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We use the Covariant Spectator Theory with an effective quark-antiquark interaction, containing
Lorentz scalar, pseudoscalar, and vector contributions, to calculate the masses and vertex functions
of, simultaneously, heavy and heavy-light mesons. We perform least-square fits of the model param-
eters, including the quark masses, to the meson spectrum and systematically study the sensitivity
of the parameters with respect to different sets of fitted data. We investigate the influence of the
vector confining interaction by using a continuous parameter controlling its weight. We find that
vector contributions to the confining interaction between 0 % and about 30 % lead to essentially the
same agreement with the data. Similarly, the light quark masses are not very tightly constrained.
In all cases, the meson mass spectra calculated with our fitted models agree very well with the
experimental data. We also calculate the mesons wave functions in a partial wave representation
and show how they are related to the meson vertex functions in covariant form.

PACS numbers: 14.40.-n,12.39.Ki,11.10.St,03.65.Pm

I. INTRODUCTION

A complete and detailed explanation of the meson
spectrum from QCD is still lacking. Fortunately, with the
strong activity at various experimental facilities (LHCb,
BaBaR, BES, Belle), and even more high-accuracy ex-
periments scheduled to come online in the near future
(GlueX, SuperKEKB, PANDA), a steadily increasing
wealth of data on known and newly discovered meson
states is now available, and should help us to improve
our understanding of these systems.

On the theoretical side, QCD calculations on the lat-
tice are speedily progressing with respect to managing
finite volume effects and decreasing pion mass (e.g. [1–
5], and references therein). For comprehensive reviews
on the subject see [6, 7].

In parallel to lattice calculations, a variety of non-
perturbative continuum approaches have provided im-
portant information on the inner workings of mesons.
They include nonrelativistic effective field theories for
heavy quarkonia [8, 9], the Dyson-Schwinger-Bethe-
Salpeter (DS-BS) framework [10–27], which takes dy-
namical momentum-dependent quark masses into ac-
count and is successful in particular in light quark sys-
tems, covariant two-body Dirac equations [28], two-
fermion calculations in relativistic quantum mechanics
[29], and the Basis Light-Front Quantization approach
[30, 31] with an effective confining Hamiltonian from
light-front holographic QCD, which was applied in stud-
ies of heavy quarkonia.

Our work uses the Covariant Spectator Theory (CST)
[32–37]. This framework belongs to a class of three-
dimensional “quasi-potential” equations which are de-
rived from the BS equation by placing constraints on the
relative-energy component of a two-particle system.

The CST framework has attractive features that are
worth enumerating here: (i) It is manifestly covari-

ant, which allows an exact calculation of boosts of two-
particle amplitudes. (ii) It possesses the correct one-
body limit, i.e., it turns into an effective one-body
Dirac or Klein-Gordon equation when one of the two
constituent particles becomes infinitely heavy. (iii) It
has a smooth nonrelativistic limit, in which it reduces
to the Schrödinger equation. (iv) It defines “relativis-
tic wave functions” which become proper nonrelativistic
wave functions in the nonrelativistic limit. One can iden-
tify wave-function components of purely relativistic ori-
gin and get a direct, intuitive picture of the importance of
relativity in different systems. (v) It implements dynam-
ical chiral symmetry breaking, satisfying the axialvec-
tor Ward-Takahashi identity. This key feature was ab-
sent from previous calculations of quark-antiquark bound
states with other 3D reductions of the BS equation [38–
40], as well as from the well-known “relativized” cal-
culations with Cornell-type potentials [41]. The imple-
mentation of chiral symmetry constraints in CST calcu-
lations through an NJL mechanism was introduced in
[34, 35, 42], and extended more recently in [37, 43]. (vi)
The CST two-quark kernel, determined in the two-body
bound-state problem, can later be included consistently
in Faddeev-type three-quark calculations of baryons by
boosting two-quark rest-frame amplitudes appropriately.
Although genuine three-body calculations for baryons in
CST have not yet been carried out, the same principle
applies to two- and three-nucleon systems where CST
has been used extensively and with remarkable success
[44–46].

CST is, in some aspects, close to the DS-BS approach,
in the sense that both aim at a unified, self-consistent
quantum-field-theoretical description of hadrons. But
there are also significant differences: DS-BS is formulated
in Euclidean space, whereas CST works in Minkowski
space. DS-BS implements confinement through the
absence of real mass poles of the quark propagators,
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whereas in CST confinement is the consequence of a con-
fining interaction kernel.

Heavy and heavy-light mesons are very suitable sys-
tems to test different mechanisms of confinement, and
to possibly determine its Lorentz structure. A confin-
ing interaction increases in strength with the distance
between quarks, and in higher excited states it should
therefore become more important than the short-range
one-gluon-exchange (OGE) interaction. The vector me-
son bottomonium spectrum is particularly interesting in
this regard because of the exceptionally high number of
excited states below the open-flavor threshold that have
already been measured. So far, lattice QCD and DS-
BS calculations are having difficulties describing higher
excited states [47–56].

In [57], we reported on first results of CST calcula-
tions of the heavy and heavy-light meson spectrum. We
found that a remarkably good description of the masses
of mesons with at least one charm or bottom quark can
be obtained with a simple covariant interaction kernel,
which was chosen to reduce to a Cornell-type potential
in the nonrelativistic limit. Only the three strength pa-
rameters for a (Lorentz scalar and pseudoscalar) linear
confinement, a OGE, and a constant interaction were ad-
justed in the fits to the data, whereas quark masses and
a Pauli-Villars regularization mass were fixed ad-hoc at
reasonable values. What is particularly interesting about
the results is that we performed global least-square fits,
such that the three parameters are the same in all sectors
when we calculate the whole spectrum, ranging from the
D mesons with masses below 2 GeV up to bottomonium
with masses above 10 GeV.

In this work we go beyond [57] in several aspects.
In addition to the previously used scalar+pseudoscalar
Lorentz structure, we introduce a vector interaction,
whose relative weight can be altered through a contin-
uous mixing parameter y. This is done in a way that in
the nonrelativistic limit always the same linear potential
is obtained. By letting the parameter y be determined
through a fit, we can investigate to what extent the mass
spectrum of heavy and heavy-light mesons constrains the
Lorentz structure of the confining interaction.

We also devised a numerical method that makes it fea-
sible to treat the quark masses as adjustable fit param-
eters. Not only is it interesting to find out how much
these masses are constrained by the data, but also how
much improvement one can obtain in the quality of the
fits when more adjustable parameters are introduced.

Another interesting question is how sensitive the re-
sults are with respect to the selection of the used experi-
mental data. In [57] we found that fits to a small number
of pseudoscalar states alone already yields a model that
predicts all other considered mesons with J ≤ 1 with al-
most the same accuracy as more general fits, indicating
that the covariance of the kernel correctly determines the
spin-dependence of the interaction.

The CST wave functions are then analyzed in detail.
This provides a means to determine its spin and orbital

FIG. 1. (color online). Graphic representations of the BSE
for the qq̄ bound state vertex function Γ, where V represents
the kernel of two-body irreducible Feynman diagrams.

angular momentum content, which is very useful for the
identification of each calculated state. We also examine
the wave functions of excited states in dependence of the
excitation level, and the size of wave function components
of relativistic origin with different quark masses.

In addition to these numerical results, we also present
details of the formalism, in particular the form of the
CST equations for the general case of unequal masses,
the reduction of the one-channel CST equation to partial-
wave form, and the relation between the radial wave func-
tions and the covariant form of the corresponding meson
vertex function.

This paper is organized as follows: in Sec. II we derive
the CST equations and two of its approximations, one
of which is then used in the numerical calculations pre-
sented and discussed in Sec. III. In Sec. IV we summarize
and present our conclusions.

II. FORMALISM

A. The four-channel CST equation

The four-channel CST equation for bound-states of
equal mass quarks and antiquarks has been introduced
in Refs. [35, 37]. In this work we are interested in cases
with unequal masses as well, so we have to generalize the
CST equation accordingly.

The CST equation can be derived from the BSE for the
vertex function ΓBS (also shown graphically in Fig. 1),

ΓBS(p1, p2) = i

∫
d4k

(2π)4
V(p, k;P )

× Z1S1(k1) ΓBS(k1, k2)Z2S2(k2) , (1)

where Si(ki) is the dressed propagator of quark i (with
an imaginary factor (−i) removed), Zi a renormalization
constant, P = p1 − p2 the total four-momentum, and
p = 1

2 (p1 +p2) is the relative momentum. The individual
quark momenta pi in terms of the relative and total mo-
mentum are p1 = p+ P/2 and p2 = p− P/2. Analogous
expressions relate the intermediate individual quark mo-
menta ki to the intermediate relative momentum k and
to the total momentum.

The kernel is of the form

V(p, k;P ) =
3

4
F1 · F2

∑
K

V K(p, k;P )ΘK
1 ⊗ΘK

2 , (2)
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where ΘK
1 and ΘK

2 are Dirac matrices, whose type is la-
beled K, associated with the vertices involving quark 1
or 2, respectively. We use Θs

i = 1 for scalar, Θp
i = γ5

for pseudoscalar, and Θv
i = γµ for vector coupling (the

Lorentz vector index µ carried by Θv
i is not explicitly

shown when we refer to ΘK
i in general). The V K(p, k;P )

are covariant scalar functions describing the correspond-
ing momentum dependence. However, the explicit de-
pendence of the kernel V and the functions V K on the
total momentum P will be suppressed from here on. The
color SU(3) generators, in terms of the Gell-Mann ma-
trices, are Fa = 1

2λa. All calculations of this paper are
performed for color singlet states, for which the color fac-
tor becomes 3

4 〈F1 · F2〉 = 1.
Note that the multiplication with the kernel in (1) is

an abbreviation that should be interpreted as

V(p, k)Z1S1(k1) ΓBS(k1, k2)Z2S2(k2) ≡∑
K

V K(p, k)ΘK
1 Z1S1(k1) ΓBS(k1, k2)Z2S2(k2)ΘK

2 . (3)

In this work we do not calculate the quark self-
energies and dynamical masses, but assume constant
quark masses mi instead. The propagators are then

Si(k) =
mi + /k

m2
i − k2 − iε

, (4)

and the renormalization constants are Zi = 1.
The CST equation is obtained by performing the in-

tegration over the energy component of the loop four-
momentum, but keeping only the contributions from the
poles of the quark propagators. The rationale for discard-
ing the poles in the kernel is mainly that the residues of
ladder and crossed-ladder diagrams tend to cancel, in all
orders of the coupling constant, in particular when one of
the two quark masses becomes large [32, 33, 36]. Details
about how this integration is evaluated are given in [37].
The only difference to [37] is that here we have to keep
S1 and S2 distinct because of the difference in the quark
masses.

In the following we work in the rest frame of the meson,
where P = (µ,0), and the quark three-momenta and the
relative three-momentum are equal, k1 = k2 = k. We

also define Eik ≡ (m2
i +k2)1/2, the four-momentum k̂±i ≡

(±Eik,k) of a quark on its positive- or negative-energy
mass shell, and the corresponding positive- or negative-

energy projector Λi(k̂
±
i ) = (mi + /̂k

±
i )/2mi.

