradient order in [35, 37]). Ostro-
gradski’s theorem guarantees such Lagrangians are un-
stable (and one needs the Lagrangian picture to see this

instability), and hence hydrodynamic systems including
a response to angular momentum in the EoS will not
have a stable ideal hydrodynamic limit. It must be noted
that removing the ansaztz in (9), using instead a generic
F (b, y) and removing the assumption of yµν to be space-
like, that is using for the right hand side of Eq. (8) the
full antisymmetric part of the gradient of the four veloc-
ity instead of the vorticity only, would not change small
perturbations over the hydrostatic background, up to the
values of the constants A,B,C in Eq. (15).

One would need then to take into account the polar-
ization as a separate dynamical degree of freedom from
the vorticity and include ẏµν (and yµν since polarization
is not a conserved quantity). Note that in this way it is
possible to obtain an Israel-Stewart type equation

τΩuα∂
αyµν + yµν = χωµν +O

(

ω2
)

(23)

which could resolve this issue, with an appropriate re-
laxation time τΩ, like it did for first order viscous hy-
drodynamics. The procedure to use is similar to what
has already been done in Ref [27] to insert a relaxation
time equation for the pressure correction, however it is
important to remind that the current formalism used is
incompatible with dissipative processes (indeed any time
irreversible process), and it must be extended as it was
done in Ref [27] itself. It is mandatory to double the de-
grees of freedom (or double the time dimension, with the
average of the two time coordinates as the physical time)
in order to theoretically justify an effective Lagrangian
as the leftover of the underlying (full) Lagrangian, after
”integrating out” the microscopic degrees of freedom. In
this extended formalism angular momentum (and in fact
even four-momentum) conservation has to be enforced on
the with additional conditions, fore more informations on
the subject see, for instance Ref. [40, 41].

This is very different from ideal spinless hydrodynam-
ics, where Navier-Stokes equations necessitate of relax-
ation dynamics but Euler equations are well-defined. In
hydrodynamics with polarization, there seems to be a
general conflict between causality and the non-dissipative
regime, one which might lead to a quantitative lower limit
for dissipation (the τΩ needed to restore causality) in sys-
tems whose fundamental constituents have spin. This
will be quantitatively examined in a subsequent work.

In conclusion, we took the linearized effective theory
for ideal hydrodynamics in the presence of polarization
and examined the behavior of the lowest-lying modes,
sound wave and vortical. Unlike in normal ideal hydro-
dynamics, the two mix. On the one hand, this is likely
to stabilize the vortex mode by adding an effective soft
energy gap to it. On the other, causality of sound prop-
agation is no longer guaranteed even in the ideal limit
unless polarization effects are soft enough. Fixing this
most likely requires introducing relaxation dynamics al-
ready from the ideal fluid limit, and this has implications
for the minimum viscosity for fluids whose microscopic
degrees of freedom have non-zero spin.
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