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A framework to include triple collinear splitting functions into parton showers is presented, and
the implementation of flavor-changing NLO splitting kernels is discussed as a first application. The
correspondence between the Monte-Carlo integration and the analytic computation of NLO DGLAP
evolution kernels is made explicit for both timelike and spacelike parton evolution. Numerical
simulation results are obtained with two independent implementations of the new algorithm, using
the two independent event generation frameworks PYTHIA and SHERPA.

I. INTRODUCTION

Parton showers solve the leading-order DGLAP equations [1–4] using Markovian Monte-Carlo algorithms [5]. As
such they work at much lower computational precision than many other calculational tools used in high-energy physics
to date [6]. Due to their importance for both experimental analyses and phenomenological surveys, a limited set of
the most important higher-order effects has been included into parton showers over time, such as angular ordering [7],
and soft-gluon enhancement [8]. The numerical size of the remaining theoretical uncertainties is unclear, especially
since parton showers are tuned to match the most relevant experimental observables. The net effect of this tuning is
that their predictions are most often accurate, yet imprecise, and that the level of imprecision is difficult to quantify
numerically. As fully exclusive, high precision simulations are mandatory in order to perform reliable measurements of
Standard Model parameters and/or searches for physics beyond the Standard Model, the extension of parton showers
to higher formal accuracy would benefit large parts of the high-energy physics community.

The possibility of including next-to-leading order corrections into parton showers has been explored early on [9–
12] and was revisited recently [13, 14]. NLO splitting functions have been recomputed using a novel regularization
scheme [15, 16]. The dependence of NLO matching terms on the parton-shower evolution scheme has been investigated
in detail [17]. In addition, the first solutions to incorporate effects beyond the leading-color approximation into parton
showers have been found [18, 19], and threshold logarithms have been included in a fully automated approach [20].

In this publication, we construct a framework for the simulation of triple-collinear parton splittings, which contribute
to the next-to-leading order corrections to DGLAP evolution [21–24]. Triple-collinear splitting functions are known
since long [25], but they have not been included into parton showers to date1. We start with the simplest case of
the flavor-changing splitting kernels. We use these 1 → 3 kernels to recompute the timelike and spacelike NLO
splitting functions Pqq′ in the MS scheme, and we show how the result can be implemented straightforwardly in
its differential form in a Markovian Monte-Carlo simulation, such that the integral matches Pqq′ up to momentum
conserving effects. Our algorithm depends crucially on the usage of a weighted parton shower, a technique that was
presented in [26, 27]. We see an opportunity to extend our new method to more complicated triple-collinear splitting
functions, and to include virtual corrections, such that all NLO kernels may eventually be calculated on-the-fly, similar
to the computation of a fixed-order result in the dipole subtraction method [28].

The outline of this publication is as follows: Sec. II highlights the correspondence between the formalism for parton-
shower evolution and for DGLAP evolution. The main components of parton-showers are the splitting kernels and
the kinematics mapping, which define the probability and kinematics in the transition from an n-parton final state
to an n + 1-parton final state. Section III therefore presents the recomputation of the timelike and spacelike NLO
splitting kernels Pqq′ and, based on the individual terms identified in the analytical calculation, the construction of a
formalism to include 1→ 3 branchings in the parton shower. We present a validation of our numerical implementation
and a test of the numerical impact of q → q′ and q → q̄ splittings in Sec. IV. The kinematical mappings introduced
to simulate 1→ 3 splittings are an integral part of the new algorithm, but their presentation is rather technical and
has therefore been included in App. A. Section V contains some concluding remarks.

II. PARTON-SHOWER FORMALISM

Parton showers implement QCD evolution equations, most commonly the DGLAP equation [1–4], which governs
the evolution in the limits of collinear initial- and final-state parton branchings. The main components of a parton-

1 First ideas to include 2→ 4 branchings in final-state evolution were presented in [14].
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shower are thus the evolution or splitting kernels and the kinematics mapping which defines how an n-parton final state
transitions to an n+1-parton final state. Modern parton showers implement local four-momentum conservation during
this transition, which requires the presence of a parton (or a set of partons) that compensate the missing energy when
the parton undergoing evolution is taken off its mass shell. Most commonly this so-called recoil partner is identified
with the color-connected parton in the large-Nc limit. In order to construct a parton shower implementing triple-
collinear splitting functions we are thus left with two main tasks: One is to show that such a shower will implement
the NLO DGLAP evolution kernels that pertain to the triple-collinear parton branchings. The other is to define
kinematics mappings that allow us to generate 1→ 3 transitions in the presence of a recoil partner. We will address
the problem of the connection of the parton-shower formalism to the DGLAP equation in this section, while the
definition of the kinematics and a derivation of the related phase-space factorization in D dimensions is presented in
App. A. We will make use of both results in Sec. III.

The evolution of parton densities and fragmentation functions in the collinear limit is governed by the DGLAP
equations [1–4]. While they are schematically similar for initial and final state, the implementation in parton-shower
programs is radically different between the two, owing to the fact that Monte-Carlo simulations are typically performed
for inclusive final states. Nevertheless parton showers do solve the DGLAP equations both in timelike and in spacelike
evolution. We will start with the evolution equations for the fragmentation functions Dh

a(x,Q2) for parton of type a
to fragment into hadron h, and we will suppress the index h for brevity,

dxDa(x, t)

d ln t
=
∑
b=q,g

∫ 1

0

dτ

∫ 1

0

dz
αs
2π

[
zPab(z)

]
+
τDb(τ, t) δ(x− τz) . (1)

In this context, Pab are the unregularized DGLAP evolution kernels, which can be expanded into a power series in
the strong coupling. The plus prescription can be used to enforce the momentum and flavor sum rules:[

zPab(z)
]
+

= lim
ε→0

zPab(z, ε) , (2)

where

Pab(z, ε) = Pab(z) Θ(1− z − ε)− δab
∑

c∈{q,g}

Θ(z − 1 + ε)

ε

∫ 1−ε

0

dζ ζ Pac(ζ) . (3)

For finite ε, the endpoint subtraction in Eq. (2) can be interpreted as the approximate virtual plus unresolved real
corrections, which are included in the parton shower because the Monte-Carlo algorithm naturally implements a
unitarity constraint [29]. The precise value of ε in this case is defined in terms of an infrared cutoff on the evolution
variable, using four-momentum conservation. For 0 < ε� 1, Eq. (1) changes to

1

Da(x, t)

dDa(x, t)

d ln t
= −

∑
c=q,g

∫ 1−ε

0

dζ ζ
αs
2π
Pac(ζ) +

∑
b=q,g

∫ 1−ε

x

dz

z

αs
2π

Pab(z)
Db(x/z, t)

Da(x, t)
. (4)

Using the Sudakov form factor

∆a(t0, t) = exp

{
−
∫ t

t0

dt̄

t̄

∑
c=q,g

∫ 1−ε

0

dζ ζ
αs
2π
Pac(ζ)

}
(5)

one can define the generating function for splittings of parton a as

Da(x, t, µ2) = Da(x, t)∆a(t, µ2) . (6)

Equation (4) can now be written in the simple form

d lnDa(x, t, µ2)

d ln t
=
∑
b=q,g

∫ 1−ε

x

dz

z

αs
2π

Pab(z)
Db(x/z, t)

Da(x, t)
. (7)

The generalization to an n-parton state, ~a = {a1, . . . , an}, with jets and incoming hadrons resolved at scale t can be
made in terms of PDFs, f , and fragmenting jet functions, G [30, 31]. We define the generating function for this state
as F~a(~x, t, µ2). It obeys the evolution equation

d lnF~a(~x, t, µ2)

d ln t
=
∑
i∈IS

∑
b=q,g

∫ 1−ε

xi

dz

z

αs
2π

Pbai(z)
fb(xi/z, t)

fai(xi, t)

+
∑
j∈FS

∑
b=q,g

∫ 1−ε

xj

dz

z

αs
2π

Pajb(z)
Gb(xj/z, t)
Gaj (xj , t)

.

(8)
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This equation can be solved using Markovian Monte-Carlo techniques known as parton showers [5]. In most cases,
parton showers implement final-state branchings in unconstrained evolution. Since Eq. (4) also applies to G [30], we
can use Eq. (4) to remove the dependence of G from Eq. (8), thus leading to the differential branching probability

d

d ln t
ln

( F~a(~x, t, µ2)∏
j∈FS Gaj (xj , t)

)
=
∑
i∈IS

∑
b=q,g

∫ 1−ε

xi

dz

z

αs
2π

Pbai(z)
fb(xi/z, t)

fai(xi, t)
+
∑
j∈FS

∑
b=q,g

∫ 1−ε

0

dz z
αs
2π

Pajb(z) . (9)

A direct consequence of this relation is that the Sudakov factor, Eq. (5), must be used in final-state parton showers
that implementing splitting kernels beyond the leading order, or else the sum rules will be violated [29]. However,
at leading order the additional factor ζ in the integral of Eq. (5) can be replaced by a symmetry factor, because the

leading-order DGLAP splitting functions, P
(0)
ab , obey the symmetries

∑
b=q,g

∫ 1−ε

0

dz z P
(0)
qb (z) =

∫ 1−ε

ε

dz P (0)
qq (z) +O(ε) ,

∑
b=q,g

∫ 1−ε

0

dz z P
(0)
gb (z) =

∫ 1−ε

ε

dz
[ 1

2
P (0)
gg (z) + nf P

(0)
gq (z)

]
+O(ε) .