Closing the k0 integration contour in the lower half
plane and keeping only the residues from the quark prop-
agator poles yields

Γlower(p1, p2) =

−
∫
k1

V(p, k̂+1 − P/2)Λ1(k̂+1 )Γ(k̂+1 , k̂
+
1 − P )S2(k̂+1 − P )

−
∫
k2

V(p, k̂+2 + P/2)S1(k̂+2 + P )Γ(k̂+2 + P, k̂+2 )Λ2(k̂+2 ) ,

(5)

FIG. 2. (color online). The BS vertex function approximated
as a sum of CST vertex functions (crosses on quark lines in-
dicate that a positive-energy pole of the propagator is calcu-
lated, light crosses in a dark square refer to a negative-energy
pole).

whereas closing it in the upper half plane gives

Γupper(p1, p2) =

−
∫
k1

V(p, k̂−1 − P/2)Λ1(k̂−1 )Γ(k̂−1 , k̂
−
1 − P )S2(k̂−1 − P )

−
∫
k2

V(p, k̂−2 + P/2)S1(k̂−2 + P )Γ(k̂−2 + P, k̂−2 )Λ2(k̂−2 ) ,

(6)

where we have introduced the convenient shorthand∫
ki

≡
∫

d3k

(2π)3
mi

Eik
(7)

for the covariant integration measure.
Γlower(p1, p2) and Γupper(p1, p2) are not necessarily

equal, because only the residues of the quark propagator
poles were taken into account. The CST vertex function
is defined as the symmetric combination

Γ(p1, p2) ≡ 1

2
[Γlower(p1, p2) + Γupper(p1, p2)] . (8)

In the equal-mass case, the charge-conjugation symmetry
of the BSE is preserved when this symmetrized combina-
tion of lower and upper half-plane contour integration is
used [35, 37].

Before writing the equation for the CST vertex func-
tion (8), it is convenient to simplify our notation by ex-

pressing the negative-energy on-shell momenta k̂−i in (6)

in terms of the positive-energy on-shell momenta k̂+i : in-
verting the integration three-momentum k → −k per-

mits us to write k̂−i → −k̂
+
i . Now we can drop the su-

perscript ± with the understanding that all on-shell mo-

menta are on the positive-energy mass shell, i.e. k̂i ≡ k̂+i .
With this notation, the symmetrized CST vertex func-

tion is

Γ(p1, p2) = −1

2

∑
η=±

[∫
k1

V(p, ηk̂1 − P/2)Λ1(ηk̂1)

× Γ(ηk̂1, ηk̂1 − P )S2(ηk̂1 − P ) +

∫
k2

V(p, ηk̂2 + P/2)

× S1(ηk̂2 + P )Γ(ηk̂2 + P, ηk̂2)Λ2(ηk̂2)

]
. (9)

It determines an (approximate) BS vertex function,
where both quark momenta, p1 and p2, are off-shell, in
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FIG. 3. (color online). The four-channel CST equation. The
solid rectangle indicates the one-channel equation used in
this work, the dashed rectangle a two-channel extension with
charge-conjugation symmetry.

terms of four CST vertex functions, which always have
one quark momentum on mass shell. A diagrammatic
representation of Eq. (9) is given in Fig. 2.

These CST vertex functions can be calculated, once
(9) is converted into a closed set of equations. To do so,
one writes (9) for four combinations of external quark
momenta, where in each case either quark 1 or 2 is on its
positive or negative energy mass shell. We introduce the
shorthand

Γ1ρ(p) ≡ Γ(ρ p̂1, ρ p̂1 − P ) ,

Γ2ρ(p) ≡ Γ(ρ p̂2 + P, ρ p̂2) (10)

for the CST vertex functions, where ρ = ±.
The corresponding four external relative momenta that

appear as arguments of the kernel are p→ {p̂1−P/2, p̂2+
P/2, −p̂1−P/2, −p̂2 +P/2}, with p̂i = (Eip,p), and we
define abbreviations for the kernel matrix elements

V1ρ,1η(p, k) ≡ V(ρ p̂1 − P/2, η k̂1 − P/2),

V1ρ,2η(p, k) ≡ V(ρ p̂1 − P/2, η k̂2 + P/2),

V2ρ,1η(p, k) ≡ V(ρ p̂2 + P/2, η k̂1 − P/2),

V2ρ,2η(p, k) ≡ V(ρ p̂2 + P/2, η k̂2 + P/2) . (11)

The same notation is adopted for the corresponding func-
tions V K(p, k) that are part of the respective kernels.

Using (10) and (11) in (9) leads to a system of four
coupled equations, which we refer to as the “four-channel
CST equations” (4CSE),

Γiρ(p) = −1

2

∑
η=±[∫

k1

Viρ,1η(p, k)Λ1(ηk̂1)Γ1η(k)S2(ηk̂1 − P )

+

∫
k2

Viρ,2η(p, k)S1(ηk̂2 + P )Γ2η(k)Λ2(ηk̂2)

]
, (12)

where i = 1, 2, and ρ = ±. The set of equations (12),
also shown graphically in Fig. 3, is the most general CST
bound-state equation valid for quark-antiquark systems

with unequal quark masses m1 6= m2, such as the heavy-
light mesons that are the subject of this work.

Our interaction kernel is chosen to be of the form

V(p, k) =[
(1− y)

(
11 ⊗ 12 + γ51 ⊗ γ52

)
− y γµ1 ⊗ γµ2

]
VL(p, k)

− γµ1 ⊗ γµ2 [VOGE(p, k) + VC(p, k)] , (13)

where VL(p, k) is a covariant generalization of a lin-
ear confining potential, VOGE(p, k) is the short-range
one-gluon-exchange interaction (in Feynman gauge), and
VC(p, k) a covariant form of a constant potential. The
OGE and constant kernels are Lorentz-vector interac-
tions. The Lorentz structure of the linear confining kernel
in (13) is a mixture of an equal-weight sum of scalar and
pseudoscalar coupling on one hand, and vector coupling
on the other hand. Our particular scalar+pseudoscalar
combination ensures that the requirements of chiral sym-
metry are satisfied [43]. The parameter y allows us to
vary the relative weight of these structures continuously,
with y = 0 yielding a pure scalar+pseudoscalar cou-
pling, and y = 1 a pure vector coupling. The signs
are chosen such that always—for any value of y—the
same nonrelativistic limit is obtained, which in coor-
dinate space corresponds to the Cornell-type potential
V (r) = σr − αs/r − C.

For a better understanding of the nature of confine-
ment, it is of great importance to establish the Lorentz
structure of the confining interaction. In principle one
can do that by treating y as a free parameter that
should be determined by fitting the experimental data.
In Sec. III we discuss in some detail to what extend this
approach works in practice.

B. Four- and two-channel equations for CST wave
functions

To bring the 4CSE (12) into a form more suitable for
numerical solution, we begin by calculating matrix el-
ements between ρ-spinors, which amounts to a separa-
tion into positive- and negative-energy channels. Our
ρ-spinors are defined as

u+i (p, λ) ≡ ui(p, λ) , u−i (p, λ) ≡ vi(−p, λ) , (14)

where u and v are the Dirac spinors in the convention of
Bjorken and Drell, which are given explicitly in Eqs. (A5)
and (A6), and λ is the helicity of quark i.

We can express the projectors and propagators in (12)
in terms of these ρ-spinors as

Λi(ηk̂i) = η
∑
λ=± 1

2

uηi (ηk, λ)ūηi (ηk, λ), (15)
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and

S1(ηk̂2 + P ) =
m1

E1k

∑
ρ1=±

∑
λ1=± 1

2

uρ11 (ηk, λ1)ūρ11 (ηk, λ1)

ρ1E1k − ηE2k − µ− iε
,

S2(ηk̂1 − P ) =
m2

E2k

∑
ρ2=±

∑
λ2=± 1

2

uρ22 (ηk, λ2)ūρ22 (ηk, λ2)

ρ2E2k − ηE1k + µ− iε
,

(16)

respectively.

Multiplying in (12) Γ1ρ1 from the left by ūρ11 (ρ1p, λ1)
and from the right by uρ22 (ρ1p, λ2), and Γ2ρ2 from the
left by ūρ11 (ρ2p, λ1) and from the right by uρ22 (ρ2p, λ2),
we get

ūρ11 (ρ1p, λ1)Γ1ρ1(p)uρ22 (ρ1p, λ2) = −1

2

∑
Kηλ′

1λ
′
2ρ

′
1ρ

′
2

∫
d3k

(2π)3
m1m2

E1kE2k
η

[
V K1ρ1,1η(p, k)ūρ11 (ρ1p, λ1)ΘK

1 u
η
1(ηk, λ′1)

× ūη1(ηk, λ′1)Γ1η(k)u
ρ′2
2 (ηk, λ′2)

ρ′2E2k − ηE1k + µ− iε
ū
ρ′2
2 (ηk, λ′2)ΘK

2 u
ρ2
2 (ρ1p, λ2)

+ V K1ρ1,2η(p, k)ūρ11 (ρ1p, λ1)ΘK
1 u

ρ′1
1 (ηk, λ′1)

ū
ρ′1
1 (ηk, λ′1)Γ2η(k)uη2(ηk, λ′2)

ρ′1E1k − ηE2k − µ− iε
ūη2(ηk, λ′2)ΘK

2 u
ρ2
2 (ρ1p, λ2)

]

ūρ11 (ρ2p, λ1)Γ2ρ2(p)uρ22 (ρ2p, λ2) = −1

2

∑
Kηλ′

1λ
′
2ρ

′
1ρ

′
2

∫
d3k

(2π)3
m1m2

E1kE2k
η

[
V K2ρ2,1η(p, k)ūρ11 (ρ2p, λ1)ΘK

1 u
η
1(ηk, λ′1)

× ūη1(ηk, λ′1)Γ1η(k)u
ρ′2
2 (ηk, λ′2)

ρ′2E2k − ηE1k + µ− iε
ū
ρ′2
2 (ηk, λ′2)ΘK

2 u
ρ2
2 (ρ2p, λ2)

+ V K2ρ2,2η(p, k)ūρ11 (ρ2p, λ1)ΘK
1 u

ρ′1
1 (ηk, λ′1)

ū
ρ′1
1 (ηk, λ′1)Γ2η(k)uη2(ηk, λ′2)

ρ′1E1k − ηE2k − µ− iε
ūη2(ηk, λ′2)ΘK

2 u
ρ2
2 (ρ2p, λ2)

]
, (17)

where the notation for the functions V Kiρ,jη(p, k) follows the convention of Eq. (11). Note that repeated indices are
not automatically summed over.

