
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Jet substructure studies with CMS open data
Aashish Tripathee, Wei Xue, Andrew Larkoski, Simone Marzani, and Jesse Thaler

Phys. Rev. D 96, 074003 — Published  3 October 2017
DOI: 10.1103/PhysRevD.96.074003

http://dx.doi.org/10.1103/PhysRevD.96.074003


MIT-CTP 4890

Jet Substructure Studies with CMS Open Data

Aashish Tripathee,1, ∗ Wei Xue,1, † Andrew Larkoski,2, ‡ Simone Marzani,3, § and Jesse Thaler1, ¶

1Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2Physics Department, Reed College, Portland, OR 97202, USA

3University at Buffalo, The State University of New York, Buffalo, NY 14260-1500, USA

We use public data from the CMS experiment to study the 2-prong substructure of jets. The
CMS Open Data is based on 31.8 pb−1 of 7 TeV proton-proton collisions recorded at the Large
Hadron Collider in 2010, yielding a sample of 768,687 events containing a high-quality central jet
with transverse momentum larger than 85 GeV. Using CMS’s particle flow reconstruction algorithm
to obtain jet constituents, we extract the 2-prong substructure of the leading jet using soft drop
declustering. We find good agreement between results obtained from the CMS Open Data and
those obtained from parton shower generators, and we also compare to analytic jet substructure
calculations performed to modified leading-logarithmic accuracy. Although the 2010 CMS Open
Data does not include simulated data to help estimate systematic uncertainties, we use track-only
observables to validate these substructure studies.
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I. INTRODUCTION

In November 2014, the CMS experiment at the Large
Hadron Collider (LHC) announced the CMS Open Data
project [1]. To our knowledge, this is the first time in
the history of particle physics that research-grade col-
lision data has been made publicly available for use
outside of an official experimental collaboration. The
CMS Open Data was reconstructed from 7 TeV proton-
proton collisions in 2010, corresponding to a unique low-
luminosity running environment where pileup contamina-
tion was minimal and trigger thresholds were relatively
low. The CMS Open Data presents an enormous op-
portunity to the particle physics community, both for
performing physics studies that would be more difficult
at higher luminosities as well as for demonstrating the
scientific value of open data releases.

In this paper, we use the CMS Open Data to ana-
lyze the substructure of jets. Jets are collimated sprays
of particles that are copiously produced in LHC colli-
sions, and by studying the substructure of jets, one can
gain valuable information about their parentage [2–10].
A key application of jet substructure is tagging boosted
heavy objects like top quarks [11–31] and electroweak
bosons [3, 4, 6, 14, 22, 30–59]. To successfully tag such
objects, though, one first has to understand the radia-
tion patterns of ordinary quark and gluon jets [26, 60–
75], which are the main backgrounds to boosted objects.
The CMS Open Data is a fantastic resource for perform-
ing these baseline quark/gluon studies. Using the Jet
Primary Dataset [76], we perform initial investigations
of the 2-prong substructure of jets as well as present a
general analysis framework to facilitate future studies.
This effort is complementary to the growing catalog of
jet substructure measurements performed within the AT-
LAS and CMS collaborations [77–199].1

1 To highlight the vibrancy of the field, we have attempted to list
all published jet substructure measurements from ATLAS and
CMS. Please contact us if we missed a reference.
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The core of our analysis is based on soft drop declus-
tering [46], which is a jet grooming technique [6, 200–
202] that mitigates jet contamination from initial state
radiation (ISR), underlying event (UE), and pileup. For
the studies in this paper, we set the soft drop parame-
ter β equal to zero, such that soft drop behaves like the
modified mass drop tagger (mMDT) [203, 204].2 After
soft drop, a jet is composed of two well-defined subjets,
which can then be used to derive various 2-prong sub-
structure observables. In addition to comparing the CMS
Open Data to parton shower generators, we perform first-
principles calculations of soft-dropped observables using
recently-developed analytic techniques [46, 205, 206]. In
a companion paper, we use soft drop to expose the QCD
splitting function using the CMS Open Data [207]; a sim-
ilar strategy was used in preliminary CMS [167], STAR
[208], and ALICE [209] heavy ion studies to test for possi-
ble modifications to the splitting function from the dense
QCD medium [210, 211].

For studying jet substructure, the key feature of the
CMS Open Data is that it contains full information about
particle flow candidates (PFCs). The particle flow al-
gorithm [212, 213] synthesizes information from multi-
ple detector elements to create a unique particle-like in-
terpretation of each collision event. Within CMS, these
PFCs are used directly in jet reconstruction [214]. Here,
we can exploit the PFC information to perform detailed
jet substructure studies, using standard particle-based jet
analysis tools.

The main limitation of the 2010 CMS Open Data re-
lease is that it only provides minimal calibration informa-
tion, and therefore we cannot properly estimate system-
atic uncertainties from detector effects. Ideally, we would
like a detector simulation or a smearing parametriza-
tion to account for finite resolution and granularity. Ab-
sent that, we cannot make a direct comparison of CMS
Open Data to properly folded particle-level distributions.
With that caveat in mind, our plots will overlay detector-
level CMS Open Data (without further calibration) and
particle-level theory distributions (without detector sim-
ulation). The overall agreement turns out to be rather
good, highlighting the excellent performance of the CMS
detector and CMS’s particle flow reconstruction. One
must always keep in mind, though, that our plots can-
not be interpreted like standard LHC experimental plots,
both because of the absence of detector (un)folding and
the absence of systematic uncertainties in the error bars.

To gain confidence in the robustness of our substruc-
ture analysis, we perform cross checks using track-based
variants. Distributions using only charged particles are
expected to exhibit better resolution than those using all
particles, and we indeed find better qualitative agreement
with parton showers using these track-based observables.
We also attempted to estimate detector effects using the

2 The original mass drop tagger [6] was a pioneering technique in
jet substructure; see also precursor work in Refs. [2–5].

Delphes fast simulation tool [215], but we found that the
default CMS-like detector settings led to over-smearing of
the distributions, so no Delphes results will be shown in
this paper. For the future, we plan to repeat these studies
using the 2011 CMS Open Data [216], which does come
accompanied by detector-simulated Monte Carlo files.

The remainder of this paper is organized as follows.
In Sec. II, we give an overview of the CMS Open Data
and corresponding analysis tools. In Sec. III, we present
basic kinematic and substructure properties of the hard-
est jet in the event, comparing the CMS Open Data to
parton shower generators. In Sec. IV, we review the soft
drop algorithm and compare analytic calculations of 2-
prong substructure to open data and parton shower dis-
tributions. Based on our experience with the CMS Open
Data, we provide recommendations to CMS and to the
broader particle physics community in Sec. V. We con-
clude in Sec. VI, leaving additional details and plots to
the appendices.

II. THE CMS OPEN DATA

The CMS Open Data is available from the CERN Open
Data Portal [1], with the initial release corresponding to
Run 2010B of the LHC. The primary datasets are in the
form of Analysis Object Data (AOD) files, which is a file
format used internally within CMS based on the ROOT
framework [217]. To process the CMS data, one first
has to install a virtual machine (VM) with CernVM
running Scientific Linux CERN 5. Within the VM,
one can then run the official CMS software framework
(CMSSW), which provides access to the complete analy-
sis tools needed to parse the AOD files.

Our jet substructure study is based on the Jet Primary
Dataset [76], which is a subset of the full open data re-
lease with events that pass a predefined set of single-jet
and multi-jet triggers. There are 1664 AOD files in the
Jet Primary Dataset, corresponding to 20,022,826 events
and 2.0 Terabytes of disk space. Within CMSSW, it is
possible to access the AOD files remotely through the
XRootD interface [218]. We found it more convenient
to first download the AOD files and then process them lo-
cally, being careful to maintain the same directory struc-
ture as on the Open Data servers in order to ensure con-
sistency of the workflow. We then converted AOD files
into a text-based MIT Open Data (MOD) format to fa-
cilitate the use of external analysis tools.

A. The CMS Software Framework

CMSSW is a hybrid Python/C++ analysis frame-
work where event processing takes place through user-
defined modules. The version provided with the CMS
Open Data is 4.2.8, which was also used internally by
CMS in 2010 (as of this writing, the current CMSSW ver-
sion is 9.0.0). In principle, we could have used CMSSW
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directly to perform our jet substructure studies, but we
found it more convenient to simply use CMSSW for data
extraction and then use external tools for analysis, de-
scribed in Sec. II D.

Within CMS, there are multiple tiers of data, but only
AOD files are provided by the CMS Open Data. Start-
ing from RAW detector-level data, CMS derives RECO
(reconstructed) data which includes both low-level ob-
jects (like reconstructed tracks) and high-level objects
(like clustered jets). For most CMS analyses, only a sub-
set of the RECO data is required, and this is the basis
for the AOD files. For our open data analysis, the AOD
files contain far more information than needed, so we use
CMSSW to isolate only the required physics objects and
event information.

To use CMSSW for data extraction, we rely on a chain
of user-defined modules. We use a Source module to
read in events from the AOD files and an EDProducer
called MODProducer to convert the AOD format into
our own text-based MOD format (see Sec. II C).3 The
MODProducer software is available through a GitHub
repository [219].

In order to maintain reasonable file sizes and enable
easier data validation, we wanted MODProducer to gen-
erate a separate MOD file for each of the 1664 AOD
files, rather than one monolithic MOD file. While
we could have run MODProducer separately for each
AOD file, it turns out that MODProducer has to load
FrontierConditions GlobalTag cff and the appropri-
ate global tag (GR R 42 V25::All) in order to properly
extract trigger information from the AOD file. Loading
this information takes around 10 minutes at the begin-
ning of a CMSSW run, so to save computing time, we
wanted to process multiple AOD files in series in the same
run. To the best of our knowledge, though, CMSSW does
not allow an EDProducer to know which AOD file is be-
ing processed. To circumvent this limitation, we created
a lightweight FilenameMapProducer that only runs on
one file at a time and creates a map relating event and
run numbers to the corresponding AOD filename. This
filename map is then read in by MODProducer, along with
a list provided by CMS of validated runs suitable for
physics analyses.