(10)

This relates the branching formalism employed for our new parton shower to the conventional technique for final-state
parton evolution [5], where the factor ζ is replaced by 1/2. The new formalism has a convenient physical interpretation:
The factor ζ identifies the final-state parton undergoing evolution in the same way that the initial-state parton is
identified in initial-state evolution. We will make use of this result in Sec. III C, where we show how to implement
the differential form of the integrated splitting kernels computed in Sec. III A.

III. INCORPORATION OF 1→3 BRANCHINGS

In this section we detail the formalism used to implement triple-collinear splitting functions, both in the spacelike
and in the timelike case. The main result is given by Eq. (32), which unsurprisingly bears a remarkable similarity
to the formulation of a fixed-order NLO calculation in the subtraction method. Our algorithm must satisfy the
constraint that the integral over the splitting function evaluates to the corresponding NLO evolution kernel first
computed in [21–24] and rederived in [32, 33]. To verify this, we recompute the flavor-changing timelike and spacelike
kernels Pqq′ in Sec. III A. We then identify the relevant components to be implemented in the Monte-Carlo simulation
and comment on the appropriate transformation of the MC integration variables listed in App. A. We also comment
on the possibility to extend this method to splitting functions with leading-order contributions and virtual corrections.

In the triple collinear limit of partons a, i and j, any QCD (associated) matrix element squared factorizes as [25]

|Ma,i,j,...,k,...(pa, pi, pj , . . .)|2 =

(
8πµ2εαs
saij

)2

T ss′aij,...(paij , . . .)P
ss′

aij (pa, pi, pj) , (11)

where the superscripts denote the spin-dependence of both the splitting function and the reduced matrix element.
We will implement the spin-averaged splitting functions, 〈Paij〉(pa, pi, pj), together with related counterterms that
are identified in Secs. III B and III C. The factor in parentheses in Eq. (11) is common to all terms. The two powers
of the strong coupling are both evaluated at the parton-shower evolution variable, t. One factor saij will be combined
with the last term in Eqs. (A10), (A30), (A43) and (A58), while the other cancels after transformation of the sai
integration using Eqs. (39) and (44). We will comment on this in Sec. III C.

A. Fixed-order calculation

We use the method outlined in [34] to compute both the timelike and the spacelike flavor-changing NLO splitting
kernels for massless partons

P
(T )
qq′ (z) = CFTR

(
+(1 + z) log2(z)−

(
8

3
z2 + 9z + 5

)
log(z) +

56

9
z2 + 4z − 8− 20

9z

)
,

P
(S)
qq′ (z) = CFTR

(
−(1 + z) log2(z)−

(
8

3
z2 + 5z + 1

)
log(z)− 56

9
z2 + 6z − 2 +

20

9z

)
.

(12)
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The timelike splitting functions can be extracted from the term proportional to δ(s) in the two-loop matching of
the fragmenting jet function, G, while the spacelike splitting function is obtained similarly from the δ(s) term in the
matching condition of the beam function. In the timelike case, the matching condition reads

Gi(2)
q (s, z, µ) = J (2)

qi (s, z, µ) +
∑
j

∫ 1

z

dx

x
J (1)
qj (s, z/x, µ)D

i(1)
j (x, µ) + δ(s)Di(2)

q (z, µ) . (13)

The perturbative fragmentation function at O(α2
s) is given by

D
i(2)
j (z, µ) = δijδ(1− z)−

αs
2π

1

ε
P

(0)
ji (z)

+
(αs

2π

)2
[
− 1

2ε
P

(1)
ji (z) +

β0

4ε2
P

(0)
ji (z) +

1

2ε2

∫ 1

z

dx

x
P

(0)
jk (x)P

(0)
ki (z/x)

]
.

(14)

In the timelike case we employ the phase-space parametrization of [35]. We factor out the two-particle phase space,
the integration over the three-particle invariant yaij = saij/q

2 and the corresponding factors (yaij(1 − yaij))1−2ε as
well as the integration over one of the light-cone momentum fractions, which is chosen to be z̃ = sak/q

2/(1 − yaij).
We also remove the square of the normalization factor (4π)ε/(16π2Γ(1 − ε)) (q2)1−ε. The remaining one-emission
phase-space integral reads∫

dΦ
(F )
+1 = (1− z̃)1−2εz̃−ε

∫ 1

0

dτ (τ(1− τ))−ε
∫ 1

0

dv (v(1− v))−ε
Ω(1− 2ε)

Ω(2− 2ε)

∫ 1

0

dχ 2(4χ(1− χ))−1/2−ε , (15)

where Ω(n) = 2πn/2/Γ(n/2). The variables τ and v are given by the transformation2

sai = saij(1− z̃j) v , z̃j =
sjk/q

2

1− yaij
= (1− z̃) τ . (16)

The azimuthal angle integration is parametrized using χ, which is defined as sij = sij,− + χ(sij,+ − sij,−) , with sij,±
being the two solutions of the quadratic equation cos2 φj,ka,i = 1, cf. Eq. (A17) [35].

We can now integrate the only diagram contributing to the timelike NLO DGLAP kernel, P
(T )
qq′ (z̃), which is given

by the triple collinear splitting function [25]

P 1→3
qq′ =

1

2
CFTR

saij
sai

[
−

t2ai,j
saisaij

+
4 z̃j + (z̃a − z̃i)2

z̃a + z̃i
+ (1− 2ε)

(
z̃a + z̃i −

sai
saij

)]
, (17)

where (z̃a + z̃i) tai,j = 2(z̃asij − z̃isaj) + (z̃a − z̃i)sai. The result is

1

CFTR

∫
dΦ

(F )
+1 P

1→3
qq′ = −1

ε

(
2(1 + z̃) log z̃ + (1− z̃) +

4

3z̃
(1− z̃3)

)
− 4(1 + z̃)

(
Li2(z̃)− ζ2

)
+ 3(1 + z̃) log2 z̃ − 16

3
(1− z̃) +

2

3z̃
(1− z̃3)

+

(
8

3z̃
+ z̃ + 3

)
log z̃ +

(
8

3z̃
(1− z̃3) + 2(1− z̃)

)
log(1− z̃) +O(ε) .

(18)

Upon including the propagator term from Eq. (11) and the phase-space factor y1−2ε
aij , the leading pole will receive

an additional factor −δ(yaij)/2ε. The 1/ε2 coefficient thus generated is removed by the renormalization of the
fragmentation function. As required, it agrees up to a sign with the corresponding second order 1/ε2 coefficient in
Eq. (14), which we write as

Pqq′(z̃) =

∫ 1

z̃

dx

x
P (0)
qg (x)P (0)

gq (z/x) = CFTR

(
2(1 + z̃) log z̃ + (1− z̃) +

4

3z̃
(1− z̃3)

)
. (19)

2 Note that we define z̃j → (1− z̃)τ , while the corresponding transformation in [35] reads z̃ → (1− z̃j)τ .
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Equation (13) can now be employed to extract the NLO DGLAP kernel P
(T )
qq′ (z) from the finite remainder of Eq. (18).

We subtract the corresponding convolution of the one-loop matching coefficient with the one-loop fragmentation
function, which is given by

I(F )
qq′ (z̃) = 2

∫ 1

z̃

dx

x
CF

(
1 + (1− x)2

x
log(x(1− x)) + x

)
P (0)
gq (z̃/x) . (20)

Using this technique, we finally obtain the result in Eq. (12).
We now proceed to perform the integral over the triple-collinear splitting function in the spacelike case. We

use the phase space parametrization in [33]. The azimuthal angle integral is most conveniently parametrized using

Eq. (A15), which gives dφa,bi,j = d(~pi⊥~pj⊥)/(|~pi⊥||~pj⊥| sinφa,bi,j ) , with ~p⊥ the transverse momenta with respect to the

(anti-)collinear directions defined by pa (and pb). We can use a transformation identical to the timelike case [35].

We define sij = sij,− + χ(sij,+ − sij,−), where sij,± are the two solutions of the quadratic equation cos2 φa,bi,j = 1.

The related angular integral is dφa,bi,j (sin2 φa,bi,j )−ε = 2dχ (4χ(1 − χ))−1/2−ε . We remove the normalization factor

(4π)2ε/(16π2Γ(1− ε))2 s1−2ε
aij . The full phase space relevant to our computation is then given by∫

dΦ
(I)
+1 = z̃−1+ε

∫ 1

0

dx (1− x)−ε(x− z̃)−ε
∫ 1

0

dv (v(1− v))−ε
Ω(1− 2ε)

Ω(2− 2ε)

∫ 1

0

dχ 2(4χ(1− χ))−1/2−ε . (21)

Using Eq. (17) and the crossing relation

Pqq′(z̃1, z̃2, z̃3, s12, s13, s23) = z̃1 Pq′q(1/z̃1,−z̃2/z̃1,−z̃3/z̃1,−s12,−s13, s23) , (22)

we can integrate the only contribution to the spacelike NLO DGLAP kernel P
(S)
qq′ (z). The result can be expressed in

terms of Eq. (18) (see also [21, 36])∫
dΦ

(I)
+1 z̃P

1→3
q′q =

∫
dΦ

(F )
+1 P

1→3
qq′ − 2 log z̃

∫ 1

z̃

dx

x
P (0)
qg (x)P (0)

gq (z̃/x) +O(ε) . (23)

As in the timelike case, the 1/ε coefficient will eventually be removed by the renormalization of the PDF. It agrees
with the corresponding second order 1/ε2 coefficient Pqq′(z̃) of Eq. (19) and with the corresponding coefficient in the

timelike calculation. The finite remainder of Eq. (23) can be employed to extract the NLO DGLAP kernel P
(S)
qq′ (z).