Now we define CST wave functions,

Ψρ1ρ2
1,λ1λ2

(p) ≡
√

m1m2

E1pE2p

ūρ11 (ρ1p, λ1)Γ1ρ1(p)uρ22 (ρ1p, λ2)

ρ2E2p − ρ1E1p + µ− iε
,

Ψρ1ρ2
2,λ1λ2

(p) ≡
√

m1m2

E1pE2p

ūρ11 (ρ2p, λ1)Γ2ρ2(p)uρ22 (ρ2p, λ2)

ρ1E1p − ρ2E2p − µ− iε
, (18)

and the spinor matrix elements of the vertices,

ΘK,ρρ′

i,λλ′ (p,k) ≡ ūρi (p, λ)ΘK
i u

ρ′

i (k, λ′) . (19)

The 4CSE for the CST wave functions is then

(ρ2E2p − ρ1E1p + µ)Ψρ1ρ2
1,λ1λ2

(p) = −1

2

∑
Kηλ′

1λ
′
2ρ

′
1ρ

′
2

∫
d3k

(2π)3
N12(p, k)η

[
V K1ρ1,1η(p, k)ΘK,ρ1η

1,λ1λ′
1
(ρ1p, ηk)

×Ψ
ηρ′2
1,λ′

1λ
′
2
(k)Θ

K,ρ′2ρ2
2,λ′

2λ2
(ηk, ρ1p) + V K1ρ1,2η(p, k)Θ

K,ρ1ρ
′
1

1,λ1λ′
1

(ρ1p, ηk)Ψ
ρ′1η

2,λ′
1λ

′
2
(k)ΘK,ηρ2

2,λ′
2λ2

(ηk, ρ1p)

]

(ρ1E1p − ρ2E2p − µ)Ψρ1ρ2
2,λ1λ2

(p) = −1

2

∑
Kηλ′

1λ
′
2ρ

′
1ρ

′
2

∫
d3k

(2π)3
N12(p, k)η

[
V K2ρ2,1η(p, k)ΘK,ρ1η

1,λ1λ′
1
(ρ2p, ηk)

×Ψ
ηρ′2
1,λ′

1λ
′
2
(k)Θ

K,ρ′2ρ2
2,λ′

2λ2
(ηk, ρ2p) + V K2ρ2,2η(p, k)Θ

K,ρ1ρ
′
1

1,λ1λ′
1

(ρ2p, ηk)Ψ
ρ′1η

2,λ′
1λ

′
2
(k)ΘK,ηρ2

2,λ′
2λ2

(ηk, ρ2p)

]
,

(20)

where we have introduced the shorthand

N12(p, k) ≡ m1m2√
E1pE2pE1kE2k

. (21)

To avoid potential confusion we should point out that
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the number of “channels”, e.g. the 4 in 4CSE, refers to
the number of different vertex functions Γiρ coupled in
Eq. (12), not to the total number of different ρ-spin com-
ponents of the wave function, which is 8 in the case of
Eq. (20).

Equation (20) should be used when both positive-
energy poles of the quark propagators contribute at a
comparable level to the k0 loop integration and the sys-

tem is symmetric under charge conjugation. The most
important example of this case is the pion. When the
total bound state mass µ is not small compared to the
masses of its constituents, one pole dominates (by con-
vention the one of particle 1), and leaving the second one
out becomes a good approximation. The 4CSE (12) re-
duces then to the two-channel Covariant Spectator Equa-
tion (2CSE)

Γ1+(p) = −1

2

[∫
k1

V1+,1+(p, k)Λ1(k̂1)Γ1+(k)S2(k̂1 − P ) +

∫
k2

V1+,2−(p, k)S1(−k̂2 + P )Γ2−(k)Λ2(−k̂2)

]
Γ2−(p) = −1

2

[∫
k1

V2−,1+(p, k)Λ1(k̂1)Γ1+(k)S2(k̂1 − P ) +

∫
k2

V2−,2−(p, k)S1(−k̂2 + P )Γ2−(k)Λ2(−k̂2)

]
, (22)

which couples Γ1+ with its charge-conjugation counterpart Γ2−. A graphical representation of this set of equations is
indicated by the dashed rectangle in Fig. 3.

The corresponding 2CSE for the CST wave function is

(ρ2E2p − E1p + µ)Ψ+ρ2
1,λ1λ2

(p) = −1

2

∑
Kλ′

1λ
′
2ρ

′
1ρ

′
2

∫
d3k

(2π)3
N12(p, k)

[
V K1+,1+(p, k)ΘK,++

1,λ1λ′
1
(p,k)

×Ψ
+ρ′2
1,λ′

1λ
′
2
(k)Θ

K,ρ′2ρ2
2,λ′

2λ2
(k,p)− V K1+,2−(p, k)Θ

K,+ρ′1
1,λ1λ′

1
(p,−k)Ψ

ρ′1−
2,λ′

1λ
′
2
(k)ΘK,−ρ2

2,λ′
2λ2

(−k,p)

]

(ρ1E1p + E2p − µ)Ψρ1−
2,λ1λ2

(p) = −1

2

∑
Kλ′

1λ
′
2ρ

′
1ρ

′
2

∫
d3k

(2π)3
N12(p, k)

[
V K2−,1+(p, k)ΘK,ρ1+

1,λ1λ′
1
(−p,k)

×Ψ
+ρ′2
1,λ′

1λ
′
2
(k)Θ

K,ρ′2−
2,λ′

2λ2
(k,−p)− V K2−,2−(p, k)Θ

K,ρ1ρ
′
1

1,λ1λ′
1

(−p,−k)Ψ
ρ′1−
2,λ′

1λ
′
2
(k)ΘK,−−

2,λ′
2λ2

(−k,−p)

]
. (23)

C. The one-channel CST equation

If the total bound-state mass is not small, and we are
dealing with a system of particles with unequal masses,
then keeping only the positive-energy pole of the heavier
particle is a very good approximation. There is no need
for a symmetrization as in the case of the 2CSE because
charge conjugation is not a symmetry of the system. We
arrive at the one-channel Covariant Spectator Equation
(1CSE) for the vertex function,

Γ1+(p) = −
∫
k1

V1+,1+(p, k)Λ1(k̂1)Γ1+(k)S2(k̂1 − P ) ,

(24)

and the corresponding 1CSE for the CST wave function

(ρ2E2p − E1p + µ)Ψ+ρ2
1,λ1λ2

(p) = −
∑

Kλ′
1λ

′
2ρ

′
2

∫
d3k

(2π)3
N12(p, k)

× V K1+,1+(p,k)ΘK,++
1,λ1λ′

1
(p,k)Ψ

+ρ′2
1,λ′

1λ
′
2
(k)Θ

K,ρ′2ρ2
2,λ′

2λ2
(k,p) .

(25)

The 1CSE is shown graphically inside the solid rectangle
in Fig. 3. It is particularly well suited for heavy-light
mesons, i.e. quark-antiquark systems with one light and
one bottom or charm quark. It should also work well for
heavy quarkonia, except that no definite C-parity can be
assigned to the solutions because of the missing charge-
conjugation symmetry. As we will argue in more detail in
Sec. III, in heavy quarkonia this is actually only a minor
problem. It turns out that the singularity structure of the
kernel matrix element in Eq. (25) is so much simpler than
the ones that appear in the 2CSE (23), that we consider
the loss of charge-conjugation symmetry a small price to
pay for the great advantages it brings with respect to its
practical solution. Therefore, in this work we perform all
calculations of heavy and heavy-light mesons with the
1CSE.

In the calculations of this paper, the functions
V K1+,1+(p,k) that describe the momentum dependence of
the various pieces of the kernel are



7

VL(p̂1 − P/2, k̂1 − P/2) = −8σπ

[(
1

(p̂1 − k̂1)4
− 1

Λ4 + (p̂1 − k̂1)4

)

− Eip
mi

(2π)3δ3(p− k)

∫
k′
i

(
1

(p̂1 − k̂′1)4
− 1

Λ4 + (p̂1 − k̂′1)4

)]
, (26)

for the linear confining kernel, assumed equal for scalar (K = s), pseudoscalar (K = p), and vector coupling (K = v),

VOGE(p̂1 − P/2, k̂1 − P/2) = −4παs

(
1

(p̂1 − k̂1)2
− 1

(p̂1 − k̂1)2 − Λ2

)
, (27)

for the one-gluon exchange (in Feynman gauge), and

VC(p̂1 − P/2, k̂1 − P/2) = (2π)3
Eik
mi

Cδ3(p− k) . (28)

for the covariant generalization of a constant kernel,
the latter two both in vector coupling (K = v). The
three constants σ, αs, and C are the adjustable coupling
strength parameters of the interaction model. The con-
fining and OGE kernels in (26) and (27) are shown in
Pauli-Villars regularized form, which introduces the cut-
off parameter Λ. Without regularization, the loop inte-
gration in (25) would not converge.

To solve Eq. (25) numerically, we represent the wave
functions in a basis of eigenfunctions of the total orbital
angular momentum L and total spin S of the quark-
antiquark system. Although neither L nor S are con-
served quantum numbers, this is useful when we want to
compare our results to nonrelativistic approaches which
classify their states in terms of L and S. It is also inter-
esting to get a measure of the importance of relativistic
effects by quantifying the extent to which partial waves
of purely relativistic origin mix with the ones present in
nonrelativistic theories.

For this purpose, the wave functions (18) and kernel
matrix elements (19) in (20) are written as matrix ele-
ments of the two-component helicity spinors χλ, using
the spinor representation defined in Eqs. (A5) and (A6).
In the remainder of this section p and k refer to the mag-
nitudes of the three-vectors p and k, and should not be
mistaken as four-vectors.

We write the kernel vertex matrix elements as

ΘK,ρρ′

i,λλ′ (p,k) = NipNikχ
†
λM

K,ρρ′

i (p,k)χλ′ , (29)

where Nip =
√

Eip+mi

2mi
, and the 2 × 2 matrices MK

i de-

pend on the Lorentz structure of the vertex specified by
the superscript K. All matrix elements needed for the
Lorentz structure of the kernel (13) are listed in Ap-
pendix B.

Similarly, the wave functions are written as

Ψ+ρ
1,λλ′(p) =

∑
j

ψρj (p)χ†λK
ρ
j (p̂)χλ′ , (30)

where p̂ is a unit vector in the direction of p, and the in-
dex j distinguishes linearly independent matrices Kρ

j (p̂),

which we choose such that each term in the sum (30)
corresponds to a quark-antiquark eigenstate of L and S.
The matrix representation (30) is interpreted as describ-
ing quark 2 entering the vertex and quark 1 coming out of
it, as shown in Fig. 1, whereas eigenstates of L and S refer
to linear combinations of direct product states describing
a quark and an antiquark both leaving the vertex. The
latter involve sums over Clebsch-Gordan coefficients and
spherical harmonics, which will then appear in the ma-
trices Kρ

j (p̂) when the direct product representation is
transformed into the matrix representation. An example
of the relation between the two representations can be
found in Ref. [58].