From the AOD files, MODProducer extracts PFCs, jets
clustered from these PFCs, associated jet calibration in-
formation, trigger information, luminosity information,
and basic event identification information like event and
run numbers. The PFCs provide a unique reference
event interpretation in terms of reconstructed photons,

3 Here, ED refers to “event data”. Strictly speaking, since we
are not modifying the AOD files directly, we could have used
an EDAnalyzer instead of an EDProducer. We decided to use
EDProducer because the name aligns better with what the mod-
ule is actually doing, namely “creating data”, albeit in the MOD
format. Also, CMS recommends using an OutputModule when
writing to an external file, but we instead used the standard
C++ libraries for output.

Trigger Present? Fired?

Single-jet HLT Jet15U 16,341,190 1,342,155

* HLT Jet15U HNF 16,341,190 1,341,930

* HLT Jet30U 16,341,190 604,287

* HLT Jet50U 16,341,190 870,649

* HLT Jet70U 16,341,190 5,257,339

* HLT Jet100U 16,341,190 3,689,951

* HLT Jet140U 5,989,945 1,898,874

HLT Jet180U 2,595,038 553,331

Di-jet HLT DiJetAve15U 16,341,191 1,067,561

HLT DiJetAve30U 16,341,191 648,000

HLT DiJetAve50U 16,341,191 859,292

HLT DiJetAve70U 16,341,191 2,310,033

HLT DiJetAve100U 5,989,945 1,252,661

HLT DiJetAve140U 2,595,038 452,222

Quad-jet HLT QuadJet20U 10,351,245 677,451

HLT QuadJet25U 10,351,244 219,256

HT HLT HT100U 10,351,245 7,369,985

HLT HT120U 10,351,245 4,090,218

HLT HT140U 10,351,245 2,430,208

HLT EcalOnly SumEt160 10,351,246 208,718

TABLE I. Jet triggers provided in the Jet Primary Dataset
[76], including the number of events for which the trigger was
present and/or fired. Entries marked by * are used in this
analysis (see Table II). HNF stands for HcalNoiseFiltered.
We do not separate out the different versions of the same
trigger in our analysis.

electrons, muons, charged hadrons, and neutral hadrons
[212, 213]. Each PFC has a particle identification flag
and a full Lorentz four-vector, with non-zero invariant
mass when available. We use AK5 jets provided by CMS
[214], corresponding to the anti-kt jet clustering algo-
rithm [220] with R = 0.5 and a minimum jet threshold
of pT > 3.0 GeV, and we later validate the anti-kt clus-
tering by running FastJet 3.1.3 [221] ourselves on the
PFCs. The jet calibration information includes both jet
quality criteria as well as jet energy corrections (JEC)
factors, discussed further in App. A. We discuss trigger
and luminosity information in more detail next.

B. The Jet Primary Dataset

The CMS Open Data is grouped into primary datasets,
corresponding to the types of triggers that were used for
event selection. Our analysis is based exclusively on the
Jet Primary Dataset [76].4 As listed in Table I, this

4 In order to study lower pT jets, we would have to incorporate the
MinimumBias Primary Dataset [222]. Because primary datasets
are overlapping, one has to be careful not to double count events
when using multiple primary datasets.
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FIG. 1. (a) Hardest jet pT spectrum in the CMS Open Data from the six triggers used in this analysis (see Table I). (b) Ratios
of the jet pT spectra from adjacent triggers used to determine when the triggers are nearly 100% efficient, which determine
the jet trigger boundaries in Table II. Because the Jet 140U trigger was not present for the entirety of the run, it artificially
appears systematically low in these plots.

Hardest Jet pT Trigger Name Events 〈Prescale〉
[85, 115] GeV HLT Jet30U 33,375 851.514

[115, 150] GeV HLT Jet50U 66,412 100.320

[150, 200] GeV HLT Jet70U 365,821 5.362

[200, 250] GeV HLT Jet100U 216,131 1.934

> 250 GeV
HLT Jet100U 34,736 1.000

HLT Jet140U 177,891 1.000

TABLE II. Assigned triggers for the hardest jet in a given pT
range, along with the average prescale value that determines
subsequent histogram weights. Since the Jet140U trigger was
not present for all of Run 2010B, we use Jet100U when needed
for the highest pT bin.

dataset has single-jet, di-jet, quad-jet, and HT triggers,
though we only use single-jet triggers for our study. Each
trigger has an associated prescale factor, which is the
ratio of how often the triggering criteria are met com-
pared to how many events the trigger actually records.
A prescale factor of 1 indicates that all triggered events
are kept, whereas larger prescale factors are assigned to
frequently-encountered event categories that would oth-
erwise overwhelm data acquisition. The prescale factor
used in the analysis is the product of the prescale factors
from the underlying Level 1 Trigger (based on low-level
objects) and the final High Level Trigger (HLT). There
are various versions of the triggers, indicated by suffixes
like v2 and v3, but we do not distinguish between the
versions in our analysis.

The CMS single-jet triggers are designed to fire when-
ever any jet in the event is above a given pT threshold.

Events Fraction

Jet Primary Dataset 20,022,826 1.000

Validated Run 16,341,187 0.816

Assigned Trigger Fired (Table II) 894,366 0.045

Loose Jet Quality (Table V) 843,129 0.042

AK5 Match 843,128 0.042

|η| < 2.4 768,687 0.038

Passes Soft Drop (zg > zcut) 760,055 0.038

TABLE III. Overall workflow to go from the events in the Jet
Primary Dataset to the events used in our jet substructure
analysis. The three steps above the first horizontal line indi-
cates the steps including as part of event skimming. The next
three steps are used for the Hardest Jet Selection. The fi-
nal line is for events that pass the soft drop requirement in
Sec. IV.

Since our substructure study is based only on the hard-
est jet in an event, we have to make sure that the correct
“assigned” trigger fired for the hardest AK5 jet in an
event. We also have to check that this trigger is nearly
100% efficient for jets of the given pT .

In Fig. 1a, we show the pT spectrum of the hardest
jet for the six triggers used in our analysis. All jets have
passed a “loose” jet quality cut with appropriate JEC
factors applied; see Table V and Fig. 15a in App. A. We
further impose a pseudorapidity cut of |η| < 2.4 to ensure
that jets are reconstructed in the central part of the CMS
detector where tracking information is available. With
prescale factors included, we see good overlap of the pT
spectra as desired, except for the Jet140U trigger which
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FIG. 2. Integrated luminosity collected by the CMS experiment during Run 2010B, plotted (a) per day and (b) cumulative.
Because the luminosity information provided in the AOD files does not match the official recorded integrated luminosity of
31.8 pb−1, we suppress the vertical normalization in these plots. The qualitative features shown here do agree with the official
Run 2010B luminosity profile.

is systematically low. The reason is that the Jet140U
trigger was not present for the entirety of Run 2010B, so
we revert to the Jet100U trigger when needed.

Using HLT Jet15U HcalNoiseFiltered as the base-
line, the trigger efficiencies of the five remaining triggers
are shown in Fig. 1b. For our analysis, we want to work
with single triggers that are nearly 100% efficient when
the hardest jet is in a given pT range. Crosschecking
Fig. 1b with Ref. [223], we define the trigger boundaries
in Table II, where the pT > 250 GeV bin uses either
Jet100U or Jet140U depending on whether the latter is
present. We see that lower pT triggers have higher av-
erage prescale values as expected. Because each trigger
selects a homogenous event sample, we can use the av-
erage prescale value for the assigned trigger when filling
histograms, which is statistically preferable to using the
individual event prescale values. For completeness, in
Fig. 14 in App. A, we show the distribution of prescale
values encountered for each trigger within their assigned
pT range.

Our event selection workflow is summarized in Ta-
ble III. Starting from the 20 million events in the Jet
Primary Dataset, we reduce the dataset to about 82% by
only including events that are in the official list of vali-
dated runs. Restricting to events that pass their assigned
trigger in Table II drops the event sample to around 900
thousand events, and this is used to define a skimmed
dataset. Requiring the loose jet quality criteria removes
a small number of events, as does verifying that the AK5
jet provided by CMS matches those clustered by Fast-
Jet on the PFCs directly (see Secs. II C and II D). If the
hardest jet passes |η| < 2.4, then it is used for substruc-
ture analyses (see Sec. II D). For later reference, Table III

shows the number of events where the hardest jet has
valid 2-prong substructure as determined by soft drop
declustering (see Sec. IV).

In the plots below, we always present normalized his-
tograms in order to suppress fixed-order QCD corrections
to the overall jet production rate. While knowledge of the
total luminosity is therefore not needed for our study, it is
still instructive to try to extract luminosity information
from the CMS Open Data. The AOD files provide the
integrated luminosities achieved during each luminosity
block, such that the sum over blocks should give the to-
tal luminosity. Unfortunately, the AOD-extracted value
of 309.5 pb−1 does not match the official recorded lumi-
nosity value of 31.79 pb−1 during Run 2010B [224, 225].5

This turns out to be a known limitation of the provided
AOD files, though the AOD-extracted values do have the
expected qualitative structures. Removing the overall
vertical normalization to avoid confusion, the delivered
and recorded integrated luminosities are shown in Fig. 2a
and the cumulative distributions in Fig. 2b. As expected,
we see that Run 2010B occurred from September 22 to
October 29 in 2010, with a substantial ramp up of col-
lected data over that two month period.