In order to do so, we must subtract the corresponding convolution of the one-loop matching coefficient with the
first-order renormalization term of the PDFs, which is given by

I(I)
qq′ (z̃) = 2

∫ 1

z̃

dx

x
TR

(
(1− 2x(1− x)) log(1− x) + 2x(1− x)

)
P (0)
qg (z̃/x) . (24)

Using this technique, we finally obtain the result in Eq. (12).
The above computations allow us to obtain the NLO DGLAP splitting functions using the triple-collinear splitting

functions as an input. The drawback of this method is that the calculation must be performed in D = 4 − 2ε
dimensions, and that the cancellation of the singularities occurs between the integrals. In the next section we will
therefore construct a local subtraction scheme that allows to cancel singularities at the integrand level and implement
the computation in a manner similar to standard subtraction [28], more precisely modified subtraction [37].

B. Definition of a local subtraction procedure

We will now proceed to define a scheme for the fully numerical computation of the kernels in Eq. (12). This
method allows us to evaluate the integrals leading to Eq. (12) in four dimensions, which in turn allows to use standard
Monte-Carlo techniques to evaluate them numerically. Our method can be likened to a standard NLO calculation
using modified subtraction techniques [37]. In this context, it is crucial that divergences of the triple-collinear split-
ting functions cancel locally against the subtraction terms. We therefore compute the differential radiation pattern
using the triple-collinear splitting functions of [25], subtracted by the spin-correlated iterated leading-order split-
ting functions of [38]. We then add the finite remainder of the integrated leading-order splitting functions and the
renormalization and matching terms as an endpoint contribution. The details of this procedure are described in the
following.
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Using the phase-space parametrizations in Eqs. (15) and (21) we can compute the integrals of the iterated leading-
order splitting kernels corresponding to Eq. (22). This approximate kernel reads

P̃ 1→3
qq′ (z̃a, z̃i, z̃j , sai, saj , sij) =

saij
sai

P (0)
qg (z̃j)P

(0)
gq

( z̃a
z̃a + z̃i

)
= CFTR

saij
sai

(
1 + z̃2

j

1− z̃j
+ ε(1− z̃j)

)(
1− 2

1− ε
z̃az̃i

(z̃a + z̃i)2

)
.

(25)

Its integrals are given by

I
(F )
qq′ (z̃) =

∫
dΦ

(F )
+1 P̃

1→3
qq′ (z̃,Φ+1) =

∫
dΦ

(F )
+1 P

1→3
qq′ (z̃,Φ+1)−∆Iqq′(z̃) +O(ε) ,

I
(I)
qq′(z̃) =

∫
dΦ

(I)
+1 z̃P̃

1→3
q′q (1/z̃,Φ+1) =

∫
dΦ

(I)
+1 z̃P

1→3
q′q (1/z̃,Φ+1)−∆Iqq′(z̃) +O(ε) ,

(26)

where

∆Iqq′(z̃) = CFTR

(
5(1− z̃) + 2(1 + z̃) log z̃

)
. (27)

As required, the 1/ε poles agree with the integrals of the triple-collinear splitting function, Eqs. (18) and (23). The
difference in the finite part is identical in the timelike and the spacelike case. This suggest that the approximate kernel,
Eq. (25) can be used as a subtraction term for the full triple-collinear splitting kernel, Eq. (22). It is not, however, a
local subtraction term, as the 1/ε pole generated by the v-integral cancels only after azimuthal integration. In order to
construct a local subtraction term, we employ the spin-dependent splitting function, Pµνqg , computed in [38], together
with the standard spin-dependent LO splitting function, Pµνgq

Pµνqg (z, k⊥) = CF

[
− 2 z

1− z
kµ⊥k

ν
⊥

k2
⊥

+
1− z

2

(
−gµν +

pµnν + pνnµ

pn

)]
,

Pµνgq (z, k⊥) = TR

[
−gµν + 4z(1− z)k

µ
⊥k

ν
⊥

k2
⊥

]
.

(28)

Their scalar product generates an additional contribution to Eq. (25), which reads

∆P̃ 1→3
qq′ (z̃a, z̃i, z̃j , sai, saj , sij) = CFTR

saij
sai

4z̃az̃iz̃j
(1− z̃j)3

(
1− 2 cos2 φi,ka,j

)
. (29)

The modified approximate kernel exactly cancels the 1/sai poles present in the triple collinear splitting function, such
that their difference can be integrated in four dimensions, leading to the expected result∫

dΦ
(F )
+1

(
P 1→3
qq′ − P̃ 1→3

qq′ −∆P̃ 1→3
qq′

)
(z̃,Φ+1) = ∆Iqq′(z̃) ,∫

dΦ
(I)
+1 z̃

(
P 1→3
qq′ − P̃ 1→3

qq′ −∆P̃ 1→3
qq′

)
(z̃,Φ+1) = ∆Iqq′(z̃) .

(30)

We now define the functions

R
(F )
qq′ (z̃,Φ+1) = P 1→3

qq′ (z̃,Φ+1) , S
(F )
qq′ (z̃,Φ+1) = P̃ 1→3

qq′ (z̃,Φ+1) + ∆P̃ 1→3
qq′ (z̃,Φ+1) ,

R
(I)
qq′(z̃,Φ+1) = z̃P 1→3

q′q (1/z̃,Φ+1) , S
(I)
qq′(z̃,Φ+1) = z̃P̃ 1→3

qq′ (1/z̃,Φ+1) + z̃∆P̃ 1→3
qq′ (1/z̃,Φ+1) .

(31)

This allows us to write the NLO kernel as

P
(T/S)
qq′ (z̃) =

(
I +

1

ε
P − I

)(F/I)

qq′
(z̃) +

∫
dΦ

(F/I)
+1 (R− S)

(F/I)
qq′ (z̃,Φ+1) . (32)

This equation bears similarity to the definition of standard and hard events in the MC@NLO method [37] without the
related shower evolution. However, in our case it is implemented not as a matching coefficient, but in the exponent of
the all-orders Sudakov form factor.
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In fact, the parton-shower that is added explicitly in MC@NLO is already present in our case, as we also include
the leading-order simulation, which schematically generates the additional contributions at O(α2

s)∫
dΦ

(F )
+1 P̃1→3

qq′ (z̃,Φ+1)
(
O(z̃,Φ+1)−O(z̃)

)
,∫

dΦ
(I)
+1 z̃P̃1→3

qq′ (1/z̃,Φ+1)
(
O(z̃,Φ+1)−O(z̃)

)
.

(33)

In this equation, O stands for an arbitrary observable, which picks up the real-emission phase-space dependence in
the emission term of the parton shower, and the Born phase-space dependence in the corresponding approximate
virtual correction implemented through the Sudakov form factor. As in the case of MC@NLO, Eq. (33) provides the
necessary counterterms to generate the correct observable dependence on the real-emission phase-space in Eq. (32).
This allows to generate events which are distributed according to the fully differential radiation pattern, as given by
the triple-collinear splitting function.

In this context it is important to note that our leading-order parton shower does not yet include the spin-correlation
term given by Eq. (29). Therefore, the cancellation generated between terms from Eq. (33) and Eq. (32) is non-local
in the azimuthal angle. However, this effect will be suppressed in practice, due to the fact that Eq. (33) is large only
in the soft region zj → 1, which is most often not resolved in experimental and phenomenological analyses. We will
address the implementation of Eq. (29) in the leading-order simulation in a future publication.

The form of Eq. (32) suggests that our method generalizes to the case with Born contribution and virtual corrections,
and that the generic structure will be that of a computation using the NLO dipole subtraction method [28], except
that the subtraction terms are evaluated in the real-emission phase space, as required for generating parton-shower
input configurations in an MC@NLO [37]. A complete set of local counterterms for the real-emission contribution
could then be obtained from [38]3.

C. Implementation in the parton shower

This section describes the implementation of the local subtraction procedure outlined above into a Monte-Carlo
event generator. As opposed to a leading-order simulation, where all splittings have 2 → 3 kinematics, the new
simulation includes an integral over 2→ 4 configurations, and endpoint contributions arising from (I +P/ε−I). We
first explain how the 2→ 4 branchings are generated and how the integration variables are connected to the kinematic
variables introduced in App. A. The generation of endpoint contributions is a simple extension of the generation of
2→ 4 branchings, and is described later on.