Equation (30) represents therefore a partial wave de-
composition of the CST wave function, where ψρj (p) are
radial wave functions, and the spin and angular depen-
dence is contained in the matrices Kρ

j (p̂). For JP = 0−

mesons, there is only one independent matrix for each
value of ρ, namely an S-wave for ρ = −, and a P -wave
for ρ = +. The 1− mesons have two different matrices Kρ

j
for each value of ρ, namely an S and a D wave for ρ = −,
and spin singlet and triplet P waves for ρ = +. For 0+

and 1+ mesons, the respective partial waves in ρ = +
and ρ = − are interchanged. The explicit expressions of
Kρ
j (p̂) are given in Appendix A.

After inserting the expansion (30) into Eq. (25), and
using the completeness of the χλ-spinors, the bound state
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equation takes on the form

(ρE2p − E1p + µ)
∑
j

ψρj (p)Kρ
j (p̂) = −

∫
d3k

(2π)3
N(p, k)

×
∑
Kρ′j′

V K(p,k)MK,++
1 (p,k)ψρ

′

j′ (k)Kρ′

j′ (k̂)MK,ρ′ρ
2 (k,p) ,

(31)

with N(p, k) ≡ N1pN1kN2kN2pN12(p, k).
We can simplify Eq. (31) by using the fact that the

kernel V K depends only on the magnitudes of the three-
vectors p and k and on the angle between them, i.e.,

V K(p,k) = V K(p, k, z) , (32)

where p = |p|, k = |k|, and z = p̂ · k̂. In general, if
f(p, k, z) is a function of this kind, one can determine

new functions AK,ρρ
′

jj′ (p, k, z) such that∫
d3k

(2π)3
f(p, k, z)MK,++

1 (p,k)Kρ′

j′ (k̂)MK,ρ′ρ
2 (k,p)

=

∫
d3k

(2π)3
f(p, k, z)

∑
j

Kρ
j (p̂)AK,ρρ

′

jj′ (p, k, z) . (33)

Using this relation in (31), we obtain

(ρE2p − E1p + µ)
∑
j

ψρj (p)Kρ
j (p̂) = −

∑
Kjρ′j′

∫
d3k

(2π)3

×N(p, k)V K(p, k, z)Kρ
j (p̂)AK,ρρ

′

jj′ (p, k, z)ψρ
′

j′ (k) . (34)

Matrices Kρ′

j′ (p̂) belonging to different orbital angular
momenta are orthogonal with respect to integration over
p̂, whereas spin singlet and triplet matrices are orthog-
onal with respect to taking the trace of their product.
One can therefore extract an equation for the coefficients
of these matrices in (34), which can be written

(E1p − ρE2p)ψ
ρ
j (p)−

∑
Kρ′j′

∫
d3k

(2π)3
N(p, k)V K(p, k, z)

×AK,ρρ
′

jj′ (p, k, z)ψρ
′

j′ (k) = µψρj (p) . (35)

This is a linear eigenvalue equation whose eigenvalues µ
are the bound state masses, and the corresponding eigen-
vectors are the radial partial wave functions ψρj (p).

It is one of the great advantages of the 1CSE that the
integrand in (35) itself does not depend explicitly on µ.
Solving this equation yields the ground state and a tower
of excited states at once. A dependence of the integrand
on µ usually turns the equation into a nonlinear problem,
where one has to search for a self-consistent solution for
each eigenvalue separately. In the 1CSE this is the case,
for instance, when the fixed constituent quark mass of the
off-shell quark is replaced by a dynamical mass function,
and it is unavoidable in the 2CSE and 4CSE even for
fixed quark masses.

We have solved Eq. (35) by expanding the wave func-
tions ψρj (p) in a basis of B-splines. The numerical meth-
ods, and in particular the way how a linear confining in-
teraction and its covariant generalization can be treated
in momentum space, have been described in some detail
in Refs. [42, 59, 60].

Once the partial wave functions ψρj (p) have been
calculated, we can also construct the vertex functions
Γ(p1, p2). If Γ(p1, p2) is written in terms of covari-
ant Lorentz tensors multiplied by functions of invariants
Gl(p

2
1, p

2
2) as in Appendix A 1, Eqs. (30) and (18) relate

the ψ’s with the G’s. In many applications, the vertex
function in this manifestly covariant form is more useful.

III. NUMERICAL RESULTS

In a recent letter [57] we presented first results of
our calculations of the masses of heavy and heavy-light
mesons with J = 0 and 1, based on the 1CSE (35). We
performed least square fits of the three kernel parame-
ters σ, αs, and C, while choosing fixed values for the
constituent quark masses and an equal-weight scalar and
pseudoscalar coupling for the confining interaction (i.e.,
with y = 0). The Pauli-Villars cut-off parameter was
fixed at Λ = 2m1 (we also used this choice in the new
results presented below). We found that the obtained
models describe the experimental masses very well, with
an rms difference between calculations and data of the
order of 30 MeV.

In this work we extend our previous study in several
aspects:

(i) The parameter y describing the mixing of
scalar/pseudoscalar and vector confining interaction is
promoted to an adjustable parameter. One of the most
interesting questions we want to investigate is of course
whether the meson mass spectrum can determine y or at
least yield useful constraints.

(ii) We also treat now the constituent quark masses as
adjustable parameters. This may seem a rather straight-
forward way to improve the fits of [57]. However, it repre-
sents a serious complication in the required numerical cal-
culations: the interaction kernel depends linearly on the
constants σ, αs, C, and y, and the most time-consuming
part of the calculation, namely the loop-momentum inte-
gration in (34) needs to be carried out only once. On the
other hand, the kernel’s dependence on the quark masses
is much more complicated. When the quark masses are
allowed to vary, this numerical integration over the ker-
nel has to be recalculated every time the combination of
masses is changed during the fits.

(iii) In [57] we found that a fit of the coupling constants
exclusively to pseudoscalar meson masses gives overall re-
sults that are almost as good as when additionally vector
and scalar states are also used in the fit. Here we explore
how much our results depend on the selection of the fitted
data set in the new, more general fits.

(iv) Although they are not observables, it is useful to



9

have a closer look at the relativistic “wave functions”.
They provide a means to identify the quantum numbers
of the corresponding bound states. In the case of heavy
mesons, we expect the dominant component to closely
resemble a corresponding nonrelativistic wave function.
The weight of the wave function components of relativis-
tic origin should increase with decreasing quark mass.
Their sensitivity to changes in the model parameters will
be explored as well.

A. Interaction models and mass spectra

We calculated the pseudoscalar, scalar, vector, and ax-
ialvector meson states that contain at least one heavy
(bottom or charm) quark, and whose mass falls below
the corresponding open-flavor threshold. As exceptions,
a few states located slightly above threshold but with
very small widths are considered as well. We restrict
our analysis to mesons with JP = 0±, 1±, representing
already the vast majority of the experimental states.

There are two different ways how we quantify the rela-
tion between the masses µi({αk(M)}), calculated from a
theoretical model M specified through a set of parame-
ters {αk(M)}, and a certain set S of experimental masses
µexp
i (S) withNS elements. When S is the set of data used

in the least square fit of the model parameters, then the
rms difference

δrms(S) ≡
√

1

NS

∑
i∈S

[µi({αk(M)})− µexp
i (S)]

2
(36)

is the quantity that is being minimized, and its value is
therefore a measure of the quality of the fit.

On the other hand, we also want to be able to evaluate
the ability of a given model to predict states it was not
fitted to. For this purpose we also calculate rms differ-
ences with respect to data sets S′ that are different from
the set S a model was fitted to. To distinguish these dif-
ferences more clearly from the minimized values we use
the notation ∆rms(S

′) whenever S′ 6= S. Note that it is
quite possible that, for particular choices of S and S′, one
model has a higher δrms but a smaller ∆rms than another.

We chose three different sets of data to fit our model
parameters to: the set called S1 consists of pseudoscalar
meson states only (it is identical to the one used in [57]
to fit the model named P1), the set S2 includes pseu-
doscalar, scalar, and vector states, and the largest set,
S3, adds a number of axial vector states to the states
contained in S2. A list of these states and their masses
is given in Table I.

We constructed several interaction models by fitting
to these three data sets while, in some cases, placing
constraints on certain parameters. The results of our
fits are summarized in Table II. In all cases, the rms
difference ∆rms is given with respect to the data set S3,
containing a total of 39 states.

Data set

State JP (C) Mass (MeV) S1 S2 S3
Υ(4S) 1−− 10579.4±1.2 •
χb1(3P ) 1++ 10512.1±2.3 •
Υ(3S) 1−− 10355.2±0.5 • •
ηb(3S) 0−+ 10337
hb(2P ) 1+− 10259.8±1.2 •
χb1(2P ) 1++ 10255.46±0.22±0.50 •
χb0(2P ) 0++ 10232.5±0.4±0.5 • •
Υ(1D) 1−− 10155
Υ(2S) 1−− 10023.26±0.31 • •
ηb(2S) 0−+ 9999±4 • • •
hb(1P ) 1+− 9899.3±0.8 •
χb1(1P ) 1++ 9892.78±0.26±0.31 •
χb0(1P ) 0++ 9859.44±0.42±0.31 • •
Υ(1S) 1−− 9460.30±0.26 • •
ηb(1S) 0−+ 9399.0±2.3 • • •
Bc(2S)± 0− 6842±6 •
B+
c 0− 6275.1±1.0 • • •

Bs1(5830) 1+ 5828.63±0.27 •
B1(5721)+,0 1+ 5725.85±1.3 •
B∗s 1− 5415.8±1.5 • •
B0
s 0− 5366.82±0.22 • • •

B∗ 1− 5324.65±0.25 • •
B±,0 0− 5279.45 • • •
X(3915) 0++ 3918.4±1.9 • •
ψ(3770) 1−− 3773.13±0.35 • •
ψ(2S) 1−− 3686.097±0.010 • •
ηc(2S) 0−+ 3639.2±1.2 • • •
hc(1P ) 1+− 3525.38±0.11 •
χc1(1P ) 1++ 3510.66±0.07 •
χc0(1P ) 0++ 3414.75±0.31 • •
J/Ψ(1S) 1−− 3096.900±0.006 • •
ηc(1S) 0−+ 2983.4±0.5 • • •
Ds1(2536)± 1+ 2535.10±0.06 •
Ds1(2460)± 1+ 2459.5±0.6 •
D1(2420)±,0 1+ 2421.4 •
D∗0(2400)0 0+ 2318±29 • •
D∗s0(2317)± 0+ 2317.7±0.6 • •
D∗±s 1− 2112.1±0.4 • •
D∗(2007)0 1− 2008.62 •
D±s 0− 1968.27±0.10 • • •
D±,0 0− 1867.23 • • •

TABLE I. List of the mesonic states and experimental mea-
sured masses used throughout this work. A bullet point in one
of the columns labeled S1, S2, and S3 indicates that the meson
state is included in the respective data set used in various fits.
The masses of B±,0, D±,0, B1(5721)+,0, and D1(2420)±,0 are
averages of the charged and uncharged states. The masses of
Υ(1D) and ηb(3S) are estimates taken from Ref. [61]. There
is weak evidence (at 1.8σ) that Υ(1D) has been seen [62, 63].