C. The MIT Open Data Format

The output of MODProducer is a text-based MOD file,
which contains a subset of the AOD data, similar in

5 It is suspicious that the difference is very close to a factor of 10,
but as far as we can tell, this is a coincidence.
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spirit to the Mini-AOD format being developed internally
within CMS [226]. The MOD format is intended to be
lightweight, easy to parse, and human readable, so it uses
space-separated entries with keyword labels. While there
are other text-based file formats used within high energy
physics, such as HepMC [227] and LHEF [228, 229],
they are primarily intended for use with Monte Carlo
generators and therefore do not have a standard way to
incorporate CMS-specific information like triggers and
JEC factors. Instead of trying to augment these existing
file formats and risk breaking backward compatibility, we
decided to develop our own MOD format. Ultimately,
one could envision a standard file format for open col-
lider data, since the MOD file already contains much of
the information common to all collider analyses. In our
analysis, we use the MOD format not only for experimen-
tal data but also for data generated from parton showers
(see Sec. II E). As a cross check of the results in this pa-
per, we also performed an independent analysis using an
internal ROOT-based framework.

A typical MOD event consists of the following six key-
words:

• BeginEvent: A header that indicates the source
of the event: CMS Open Data or parton shower
generator.6 It also includes the version number of
the MOD format (currently version 5).

• Cond: Basic information about the run and event
conditions, including run and event numbers, a
timestamp, the number of reconstructed primary
vertices, and information about the luminosity
block.

• Trig: List of all triggers used in the Jet Primary
Dataset, their associated prescale factors, and flags
indicating whether a given trigger fired for that
event.

• AK5: List of anti-kt R = 0.5 jets provided by CMS.
In addition to the jet four-momentum, CMS pro-
vides a JEC factor, a jet area value [230], and in-
formation about jet quality.

• PFC: List of PFCs, with their four-momenta and
particle identification codes.

• EndEvent: A footer indicating the end of an event.

An example MOD event is included in the arXiv source
files of this paper. For MOD files coming from parton
shower generators, we replace Cond and Trig with event
weight information and rename PFC to Part to indicate

6 We also generated samples using fast detector simulation. As
already mentioned, because of apparent oversmearing by the de-
fault CMS-like Delphes configuration [215], we do not show any
fast simulation results in this paper.

Code Candidate Total Count pT > 1 GeV

11 electron (e−) 32,917 32,900

−11 positron (e+) 32,984 32,968

13 muon (µ−) 12,941 12,653

−13 antimuon (µ+) 13,437 13,110

211 positive hadron (π+) 6,908,914 5,183,048

−211 negative hadron (π−) 6,729,328 5,027,146

22 photon (γ) 9,436,530 4,805,173

130 neutral hadron (K0
L) 2,214,385 1,658,892

TABLE IV. Valid particle identification codes for PFCs, with
their most likely hadron interpretation. The total counts are
taken from the sample of hard central jet with pT > 85 GeV
and |η| < 2.4. In the forward region with |η| > 2.4, one also
finds code 1 (for forward hadron candidate) and code 2 (for
forward electron/photon candidate). The last column lists
the counts after the pmin

T = 1.0 GeV cut derived in Fig. 3.

truth-level particles. The MOD format can be easily ex-
tended to accommodate additional information in the fu-
ture.

The list of valid particle identification codes for the
PFCs is given in Table IV, along with their prevalence in
the hardest jet sample (pT > 85 GeV, |η| < 2.4). These
codes, determined by the CMS particle flow algorithm,
are inspired by the Monte Carlo particle number scheme
in Ref. [231]. For example, all charged hadron candidates
are assigned a code of ±211 corresponding to charged pi-
ons, which are more prevalent than charged kaons. Neu-
tral pions, which decay as π0 → γγ, are typically recon-
structed as one or two photon candidates with code 22.
Neutral hadron candidates are assigned code 130 corre-
sponding to K-long. Electrons (±11) and muons (±13)
are relatively rare in our jet sample.

Although the AK5 jets are derived from clustering the
PFCs, we need to separately extract the AK5 jets pro-
vided by CMS in order to obtain JEC factors and impose
jet quality cuts. Throughout our analysis, we impose
the recommended “loose” jet quality cut; see Table V
in App. A. Due to numerical rounding issues when out-
putting the MOD text file, the AK5 jets from CMS and
ones we cluster ourselves from the PFCs can be subtly
different, though if we restrict our attention to the hard-
est jet, this is a rare effect that has almost no impact in
our analysis (see further discussion in Sec. II D).7

After running gzip for compression, the final MOD
files are roughly 10 times smaller than the corresponding

7 Alternatively, we could have decided to directly identify the PFC
constituents of the AK5 jet using CMSSW. This leads to a differ-
ent numerical rounding issue where the jet is not the four-vector
sum of its constituents. These issues could have be avoided by
not relying on text-based output, at the expense of requiring
ROOT dependencies in MODAnalyzer. Our internal ROOT-
based analysis framework encounters no numerical rounding is-
sues.
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AOD files (which are already in a compressed ROOT
format). Furthermore, if we restrict to a skimmed dataset
where the hardest jet has pT > 85 GeV and the assigned
trigger fired, we reduce the 198.8 gigabytes of compressed
MOD files down to 11.6 gigabytes. This is small enough
to easily fit on a flash drive.

D. Analysis Tools

With the MOD files in hand, we are no longer tied
to CMSSW. In order to leverage existing jet substruc-
ture tools, we built an external analysis framework
in C++ based on the FastJet package [221]. This
framework, called MODAnalyzer, is available from
a GitHub repository [232], which also includes the
Python histogramming and plotting tools used for this
paper. For the soft drop studies in Sec. IV, we use the
RecursiveTools 1.0.0 package from FastJet contrib
1.019 [233].

The structure of MODAnalyzer mirrors the struc-
ture of the MOD files. The core class is Event, which
is not only a container for all of the event information
but also handles parsing of the MOD files and select-
ing the assigned trigger for the hardest jet. The Cond
and Trig MOD entries are stored in Condition and
Trigger classes. The AK5 and PFC MOD entries are
stored as FastJet PseudoJet objects. To amend these
PseudoJets with additional MOD-specific information,
we define InfoCalibratedJet and InfoPFC classes that
inherit from FastJet’s UserInfoBase. Apart from the
Event class, the elements of MODAnalyzer are rela-
tively lightweight, since much of the required functional-
ity is already provided by FastJet.

The main complication in processing the MOD files
is handling the duplicate jet information. Within MOD-
Analyzer, we have two types of jets: AK5 jets clustered
by CMS and anti-kt R = 0.5 jets clustered internally
from the PFCs. Note that the AK5 jets are associated
with JEC factors and jet quality criteria, whereas the in-
ternally clustered jets are not, so we cannot discard the
AK5 jets completely. To define the hardest jet in the
event (i.e. the “trigger jet”), we use the AK5 jet sample
from CMS, rescaling the jet pT values by the appropriate
JEC factors and checking whether the assigned trigger
fired. At this point, we remove events where the trigger
jet fails the loose jet quality cut. We then find the in-
ternal PFC jet that is closest in rapidity-azimuth to the
trigger jet. If this internal jet has the same number of
constituents as the trigger jet and if the four-momenta
agree up to 1 MeV precision (after rescaling the internal
jet by the same JEC factor), then we declare a match
and perform all subsequent analyses on the internal jet.
In rare cases where there is no match, we discard the
event, though this only affects 1 event out of 843,129 in
our analysis (see Table III).

Within MODAnalyzer, we have a few ways to speed
up the workflow. A large fraction of MOD events are

unsuitable for analysis, mostly because the hardest jet
was below the 85 GeV minimum pT threshold set in Ta-
ble II. We can therefore perform event skimming, where
we read in each MOD file and generate a new MOD file
with only events where the assigned trigger fired.8 Sim-
ilarly, because our analysis is only based on the hard-
est jet in the event, we can output MOD files with a
Hardest Jet Selection header, where only the PFC
constituents of the hardest jet are stored, and the mini-
mally required Trig, Cond, and AK5 information is con-
solidated under the 1JET keyword.

After gzip compression, the Hardest Jet Selection
MOD files only takes 725 megabytes, which is small
enough that we plan to make the files publicly available
ourselves through DSpace@MIT.9 This reduced MOD
file can be used directly with MODAnalyzer, or one
could build an alternative MOD analysis framework.

E. Parton Shower Generators

For the initial 2010 CMS Open Data release, no sim-
ulated Monte Carlo datasets were provided. In order
to compare jet substructure results from open data with
theoretical predictions, we use three parton shower gen-
erators: Pythia 8.219 [235], Herwig 7.0.3 [236], and
Sherpa 2.2.1 [237]. For each generator, we use the de-
fault settings for dijet production, since this is the process
that dominates the single-jet triggers. To efficiently pop-
ulate the full phase space, we use a pT -weighted event
generation strategy, which is highly efficient for jet pro-
duction with pT > 85 GeV, allowing us to use a single
parton shower run to probe multiple pT ranges. Our anal-
yses are based on the raw output of the parton shower
generators, without any detector simulation.10

Each generator outputs to HepMC format [227],
which we then convert to the same MOD file format
used for the open data, suitably modified to elimi-
nate CMS-specific information like triggers, luminosity,
and JEC factors. After event skimming and applying
Hardest Jet Selection, the MOD files from the open
data and the parton shower generators look essentially
identical, such that the same workflow can be used for
all sources.

8 For the trigger and luminosity studies in Sec. II B, we of course
had to use the unskimmed MOD files.

9 The CMS Open Data is released under the Creative Commons
CC0 waiver [234]. If you use the Hardest Jet Selection MOD
files as part of an analysis, please cite the CMS Jet Primary
Dataset [76] as well as this paper.