1. Differential contributions

The splitting kernels that are differential in the 2 → 4 -particle phase space are defined by the subtracted triple-
collinear splitting functions of [25]. As shown in Sec. III B we only need their four-dimensional values. There are two
independent flavor-changing contributions, which are given by (cf. Eq. (17))

R
(F )
qq′ (z̃a, z̃i, z̃j , sai, saj , sij) =

1

2
CFTR

saij
sai

[
−

t2ai,j
saisaij

+
4 z̃j + (z̃a − z̃i)2

z̃a + z̃i
+

(
z̃a + z̃i −

sai
saij

)]
,

R
(F )
qq̄ (z̃a, z̃i, z̃j , sai, saj , sij) = P 1→3

qq′ (z̃a, z̃i, z̃j , sai, saj , sij)

− 1

NC
CFTR

saij
sai

{
2sij
saij

+
1 + z̃2

a

1− z̃i
− 2z̃i

1− z̃j
− saij
saj

z̃a
2

1 + z̃2
a

(1− z̃i)(1− z̃j)

}
+ (i↔ j) .

(34)

Their corresponding local subtraction terms are given by

S
(F )
qq′ (z̃a, z̃i, z̃j , sai, saj , sij) = CFTR

saij
sai

[
1 + z̃2

j

1− z̃j

(
1− 2z̃az̃i

(z̃a + z̃i)2

)
+

4z̃az̃iz̃j
(1− z̃j)3

(
1− 2 cos2 φi,ka,j

)]
,

S
(F )
qq̄ (z̃a, z̃i, z̃j , sai, saj , sij) = S

(F )
qq′ (z̃a, z̃i, z̃j , sai, saj , sij) + (i↔ j) .

(35)

3 We note that in the general case the implementation will depend on the parton-shower evolution variable, as the phase-space factors in
Eqs. (A21) and (A48) will contribute additional logarithmic terms when expanded to O(ε) and combined with the leading pole arising
from the soft gluon singularity. In addition, the functions P and I are renormalization scheme dependent. A change of renormalization
scheme can be accommodated by redefining these terms.
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Note that the subtraction term for Pqq̄ is the simple sum of two subtraction terms for Pqq′ , i.e. the interference
contribution on the last line of Eq. (34) does not create a new singularity. The fully differential initial-state 2 → 4
splitting kernels are defined by crossing (cf. Eq. (31))

R(I)(z̃a, z̃i, z̃j , sai, saj , sij) = z̃aR(F )(1/z̃a,−z̃i/z̃a,−z̃j/z̃a,−sai,−saj , sij) ,
S(I)(z̃a, z̃i, z̃j , sai, saj , sij) = z̃aS(F )(1/z̃a,−z̃i/z̃a,−z̃j/z̃a,−sai,−saj , sij) .

(36)

The kinematics for 2 → 4 branchings in our parton-shower implementation is described in App. A, and the kine-
matics for 2 → 3 branchings can be found in [39]. For a numerical implementation of Eqs. (34)-(36) it is important
to match the definition of splitting variables in [25], or else the local cancellation of singularities will fail. We describe
in the following how these variables are chosen in practice, based on the phase-space variables in App. A. We note
that in our Monte-Carlo implementations all four-momenta of the 2 → 4 parton final state are known at the time
the splitting kernel is evaluated. We could therefore simply use the formal definitions in [25]. However, we find it
instructive to write the arguments of the splitting kernels explicitly in terms of the variables used in App. A.

In the case of final-state emitter with final-state spectator, we have the evolution and splitting variables (see
App. A 1)

t =
4 pjpai paipk

q2
, za =

2 papk
q2

and sai , xa =
papk
paipk

. (37)

We can thus identify the variables in Eqs. (34) and (35) as follows

z̃a =
za

1− saij/q2
, z̃i =

ξa − za
1− saij/q2

, z̃j = 1− z̃a − z̃i where saij = t/ξa + sai . (38)

The scalar products saj and sij are computed explicitly. We transform the sai integration such as to obtain a value
in the physical region sai ≤ saij .

dsai =
dṽ

1− ṽ saij , where ṽ =
sai
saij

. (39)

The factor saij on the right hand side cancels one of the denominators in the term in parentheses of Eq. (11). In the
case of final-state emitter with initial-state spectator, we have the evolution and splitting variables (see App. A 2)

t =
2 pjpai paipb

paijpb
, za =

papb
paijpb

and sai , xa =
papb
paipb

(40)

We identify the variables in Eqs. (34) and (35) as follows

z̃a = za , z̃i = ξa − za , z̃j = 1− ξa . (41)

The scalar products saj and sij are computed explicitly, and the sai integration is transformed as in Eq. (39). In the
case of initial-state emitter with final-state spectator, we have the evolution and splitting variables (see App. A 3)

t =
2 pjpai paipk

papijk
, za =

−q2

2 papijk
and sai , xa =

paipk
papijk

. (42)

We identify the variables in Eqs. (36) as follows

−z̃j
z̃a

= 1− C

ξa
,

−z̃i
z̃a

=
2pipk
q2/C

,
1

z̃a
= 1− z̃i − z̃j , where

1

C
= 1 +

t/xa − sai
q2

. (43)

The scalar products saj and sij are computed explicitly. Using the relation saij = −t/xa + sai + m2
j , we transform

the sai integration such as to obtain a value in the physical region sai ≤ saij/ξa.

dsai =
dṽ

1− ṽ/ξ saij , where ṽ = ξa
sai
saij

. (44)

Note that in this case the ṽ integral is limited to 0 < ṽ ≤ ξa. The factor saij on the right hand side cancels one of the
denominators in the term in parentheses of Eq. (11). In the case of initial-state emitter with initial-state spectator,
we have the evolution and splitting variables (see App. A 4)

t =
2 pjpai paipb

papb
, za =

q2

2 papb
and sai , xa =

paipb
papb

. (45)
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We identify the variables in Eqs. (36) as follows

1

z̃a
=
C

za
,

−z̃i
z̃a

= −1− xa
za/C

,
−z̃j
z̃a

= 1− C

ξa
, where

1

C
= 1 +

t/xa − sai
q2

. (46)

The scalar products saj and sij are computed explicitly, and the sai integration is transformed as in Eq. (44).
We use the Sudakov veto algorithm to select the evolution variable t, based on an overestimate that is given by

the soft enhanced term of the leading-order q → g splitting function. The variable za is selected accordingly, and the
variable xa is generated logarithmically between za and 1. The variable v is generated uniformly between 0 and 1.

Negative values of the splitting kernels are handled using the weighting technique presented in [26, 27]. If we assume
for the moment that the splitting function is given by f , and we use the overestimate g, then we can introduce an
auxiliary overestimate h which is adjusted such that the probability f/h to accept a splitting conforms to f/h ∈ [0, 1].
This implies that h may have a similarly complex functional dependence on the phase-space variables as f itself. The
fact that f/h is used as accept probability in the Monte Carlo implementation is corrected by a multiplicative weight,
which ensures the proper exponentiation of the desired branching probability.

w =
h

g
×


g − f
h− f if the splitting was rejected,

1 if the splitting was accepted.

(47)

2. Endpoint contributions

In order to implement Eq.(32) in a parton shower, we find it convenient to perform the integration of (I +P/ε−I)
numerically using the method outlined in Sec. II. This will eventually allow us to match the phase-space coverage of
the real-correction and the local subtraction terms in the corresponding integrated MC counterterms. Note that the
phase-space coverage is restricted in the region t > 0, as the za integration range is limited by momentum conservation,
cf. Sec. II. This phase-space restriction is the main difference between the algorithm proposed here and the analytic
calculation in Sec. III A. In addition, a fully numerical evaluation of (I +P/ε−I) allows us to extend the calculation
to splitting functions that we have not previously computed analytically, such as the flavor-changing contributions
Pqq̄. Note that this kernel in particular does not require any new endpoint contributions beyond those that can be
obtained from crossing relations. Thus, the full benefit of our method will become apparent only when implementing
the more complicated triple-collinear splitting functions.

The procedure for the MC integration of (I+P/ε−I) is as follows: We generate configurations in the 2→ 4-parton
phase space as described in App. A, which are subsequently projected onto sai = 0, while the dependence on xa and
ξa is retained. This corresponds to singling out the pole term in the expansion

1

v1+ε
= −1

ε
δ(v) +

∞∑
i=0

εn

n!

(
logn v

v

)
+

(48)

The 1/ε poles that are generated in this manner will cancel between the integrated subtraction term, I, and the
renormalization term, P. In order to compute the finite remainder of (I +P/ε−I), we simply need to implement the
O(ε) terms in the expansion of the differential forms of the subtraction and matching terms. They are given by

∆I
(F )
qq′ (z̃a, z̃i, z̃j) = Ĩqq′(z̃a, z̃i, z̃j , z̃a)− Ĩqq′(z̃a, z̃i, z̃j , z̃a + z̃i) ,

∆I
(I)
qq′(z̃a, z̃i, z̃j) = z̃a

[
Ĩqq′
( 1

z̃a
,
−z̃i
z̃a

,
−z̃j
z̃a

,
z̃a

z̃a + z̃j

)
− Ĩqq′

( 1

z̃a
,
−z̃i
z̃a

,
−z̃j
z̃a

,
−z̃a

z̃a + z̃j

)]
.