Models M0S1 and M0S2, previously denoted in ref.[57]
by P1 and PSV1 respectively, were fitted with fixed val-
ues for the constituent quark masses and mixing param-
eter y = 0 [57]. They should be compared to the new
models M1S1 and M1S2, in which the quark masses and
y were allowed to vary freely. We see that the addition
of 5 free parameters leads to a lower minimum in δrms,
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Model Symbol σ [GeV2] αs C [GeV] y mb [GeV] mc [GeV] ms [GeV] mq [GeV] N δrms [GeV] ∆rms [GeV]
M0S1 0.2493 0.3643 0.3491 0.0000 4.892 1.600 0.4478 0.3455 9 0.017 0.037
M1S1 © 0.2235 0.3941 0.0591 0.0000 4.768 1.398 0.2547 0.1230 9 0.006 0.041
M0S2 0.2247 0.3614 0.3377 0.0000 4.892 1.600 0.4478 0.3455 25 0.028 0.036
M1S2 0.1893 0.4126 0.1085 0.2537 4.825 1.470 0.2349 0.1000 25 0.022 0.033
M1S2′ 4 0.2017 0.4013 0.1311 0.2677 4.822 1.464 0.2365 0.1000 24 0.018 0.033
M1S3 0.2022 0.4129 0.2145 0.2002 4.875 1.553 0.3679 0.2493 39 0.030 0.030
M0S3 0.2058 0.4172 0.2821 0.0000 4.917 1.624 0.4616 0.3514 39 0.031 0.031

TABLE II. (color online). Summary table of the kernel parameters of the different fitting models considered in this work. The
masses calculated from the models labeled with the symbols © , 4, and are shown in Fig. 4. N is the number of states in
the data set used in fitting the model. δrms indicates the minimized root mean square difference with respect to the data set
used in the fit, and ∆rms is the root mean square difference with respect to data set S3, including both fitted and predicted
states. The values in boldface were held fixed.

but the overall rms difference ∆rms changes by very lit-
tle (it even increases from M0S1 to M1S1). Based on the
data set S1, the fit finds no improvement in varying y,
such that the new minimum is located again at y = 0.
This is not the case for data set S2, which prefers a finite
value of y of approximately 0.25. At the same time, the
quark masses change quite considerably, decreasing by
around 200 MeV (more moderately for mb), which is in
part compensated by a similarly smaller constant C. To
see that this compensating effect makes sense, remember
that qq spinor matrix elements of γµ1 ⊗ γµ2 are negative
in the dominant channel with ρ′ = −. Because of the
overall minus sign in the definition of VC(p, k), lowering
C makes the kernel on the rhs of Eq. (34) smaller, and
lowering the quark masses reduces its lhs. The masses of
the light quarks tend to go as low as possible in these fits.
The final value of 100 MeV is actually the lower limit of
the range in which they were allowed to vary.

The bottomonium system is very rich in measured ex-
cited states. This poses a bit of a challenge for our cal-
culations, because describing higher excited states accu-
rately requires a larger number of spline functions. In
particular, the Υ(4S) appears in our calculations as the
5th excited state in the vector bb system, but increasing
the number of basis spline functions accordingly would
be too time-consuming to perform our 8-parameter fits.
To test whether the M1S2 fit might have been distorted
by trying to reproduce the Υ(4S) mass with insufficient
numerical accuracy, we performed another fit where this
state was omitted from the fitted data set. To distinguish
from the previous one we denote it by S2′. However, the
resulting model, M1S2′ , turned out very similar to M1S2,
and produces the same value of ∆rms.

Finally, we fitted two more models to our largest data
set, S3, which adds axial vector mesons to the set S2. The
parameters σ and αs of M1S3 are quite similar to those
of M1S2, but the quark masses are all higher, which is
again accompanied by an increase of the constant C. The
mixing parameter turns out a bit smaller, at y = 0.20.
To see how sensitive the fit is to the precise value of y, we
repeat the calculation with the same data set, but with
the restriction y = 0. The coupling strength parameters
of this model, M0S3, are almost unchanged compared

to M1S3, only the quark masses (and C) increase. It
is reassuring that, in both cases, the light quark masses
have moved back into a more realistic region, around 300
MeV.

The overall quality of these fits is slightly better than
the one of all previous models. We consider M1S3, with
∆rms = 0.030 GeV, our best model. But the fact that
for M0S3 the rms difference ∆rms = 0.031 GeV is only
marginally larger is a strong indication that the param-
eter y is not significantly constrained by the heavy and
heavy-light meson spectrum, at least not by the states in
the data sets we used. We will study this point in more
detail in the next section.

Figure 4 compares the meson masses calculated with
models M0S1, M0S2, M1S3, and M0S3, with the experi-
mental data [64]. The overall agreement is very good in
all cases. It is remarkable that model M0S1, whose pa-
rameters were determine by fits to pseudoscalar states
only, yields results of almost the same quality as the
other models. As we discussed in [57], this implies that
requiring the kernel to be of covariant form correctly de-
termines the spin-dependent interactions, which are re-
sponsible for the splitting between the different JP (C)

channels. It is worth emphasizing that our’s are global
fits, where the same parameters are used in all sectors of
the shown spectrum. This is in contrast to other mod-
els frequently found in the literature that adjust their
parameters sector by sector in order to achieve a better
fit.

As already discussed, the 1CSE is ideally suited for the
description of heavy and heavy-light mesons, i.e. when at
least one constituent is a charm or bottom quark. How-
ever, one drawback of the 1CSE is that it is not sym-
metric under charge conjugation. Consequently we can-
not assign a definite C-parity to our solutions for heavy
quarkonia.

This issue becomes relevant only in the case of ax-
ial vector mesons, which come in both C-parities. The
observed splitting between these C-parity pairs is very
small, about 5 MeV in bottomonium and 14 MeV in char-
monium, and the C = + state is always the one lower
in mass. Our solutions of the 1CSE yield also closely
spaced pairs in the JP = 1+ channel. The problem is
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FIG. 4. (color online). Masses of heavy-light and heavy mesons with JP = 0± and 1±. The points depicted by the symbols
© , 4, and represent the 1CSE results calculated with the models with matching symbols of Table II. Solid horizontal
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(at 1.8σ) that the Υ(1D) has been seen [62, 63]. Both models predict a so far unobserved Υ(2D) between Υ(3S) and Υ(4S).
Dashed horizontal lines across the figure indicate open flavor thresholds.

that, when performing a fit, we need to know which cal-
culated state should be compared to which experimental
one. It is quite possible that, when regions in the param-
eter space far from the final minimum are probed, the
ordering of states in the calculated spectrum is not equal
to the experimental one, which could lead to incorrect
identifications and potentially drag the fit away from the
true minimum.

In practice there are mitigating circumstances that es-
sentially eliminate this problem. The first is that heavy
quarkonia are close to the nonrelativistic limit, especially
bottomonium. Relativistically, both spin singlet (S = 0)
and spin triplet (S = 1) configurations may contribute to
a state of definite C parity and orbital angular momen-
tum L. This is different from the nonrelativistic limit,
where the relation (−)C = (−)L+S holds, implying that
either one or the other of the two spin states goes to zero
for a given C parity. For instance, if L = 1, S = 0 does

not contribute to the C = + state, and S = 1 does not
contribute to the C = − state in the nonrelativistic limit.

The CST equations have a smooth nonrelativistic
limit, therefore the axialvector quarkonium wave func-
tions should be dominated by P -wave components with
either S = 1 or S = 0, while S and D waves should be
very small. This is indeed what we find, such that by de-
termining whether a state has a dominant spin triplet or
singlet wave function we can decide which experimental
state it should be compared to.

The second aspect is that the mass splitting between
the C = + and C = − pairs is very small indeed, actually
even smaller than the numerical accuracy we estimate our
numerical solutions to have. This means that even if cal-
culated and experimental states were occasionally paired
incorrectly, it would hardly have a significant influence
on the fits.
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B. CST wave functions

In this section we present the CST wave functions for
a selection of mesons. They will be used in the future
to calculate electroweak form factors and decay rates, as
well as hadronic decay properties. They are also funda-
mental ingredients in calculations of many other hadronic
reactions that involve the formation of these mesons. It is
therefore of great importance to understand their struc-
ture in detail. All wave functions displayed here were
calculated with model M1S3, and are normalized accord-
ing to (A18), (A23), (A28), and (A33).

Figure 5 shows the ground-state wave functions of bot-
tomonium in the four channels JP = 0±, 1±. The pseu-
doscalar and vector mesons are almost pure S waves, and
the scalar and axial vector mesons are almost pure P
waves. The weight of the components of relativistic ori-
gin is so small that their wave functions are difficult to
distinguish from zero in the plots. Because of the large
mass of the b quark the bottomonium behaves essentially
nonrelativistically.

One can then expect that the relativistic components
are more pronounced in systems with lighter quarks. Fig-
ure 6 shows the wave functions analogous to the ones in
Fig. 5 for the lightest cq mesons (q stands collectively for
a light u or d quark, with mu = md = mq). As expected,
the relativistic components are already quite significant,
and a nonrelativistic description is no longer adequate.

Comparing Figs. 5 and 6 one can also see that the
momentum-space wave functions of bottomonium are
much more spread out, which means that in configura-
tion space they are more compact than the heavy-light
cq mesons.

Figure 5(d) contains another interesting detail: the 1+

ground state is dominated not by one, but by a mixture
of two P waves, a spin triplet and a spin singlet. The
role of these two P waves is interchanged in the first
excited state (not shown in the figure). As already dis-
cussed in the previous section, in a relativistic description
both spin triplets and singlets can contribute to either C-
parity eigenstate. However, the plot in Fig. 5(d) may give
an exaggerated impression of the weight of the singlet P -
wave: its contribution to the total norm is actually only
about 7 %. Nevertheless, the fact that in the almost non-
relativistic χb1(1P ) the singlet component is not smaller
is probably in part due to the lack of charge conjuga-
tion symmetry of the 1CSE. We can speculate that this
singlet wave function will be more suppressed when a
charge-conjugation symmetric two- or four-channel CST
equation is solved. In addition, the presence of a pseu-
doscalar confining kernel also enhances its weight. When
it is turned off, the norm integral of the singlet P -wave
is reduced by roughly one half.

The vector meson spectrum of bottomonium is partic-
ularly interesting because of the large number of excited
states below or slightly above threshold that have been
measured. In Fig. 7 we show the wave functions of the
first six vector states of bottomonium. According to the

figure, the first two states are mostly S waves, followed
by alternating D and S states. The Υ(1D) is listed in [64]
as a 2++ state, but there is some evidence that 1−− was
also possibly seen. There is, however, no experimental
evidence yet for the predicted Υ(2D). The figure shows
that there is a small mixture of 2S in our Υ(1D), and a
small 3S component is present in the Υ(2D). Apart from
the increasing number of nodes, one can also clearly see
the wave functions are the more concentrated at lower
momenta the higher excited a state is, which means that
they are increasingly spread out in configuration space.