10 As mentioned in the introduction, we attempted to use the fast
detector simulation tool Delphes 3.3.2 [215], but the default
CMS-like detector settings were intended to be used for jet stud-
ies, not jet substructure studies. In the future, since Delphes
does have a rudimentary version of particle flow reconstruction,
it should be possible to tune Delphes to match published CMS
jet substructure results.
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FIG. 3. Transverse momentum spectrum of raw PFCs, for (a) neutral candidates and (b) charged candidates. These histograms
are populated only with PFCs from the hardest jet in the stated jet pT range, comparing the CMS Open Data to parton shower
generators. The cuts used in our jet substructure studies are pmin

T = 1.0 GeV, applied to both neutral and charged PFCs. For
this and all remaining plots in this paper, one must keep in mind that the detector-level CMS Open Data and the particle-level
parton showers are not directly comparable. See Fig. 16 in the appendix for a version of this figure with an extended pT range.

Because the parton showers do not include detector
effects by default, we have to be careful in drawing con-
clusions about agreement or disagreement with the open
data. For example, depending on the kinematics, the
CMS particle flow reconstruction can sometimes recon-
struct π0 → γγ as a single “photon” instead of two pho-
tons, which can affect jet substructure observables like
constituent multiplicity.11

To partially account for the finite energy resolution
of the CMS detector, we impose a restriction of pmin

T =
1.0 GeV on each PFC (or truth-level particle in the case
of the parton showers). This cut is motivated by Fig. 3,
which suggests that PFCs below 1 GeV are subject to
inefficiencies and mismeasurements. Crucially, this pmin

T
restriction is only imposed for substructure observables;
the original jet kinematics are given by all PFCs with
the CMS-provided JEC factors. This universal pmin

T cut
is similar in spirit to the SoftKiller approach to pileup
mitigation [238].

Comparing Fig. 3a for neutral PFCs to Fig. 3b for
charged PFCs, we see comparatively smaller differences
between the CMS Open Data and the parton shower for
charged PFCs; this will also be reflected in the substruc-
ture studies below. For this reason, we always perform
cross checks with track-based variants to address the fi-
nite granularity of the CMS calorimeter. Since the parti-
cle flow algorithm uses information from both the tracker

11 One could partially mitigate this effect by forcing the π0 to be
stable within the generators, but this is not a replacement for a
real detector simulation.

and the calorimeter, the angular resolution of charged
particles is much better than for neutral particles. This
allows us to test whether there are large distortions to jet
substructure observables from finite calorimeter cell size,
especially for soft-dropped observables which probe the
collinear core of the jet.12 These track-based variants ex-
ploit the excellent track resolution of the CMS detector at
the expense of loosing neutral particle information, but
since almost all of our substructure observables we study
are dimensionless, the impact of switching to track-based
variants is mild (see also [239, 240]).

III. HARDEST JET PROPERTIES

We now present basic kinematic and substructure ob-
servables for the hardest pT jet in an event, comparing
CMS Open Data to parton shower generators. Unless
otherwise stated, the jet pT values always include the
appropriate JEC factors, and we restrict our attention
to jets with |η| < 2.4 and pT > 85 GeV. Following
the 2010 CMS default, the anti-kt jet radius is always
R = 0.5. In the text, we primarily show distribution
for pT > 150 GeV in order to avoid the large prescale
values associated with the HLT Jet15U/Jet30U triggers.

12 We also tried pre-clustering the jet into small subjets as a way to
mimic finite angular resolution, but this simply lead to increased
smearing without improved agreement between data and parton
showers.



9

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1
P

ro
ba

bi
lit

y
D

en
si

ty
[G

e
V
−

1
] CMS 2010 Open Data

Pythia 8.219
Herwig 7.0.3
Sherpa 2.2.1

AK5; |η| < 2.4

pjet
T > 85 GeV

0 200 400 600 800 1000 1200

pT [GeV]

0.5

1.0

1.5

2.0

R
at

io
to

P
yt

hi
a

(a)

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

P
ro

ba
bi

lit
y

D
en

si
ty

[G
e
V
−

1
] Jet Energy Corrected

Jet Energy Uncorrected

CMS 2010 Open Data

AK5; |η| < 2.4

pjet
T > 85 GeV

0 200 400 600 800 1000 1200

pT [GeV]

0.5

1.0

1.5

2.0

R
at

io
to

C
or

re
ct

ed

(b)

FIG. 4. (a) Hardest jet pT spectrum, comparing the CMS Open Data with Pythia 8.219, Herwig 7.0.3, and Sherpa 2.2.1.
The maximum jet pT in the Jet Primary Dataset is 1277 GeV. (b) Hardest jet pT before and after applying the appropriate
JEC factors. Because these are normalized histograms with the same pT > 85 GeV cut, the mismatch in JEC values is only
apparent at high pT .
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FIG. 5. (a) Azimuthal angle of the hardest jet, which is flat as desired. (b) Pseudorapidity spectrum for the hardest jet. Note
the population of anomalous jets at |η| > 2.4, coming from the edge of tracking acceptance, which is why we enforce |η| < 2.4
in our analysis.

In the arXiv source for this paper, each figure corre-
sponds to a multipage file that has distributions for the
full pT > 85 GeV range, as well as for each of the pT
ranges defined in Table II.

A. Jet Kinematics

The pT spectrum for the hardest jet is shown in Fig. 4a,
going down to the 85 GeV threshold set by the lowest
trigger in Table II. We see excellent agreement with par-
ton shower predictions. As shown in Fig. 4b, this good
agreement is only possible because proper JEC factors
were applied. Because we plot normalized histograms
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and because the pT spectrum is steeply falling, the im-
pact of the JEC factors is not so apparent at low pT , but
become increasingly visible going to higher pT .

Turning to angular information, we show the jet az-
imuthal spectrum in Fig. 5a, which is flat as expected.
For the jet pseudorapidity distribution in Fig. 5b, cen-
tral jets with |η| < 2.4 match parton shower expectations
within uncertainties. We see, however, a population of
jets at |η| > 2.4 above parton shower expectations. These
are most likely jet fakes that are able to erroneously pass
the jet quality criteria due to the lack of tracking infor-
mation at forward rapidities. For this reason, we restrict
our attention to jets with |η| < 2.4 in our substructure
studies.13

B. Basic Substructure Observables

The most basic jet substructure observable is the mul-
tiplicity of jet constituents, though this is very sensitive
to the details of CMS’s particle flow reconstruction. As
mentioned in Sec. II E, we impose a cut of pmin

T = 1.0 GeV
on each PFC to avoid counting very soft particles that
might not be efficiently reconstructed. That said, CMS
cannot resolve arbitrarily small angles and therefore par-
ticles can be merged by the particle flow algorithm, es-
pecially for π0 → γγ. For this reason, without a proper
detector model, one has to be careful drawing conclu-
sions from these substructure distributions. With that
caveat in mind, we proceed to overlay the detector-level
CMS Open Data with the particle-level parton shower
generators.

In Fig. 6a, we show the CMS Open Data constituent
multiplicity distribution, which matches rather well to
Herwig and Sherpa. Once one restricts to charged
particles in Fig. 6b, however, the open data distribu-
tion shifts to lie closer to the Pythia distribution. We
therefore conclude that finite resolution of the calorime-
ter is an important detector effect that impacts jet sub-
structure studies. Without a detector model, though, we
cannot meaningfully comment on the correspondence be-
tween the open data and the parton showers, especially
for distributions like multiplicity that are infrared and
collinear (IRC) unsafe. The large differences between

13 Even if the jet axis satisfies |η| < 2.4, the jet constituents can ex-
tend to higher η values where the tracking degrades quickly. We
explicitly checked that none of the jet substructure distributions
studied below are substantially modified by taking the more con-
servative restriction of |η| < 1.9 (i.e. 2.4 minus the R = 0.5 jet
radius). We further checked that there were no obvious patholo-
gies for jets with 1.9 < |η| < 2.4, even for observables like track
multiplicity. For substructure studies, this tracking issue is sub-
dominant to the choice of pmin

T in Fig. 3b, in part because the
jet cross section is falling with increasing |η|, so any tracking
pathologies affect only a small portion of phase space. The CMS
jet mass study in Ref. [87] considers |y| < 2.5 despite similar
potential tracking issues.

parton shower generators for charged particle multiplic-
ity has been previously noted in e.g. Ref. [241], indicating
that unfolded measurement of multiplicity should be used
in parton shower tuning.

We can see the same sensitivity to detector effects for
the observable pDT [86, 242], defined as

pDT =

√∑
i∈jet p

2
Ti∑

i∈jet pTi
. (1)

This observable is soft safe but collinear unsafe and used
in CMS’s quark/gluon discrimination studies [97]. Us-
ing a logarithmic scale to emphasize the shape, we see
in Fig. 6c that the CMS Open Data is at systemati-
cally at higher values of pDT compared to parton shower
predictions, again indicative of particle merging by the
particle flow algorithm. Testing the track-based variant
in Fig. 6d, we see much better agreement between the
open data and the parton shower generators, where the
differences between detector-level and particle-level are
comparable to the differences seen between generators.

For IRC-safe observables, we expect the impact of fi-
nite angular and energy resolution of the CMS detector
to be less pronounced. In Fig. 6e, the jet mass distri-
bution agrees rather well between CMS Open Data and
the parton showers, with differences again comparable to
the differences between generators. Here, we have not
applied the JEC factor to the mass distribution, since
these are obtained after the PFC cut of pmin

T = 1.0 GeV.
In Fig. 6f, we show the track-based variant (which is not
corrected for the charged energy fraction), which shows
similar agreement between the open data and the parton
showers. While the lack of a detector model means that
we cannot use the CMS Open Data to make quantitative
statements about the jet mass distribution, we can say
that the overall CMS detector performance is sufficient
to draw qualitative conclusions about jet substructure
distributions.