(49)

where

Ĩqq′(z̃a, z̃i, z̃j , x̃) = CFTR

[
1 + z̃2

j

1− z̃j
+

(
1− 2 z̃az̃i

(z̃a + z̃i)2

)(
1− z̃j +

1 + z̃2
j

1− z̃j

)(
log(x̃ z̃iz̃j)− 1

)]
,

Ĩqq′(z̃a, z̃i, z̃j , x̃) = 2CF

[
1 + z̃2

j

1− z̃j
log(x̃ z̃j) + (1− z̃j)

]
P (0)
gq

( z̃a
z̃a + z̃i

)
.

(50)

The endpoint contributions for q → q̄ transitions are obtained as a sum of two terms of q → q′ type

∆Iqq̄(z̃a, z̃i, z̃j) = ∆Iqq′(z̃a, z̃i, z̃j) + (i↔ j) . (51)
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3. Symmetry factors

Finally, according to Sec. II, we multiply each term in Eq. (32) by an additional factor za in branchings with
final-state emitter, independent of the type of spectator. This can be interpreted as an identification of the parton
for which the evolution equation is constructed. The extension to 1→ 3 splittings requires a similar factor for one of
the two radiated partons, if the two are indistinguishable. In the case of the simulation presented here this applies to
the flavor-changing splittings of type q → q̄. The corresponding extension of the symmetry relation, Eq. (10), reads∑

b=q,g

∫ 1−ε

0

dz1

∫ 1−ε

0

dz2
z1 z2

1− z1
Θ(1− z1 − z2)Pa→abb̄(z1, z2, . . .)

=
∑
b=q,g

∫ 1−ε

ε

dz1

∫ 1−z1

ε

dz2 Sabb̄ Pa→abb̄(z1, z2, . . .) +O(ε) ,

∑
b=q,g
b6=a

∫ 1−ε

0

dz1

∫ 1−ε

0

dz2
z1 z2

1− z1
Θ(1− z1 − z2)

(
Pa→bab̄(z1, z2, . . .) + Pa→bb̄a(z1, z2, . . .)

)

=
∑
b=q,g
b6=a

∫ 1−ε

ε

dz1

∫ 1−z1

ε

dz2 Sabb̄ Pa→bab̄(z1, z2, . . .) +O(ε) ,

(52)

where Sabb̄ = 1/(
∏
c=q,g nc!), with nc the number of partons of type c, is the usual symmetry factor for the final-state

abb̄. Thus, all terms in Eq. (32) are multiplied by the following overall symmetry factors:

S(F ) = za
ξa − za
1− za

, S(I) =
1− xa
1− za

. (53)

IV. NUMERICAL RESULTS

In this section we present numerical cross-checks of our algorithm, and we compare the magnitude of the corrections
generated by the flavor-changing triple-collinear splitting functions to the leading-order parton-shower result. We have
implemented our algorithm into the DIRE parton showers, which implies two entirely independent realizations within
the general purpose event generation frameworks PYTHIA [40, 41] and SHERPA [42, 43]. We employ the CT10nlo
PDF set [44], and use the corresponding form of the strong coupling. Following standard practice to improve the
logarithmic accuracy of the parton shower, the soft enhanced term of the leading-order splitting functions is rescaled
by 1 + αs(t)/(2π)K, where K = (67/18− π2/6)CA − 10/9TR nf [8].

Figure 1 shows comparisons between the results from DIRE+PYTHIA and DIRE+SHERPA for a single triple collinear
splitting. Each simulation contains 109 events. The lower panels present the deviation between the two predictions,
normalized to the statistical uncertainty of DIRE+SHERPA in the respective bin. If both implementations are equiv-
alent, this distribution should exhibit statistical fluctuations only. We validate final-state emissions with final-state
spectator in the reaction e+e− → hadrons (Fig. 1(a)), final-state emissions with initial-state spectator and initial-state
emissions with final-state spectator in the reaction e+p→ e+jet (Figs. 1(b) and 1(c)), and initial-state emissions with
initial-state spectator in the reaction pp → e+νe (Fig. 1(d)). As required, the two implementations agree perfectly.
Each panel shows the predictions for the leading two differential jet rates, which are both populated by the simulation
of a single triple collinear parton branching. Note that their numerical values can be both positive and negative, since
the triple collinear splitting functions are not positive-definite. While the sub-leading jet rate receives contributions
from the simulation of R − S in Eq. (32) only, the leading jet rate receives contributions also from I − I. It can be
seen that in all cases I− I is much large on average than R− S. The feature around -2.5 in Fig. 1(a) and around 0.7
in Fig. 1(b) is due to the onset of b-quark production, which we include in the simulation only if t > m2

b . Similar, yet
less pronounced, features are present in Figs. 1(c) and 1(d).

Figure 2 shows the impact of triple-collinear parton branchings on the full evolution. We compare the ratio of
leading-jet rates with and without the simulation of 1 → 3 splittings (upper panels), and we analyze the impact of
multiple 1→ 3 splittings compared to a single one (middle and lower panels). The edge in the ratio plots is related to
the parton-shower cutoff, where the 1→ 3 splittings have a different behavior compared to the leading-order ones due
to the different evolution variable. It is apparent that the effect of multiple triple-collinear branchings is marginal,
even more so when compared to the leading-order results, which are by themselves much larger in magnitude than
the correction from a single 1→ 3 branching. We note again that the largest part of the 1→ 3 results is due to the
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FIG. 1. Validation of the simulation of triple-collinear parton splittings in final-state (top row) and initial-state (bottom
row) branchings with final-state (left panels) and initial-state (right panels) spectator. We show Durham kT -jet rates in
e+e− →hadrons at LEP I, kT -jet rates in neutral current DIS at HERA II with Q2 > 100 GeV2, and kT -jet rates in pp→ e+νe
at the 8 TeV LHC (top left to bottom right).
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order result and the leading-order simulation including triple-collinear branchings. Middle and bottom panels show a comparison
between the simulation of up to one triple-collinear splitting and arbitrarily many (both not including the leading-order result).
For details, see Fig. 1.
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subtraction terms Iqq′ , which is in fact a leading-order like contribution. The impact of the 1 → 3 flavor-changing
splittings is particularly small for e+e− → hadrons. For e+p→ e+jet scatterings, the hard-emission regions show the
largest impact, while for pp→ e+νe, the soft- and collinear-emission regions are enhanced.

V. CONCLUSIONS

We have presented a new scheme to include triple collinear splitting functions into parton showers. As a proof
of principle we have recomputed the timelike and spacelike flavor-changing NLO DGLAP kernels Pqq′ and matched
each component of the integrand to the relevant parton-shower expression. The implementation into two entirely
independent Monte-Carlo simulations, based on the general-purpose event generation frameworks PYTHIA and SHERPA

has been cross-checked to very high numerical accuracy. The impact of the flavor changing triple-collinear kernels
Pqq′ and Pqq̄ has been studied in timelike and spacelike parton evolution as a first application. We find that the
numerical impact of the kernels investigated here is marginal, with effects of up to ∼ 1% on differential jet rates in
e+e− →hadrons at

√
s=91.2 GeV (LEP I), neutral-current DIS with Q2 > 100 GeV2 at

√
s=300 GeV (HERA II),

and pp→ e+νe at 8 TeV (LHC I).
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Appendix A: Kinematics and phase-space factorization for 1 → 3 splittings

In this section we give the phase-space parametrizations employed in our implementation of 1→ 3 parton branchings.
We construct kinematic mappings that allow us to relate the splitting and evolution variables to manifestly Lorentz
invariant quantities. In order to cover all possible applications, we list formulae for arbitrary external particle masses.
While this is not strictly needed in the course of this work, it may be useful to include higher-order effects involving
heavy quark splitting functions in the future. The main results are Eqs. (A10), (A30), (A43) and (A58), as well as
the corresponding D-dimensional phase-space factors, Eqs. (A21) and (A48).