Whereas the structure of the ground state is deter-
mined mostly by the OGE interaction, the higher excited
states should be more sensitive to the confining interac-
tion. We have already seen in the previous section that
the masses of these states can be well described by our
models. To test the importance of the confining inter-
action for the description of the bottomonium excitation
spectrum, we performed fits using the OGE and con-
stant kernels only. The quality of these fits turned out
significantly worse, with rms differences above 100 MeV,
compared to about 30 MeV when the complete kernel is
used. Moreover, the sequence of S- and D-wave domi-
nated states is altered in the bottomonium vector meson
spectrum: the Υ(2D) and Υ(4S) swap places. This find-
ing suggests that, once the Υ(2D) is observed, finding
its mass below or above the mass of Υ(4S) can tell us
whether a linear confining interaction is indeed needed
or not.

C. Constraints on fit parameters

Our model fits of Tab. II show some variation in the
values of the best-fit parameters, depending on which
data set the model is fitted to. In this section we want to
investigate this sensitivity in more detail and determine
how well some of the parameters are actually constrained.

We begin with the parameter y that determines the
mixing between the scalar+pseudoscalar and vector con-
fining interaction. We perform a series of fits, where in
each case y is held fixed at a different value while all
other parameters are allowed to vary. We restrict y to lie
in the interval between 0 and 0.45. For higher values, the
equation becomes unstable and no physical solutions can
be found—a well-known phenomenon that was observed
with many different relativistic equations [59, 65].

Figure 8 shows the obtained minima of δrms as a func-
tion of y, using three different data sets. As already dis-
cussed in Sec. III A, the data set with exclusively pseu-
doscalar mesons prefers y = 0, whereas optimum values
of y between 0.20 and 0.27 are obtained when more data
are included. However, Fig. 8 also shows that, except
for the smallest data set, the minima are very shallow.
In fact, when using data set S3, no particular value of
y seems to be clearly favored over any other. Instead
of accepting the value y = 0.20 of the fit M1S3, we
could choose arbitrarily another value without deterio-
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rating the fit significantly.

Figure 9 shows how the constituent quark masses ad-
just when y is changed, and Fig. 10 displays the cor-
responding variations of the couplings strengths param-
eters σ, αs, and C. For the larger data sets, a trend
is visible that connects smaller y with somewhat higher
masses, whereas the variations in the coupling strength
parameters are rather mild. Overall, the heavy quark
masses stay within a range of the size of about 50 MeV,
while the lighter quark masses vary by around 100 MeV.
But the midpoint of that range depends also on the data
set of the model fit.

We can summarize that the fits to the heavy and
heavy-light mass spectra alone do not lead to a clear
conclusion whether the confining interaction is of pure
Lorentz scalar+pseudoscalar nature or if it includes a
Lorentz vector component as well.

IV. SUMMARY AND CONCLUSIONS

In this work, we apply the Covariant Spectator Theory
(CST) to describe mesons as relativistic quark-antiquark
bound states. We briefly review how the most gen-
eral CST equations, the four-channel spectator equation
(4CSE) can be derived from the Bethe-Salpeter equa-
tion, and how the two- and one-channel approximations
(2CSE and 1CSE) are obtained and motivated. These
are momentum-space integral equations, formulated in
Minkowski space, that can be cast into the form of eigen-
value problems where the eigenvalues yield the bound-
state mass spectrum and the eigenvectors are the cor-
responding relativistic wave functions. Our numerical
method to solve these equations uses a partial-wave ex-
pansion. We provide explicit expressions that relate our
partial wave solutions to a manifestly covariant represen-
tation of the corresponding meson vertex functions. This

is very practical when the vertex functions are used in the
calculation of elastic or transition meson form factors, de-
cay properties, or other reactions involving mesons.

Heavy and heavy-light mesons are bound states in
which one constituent is either a charm or bottom quark,
whereas the second can be either light or heavy. The
1CSE is ideally suited to describe these systems, and it
is also simple enough to let us use least-square fits to
determine the optimal parameters of our models.

We have applied the 1CSE to construct models of the
quark-antiquark interaction with a kernel containing a
covariant generalization of a linear confining potential, a
one-gluon exchange (OGE) and a “covariantized” con-
stant interaction. The confining kernel has a mixed
Lorentz structure, namely an equal-weight scalar and
pseudoscalar part on one hand, and a vector part on the
other. The particular combination of scalar and pseu-
doscalar interactions satisfies the requirements of chiral
symmetry [43]. Its weight relative to the Lorentz vector
interaction is controlled by an adjustable mixing param-
eter, y. The OGE and constant kernels are pure vector
interactions.

In previous work [57], we have fitted only the three
coupling strength parameters to the spectrum of heavy
and heavy-light mesons with JP = 0± and 1±, while
the constituent quark masses were held fixed and the
mixing parameter was set to y = 0, corresponding to
a scalar+pseudoscalar Lorentz structure without vector
contribution. Here we extend this work by letting y and
all quark masses be determined by the fit, the latter rep-
resenting a significant complication of the numerical cal-
culations.

We find several models that reproduce the mass spec-
trum of heavy and heavy-light mesons with very good
accuracy, as measured by the rms difference between cal-
culated and experimental masses. It is important to em-
phasize that we perform global fits, i.e., our model pa-
rameters are the same for all mesons, not varied sector
by sector.

When we fit to pseudoscalar states only, y = 0 is ob-
tained as the best value, and all other meson masses are
remarkably well predicted. But when the fit is based
on a more extended data set that includes pseudoscalar,
scalar, and vector mesons (and axial vector mesons in
the most complete cases), a 20-25% contribution of vec-
tor coupling is preferred. However, we found that the
minima of the corresponding rms differences as functions
of y are very shallow, such that a model with y = 0 is
not significantly worse than one with the best fit value.
The same can be said about the dependence of the mod-
els on the quark masses. When the light quark masses
(mu = md and ms) are varied within an interval of
about 100 MeV, and the heavy quark masses (mc and
mb) within an interval of about 50 MeV, no particular
values yield clearly better fits than others.

Our main conclusion from these calculations is that
the Lorentz structure of the confining interaction cannot
be determined very well through the heavy and heavy-
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light meson mass spectrum alone, because the mixing
parameter y is not sufficiently constrained by these data.
Nevertheless, other physical observables of these mesons
are likely to be more sensitive to y, for instance the de-
cay constants, which probe details of their wave func-
tions [66]. Similar considerations apply to the constituent
quark masses, where we find that relatively large varia-
tions are compatible with the experimental spectrum.

We also show radial wave functions for a selection of
meson states. Examining wave functions is useful to iden-
tify the quantum numbers of calculated states. Relativis-
tic wave functions contain also partial wave components
which are forbidden in a nonrelativistic framework. The
norm integral of these components of purely relativistic
origin can be interpreted as a measure of the importance
of relativity in the description of a quark-antiquark sys-
tem. As expected, we find that the weight of these par-
tial waves is very small in heavy quarkonia, and increases

when quark masses become smaller, reaching about 9%
in the case of the cq̄ system.

For higher excited states the momentum-space wave
functions concentrate at smaller momenta, which reflects
spatially more extended systems. The accurate descrip-
tion of highly excited states requires considerable care
with the applied numerical methods. The fact that not
only the meson mass spectrum is well reproduced, but
also the shapes of our wave functions for the excited
states look reasonable and change as one would expect,
is a good indication that our numerical methods to solve
the 1CSE are working reliably.

The work reported in this paper completes success-
fully the first stage of our larger project of constructing
a self-consistent unifying framework for all mesons with
a quark-antiquark structure. Already at this stage, using
the one-channel CST equation, we obtain a remarkably
good description of both heavy and heavy-light sectors si-
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multaneously. The obtained wave functions can now be
used as ingredients in the calculation of a wide variety of
hadronic processes and experimentally observable quanti-
ties, for instance bottomonium, charmonium, and heavy-
light meson decay constants, charmonium electroweak
elastic and transition form factors, such as J/ψ → ηc γ

∗,
J/ψ → χc0 γ, χc1 → J/ψ γ and hc → ηc γ.
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Appendix A: Covariant and partial-wave tensor
bases

In this appendix, we present, for each type of meson
M = p (pseudoscalar), s (scalar), v (vector), and a (axial-
vector), the relations between the Lorentz-invariant func-
tions GMn (p21, p

2
2) in the covariant expansion of the meson

vertex function and the radial wave functions ψρj (p) of
the partial-wave components.

1. Covariant basis

a. Spin-0 mesons

The invariant vertex function ΓM (p1, p2) connecting
two off-shell quarks with momenta p1 and p2 can be writ-
ten for pseudoscalar and scalar mesons as

Γp(p1, p2) = Gp1γ
5 +Gp2γ

5Λ2 + Λ1G
p
3γ

5 + Λ1G
p
4γ

5Λ2

(A1)

and

Γs(p1, p2) = Gs1 +Gs2Λ2 + Λ1G
s
3 + Λ1G

s
4Λ2 , (A2)

respectively. Here we have introduced the shorthand (for
the Lorentz-invariant functions) Λi ≡ Λi(−pi) = (mi −
/pi)/2mi and GMn ≡ GMn (p21, p

2
2).

b. Spin-1 mesons

For vector and axialvector mesons, the covariant vertex
functions Γ̃Mµ(p1, p2) can be written in the general form

Γ̃vµ(p1, p2) = Gv1γ
µ +Gv5p

µ +Gv9P
µ

+ (Gv2γ
µ +Gv6p

µ +Gv10P
µ) Λ2

+Λ1 (Gv3γ
µ +Gv7p

µ +Gv11P
µ)

+Λ1 (Gv4γ
µ +Gv8p

µ +Gv12P
µ) Λ2 (A3)

and

Γ̃aµ(p1, p2) = Ga1γ
µγ5 +Ga5p

µγ5 +Ga9P
µγ5

+
(
Ga2γ

µγ5 +Ga6p
µγ5 +Ga10P

µγ5
)

Λ2

+Λ1

(
Ga3γ

µγ5 +Ga7p
µγ5 +Ga11P

µγ5
)

+Λ1

(
Ga4γ

µγ5 +Ga8p
µγ5 +Ga12P

µγ5
)

Λ2 , (A4)

respectively. Massive spin-1 particles are transverse, sat-
isfying Pµξµ(λ, P ) = 0, where ξµ ≡ ξµ(λ, P ) are the
spin-1 polarization four-vectors with λ = 0,±1. Con-
tracting Γ̃vµ(p1, p2) and Γ̃aµ(p1, p2) with ξµ removes the
longitudinal components proportional to Pµ, defining
the (transverse) invariant vertex functions Γv(p1, p2) ≡
ξµΓ̃vµ(p1, p2) and Γa(p1, p2) ≡ ξµΓ̃aµ(p1, p2) for vector
and axialvector mesons, respectively.