C. Jet Angularities

A powerful way to study the radiation pattern of quark
and gluon jets is to use jet angularities [14, 68, 243–245].
These are IRC-safe observables, defined as

e(α) =
∑
i∈jet

ziθ
α
i , (2)

where

zi =
pTi∑

j∈jet pTj
, θi =

Ri
R
, (3)

and Ri is the rapidity/azimuth distance to a recoil-free
axis. Because the jet axis itself is sensitive to recoil [26,
245–248], we use the winner-take-all axis [245, 249, 250]
defined from C/A clustering [251, 252].
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FIG. 6. Basic substructure observables for the hardest jet, using (left column) all PFCs and (right column) only charged PFCs,
in both cases imposing a PFC cut of pmin

T = 1.0 GeV. The observables are (top row) constituent multiplicity, (middle row) pDT
on a logarithmic scale and (bottom row) jet mass. We emphasize that in this and all subsequent figures, the distributions are
not directly comparable, since the CMS Open Data has not been unfolded to account for detector effects and the parton shower
generators have not been folded with detector effects. Similarly, only statistical uncertainties are shown for the open data.
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FIG. 7. Same as Fig. 6 but for the IRC-safe recoil-free jet angularities: (top row) LHA with α = 1/2, (middle row) jet width
with α = 1, and (bottom row) jet thrust with α = 2. Once again we compare (left column) all particle distributions to (right
column) track-only variants. Note the logarithmic scale of the distributions.
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By adjusting the value of α one can test radiation pat-
terns mainly in the core (α < 1) or periphery (α > 1) of
the jet. Three commonly used benchmarks are the Les
Houches Angularity (LHA, α = 1/2) [70, 75], jet width
(α = 1) [246, 253, 254], and jet thrust (α = 2) [255]. The
corresponding distributions are shown in Fig. 7, plotted
on a logarithmic scale to emphasize the behavior in the
soft and collinear limit (i.e. small values of the angular-
ities). Even though these are IRC-safe observables, we
continue to place a cut of pmin

T = 1.0 GeV on both the
detector-level and particle-level constituents.

At large values of the angularities, the agreement be-
tween the CMS Open Data and the parton showers is
rather good. At small values of the angularities where
energy and angular resolution plays an important role,
the CMS Open Data is shifted to systematically higher
values than the parton shower. Since the shift is less
pronounced for the track-based variants, we suspect that
the finite angular resolution of neutral PFCs is driving
the bulk of the disagreement. For this reason, in the soft
drop study presented next, we have to be mindful of the
challenge of resolving small angular scales using neutral
particles.

IV. TWO-PRONG JET SUBSTRUCTURE

We now test the 2-prong substructure of the hardest
jet using soft drop declustering [46]. This method has
been used in both ATLAS [116] and CMS [105, 136, 142,
148, 149, 154, 155, 160–169, 175–179] jet studies, includ-
ing a recent CMS heavy ion result [167]. There are also
proposals to use soft drop to study the deadcone effect
in top quarks [256] and gluon splitting to heavy flavor
[257]. Here, we exploit the fact that soft drop is amenable
to first-principle QCD calculations [46, 206, 258–260].
While there are a variety of different 2-prong observ-
ables one could test on the CMS Open Data (e.g. N -
subjettiness [22, 23], energy correlation functions [26, 49],
and Qjet volatility [45, 261]), soft drop has the advantage
that it removes soft contamination from a jet, making it
relatively robust to potential pileup and detector effects
associated with soft particles.

As in the basic substructure analysis in Secs. III B and
III C, we impose a restriction of pmin

T = 1.0 GeV on all
PFCs before passing them to the soft drop algorithm.
We again perform cross checks with track-based variants
which use only charged PFCs, which are expected to bet-
ter resolve the small angular scales probed by soft drop.

A. Soft Drop Declustering

The soft drop algorithm reclusters the constituents
of a jet using the Cambridge-Aachen (C/A) algorithm
[251, 252] to create an angular-ordered clustering tree. As
shown in Fig. 8, soft drop then declusters the jet starting
from the top of the tree, removing the softer pT branch

zg

1�zg

✓g

FIG. 8. Schematic of the soft drop algorithm, which recur-
sively removes branches from the C/A clustering tree if the
momentum fraction z fails to satisfy z > zcutθ

β . The g sub-
script indicates the final groomed kinematics.

until a 1→ 2 branching is found that satisfies

z > zcutθ
β . (4)

Here, zcut is an energy fraction cut, β is an adjustable
angular exponent, and the 1→ 2 kinematics are defined
by

z =
min[pT1, pT2]

pT1 + pT2
, θ ≡ R12

R
. (5)

For the branching that passes the soft drop condition, we
denote the resulting kinematic observables by zg and θg,
which characterize the hard 2-prong substructure of the
jet. The g subscript is a reminder that these are groomed
observables, subject to the soft drop condition.

In effect, soft drop simultaneously performs three
tasks. First, it removes wide-angle soft contamination
from jets, which helps mitigate the effect of jet contam-
ination from ISR, UE, and pileup. Second, it dynami-
cally changes the effective jet radius to match the size of
the hard jet core. Third, it provides the 2-prong kine-
matic observables zg and θg, which can be used to per-
form foundational tests of QCD [167, 206–209, 257] as
well discriminate boosted W , Z, and Higgs bosons from
ordinary quark/gluon jets [6, 113]. In general, groomers
like soft drop have an interesting interplay with discrim-
ination variables [31, 59, 262].

In our study, we focus on the soft drop parameters

zcut = 0.1, β = 0. (6)

For this choice of β, the soft drop condition reduces to
z > zcut and becomes independent of angular informa-
tion. This then matches the behavior of the mMDT with
µ = 1 [203, 204]. Without any explicit cut on θg, this en-
ables us to probe rather small angular scales within the
jet, though we need to be cognizant of the finite angular
resolution of the CMS detector. We show distributions
for five observables derived from soft drop:

zg, θg, e(1/2)g , e(1)g , e(2)g , (7)

where

e(α)g = zgθ
α
g (8)
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is a single-emission groomed variant of the angularities
introduced in Eq. (2).

B. MLL Analytic Predictions

In addition to parton shower predictions, we compare
the CMS Open Data to first-principles QCD theory dis-
tributions made using the techniques of Refs. [46, 205,
206], working to modified leading-logarithmic (MLL) ac-
curacy.

For the observable θg, it is convenient to express the
probability distribution as

1

σ

dσ

dθg
≡ p(θg) =

d

dθg
Σ(θg), (9)

where the cumulative probability distribution Σ(θg) was
calculated to MLL accuracy in Ref. [46]. For β = 0, the
result for a parton of flavor i is

ΣMLL
i (θg;µθ)

= exp

[
−2Ci

π

∫ 1

θg

dθ

θ

∫ 1/2

zcut

dz ᾱs(z θ µθ)P i(z)

]
,

(10)

where Ci is the Casimir factor (CF = 4/3 for quarks and
CA = 3 for gluons). At lowest non-trivial order, the QCD
splitting functions are

Pq(z) =
1 + (1− z)2

2z
, (11)

Pg(z) =
1− z
z

+
z(1− z)

2
+
nfTR
2CA

[
z2 + (1− z)2

]
,

(12)

with nf = 5 and TR = 1/2; these appear in Eq. (10) in a
symmetrized form,

P i(z) = Pi(z) + Pi(1− z). (13)

The one-loop QCD running coupling is ᾱs, where the bar
indicates that we have frozen the running below the IR
scale µNP ∼ 1.0 GeV,

ᾱs(µ) = αs(µ)Θ (µ− µNP)+αs(µNP)Θ (µNP − µ) . (14)

The running coupling is evaluated at the canonical renor-
malization group scale

µθ = pTR, (15)

and we estimate uncertainties by varying both this scale
and µNP up and down by a factor of two.

To get a physical distribution for θg, we need to deter-
mine the relative fraction of quark and gluon jets with
our selection, such that the final cumulative distribution
is

ΣMLL = fqΣ
MLL
q + fgΣ

MLL
g . (16)

To determine the fractions fq and fg, we gener-
ate a leading-order sample of dijets using Mad-
Graph5 aMC@NLO v.2.4.0 [263] with parton distri-
bution functions (PDFs) given by NNPDF2.3 LO [264],
extracting the average flavor composition from both jets.
We set the renormalization and factorization scales to the
total transverse momentum of the dijet event,

µh = pT1 + pT2, (17)

and vary this up and down by a factor of 2 to estimate
uncertainties. Note that the renormalization scale does
not affect the relative quark and gluon composition since
it only rescales the total cross section by changing αs.
By contrast, the factorization scale does affect the flavor
composition through the PDFs.

Strictly speaking, the above method for determining
the quark/gluon fraction of the hardest jet is not IRC
safe, since the flavor composition of the hardest jet at
NLO is no longer the same as the average flavor com-
position at LO. In practice, though, the hardest jet at
NLO is more or less randomly determined from the two
degenerate jets at LO, so the strategy used in this paper
is sufficient for the current level of theoretical accuracy.
There are various ways we could improve this procedure
in a future analysis. Arguably the easiest method would
be to study the inclusive jet spectrum instead of focusing
on just the hardest jet in the event. While conceptually
straightforward, it is technically more involved, since for
dijet events close to a trigger boundary, the same event
can have different assigned triggers for the two different
jets. If we only wanted to study a single jet per event,
we could use a dijet trigger for event selection but then
only analyze the more central of the two jets, since that
is a well-defined selection at LO.