1. Final-state emitter with final-state spectator

The kinematics for the case of a final-state radiator with final-state spectator are derived from an iteration of the
massive dipole kinematics in [45]. This is sketched in Fig. 3. The evolution and splitting variables are defined as

t =
4 pjpai paipk

q2 −m2
aij −m2

k

, za =
2 papk

q2 −m2
aij −m2

k

and sai , xa =
papk
paipk

. (A1)

We generate the first branching (ãı, k̃) → (ai, j, k) with the mass of the pseudoparticle ai set to the virtuality sai.
The new momentum of the spectator parton k is determined as

pµk =

(
p̃µk −

q · p̃k
q2

qµ
) √

λ(q2, saij ,m2
k)

λ(q2,m2
aij ,m

2
k)

+
q2 +m2

k − saij
2 q2

qµ , (A2)

with q = p̃aij + p̃k and λ denoting the Källen function λ(a, b, c) = (a − b − c)2 − 4 bc. saij is given in terms of the
evolution and splitting variables as saij = y (q2 −m2

k) + (1− y) (sai +m2
j ), where

y =
t xa/za

q2 − sai −m2
j −m2

k

, z̃ =
za/xa
1− y

q2 −m2
aij −m2

k

q2 − sai −m2
j −m2

k

. (A3)

The new momentum of the emitter parton, pai, is constructed as

pµai = z̄ai
γ(q2, saij ,m

2
k) pµaij − saij pµk

β(q2, saij ,m2
k)

+
sai + k2

⊥
z̄ai

pµk −m2
k/γ(q2, saij ,m

2
k) pµaij

β(q2, saij ,m2
k)

+ kµ⊥ , (A4)
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FIG. 3. Kinematics mapping for final-state splittings with final-state spectator.

where β(a, b, c) = sgn(a − b − c)
√
λ(a, b, c), 2 γ(a, b, c) = (a − b − c) + β(a, b, c) and pµaij = qµ − pµk . The parameters

z̄ai and k2
⊥ = −k2

⊥ of this decomposition are given by

z̄ai =
q2 − saij −m2

k

β(q2, saij ,m2
k)

[
z̃ − m2

k

γ(q2, saij ,m2
k)

saij + sai −m2
j

q2 − saij −m2
k

]
,

k2
⊥ = z̄ai (1− z̄ai) saij − (1− z̄ai) sai − z̄aim2

j ,

(A5)

The transverse momentum is constructed using an azimuthal angle, φai

kµ⊥ = k⊥

(
cosφai

nµ⊥
|n⊥|

+ sinφai
l µ⊥
|l⊥|

)
, where nµ⊥ = ε0µ

νρ p̃
ν
aij p̃

ρ
k , l µ⊥ = εµνρσ p̃

ν
aij p̃

ρ
k n

σ
⊥ . (A6)

In kinematical configurations where ~̃paij = ±~̃pk, n⊥ in the definition of Eq. (A6) vanishes. It can then be computed
as nµ⊥ = ε0 iµ

ν p̃
ν
aij , where i may be any index that yields a nonzero result.

The first branching step, which generates the final-state momentum pj and the intermediate momentum pai is
followed by a second step, constructed using the same algorithm. As pai has been generated with virtuality sai, no
momentum reshuffling is necessary in this case, and pk serves as the defining vector for the anti-collinear direction
only. The customary variables y and z̃ are determined by

y′ =

[
1 +

za
xa

q2 −m2
aij −m2

k

sai −m2
a −m2

i

]−1

, z̃′ = xa . (A7)

Equations (A4) and (A5) are employed to construct the momenta pa and pj using the replacements q2 → (pai + pk)2,
saij → sai, sai → m2

a and m2
j → m2

i .

The phase-space factorization for final-state splittings with final-state spectator can be derived similar to the 2→ 3
case described in [46], App. B. We perform an s-channel factorization over paij and subsequently over pai. This gives

∫
dΦ(pa, pi, pj , pk| q) =

∫
dsaij
2π

∫
dΦ(paij , pk| q)

∫
dΦ(pa, pi, pj | paij)

=

∫
dsaij
2π

√
λ(q2, saij ,m2

k)

λ(q2,m2
aij ,m

2
k)

∫
dΦ(p̃aij , p̃k| q)

∫
dΦ(pa, pi, pj | paij)

=

∫
dΦ(p̃aij , p̃k| q)

∫ [
dΦ(pa, pi, pj | p̃aij , p̃k)

]
(A8)

We define the auxiliary variable ξa = za/xa and use the relations za = (sak − m2
a − m2

k)/(q2 − m2
aij − m2

k), ξa =
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(saik − sai −m2
k)/(q2 −m2

aij −m2
k) and t = ξa (saij − sai −m2

j ) to write∫ [
dΦ(pa, pi, pj | p̃aij , p̃k)

]
=

∫
dsaij
2π

√
λ(q2, saij ,m2

k)

λ(q2,m2
aij ,m

2
k)

∫
dsai
2π

∫
dΦ(pai, pj |paij)

∫
dΦ(pa, pi|pai)

=

∫
dsaij
2π

1√
λ(q2,m2

aij ,m
2
k)

∫
dsai
2π

∫
dsaik dφai

4(2π)2

∫
1

4(2π)2

dsak dφa√
λ(saik, sai,m2

k)

=
1

4(2π)3

q2 −m2
aij −m2

k√
λ(q2,m2

aij ,m
2
k)

∫
dt

∫
dza

∫
dφa

× 1

4(2π)3

∫
dsai

∫
dξa
ξa

∫
dφai

q2 −m2
aij −m2

k√
λ(saik, sai,m2

k)
.

(A9)

The final result is∫ [
dΦ(pa, pi, pj | p̃aij , p̃k)

]
=
J

(1)
FF

16π2

∫
dt

t

∫
dza

∫
dφj
2π

[
1

16π2

∫
dsai

∫
dξa
ξa

∫
dφi
2π

J
(2)
FF

]
t

ξa
, (A10)

where we have defined the Jacobian factors

J
(1)
FF =

q2 −m2
aij −m2

k√
λ(q2,m2

aij ,m
2
k)

and J
(2)
FF =

saik − sai −m2
k√

λ(saik, sai,m2
k)
. (A11)

The extension of Eq. (A10) to D = 4− 2ε dimensions is straightforward. We obtain an additional factor of

∆̃ΦFF(pa, pi, pj | p̃aij , p̃k) =

(
λ(q2, saij ,m

2
k)

λ(q2,m2
aij ,m

2
k)

)−ε
∆ΦFF(pa, pi, pj | p̃aij , p̃k) , (A12)

where

∆ΦFF(pa, pi, pj | p̃aij , p̃k) =

(
Ω(1− 2ε)

(2π)−2ε

)2 (
p̄2
ai,j sin2 θ kai,j sin2 φj

)−ε (
p̄2
a,i sin2 θ ka,i sin2 φi

)−ε
. (A13)

The n-dimensional sphere is defined as Ω(n) = 2πn/2/Γ(n/2). We can write the magnitudes of the momenta as

p̄2
a,i =

λ(sai,m
2
a,m

2
i )

4 sai
. (A14)

The polar angles are given by

cos θ ka,i = − (sai +m2
a −m2

i )(sai +m2
k − saik)√

λ(sai,m2
a,m

2
i )λ(sai,m2

k, saik)

(
1− 2 sai

sai +m2
a −m2

i

papk
paipk

)
. (A15)

The splitting functions in our algorithm are independent of φj , hence we can average over one azimuthal angle, leading
to the familiar volume factor

Ω(2− 2ε)

(2π)1−2ε
=

Ω(1− 2ε)

(2π)−2ε

∫ π

0

dφj
2π

(sin2 φj)
−ε =

(4π)ε

Γ(1− ε) . (A16)

The azimuthal angle φi is parametrized as φi = φai,ka,j , where4

cosφa,bi,j =
sab(siasjb + sibsja − sijsab)− (sasibsjb + sbsiasja − sijsasb)

γ(sab, sa, sb)
√
k2
⊥(pi| pa, pb) k2

⊥(pj | pa, pb)
. (A17)

4 Although we do not use this method in practice, it is instructive to show that we can use the technique of [35] to parametrize the
azimuthal angle integration by an auxiliary variable, χ, defined as sij = sij,− +χ(sij,+− sij,−) , where sij,± are the values of sij at the

phase-space boundaries, cosφai,ka,j = ±1. We obtain sin2 φai,ka,j = 4(sij − sij,−)(sij,+ − sij)/(sij,+ − sij,−)2 = 4χ(1− χ) . The Jacobian

factor related to this transformation is given by dφai,ka,j /dχ = 2 cscφai,ka,j = (χ(1− χ))−1/2 .
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FIG. 4. Kinematics mapping for final-state splittings with initial-state spectator.

and

k2
⊥(pi|pa, pb) =

2sabsiasib − sas2
ib − sbs2

ia − sis2
ab + sisasb

γ(sab, sa, sb)
. (A18)

For massless partons, Eq. (A15) can be written in the simple form

cos θka,i = 1− 2xa , cos θkai,j =
saij + sai
saij − sai

[
1− 2 ξa

saij
saij + sai

q2

q2 − saij

]
. (A19)

The magnitudes of the momenta in this case are given by

4p̄2
ai,j =

t

ξa

t/ξa
t/ξa + sai

, 4p̄2
a,i = sai . (A20)

In the iterated double collinear limit, we thus obtain the expected result

∆ΦF (saij , sai, za, xa, φi) =
2 (2π)2ε

Γ(1− 2ε)

(
saij sai xa(1− xa) ξa(1− ξa) sin2 φai,ka,j

)−ε
. (A21)

This result is used in Sec. III, Eq. (49) to derive the logarithmic contributions related to the phase-space integral. It
shows that our choice of variables correctly identifies za and xa with light-cone momentum fractions in the collinear
limit.