2. CST wave functions and the partial-wave tensor
basis

We use the standard representation for the Dirac ma-
trices and four-spinors uρi (in the convention of Bjorken-
Drell) given by

u+i (p, λ) ≡ ui(p, λ) = Nip

(
1

σ·p
Eip+mi

)
⊗ χλ, (A5)

u−i (p, λ) ≡ vi(−p, λ) = Nip

(
− σ·p
Eip+mi

1

)
⊗ χλ,(A6)

where i = 1 or 2 denotes the outgoing or incoming
quark, respectively, χλ are the two-component spinors,

and Nip =
√

Eip+mi

2mi
.

For the CST vertex functions, we introduce the short-
hand

GMρ1
n,1 ≡ GMn

(
m2

1, (ρ1p̂1 − P )2
)
, (A7)

GMρ2
n,2 ≡ GMn

(
(ρ2p̂2 + P )2,m2

2

)
, (A8)

where quark 1 or quark 2 is on mass shell, respectively,
with positive (ρi = +) or negative (ρi = −) energy.

Inserting the expansions (A1)–(A4) for each type of
meson into Eq. (18) gives the results listed in the sub-
sections below. In the calculation of the corresponding
spinor matrix elements of the vertex functions, we use
the relations

ūρ11 (ρ2p, λ1)
[
m1 − (ρ2/̂p2 + γ0µ)

]
=

ūρ11 (ρ2p, λ1)γ0(−µ+ ρ1E1p − ρ2E2p) ,[
m2 − (ρ1/̂p1 − γ

0µ)
]
uρ22 (ρ1p, λ2) =

(µ− ρ1E1p + ρ2E2p)γ
0uρ22 (ρ1p, λ2) , (A9)

which follow directly from the Dirac equations for
ūρ11 (ρ2p, λ1) and uρ22 (ρ1p, λ2).
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In the following subsections we present, for each me-
son, the expressions for the 4CSE wave functions in the

partial-wave tensor basis. We always work in the meson
rest frame where P = (µ,0).

a. Pseudoscalar mesons

For the extraction of the P and S wave components from the CST wave function for a pseudoscalar meson we have
to distinguish between the two cases where the ρ-spins of the incoming and outgoing quarks are the same (ρ1 = ρ2)
or the opposite (ρ1 = −ρ2). Furthermore, we have to distinguish whether quark 1 or quark 2 is on mass shell. For
ρ1 = ρ2, and quark 1 on mass shell, we obtain for the spinor matrix elements of the vertex function, after a short
calculation, the expression

ūρ11 (ρ1p, λ1)Γp1ρ1(p)uρ12 (ρ1p, λ2) = N1pN2p

{
ρ1G

pρ1
1,1 [p̃2 − p̃1] +Gpρ12,1

ρ1(E1p − E2p)− µ
2m2

[p̃2 + p̃1]

}
χ†1σ · p̂χ2 ,

(A10)

where we have introduced p̃i = p/(Eip +mi) and the shorthand χi ≡ χλi . The analogous expression when quark 2 is
on mass shell reads

ūρ21 (ρ2p, λ1)Γp2ρ2(p)uρ22 (ρ2p, λ2) = N1pN2p

{
ρ2G

pρ2
1,2 [p̃2 − p̃1] +Gpρ23,2

ρ2(E1p − E2p)− µ
2m1

[p̃2 + p̃1]

}
χ†1σ · p̂χ2 .

(A11)

The CST wave functions, as defined in Eq. (18) and for quark 1 on shell then become

Ψpρ1ρ1
1,λ1λ2

(p) = −1

2
N12p

{
Gpρ11,1

E1p − E2p − ρ1µ
[p̃2 − p̃1] +

Gpρ12,1

2m2
[p̃2 + p̃1]

}
χ†1σ · p̂χ2 = ψpρ1P,1 (p)χ†1σ · p̂χ2 (A12)

where N12p =

√
E1p+m1

√
E2p+m2√

E1pE2p

. For quark 2 on shell the analogous expression reads

Ψpρ2ρ2
2,λ1λ2

(p) =
1

2
N12p

{
Gpρ21,2

E1p − E2p − ρ2µ
[p̃2 − p̃1] +

Gpρ23,2

2m1
[p̃2 + p̃1]

}
χ†1σ · p̂χ2 = ψpρ2P,2 (p)χ†1σ · p̂χ2 . (A13)

From these expressions one can read off the P -waves ψpρiP,i (p) when quark i is on mass shell with positive (ρi = +) or

negative (ρi = −) energy. For the case of the 1CSE we identify ψ+
1 (p) ≡ ψp+P,1(p) and K+

1 (p̂) ≡ σ · p̂.
For ρ1 = −ρ2, and quark 1 or quark 2 on-shell we obtain the expressions

ūρ11 (ρ1p, λ1)Γp1ρ1(p)u−ρ12 (ρ1p, λ2) = N1pN2p

{
ρ1G

pρ1
1,1 [1 + p̃1p̃2]−Gpρ12,1

−ρ1(E1p + E2p) + µ

2m2
[1− p̃1p̃2]

}
χ†11χ2 ,

(A14)

ū−ρ21 (ρ2p, λ1)Γp2ρ2(p)uρ22 (ρ2p, λ2) = N1pN2p

{
−ρ2Gpρ21,2 [1 + p̃1p̃2] +Gpρ23,2

−ρ2(E1p + E2p)− µ
2m1

[1− p̃1p̃2]

}
χ†11χ2 .

(A15)

The corresponding wave functions then read

Ψpρ1−ρ1
1,λ1λ2

(p) = −1

2
N12p

{
Gpρ11,1

E1p + E2p − ρ1µ
[1 + p̃1p̃2] +

Gpρ12,1

2m2
[1− p̃1p̃2]

}
χ†11χ2 = ψpρ1S,1 (p)χ†11χ2 , (A16)

Ψp−ρ2ρ2
2,λ1λ2

(p) =
1

2
N12p

{
Gpρ21,2

E1p + E2p + ρ2µ
[1 + p̃1p̃2] +

Gpρ23,2

2m1
[1− p̃1p̃2]

}
χ†11χ2 = ψpρ2S,2 (p)χ†11χ2 , (A17)

from which one can read off the S-waves ψpρiS,i (p). For the case of the 1CSE we identify ψ−1 (p) ≡ ψp−S,1(p) and

K−1 (p̂) ≡ 1.
The 1CSE wave-function components are normalized as∫ ∞

0

dp p2
[(
ψp−S,1(p)

)2
+
(
ψp+P,1(p)

)2]
= 1 . (A18)
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b. Scalar mesons

The treatment of the scalar mesons is very similar to the previous one of pseudoscalar mesons. For ρ2 = ρ1, and
quark 1 or quark 2 on mass shell the CST wave functions read

Ψsρ1ρ1
1,λ1λ2

(p) = −1

2
N12p

{
Gsρ11,1

E1p − E2p − ρ1µ
[1− p̃1p̃2]−

Gsρ12,1

2m2
[1 + p̃1p̃2]

}
χ†11χ2 = ψsρ1S,1 (p)χ†11χ2 , (A19)

Ψsρ2ρ2
2,λ1λ2

(p) =
1

2
N12p

{
Gsρ21,2

E1p − E2p − ρ2µ
[1− p̃1p̃2] +

Gsρ23,2

2m1
[1 + p̃1p̃2]

}
χ†11χ2 = ψsρ2S,2 (p)χ†11χ2 . (A20)

For the 1CSE we identify ψ+
1 (p) ≡ ψs+S,1(p) and K+

1 (p̂) ≡ 1.
For ρ1 = −ρ2, and quark 1 or quark 2 on mass shell we have

Ψsρ1−ρ1
1,λ1λ2

(p) =
1

2
N12p

{
Gsρ11,1

E1p + E2p − ρ1µ
[p̃2 + p̃1]−

Gsρ12,1

2m2
[p̃2 − p̃1]

}
χ†1σ · p̂χ2 = ψsρ1P,1(p)χ†1σ · p̂χ2 , (A21)

Ψs−ρ2ρ2
2,λ1λ2

(p) =
1

2
N12p

{
Gsρ21,2

E1p + E2p + ρ2µ
[p̃2 + p̃1] +

Gsρ23,2

2m1
[p̃2 − p̃1]

}
χ†1σ · p̂χ2 = ψsρ2P,2(p)χ†1σ · p̂χ2 . (A22)

For the 1CSE we identify ψ−1 (p) ≡ ψs−P,1(p) and K−1 (p̂) ≡ σ · p̂.
The 1CSE wave-function components are normalized as∫ ∞

0

dp p2
[(
ψs+S,1(p)

)2
+
(
ψs−P,1(p)

)2]
= 1 . (A23)

c. Vector mesons

For vector mesons, the S, Ps, Pt, and D wave components are extracted from the CST wave function in a similar
way as in the previous spin-0 meson cases. For ρ1 = ρ2, and quark 1 or quark 2 on mass shell the CST wave functions
read

Ψvρ1ρ1
1,λ1λ2

(p) = −1

2
N12p

{
−
[
p

(
−

(1 + p̃1p̃2)Gvρ16,1

2m2
+

ρ1(1− p̃1p̃2)Gvρ15,1

ρ1(E1p − E2p)− µ

)
+

(
−
ρ1(p̃1 − p̃2)Gvρ12,1

2m2
+

(p̃1 + p̃2)Gvρ11,1

ρ1(E1p − E2p)− µ

)]
ξ · p̂χ†11χ2

+

[
−
ρ1(p̃1 + p̃2)Gvρ12,1

2m2
+

(p̃1 − p̃2)Gvρ11,1

ρ1(E1p − E2p)− µ

]
χ†1 (σ · ξσ · p̂− ξ · p̂)χ2

}
=
√

3ψvρ1Ps,1
(p)ξ · p̂χ†11χ2 +

√
3

2
ψvρ1Pt,1

(p)χ†1 (σ · ξσ · p̂− ξ · p̂)χ2 , (A24)

Ψvρ2ρ2
2,λ1λ2

(p) =
1

2
N12p

{
−
[
p

(
(1 + p̃1p̃2)Gvρ27,2

2m1
+

ρ2(1− p̃1p̃2)Gvρ25,2

ρ2(E1p − E2p)− µ

)
+

(
−
ρ2(p̃1 − p̃2)Gvρ23,2

2m1
+

(p̃1 + p̃2)Gvρ21,2

ρ2(E1p − E2p)− µ

)]
ξ · p̂χ†11χ2

+

[
−
ρ2(p̃1 + p̃2)Gvρ23,2

2m1
+

(p̃1 − p̃2)Gvρ21,2

ρ2(E1p − E2p)− µ

]
χ†1 (σ · ξσ · p̂− ξ · p̂)χ2

}
=
√

3ψvρ2Ps,2
(p)ξ · p̂χ†11χ2 +

√
3

2
ψvρ2Pt,2

(p)χ†1 (σ · ξσ · p̂− ξ · p̂)χ2 . (A25)

From these expressions we can read off the spin-singlet and spin-triplet P waves ψvρiPs,i
(p) and ψvρiPt,i