To predict the probability distributions for zg and

e
(α)
g , we use the strategy of Ref. [206]. Since zg = e

(0)
g

(i.e. α = 0), we can use the same method to calculate
the remaining four observables in Eq. (7). We express

the full probability distribution for e
(α)
g and θg,

p(e(α)g , θg) ≡
1

σ

d2σ

de
(α)
g dθg

, (18)

in terms of the probability for θg from Eq. (9) multiplied

by the conditional probability for e
(α)
g given θg,

p(e(α)g , θg) = p(θg) p(e
(α)
g |θg). (19)

To obtain the probability for e
(α)
g alone, we simply inte-

grate over all values of θg,

p(e(α)g ) =

∫
dθg p(θg) p(e

(α)
g |θg). (20)

To leading fixed order in the collinear limit, the condi-
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tional probability distribution is

pLO-c(e(α)g |θg;µz) =
ᾱs(e

(α)
g θ1−αg µz) θ

−α
g P i

(
e
(α)
g θ−αg

)
∫ 1/2

zcut
dz ᾱs(zθgµz)P i(z)

×Θ
(
θαg − 2e(α)g

)
Θ
(
e(α)g − zcutθαg

)
. (21)

We note the dependence on a (in principle different)
renormalization group scale,

µz = pTR, (22)

which can be varied up and down by a factor of two.
In summary, these theory distributions depend on four

different scales

µNP, µθ, µh, µz, (23)

which can be varied to estimate theoretical uncertain-
ties. As established, these variations do yield properly
normalized distributions. To estimate perturbative un-
certainties, we take the envelope of all scale variations,
noting that the envelope will not, in general, be normal-
ized.

There are two known effects which are not included in
our theoretical uncertainty estimates. The first is genuine
nonperturbative corrections. The above distributions are
calculated perturbatively, with only the frozen coupling
in Eq. (14) acknowledging the impact of nonperturbative
physics. When zg or θg are dominated by nonperturba-
tive dynamics, though, these perturbative distributions
can no longer be trusted. For double-differential distri-
butions, this occurs when

zgθg .
Λ

pTR
, (24)

where Λ ∼ O(GeV) and pT is the lowest value in the
plotted range. Projecting to the single observables, non-
perturbative dynamics becomes relevant when:

θg .
Λ

zcutpTR
, e(α)g . max{1, z1−αcut }

(
Λ

pTR

)α
. (25)

To indicate this in the plots below, we change the theory
curves to a dashed style when nonperturbative modes
dominate, using Λ = 2 GeV for concreteness. Note
that zg itself (α = 0) is a collinear unsafe observable,
so strictly speaking it is always sensitive to nonperturba-
tive dynamics. Because zg is a Sudakov safe [205, 206]
observable, though, the collinear singularity is regulated
by the Sudakov form factor for θg. Also note that the
theory calculations do not include the pmin

T = 1.0 GeV
cut, which can be considered as part of the nonperturba-
tive uncertainty.

The second missing effect is matching to fixed-order
matrix elements. This is expected to have a small im-
pact because the jet radius is reasonably small and we are

mostly focused on the e
(α)
g � 1 limit. Nevertheless, there

will be important fixed-order corrections to our theory

predictions above the characteristic scale of e
(α)
g ' zcut,

though we have not indicated that scale explicitly on the
plots below. Indeed, there is noticeable disagreement be-
tween our theory predictions and the open data/parton
showers in the fixed-order regime, especially for θg → 1
(as illustrated in Fig. 12). A detailed study of fixed-
order corrections are beyond the scope of this paper, and
would anyway require a proper IRC-safe definition of the
measured jet.

C. Open Data Results

We start in Fig. 9 with the full two-dimensional distri-
butions for p(zg, θg) from the Open Data, compared to
the MLL analytic results and the three parton showers.
All of the distributions show a peak at small values of
zg and θg, corresponding to the soft and collinear sin-
gularities of QCD. This structure is explained in more
detail in a companion paper [207]. In principle, the θg
distribution could extend all the way to θg → 0, but it
is regulated by the perturbative form factor in Eq. (10),
nonperturbative hadronization corrections, as well as the
finite angular resolution of the CMS detector. Note the
expected cut at zg = zcut from the soft drop condition.
The zg = θg = 0 bin indicates jets which only have one
constituent after soft drop.

Because of the logarithmic nature of the soft/collinear
singularities of QCD, it is instructive to also plot p(zg, θg)
on a logarithmic scale, shown in Fig. 10. The overall qual-
itative structure is similar between the CMS Open Data
and the theory distributions, but there are visible differ-
ences especially when nonperturbative physics is impor-
tant. Specifically, in the parton shower generators there
is a strong peak around θg ' 0.1, which is suppressed in
the CMS Open Data. It would be interesting to know
whether the parton shower is exhibiting a physical struc-
ture that is simply washed out in the open data or if
there is a pathology in the parton shower generators in
this kinematic regime. Because this feature appears ex-
actly where nonperturbative physics is expected to mat-
ter, the perturbative MLL distribution is not a useful
guide to answer this question.

To better compare the open data to theory predictions,
we now consider the projected observables from Eq. (7).
We show both all-particle and track-only observables
to highlight the impact of angular resolution. Strictly
speaking, the MLL distributions from Sec. IV B are only
valid for all-particle observables, but we show dashed ver-
sions of same curves on the track-only plots for ease of
comparison. One could imagine using the track function
formalism [239, 240] to make sensible track-based MLL
predictions, but that is beyond the scope of the present
work.

We start with zg in Fig. 11, which is also studied in
Refs. [167, 207–209]. Especially for the track-only mea-
surement, the agreement between all five distributions is
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FIG. 9. Two dimensional distributions of zg versus θg from soft drop with β = 0 (i.e. mMDT with µ = 1) in (a) CMS Open
Data and (b) the MLL analytic prediction, compared to (c) Pythia, (d) Herwig, and (e) Sherpa. Here, we are plotting the
dimensionless probability density p(zg, θg) whose integral is 1. The hard vertical cut corresponds to zg = zcut, and the (0, 0)
entry corresponds to jets that fail the soft drop procedure (not present for the analytic calculation). The white hashing in the
MLL distribution corresponds to where nonperturbative physics dominates.
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FIG. 10. Same as Fig. 9 but on a logarithmic scale to highlight the soft/collinear limit. Here, we are plotting the dimensionless
probability density p(log zg, log θg) = zg θg p(zg, θg) whose integral is 1 in logarithmic variables.
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FIG. 11. Soft-dropped distributions for zg using (left column) all particles and (right column) only charged particles. In this
and subsequent plots, the MLL distributions are the same in both columns and do not account for the pmin

T = 1 GeV cut on
PFCs or the switch to charged particles (hence the dashed version on the right). The top row shows the linear distributions
while the bottom row shows the logarithmic distributions.

remarkable. For the all-particle distributions, there is a
noticeable excess in the CMS Open Data compared to
the theory distributions at zg ' zcut, as well as an ex-
cess of events that failed the soft drop procedure; both
of these features could be explained by the degraded an-
gular resolution for neutral particles. On a logarithmic
scale, one can see that the zg distribution is roughly flat,
as expected from the singularity structure of the splitting
functions in Eqs. (11) and (12).

We can get a better understanding of angular effects
by looking at θg directly in Fig. 12. Not surprisingly, the
largest differences between the MLL distribution and the
parton showers occurs in the regime where nonpertur-

bative dynamics matters. Especially on the logarithmic
scale, the feature at θg ' 0.1 is prominent in the parton
shower generators. Note that the CMS heavy ion anal-
ysis in Ref. [167] placed a cut of Rg > 0.1 (θg > 0.2) to
avoid modeling issues in the small θg regime. Given the
relatively good agreement between the CMS Open Data
and the parton shower generators in the track-based dis-
tributions, we do not see an immediate reason to distrust
small θg values, and measurements of θg could indeed be
relevant for parton shower tuning.

Turning to the groomed single-emission angularities

e
(α)
g , in Fig. 13 we see reasonable agreement between the

CMS Open Data and the parton shower generators, es-
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FIG. 12. Same as Fig. 11 but for θg. For the MLL distributions, the region where nonperturbative dynamics matters is indicated
by the use of dashing. We do not indicate the regime where fixed-order corrections matter, since we have no first-principles
estimate for the transition point.

pecially for the track-based observables. The MLL dis-

tributions exhibit the expected kinks at e
(α)
g = zcut, but

the slope below this kink value differs noticeably. For
the pT range shown, though, the location of the kink is
not so far from the scale where nonperturbative physics
dominates, so measurements with more energetic jets are
needed to test whether or not there is any tension with
perturbative predictions.

The above plots are only a subset of the soft-dropped
distributions we have made with the CMS Open Data. In
the arXiv source files, the plots in Figs. 11, 12 and 13 are
part of a multipage file that not only has multiple jet pT
ranges, but also zcut = 0.05 and zcut = 0.2 distributions.
We leave a study of alternative β values to future work.

For completeness, in App. B we show soft-dropped ver-
sions of all of the substructure distributions from Sec. III.
We also show the fractional change in the jet pT due to
soft drop, which was shown in have interesting analytic
properties in Ref. [46]. Additional soft-dropped observ-
ables can be provided to interested readers upon request
(or derived using the publicly-available MOD software
framework).
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FIG. 13. Logarithmic distributions for (top row) e
(1/2)
g = zg

√
θg, (middle row) e

(1)
g = zgθg, and (bottom row) e

(2)
g = zgθ

2
g , using

(left column) all particles and (right column) only charged particles. As in Fig. 12, dashing indicates where nonpeturbative
physics dominates and we have not indicated the fixed-order regime.
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V. ADVICE TO THE COMMUNITY

From a physics perspective, our experience with the
CMS Open Data was fantastic. With PFCs, one can
essentially perform the same kinds of four-vector-based
analyses on real data as one would perform on collisions
from parton shower generators. Using open data has the
potential to accelerate scientific progress (pun intended)
by allowing scientists outside of the official detector col-
laborations to pursue innovative analysis techniques. We
hope that our jet substructure studies have demonstrated
both the value in releasing public data and the enthu-
siasm of potential external users. We encourage other
members of the particle physics community to take ad-
vantage of this unique data set.