2. Final-state emitter with initial-state spectator

Final-state splittings with initial-state spectator are treated in the same manner as final-state splittings with final-
state spectator, with the sole exception of the construction of the new spectator momentum in the first branching
step, if the spectator is massive. The evolution and splitting variables are defined as

t =
2 pjpai paipb

paijpb
, za =

papb
paijpb

and sai , xa =
papb
paipb

(A22)

The new spectator momentum is defined as

pµb =

(
p̃µb −

q · p̃b
q2
‖

q µ‖

) √
λ(q2, saij ,m2

b)− 4m2
b p̃

2
aij⊥

λ(q2,m2
aij ,m

2
b)− 4m2

b p̃
2
aij⊥

+
q2 +m2

b − saij
2 q2
‖

q µ‖ , (A23)

where q = p̃b − p̃aij , q‖ = q + p̃aij⊥ and saij = (x− 1)/x (q2 −m2
a) + (sai +m2

j )/x, where

x =

[
1− t xa/za

q2 − sai −m2
j −m2

b

]−1

, z̃ =
za
xa

. (A24)

The remaining construction proceeds as in Sec. A 1, except that mk → mb and pk → −pb. This is sketched in Fig. 4.
The customary variables y and z̃ in the second branching step are given by

y′ =

[
1 +

t− za/xa(q2 − sai −m2
j −m2

b)

sai −m2
a −m2

i

]−1

, z̃′ = xa . (A25)
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The phase-space factorization for final-state splittings with initial-state spectator can be derived similar to the
2→ 3 case described in [46], App. B. We perform an s-channel factorization over paij and subsequently over pai. This
gives ∫

dΦ(pa, pi, pj ,K| pb, pc) =

∫
dsaij
2π

∫
dΦ(paij ,K| pb, pc)

∫
dΦ(pa, pi, pj | paij)

=

∫
dx̄

∫
dΦ(p̃aij ,K| p̃b, pc)

∫ [
dΦ(pa, pi, pj | pb, pc, q)

] (A26)

where x̄ = (q2 −m2
aij −m2

b)/(q
2 − saij −m2

b) and

∫ [
dΦ(pa, pi, pj | pb, pc, q)

]
=
ρbai
2π

m2
aij +m2

b − q2

x̄2

∫
dsai
2π

∫
1

4(2π)2

dsbai dφai√
λ(saij ,m2

b , q
2)

∫
dΦ(pa, pi| pai)

=
1

4(2π)3

ρbai
x̄

saij +m2
b − q2√

λ(saij ,m2
b , q

2)

∫
dsbai

∫
dφai

∫ [
dΦ(pa, pi| pai, pb, q)

]
.

(A27)

To simplify this expression, we have used the definition [46]

ρbai =

√
λ((p̃b + pc)2,m2

b ,m
2
c)

λ((pb + pc)2,m2
b ,m

2
c)
, (A28)

We use the relation za = (sab −m2
a −m2

b)/(q
2 − saij −m2

b) to write∫ [
dΦ(pa, pi| pai, pb, q)

]
=

∫
dsai
2π

∫
dΦ(pa, pi| pai) =

1

4(2π)3

∫
dsai

∫
dza

∫
dφa

saij +m2
b − q2√

λ(sai, sbai,m2
b)
. (A29)

Using the auxiliary variable ξa = za/xa = (sbai − sai −m2
b)/(q

2 − saij −m2
b), the final result can be written as

∫ [
dΦ(pa, pi, pj | pb, pc, q)

]
=
J

(1)
FI

16π2

∫
dza

∫
dφj
2π

[
1

16π2

∫
dsai

∫
dξa
ξa

∫
dφi
2π

J
(2)
FI

]
(saij +m2

b − q2) , (A30)

where we have defined the Jacobian factors

J
(1)
FI =

ρbai
x̄

saij +m2
b − q2√

λ(saij ,m2
b , q

2)
and J

(2)
FI =

sai +m2
b − sbai√

λ(sai,m2
b , sbai)

. (A31)

According to Eq. (A22), saij (and therefore x̄ and ρbai) depends on both t and sai, hence J
(1)
FI is not independent of

the second branching for nonzero mb. The evolution variable could be redefined as t = saijsaib/(2paijpb) to solve this
problem. As we deal with massless initial-state partons only, we defer this discussion to a future publication.

The extension of Eq. (A30) to D = 4− 2ε dimensions is straightforward. We obtain an additional factor of

∆ΦFI(pa, pi, pj | p̃b, p̃c, q) =

(
Ω(1− 2ε)

(2π)−2ε

)2 (
p̄2
ai,j sin2 θ bai,j sin2 φj

)−ε (
p̄2
a,i sin2 θ ba,i sin2 φi

)−ε
. (A32)

The momenta and polar angles are defined as in Eqs. (A14) and (A15), and the azimuthal angle φi is parametrized

as φi = φai,ba,j , using Eq. (A17). As in the case of final-state emitter with final-state spectator, the splitting functions
are independent of φj , hence we can average over one azimuthal angle. For massless partons, the polar angles can be
written in the simple form

cos θba,i = 1− 2xa , cos θbai,j =
saij + sai
saij − sai

[
1− 2 ξa

saij
saij + sai

]
. (A33)

The magnitudes of the momenta in this case are given by Eq. (A20). In the iterated collinear limit, Eq. (A32) can be
simplified to give Eq. (A21).
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FIG. 5. Kinematics mapping for initial-state splittings with final-state spectator.

3. Initial-state emitter with final-state spectator

The kinematics in initial-state branchings with final-state spectator is typically constructed by mapping the process
to final-state branchings with initial-state spectator [28]. This mapping requires special care in the case of 2→ 4 dipole
splittings. Our algorithm is sketched in Fig. 5. We combine an initial-final branching5 during which the spectator is
shifted off mass-shell with a 1→ 2 decay of the newly defined pseudoparticle with momentum pjk.

We use the following evolution and splitting variables

t =
2 pjpai paipk

papijk
, za =

−q2

2 papijk
and sai , xa =

paipk
papijk

. (A34)

where q = pa − pi − pj − pk. We begin by constructing the initial-state branching. As the spectator parton changes
its virtuality, the shift in [39], Eq. (A.9) must be modified to

pµjk =

(
p̃µk −

q · p̃k
q2

q µ
) √

λ(q2, sai, sjk)

λ(q2,m2
aij ,m

2
k)

+
q2 + sjk − sai

2 q2
q µ , (A35)

where q = p̃k − p̃aij and sjk = q2(1− xa/za) + t/xa − sai.
Next we construct the momentum of the emitted particle, pi, as

pµi = − z̄i
γ(q2, sai, sjk) pµai + sai p

µ
jk

β(q2, sai, sjk)
+
m2
i + k2

⊥
z̄i

pµjk + sjk/γ(q2, sai, sjk) pµai
β(q2, sai, sjk)

+ kµ⊥ , (A36)

The parameters z̄i and k2
⊥ = −k2

⊥ of this decomposition are given by

z̄i =
q2 − sai − sjk
β(q2, sai, sjk)

[
x− 1

x− u −
sjk

γ(q2, sai, sjk)

sai +m2
i −m2

a

q2 − sai − sjk

]
,

k2
⊥ = z̄i (1− z̄i) sai − (1− z̄i)m2

i − z̄im2
a ,

(A37)

where u = −(sai −m2
i −m2

a) za/q
2 and x = u+ xa − t za/(q2xa).

We now boost pa and all final state particles into the frame where pa is aligned along the beam direction, with pb,
the opposite-side beam particle, unchanged. Eventually we must construct the decay of the two-parton system defined
by pjk. This can be achieved by the same technique as in Sec. A 1, i.e. we construct a decay with the customary
variables y and z̃ defined as

y′ =

[
1− t/xa − q2xa/za

sjk −m2
j −m2

k

]−1

, z̃′ =
t/xa

t/xa − q2xa/za
. (A38)

At the same time, we need to make the replacement pk → −pai, mk → sai and use the appropriate final-state masses.
This technique is sketched in Fig. 4.

The phase-space factorization for initial-state splittings with final-state spectator can be derived similar to the 2→ 3
case described in [46], App. B. We first perform the s-channel factorization over pijk. Using za = −q2/(sijk+m2

a−q2),
this gives∫

dΦ(pi, pj , pk,K| pa, pb) =

∫
dsijk
2π

∫
dΦ(pijk,K| pa, pb)

∫
dΦ(pi, pj , pk| pijk)

=

∫
dza

∫
dΦ(p̃k,K| p̃a, pb)

∫ [
dΦ(pi, pj , pk| pa, pb, q)

] (A39)

5 Both the global and the local recoil scheme, as defined in [39], can be used. We describe only the global scheme in this publication.
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where∫ [
dΦ(pi, pj , pk| pa, pb, q)

]
=

1

2π

ρija q
2

z2
a

∫
dsjk
2π

∫
1

4(2π)2

dsai dφi√
λ(sijk,m2

a, q
2)

∫
dΦ(pj , pk|pjk)

=
1

4(2π)3

ρija
za

sijk −m2
a − q2√

λ(sijk,m2
a, q

2)

∫
dsai

∫
dφi

∫ [
dΦ(pj , pk|pjk, pa, q)

]
.