(p), respectively. For

the 1CSE case we identify ψ+
1 (p) ≡ ψv+Ps,1

(p), ψ+
2 (p) ≡ ψv+Pt,1

(p), K+
1 (p̂) ≡

√
3ξ·p̂, andK+

2 (p̂) ≡
√

3
2 (σ · ξσ · p̂− ξ · p̂).
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For ρ1 = −ρ2 and quark 1 or quark 2 on mass shell the corresponding wave functions are given by

Ψvρ1−ρ1
1,λ1λ2

(p) =
1

2
N12p

{[
ρ1(3− p̃1p̃2)Gvρ12,1

6m2
−

(3 + p̃1p̃2)Gvρ11,1

−3ρ1(E1p + E2p) + 3µ

+
(p̃1 − p̃2)Gvρ16,1

2m2
+

ρ1(p̃1 + p̃2)Gvρ15,1

−ρ1(E1p + E2p) + µ

]
χ†1σ · ξχ2

+
p

3

[
2p̃1p̃2
p

(
ρ1G

vρ1
2,1

2m2
+

Gvρ11,1

−ρ1(E1p + E2p) + µ

)
+

(p̃1 − p̃2)Gvρ16,1

2m2
+

ρ1(p̃1 + p̃2)Gvρ15,1

−ρ1(E1p + E2p) + µ

]
χ†1(3ξ · p̂σ · p̂− σ · ξ)χ2

}
= ψvρ1S,1 (p)χ†1σ · ξχ2 +

1√
2
ψvρ1D,1(p)χ†1 (3ξ · p̂σ · p̂− σ · ξ)χ2 , (A26)

Ψv−ρ2ρ2
1,λ1λ2

(p) =
1

2
N12p

{[
ρ2(3− p̃1p̃2)Gvρ23,2

6m1
−

(3 + p̃1p̃2)Gvρ21,2

−3ρ2(E1p + E2p)− 3µ

+
−(p̃1 − p̃2)Gvρ27,2

2m1
+

ρ2(p̃1 + p̃2)Gvρ25,2

−ρ2(E1p + E2p)− µ

]
χ†1σ · ξχ2

+
p

3

[
2p̃1p̃2
p

(
ρ2G

vρ2
3,2

2m1
+

Gvρ21,2

−ρ2(E1p + E2p)− µ

)
+
−(p̃1 − p̃2)Gvρ27,2

2m1
+

ρ2(p̃1 + p̃2)Gvρ25,2

−ρ2(E1p + E2p)− µ

]
χ†1(3ξ · p̂σ · p̂− σ · ξ)χ2

}
= ψvρ2S,2 (p)χ†1σ · ξχ2 +

1√
2
ψvρ2D,2(p)χ†1 (3ξ · p̂σ · p̂− σ · ξ)χ2 . (A27)

From these expressions we can read off the S and D waves ψvρiS,i (p) and ψvρiD,i(p), respectively. For the 1CSE we identify

ψ−1 (p) ≡ ψv−S,1(p), ψ−2 (p) ≡ ψv−D,1(p), K−1 (p̂) ≡ σ · ξ, and K−2 (p̂) ≡ 1√
2

(3ξ · p̂σ · p̂− σ · ξ).

The 1CSE wave-function components are normalized as

∫ ∞
0

dp p2
[(
ψv−S,1(p)

)2
+
(
ψv+Ps,1

(p)
)2

+
(
ψv+Pt,1

(p)
)2

+
(
ψv−D,1(p)

)2]
= 1 . (A28)
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d. Axial-vector mesons

The treatment of the axial-vector mesons is very similar to the previous one of vector mesons. For ρ1 = ρ2, and
quark 1 or quark 2 on mass shell the CST wave functions read

Ψaρ1ρ1
1,λ1λ2

(p) =
1

2
N12p

{[
−
ρ1(3 + p̃1p̃2)Gaρ12,1

6m2
−
−(3− p̃1p̃2)Gaρ11,1

3ρ1(E1p − E2p)− 3µ

−
−(p̃1 + p̃2)Gaρ16,1

2m2
+
−ρ1(p̃1 − p̃2)Gaρ15,1

ρ1(E1p − E2p)− µ

]
χ†1σ · ξχ2

+
p

3

[
−2p̃1p̃2

p

(
−
ρ1G

aρ1
2,1

2m2
+

−Gaρ11,1

ρ1(E1p − E2p)− µ

)
−
−(p̃1 + p̃2)Gaρ16,1

2m2
+
−ρ1(p̃1 − p̃2)Gaρ15,1

ρ1(E1p − E2p)− µ

]
χ†1(3ξ · p̂σ · p̂− σ · ξ)χ2

}
= ψaρ1S,1 (p)χ†1σ · ξχ2 +

1√
2
ψaρ1D,1(p)χ†1 (3ξ · p̂σ · p̂− σ · ξ)χ2 , (A29)

Ψaρ2ρ2
2,λ1λ2

(p) =
1

2
N12p

{[
−
ρ2(3 + p̃1p̃2)Gaρ23,2

6m1
−

(3− p̃1p̃2)Gaρ21,2

3ρ2(E1p − E2p)− 3µ

−
(p̃1 + p̃2)Gaρ27,2

2m1
+

ρ2(p̃1 − p̃2)Gaρ25,2

ρ2(E1p − E2p)− µ

]
χ†1σ · ξχ2

+
p

3

[
−2p̃1p̃2

p

(
−
ρ2G

aρ2
3,2

2m1
+

Gaρ21,2

ρ2(E1p − E2p)− µ

)
−

(p̃1 + p̃2)Gaρ27,2

2m1
+

ρ2(p̃1 − p̃2)Gaρ25,2

ρ2(E1p − E2p)− µ

]
χ†1(3ξ · p̂σ · p̂− σ · ξ)χ2

}
= ψaρ2S,2 (p)χ†1σ · ξχ2 +

1√
2
ψaρ2D,2(p)χ†1 (3ξ · p̂σ · p̂− σ · ξ)χ2 . (A30)

For the 1CSE we identify ψ+
1 (p) ≡ ψa+S,1(p) and ψ+

2 (p) ≡ ψa+D,1(p), and K+
1 (p̂) ≡ σ · ξ and K+

2 (p̂) ≡
1√
2

(3ξ · p̂σ · p̂− σ · ξ).

For ρ1 = −ρ2, and quark 1 or quark 2 on mass shell they read

Ψaρ1−ρ1
1,λ1λ2

(p) =
1

2
N12p

{
−
[
p

(
−

(1− p̃1p̃2)Gaρ16,1

2m2
+

ρ1(1 + p̃1p̃2)Gaρ15,1

−ρ1(E1p + E2p) + µ

)
− ρ1(p̃1 + p̃2)

Gaρ12,1

2m2
+

(p̃1 − p̃2)Gaρ11,1

−ρ1(E1p + E2p) + µ

]
ξ · p̂χ†11χ2

+

[
ρ1(p̃2 − p̃1)

Gaρ12,1

2m2
+

(p̃1 + p̃2)Gaρ11,1

−ρ1(E1p + E2p) + µ

]
χ†1 (σ · ξσ · p̂− ξ · p̂)χ2

}
=
√

3ψaρ1Ps,1
(p)ξ · p̂χ†11χ2 +

√
3

2
ψaρ1Pt,1

(p)χ†1 (σ · ξσ · p̂− ξ · p̂)χ2 , (A31)

Ψa−ρ2ρ2
2,λ1λ2

(p) = −1

2
N12p

{
−
[
p

(
−

(1− p̃1p̃2)Gaρ27,2

2m1
+

ρ2(1 + p̃1p̃2)Gaρ25,2

−ρ2(E1p + E2p)− µ

)
+ρ2(p̃1 + p̃2)

Gaρ23,2

2m1
+

(p̃1 − p̃2)Gaρ21,2

−ρ2(E1p + E2p)− µ

]
ξ · p̂χ†11χ2

+

[
−ρ2(p̃2 − p̃1)

Gaρ23,2

2m1
+

(p̃1 + p̃2)Gaρ21,2

−ρ2(E1p + E2p)− µ

]
χ†1 (σ · ξσ · p̂− ξ · p̂)χ2

}
=
√

3ψaρ2Ps,2
(p)ξ · p̂χ†11χ2 +

√
3

2
ψaρ2Pt,2

(p)χ†1 (σ · ξσ · p̂− ξ · p̂)χ2 . (A32)

For the 1CSE we identify ψ−1 (p) ≡ ψa−Ps,1
(p) and ψ−2 (p) ≡ ψa−Pt,1

(p), and K−1 (p̂) ≡
√

3ξ · p̂ and K−2 (p̂) ≡√
3
2 (σ · ξσ · p̂− ξ · p̂).
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The 1CSE wave-function components are normalized as∫ ∞
0

dp p2
[(
ψa+S,1(p)

)2
+
(
ψa−Ps,1

(p)
)2

+
(
ψa−Pt,1

(p)
)2

+
(
ψa+D,1(p)

)2]
= 1 . (A33)

Appendix B: Vertex spinor matrix elements MK,ρρ′

i

Here we give the explicit expressions of the MK,ρρ′

i
functions as defined in Eqs. (19) and (29), for each
Lorentz structure K of the interaction kernel: K = s
(scalar), p (pseudoscalar), and v (vector).

Θs
i = 1 :

MS,++
i (p,k) = 1− p̃ik̃iσ · p̂σ · k̂ (B1)

MS,+−
i (p,k) = −k̃iσ · k̂− p̃iσ · p̂ (B2)

MS,−+
i (p,k) = −p̃iσ · p̂− k̃iσ · k̂ (B3)

MS,−−
i (p,k) = p̃ik̃iσ · p̂σ · k̂− 1 , (B4)

Θp
i = γ5 :

MP,++
i (p,k) = −1− p̃i k̃i σ · p̂σ · k̂ (B5)

MP,+−
i (p,k) = k̃i σ · k̂− p̃i σ · p̂ (B6)

MP,−+
i (p,k) = −k̃i σ · k̂ + p̃i σ · p̂ (B7)

MP,−−
i (p,k) = −1− p̃i k̃i σ · p̂ σ · k̂ , (B8)

Θv0
i = γ0 :

MV 0,++
i (p,k) = 1 + p̃i k̃i σ · p̂σ · k̂ (B9)

MV 0,+−
i (p,k) = −k̃i σ · k̂ + p̃i σ · p̂ (B10)

MV 0,−+
i (p,k) = k̃i σ · k̂− p̃i σ · p̂ (B11)

MV 0,−−
i (p,k) = 1 + p̃i k̃i σ · p̂ σ · k̂ , (B12)

Θvj
i = γj (j = 1, 2, 3) :

MV j,++
i (p,k) = −p̃i σ · p̂σj − k̃i σj σ · k̂ (B13)

MV j,+−
i (p,k) = −σj + p̃ik̃i σ · p̂σj σ · k̂ (B14)

MV j,−+
i (p,k) = −σj + p̃ik̃i σ · p̂σj σ · k̂ (B15)

MV j,−−
i (p,k) = p̃iσ · p̂σj + k̃iσjσ · k̂ . (B16)
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