From a technical perspective, though, we encountered
a number of challenges. Some of these challenges were
simply a result of our unfamiliarity with the CMSSW
framework and the steep learning curve faced when try-
ing to properly parse the AOD file format. Some of these
challenges are faced every day by LHC experimentalists,
and it is perhaps unreasonable to expect external users to
have an easier time than collaboration members. Some
of these challenges (particularly the issue of detector-
simulated samples) have been partially addressed by the
2011A CMS Open Data release [216]. That said, we sus-
pect that some issues were not anticipated by the CMS
Open Data project, and we worry that they have deterred
other analysis teams who might have otherwise found in-
teresting uses for open data. Therefore, we think it is
useful to highlight the primary challenges we faced, fol-
lowed by specific recommendations for how potentially to
address them.

A. Challenges

Here are the main issues that we faced in performing
the analyses in this paper.

• Slow development cycle. As CMSSW novices, we
often needed to perform run-time debugging to fig-
ure out how specific functions worked. There were
two elements of the CMSSW workflow that intro-
duced a considerable lag between starting a job and
getting debugging feedback. The first is that, when
using the XRootD interface, one has to face the
constant overhead (and inconstant network perfor-
mance) of retrieving data remotely. The second is
that, as a standard part of every CMS analysis, one
has to load configuration files into memory. Load-
ing FrontierConditions GlobalTag cff (which
is necessary to get proper trigger prescale values)
takes around 10 minutes at the start of a run. For
most users, this delay alone would be too high of a
barrier for using the CMS Open Data. By down-
loading the AOD files directly and building our own
MOD file format, we were able to speed up the

development cycle through a lightweight analysis
framework. Still, creating the MODProducer in
the first place required a fair amount of trial, error,
and frustration.

• Scattered documentation. Though the CMS Open
Data uses an old version of CMSSW (v4.2 com-
pared to the latest v9.0), there is still plenty of
relevant documentation available online. The main
challenge is that it is scattered in multiple places,
including online TWiki pages, masterclass lec-
tures, thesis presentations, and GitHub reposi-
tories. Eventually, with help from CMS insiders,
we were able to figure out which information was
relevant to a particular question, but we would
have benefitted from more centralized documenta-
tion that highlighted the most important features
of the CMS Open Data. Centralized documenta-
tion would undoubtably help CMS collaboration
members as well, as would making more TWiki
pages accessible outside of the CERN authentica-
tion wall.

• Lack of validation examples. When working with
public data, one would like to validate that one is
doing a sensible analysis by trying to match pub-
lished results. While example files were provided,
none of them (to our knowledge) involved the com-
plications present in a real analysis, such as appro-
priate trigger selection, jet quality criteria, and jet
energy corrections. Initially, we had hoped to re-
produce the jet pT spectrum measured by CMS on
2010 data [265], but that turned out to be surpris-
ingly difficult, since very low pT jet triggers are not
contained in the Jet Primary Dataset, and we were
not confident in our ability to merge information
from the MinimumBias Primary Dataset. (In ad-
dition, the published CMS result is based on inclu-
sive jet pT spectra, while we restricted our analysis
to the hardest jet in an event to simplify trigger
assignment.) Ideally, one should be able to per-
form event-by-event validation with the CMS Open
Data, especially if there are important calibration
steps that could be missed.14

• Information overload. The AOD files contains an
incredible wealth of information, such that the ma-
jority of official CMS analyses can use the AOD
format directly without requiring RAW or RECO
information. While ideal for archival purposes, it
is an overload of information for external users, es-
pecially because some information is effectively du-
plicated. The main reason we introduced the MOD

14 In the one case where we thought it would be the most straight-
forward to cross check results, namely the luminosity study in
Fig. 2, it was frustrating to later learn that the AOD files con-
tained insufficient information.
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file format was to restrict our access only to infor-
mation that was essential for our analysis. This can
be compared to the Mini-AOD format currently be-
ing developed by CMS to address a similar problem
[226].

• Presence of superfluous data. As described on the
Open Data Portal, one has to apply a cut to only
select validated runs. This meant that of the ini-
tial 20 million events, only 16 million were actu-
ally usable. That said, this turns out to be a rel-
atively small issue compared to trigger inefficien-
cies, which to our knowledge is not mentioned on
the Open Data Portal webpage. The Jet Primary
Dataset includes any event where one of the jet-
related triggers fired (see Table I). However, these
triggers are not fully efficient down to the turn-on
threshold, which is why we had to derive trigger
efficiency curves in Fig. 1b. Using just the triggers
in Table II in the regime where they were nearly
100% efficient reduced the number of events for our
analysis to less than 1 million, which is an order-
of-magnitude smaller than the starting dataset.

• No fast simulation or Monte Carlo samples. While
it is in principle possible to run the full CMS detec-
tor simulation on events from parton shower gen-
erators, we did not have the computing resources
to do so. Without detector information, either in
the form of CMS-approved fast simulation software
or simulated Monte Carlo datasets, we cannot re-
ally say whether the good agreement seen between
open data and parton showers is robust or merely
accidental. Fast simulation tools like Delphes can
be used to some extent, but because they have
not been optimized for jet substructure, we were
not able to use them for this study. Official CMS
Monte Carlo samples would have helped us greatly
to estimate the size of detector corrections (and
potentially even unfold distributions back to truth
level). We are therefore encouraged by the inclu-
sion of Monte Carlo samples in the 2011 CMS Open
Data release [216].

Despite these above issues, though, we were able to per-
form a successful jet substructure analysis, in no small
part due to the help of our CMS (and ATLAS) colleagues
who generously offered their time and advice.

B. Recommendations

Given our experience, we would like to make the fol-
lowing recommendations to CERN and CMS about the
continuation of the Open Data project. Many of these
suggestions are also relevant for the 2012 ATLAS Open
Data [266], though that effort is aimed more at education
than research. Here are our recommendations, in rough
order of priority.

• Continue to release research-grade public data.
Particle physics experiments are expensive and, in
many cases, unique. It is therefore incumbent on
the particle physics community to extract as much
useful information from collision data as possible.
First priority for data analysis should of course
go to members of the detector collaborations, es-
pecially since proper calibration can only be per-
formed by physicists familiar with the detection
technology.15 After an appropriate lag time—four
years in the case of the 2010 CMS Open Data—
outside scientists can play a useful role in data
analysis, especially because collaboration members
might not have the time or interest to revisit old
data once new data is available. Techniques that
perform well on open data can then be incorporated
into the analysis strategies used internally by the
collaborations, enhancing the already strong feed-
back cycle within the particle physics community.16

• Continue to provide a unique reference event inter-
pretation. A key feature of the CMS Open Data
is the presence of PFCs, which provides a unique
reference event interpretation with four-vector-like
objects. From our experience, this seems to be the
right level of information for an outside user. If
the CMS Open Data were to consist only of high-
level objects, like reconstructed jets, then we would
not have been able to pursue these jet substructure
studies. On the flip side, more low-level informa-
tion (or multiple versions of the same information)
could overwhelm the external user and cause confu-
sion. Since it is unlikely that open data could sup-
port arbitrary physics studies, the aim of open data
should be to facilitate particle-level studies that do
not require detailed knowledge of the detector.

• Provide validation examples. We mentioned above
the potential value of having centralized documen-
tation about open data. Even more important than
documentation, though, is having example analy-
ses performed using open data. Explicit code helps
emphasize analysis steps that might be missed by
novices, including trigger selection, prescale fac-
tors, jet calibration, and luminosity extraction.

15 There also needs to be a strong incentive for experimentalists
to join collaborations in the first place. Outside access to (cali-
brated) data should not be used to bypass the stringent internal
collaboration review process.

16 There are, of course, cases where a full open data analysis is
not necessary to motivate the adoption of new techniques. Even
in that context, though, it can still be valuable for the collab-
orations to release official Monte Carlo samples. At minimum,
hadron-truth-level samples provide a standard benchmark to val-
idate the performance of new techniques. More ambitiously,
detector-simulated samples can be used to assess how a new tech-
nique might be affected by detector granularity, acceptance, and
efficiency.
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Where possible, these validation examples should
reproduce official published analyses. We expect
that these validation examples will become the tem-
plates for future open data analyses, and good val-
idation examples could minimize incorrect use of
the data. We intend to make the present analysis
software public, in order to guide future open data
studies.

• Provide detector response information. The biggest
physics gap in our study was our limited ability to
estimate detector corrections. Ideally, open data
should be released with corresponding detector-
simulated Monte Carlo samples, matched to the
triggers of interest. Indeed, the 2011 CMS Open
Data—released in April 2016—does provide these
samples, which will make it possible to estimate
(some) detector systematics.17 Eventually, if open
data is used to place (unofficial) bounds on physics
beyond the standard model, an external user would
also need access to a recommended fast simulation
framework. While it is probably impossible for ex-
ternal users to assess systematic uncertainties with
the same level of care as one can do within the col-
laboration, some understanding of detector effects
is needed before concluding that an effect observed
in the data is real and interesting.

• Cull the data set. Within the experimental col-
laborations, most studies are based on well-defined
trigger paths with almost 100% trigger efficiencies
and nearly constant prescale factors. These same
requirements should be imposed on the open data
such that only usable data is made available pub-
licly. This would not only reduce the storage re-
quirements for open data, but it would also help
avoid some spurious features showing up in the
data. Similarly, most official studies do not need
the full information contained in the AOD file for-
mat, and a more restricted data format would help
further shrink the data file sizes and reduce user
errors. Of course, to maximize the archival value,
it may still make sense to release the original AOD
files for the expert users, along with the tools used
to create the culled versions.

• Speed up the development cycle. For archival pur-
poses, it is valuable to have the full CMSSW frame-
work operating in a VM environment. For the ex-
ternal user, though, it would be more efficient to
have a simplified software framework that can run
with minimal software dependencies.18 We under-

17 The 2012 ATLAS Open Data [266] does provide detector-
simulated samples, but not truth-level information, so it is not
possible to derive detector response information.