(A40)

To simplify this expression, we have used the definition [46]

ρija =

√
λ((p̃aij + pb)2,m2

a,m
2
b)

λ((pa + pb)2,m2
a,m

2
b)

, (A41)

where pµa is given by momentum conservation using Eq. (A35).6 We make use of the relations xa = za (q2 − saij −
sjk +m2

j )/q
2 and t = −xa (saij − sai −m2

j ) to write∫ [
dΦ(pj , pk|pjk, pa, q)

]
=

∫
dsjk
2π

∫
dΦ(pj , pk|pjk) =

1

4(2π)3

∫
dxa
xa

∫
dt

∫
dφj

−q2/za√
λ(sjk, sai, q2)

. (A42)

The final result is∫ [
dΦ(pi, pj , pk| pa, pb, q)

]
=
J

(1)
IF

16π2

∫
dt

t

∫
dφj
2π

[
1

16π2

∫
dsai

∫
dxa
xa

∫
dφi
2π

J
(2)
IF

]
t

xa
, (A43)

where we have defined the Jacobian factors

J
(1)
IF =

ρija
za

sijk +m2
a − q2√

λ(sijk,m2
a, q

2)
and J

(2)
IF =

−q2 xa/za√
λ(sjk, sai, q2)

. (A44)

Note that sijk = q2(1− 1/za)−m2
a, therefore both ρija and J

(1)
IF are unaffected by the intrinsic branching.

The extension of Eq. (A43) to D = 4− 2ε dimensions is straightforward. We obtain an additional factor of

∆ΦIF(pi, pj , pk| p̃a, p̃b, q) =

(
Ω(1− 2ε)

(2π)−2ε

)2 (
p̄2
j,k sin2 θ aij,k sin2 φj

)−ε (
p̄2
i,jk sin2 θ ai,jk sin2 φi

)−ε
. (A45)

The momenta and polar angles are defined as in Eqs. (A14) and (A15), and the azimuthal angle φi is parametrized

as φi = φai,jka,j , using Eq. (A17). As in the case of final-state emitter with final-state spectator, the splitting functions
are independent of φj , hence we can average over one azimuthal angle. For massless partons, the polar angles can be
written in the simple form

cos θ ai,jk = 1− 2 za(1− za)sai
q2(1− xa) + tza/xa − zasai

, cos θ aij,k =
1− 2 zat/(zat− q2x2

a)√
1− 4 saisjk/(q2xa/za − t/xa)2

. (A46)

The magnitudes of the momenta in this case are given by

4p̄2
i,jk =

−q2

za(1− za)

[
1− xa +

t/xa − sai
q2/za

]2

, 4p̄2
j,k = q2

(
1− xa

za

)
+

t

xa
− sai . (A47)

In the iterated double collinear limit, we thus obtain the expected result

∆ΦI(saij , sai, za, xa, φi) =
2 (2π)2ε

Γ(1− 2ε)

(
saijsai(1− xa)(1− ξa) sin2 φai,jka,j

)−ε
. (A48)

This result is used in Sec. III, Eq. (49) to derive the logarithmic contributions related to the phase-space integral. It
shows that our choice of variables correctly identifies za and xa with light-cone momentum fractions in the collinear
limit.

6 Note that pµa depends on the recoil scheme [39], and therefore ρija is generally scheme dependent. However, in the most relevant case
of ma = maij = 0, i.e. for massless initial-state partons, we obtain ρija = za.
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FIG. 6. Kinematics mapping for initial-state splittings with initial-state spectator.

4. Initial-state emitter with initial-state spectator

Similar to the case of initial-state splitters with final-state spectator, the kinematics in initial-state branchings with
initial-state spectator requires special care in the case of 2→ 4 dipole splittings. Our algorithm is sketched in Fig. 6.
We combine an initial-initial branching during which the final-state virtuality is promoted to (pj + q)2 with a 1→ 2
decay of the newly defined pseudoparticle into pj and q.

Our evolution and splitting variables are defined as

t =
2 pjpai paipb

papb
, za =

q2

2 papb
and sai , xa =

paipb
papb

. (A49)

We first determine the new momentum of the initial-state parton as

pµa =

(
p̃µaij −

m̃2
aij

γ(q2, m̃2
aij ,m

2
b)
pµb

) √
λ(sab,m2

a,m
2
b)

λ(q2, m̃2
aij ,m

2
b)

+
m2
a

γ(sab,m2
a,m

2
b)
pµb , (A50)

where q = pa + pb− pi− pj and sab = q2/za +m2
a +m2

b . Next we construct the momentum of the emitted parton, pj ,
as

pµi = (1− z̄ai)
γ(sab,m

2
a,m

2
b) p

µ
a −m2

a p
µ
b

β(sab,m2
a,m

2
b)

+
m2
i + k2

⊥
1− z̄ai

pµb −m2
b/γ(sab,m

2
a,m

2
b) p

µ
a

β(sab,m2
a,m

2
b)

− kµ⊥ , (A51)

The parameters z̄aij and k2
⊥ = −k2

⊥ of this decomposition are given by

z̄ai =
sab −m2

a −m2
b

β(sab,m2
a,m

2
b)

[
xa −

m2
b

γ(sab,m2
a,m

2
b)

sai +m2
a −m2

i

sab −m2
a −m2

b

]
,

k2
⊥ = z̄ai (1− z̄ai)m2

a − (1− z̄ai) sai − z̄aim2
i ,

(A52)

In a second step, we branch the new final state momentum pai+pb into pj and q, using the spectator pai and satisfying
the constraint q2 = q̃2, where q̃ = p̃aij + pb. We employ the kinematics mapping of Sec. A 1. The customary variables
y and z̃ in this case are defined as

y′ =

[
1 +

q2 xa/za + 2sai
q2(xa/za − 1) + sai +m2

b −m2
j

]−1

, z̃′ =
t/xa

q2 xa/za + 2sai
. (A53)

At the same time, we make the replacement pk → pai, mk → sai and use the appropriate final-state masses. Finally
we boost all remaining final-state particles into the frame defined by q, using the algorithm defined in Sec. (5.5) of [28].
The Lorentz transformation, Λ, is computed as

Λ(q̃, q)µν = gµν −
2 (q + q̃)µ(q + q̃)ν

(q + q̃)2
+

2 qµq̃ν
q̃2

, (A54)

The phase-space factorization for initial-state splittings with initial-state spectator can be derived similar to the 2→
3 case described in [46], App. B. We first perform the s-channel factorization over pijk. Using za = q2/(sijq−m2

a−m2
b),

this gives∫
dΦ(pi, pj , q| pa, pb) =

∫
dsijq
2π

∫
dΦ(pijq| pa, pb)

∫
dΦ(pi, pj , q| pijq)

=

∫
dza

∫
dΦ(q̃| p̃a, pb)

∫ [
dΦ(pi, pj , q| pa, pb)

] (A55)
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where∫ [
dΦ(pi, pj , q| pa, pb)

]
=

1

2π

q2

za

∫
dsjq
2π

∫
1

4(2π)2

dsai dφi√
λ(sab,m2

a,m
2
b)

∫
dΦ(pj , q|pjq)

=
1

4(2π)3

q2/za√
λ(sab,m2

a,m
2
b)

∫
dsai

∫
dφi

∫ [
dΦ(pj , q|pjq, pa, pb)

]
.

(A56)

We make use of the relations xa = za (sjq − sai −m2
b)/q

2 and t = −xa (saij − sai −m2
j ) to write∫ [

dΦ(pj , q|pjq, pa, pb)
]

=

∫
dsjq
2π

∫
dΦ(pj , q|pjq) =

1

4(2π)3

∫
dxa
xa

∫
dt

∫
dφj

q2/za√
λ(sjq, sai,m2

b)
. (A57)

The final result is∫ [
dΦ(pi, pj , q| pa, pb)

]
=

J
(1)
II

4(2π)3

∫
dt

t

∫
dφj

[
1

4(2π)3

∫
dsai

∫
dxa
xa

∫
dφi J

(2)
II

]
t

xa
, (A58)

where we have defined the Jacobian factors

J
(1)
II =

sab −m2
a −m2

b√
λ(sab,m2

a,m
2
b)

and J
(2)
II =

sjq − sai −m2
b√

λ(sjq, sai,m2
b)
, (A59)

and where sjq = q2xa/za + sai +m2
b .

The extension of Eq. (A58) to D = 4− 2ε dimensions is straightforward. We obtain an additional factor of

∆ΦII(pi, pj , q| p̃a, p̃b) =

(
Ω(1− 2ε)

(2π)−2ε

)2 (
p̄2
j,q sin2 θ aij,q sin2 φj

)−ε (
p̄2
i,jq sin2 θ ai,jq sin2 φi

)−ε
. (A60)

The momenta and polar angles are defined as in Eqs. (A14) and (A15), and the azimuthal angle φi is parametrized

as φi = φai,jqa,j , using Eq. (A17). As in the case of final-state emitter with final-state spectator, the splitting functions
are independent of φj , hence we can average over one azimuthal angle. For massless partons, the polar angles can be
written in the simple form

cos θ ai,jq = 1 +
2 sai

(1− xa) q2/za − sai
, cos θ aij,q =

sjq + sai
sjq − sai

(
1− 2

sjq
sjq − q2

t/xa
q2xa/za + 2sai

)
. (A61)

The magnitudes of the momenta in this case are given by

4p̄2
i,jq =

q2

za

[
1− xa − za

sai
q2

]2

, 4p̄2
j,q =

(
q2xa
za

+ sai

)[
1− 1

xa/za + sai/q2

]2

. (A62)

In the iterated collinear limit, Eq. (A60) can be simplified to give Eq. (A48).
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