18 If the use of the CMSSW framework is essential, it would be help-
ful to have more centralized documentation for the core classes
and methods of CMSSW.

stand that developing an external software environ-
ment requires considerable effort by collaboration
members, but a relatively small investment would
greatly increase the usability of the CMS Open
Data. Our MODAnalyzer software (based heav-
ily on FastJet) might be a good starting point for
such an analysis package, as would any of the exist-
ing private tools used internally by CMS analysis
teams. It may also make sense for the collabora-
tions to appoint an official contact to answer ques-
tions from external users, possibly in the form of
an open data convenership.

While these recommendations are perhaps ambitious
in their scope, we think that the enormous scientific value
of particle physics data justifies this kind of investment
in open data.

VI. CONCLUSION

As the LHC explores the frontiers of scientific knowl-
edge, its primary legacy will be the measurements and
discoveries made by the LHC detector collaborations.
But there is another potential legacy from the LHC that
could be just as important: granting future generations
of physicists access to unique high-quality data sets from
proton-proton collisions at 7, 8, 13, and 14 TeV.

In our view, the best way to build a legacy data set is
to invest in open data initiatives right now, such that sci-
entists outside of the LHC collaborations can stress-test
archival data strategies. This paper represents the first
such analysis made with 2010 CMS Open Data from 7
TeV collisions. We showed how to extract jet substruc-
ture observables with the help of CMS’s particle flow al-
gorithm, yielding results that are in good agreement with
parton shower generators and first-principles QCD calcu-
lations. The recent release of the 2011 CMS Open Data
is particularly exciting, since it now includes detector-
simulated Monte Carlo samples, allowing one to properly
estimate detector systematics. We hope our experience
motivates the LHC collaborations to further their invest-
ment in public data releases and encourages the particle
physics community to exploit the scientific potential of
open datasets.

ACKNOWLEDGMENTS

We applaud CERN for the historic launch of the Open
Data Portal, and we congratulate the CMS collabora-
tion for the fantastic performance of their detector and
the high quality of the resulting public data set. We
thank Alexis Romero for collaboration in the early stages
of this work. We are indebted to Salvatore Rappoc-
cio and Kati Lassila-Perini for helping us navigate the
CMS software framework. We benefitted from code and
encouragement from Tim Andeen, Matt Bellis, Andy



24

100 101 102 103 104

Trigger Prescale

101

102

103

104

105

106

107

E
ve

nt
s

851.39100.315.361.931.0

AK5; |η| < 2.4 Jet30U
Jet50U
Jet70U
Jet100U
Jet140U

CMS 2010 Open DataCMS 2010 Open Data

FIG. 14. Trigger prescale values for jets that pass the criteria
in Table II. When filling histograms in this paper, we always
use the average prescale values, not the individual ones.

Buckley, Kyle Cranmer, Sarah Demers, Guenther Dis-
sertori, Javier Duarte, Peter Fisher, Achim Geiser, Gia-
como Govi, Phil Harris, Beate Heinemann, Harri Hirvon-
salo, Markus Klute, Greg Landsberg, Yen-Jie Lee, Elliot
Lipeles, Peter Loch, Marcello Maggi, David Miller, Ben
Nachman, Christoph Paus, Alexx Perloff, Andreas Pfeif-
fer, Maurizio Pierini, Ana Rodriguez, Gunther Roland,
Ariel Schwartzman, Liz Sexton-Kennedy, Maria Spirop-
ulu, Nhan Tran, Ana Trisovic, Chris Tully, Marta Ver-
weij, Mikko Voutilainen, and Mike Williams. This work
is supported by the MIT Charles E. Reed Faculty Initia-
tives Fund. The work of JT, AT, and WX is supported by
the U.S. Department of Energy (DOE) under grant con-
tract numbers DE-SC-00012567 and DE-SC-00015476.
The work of AL was supported by the U.S. National Sci-
ence Foundation, under grant PHY–1419008, the LHC
Theory Initiative. SM is supported by the U.S. National
Science Foundation, under grants PHY–0969510 (LHC
Theory Initiative) and PHY–1619867. AT is also sup-
ported by the the MIT Undergraduate Research Oppor-
tunities Program.

Appendix A: Additional Open Data Information

In this appendix, we provide additional information
about the overall CMS Open Data extraction from
Sec. II. In Fig. 14, we show the distribution of prescale
values obtained for the triggers in Table II. As expected,
higher trigger thresholds have lower prescale values, but
there is substantial variation in the prescale values which
changed over the duration of the run. If we were to
use the given prescale factors instead of the averages,
we would have seen rather large statistical uncertainties
in our distributions. Since we only ever use one trigger

Loose Medium Tight

Neutral Hadron Fraction < 0.99 < 0.95 < 0.90

Neutral EM Fraction < 0.99 < 0.95 < 0.90

Number of Constituents > 1 > 1 > 1

Charged Hadron Fraction > 0.00 > 0.00 > 0.00

Charged EM Fraction < 0.99 < 0.99 < 0.99

Charged Multiplicity > 0 > 0 > 0

TABLE V. Recommended jet quality criteria provided by
CMS for |η| < 2.4. For |η| > 2.4, where no tracking is avail-
able, the last three requirements are not applied, and all jet
constituents are treated as neutral. For our analysis, we al-
ways impose the “loose” criteria.

Jet Primary Dataset Hardest Jet Selection

NPV Events Fraction Events Fraction

1 4,716,494 0.289 190,277 0.248

2 4,814,495 0.295 246,387 0.321

3 3,630,413 0.222 180,021 0.234

4 1,933,832 0.118 93,587 0.122

5 819,835 0.050 38,598 0.050

6 294,612 0.018 13,805 0.018

7 93,714 0.006 4,318 0.006

8 27,550 0.002 1,242 0.002

9 7,481 0.000 330 0.000

10 2,041 0.000 91 0.000

11 540 0.000 21 0.000

12 125 0.000 6 0.000

13 41 0.000 3 0.000

14 9 0.000 1 0.000

≥ 15 5 0.000 0 0.000

TABLE VI. Number of primary interactions per bunch cross-
ing. Since Run 2010B was a relatively low luminosity run, a
large fraction of the event sample has NPV = 1, corresponding
to no pileup contamination.

per pT bin, it is valid to use the average prescale value
instead.

To properly select the hardest jet, we have to impose
jet quality criteria and apply JEC factors. The CMS-
recommended jet quality criteria are shown in Fig. V;
we always use the “loose” selection in our analysis. In
Fig. 15a, we show the distribution of JEC factors en-
couraged for the hardest jet. These are multiplicative
scaling factors that tend give a 5-10% correction to the
jet pT . In addition to accounting for detector effects, the
JEC factor accounts for pileup through area subtraction
[230]. The distribution of jet areas for the hardest jet
are shown in Fig. 15b, which peak at πR2 for R = 0.5 as
expected. Note that the impact of pileup was minimal in
Run 2010B, since as shown in Table VI, the number of
primary interactions per bunch crossing was less than 5
(i.e. effectively no pileup) for over 90% of the events and
never more than 15 for the selection used for our analysis
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FIG. 15. Range of (a) JEC factors and (b) active jet areas [230] encountered for the hardest jet.

(modest pileup).
To partially account for detector effects in our sub-

structure analysis, we impose a PFC cut of pmin
T =

1.0 GeV, motivated by Fig. 3. In Fig. 16, we plot the PFC
pT spectrum over an extended range, again restricting to
PFCs within the hardest jet. For neutral particles, there
is a growing difference between the CMS Open Data and
the parton shower generators for constituents that carry
a large fraction of the jet momentum, though this differ-
ence is reduced when considering only charged particles.

Appendix B: Additional Soft-Dropped Distributions

In this appendix, we show additional distributions ob-
tained from soft drop declustering. In Fig. 17, we show
the fraction of the original jet pT discarded after soft
drop, plotted logarithmically. This distribution was ad-
vocated in Ref. [46] as an interesting example of a Su-
dakov safe [205, 206] observable, and we see good agree-
ment between the CMS open data and parton showers.

The distributions in Sec. III were obtained prior to ap-
plying any jet grooming. In Fig. 18, we show the same ba-
sic substructure observables from Fig. 6, but now showing
the impact of soft drop. Soft drop does not necessarily
improve the agreement between the CMS Open Data and
the Pythia parton shower, though it also does not make
it any worse, and the track-based agreement is very good.
We perform a similar study in Fig. 19 for the jet angu-
larities from Fig. 7. There is good qualitative agreement
between the open data and Pythia, but the track-only
version has much better quantitative agreement as ex-
pected.



26

10−5

10−4

10−3

10−2

10−1

100

A
.U

.

CMS 2010 Open Data
Pythia 8.219
Herwig 7.0.3
Sherpa 2.2.1

Neutral PFCs
AK5; |η| < 2.4

pjet
T > 85 GeV

0 20 40 60 80 100

Neutral PFC pT [GeV]

0.5

1.0

1.5

2.0

R
at

io
to

P
yt

hi
a

(a)

10−5

10−4

10−3

10−2

10−1

100

A
.U

.

CMS 2010 Open Data
Pythia 8.219
Herwig 7.0.3
Sherpa 2.2.1

Charged PFCs
AK5; |η| < 2.4

pjet
T > 85 GeV

0 20 40 60 80 100

Charged PFC pT [GeV]

0.5

1.0

1.5

2.0

R
at

io
to

P
yt

hi
a

(b)

FIG. 16. Same as Fig. 3, but showing a wider range of PFC pT values.
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FIG. 18. Same observables as in Fig. 6, but now showing the original distributions (black) compared to those obtained after
soft drop declustering (red).
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FIG. 19. Same observables as in Fig. 19, but now showing the original distributions (black) compared to those obtained after
soft drop declustering (red).
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